——

PCT

International Bureau

WORLD INTELLECTUAL PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(22) International Filing Date: 16 May 1995 (16.05.95)

(30) Priority Data:

08/243,590 us

16 May 1994 (16.05.94)

(71) Applicant: APPLE COMPUTER, INC. (US/USJ; 1 Infinite
Loop, Cupertino, CA 95014-2084 (US).

(72) Inventor: CIRNE, Lewis, K.; 1475 Hollenbeck Avenue,
Sunnyvale, CA 94087 (US).

(74) Agents: FLIESLER, Martin et al.; Fliesler, Dubb, Meyer
& Lovejoy, Suite 400, Four Embarcadero Center, San
Francisco, CA 94111-4156 (US).

(51) International Patent Classification 6 : (11) International Publication Number: WO 95/31772
GOGF 9/44 Al . -

(43) International Publication Date: 23 November 1995 (23.11.95)

(21) International Application Number: PCT/US95/06120 | (81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,

Published

CN, CZ, DE, DK, EE, ES, Fl, GB, GE, HU, IS, JP, KE,
KG, KP, KR, KZ, LK, LR, LT, LU, LV, MD, MG, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
TJ, T™M, TT, UA, UG, UZ, VN, European patent (AT, BE,
CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,
SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML,
MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ,
UG).

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: DIALOG ITEM INTERFACE DEFINITION OBJECT

apPLICATION V%

434
422

DLOG 1
DITL N

428
(

430

DATA RESOURCE

-
——

446

1% 437
Bose
435/\ 440
GroupingRect Circle
/
// Widcircle I LBrokencircleI
/ \g42 N\ 444

!
N

ot a0

DIALOG MANAGER

(57) Abstract

An object-oriented item is used to define the behavior of an item in a
customized item. An applications developer can create customized items for a

is referenced by a resource associated with an application.

library is established with a base class setting up initial definitions of instance variables and methods used to define the behavior of a

portions of the superclasses, and the developer will customize the item by overriding certain methods. The object, an instance of the class,

dialog box in a windows environment. A class hierarchical

dialog box by creating subclasses. The subclasses will inherit

AT
AU
BB
BE
BF
BG
BJ

BR
BY
CA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international
applications under the PCT.

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Cbdte d’'Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

GB
GE
GN
GR
HU
IE
IT
JP

KG
KP

KR
KZ
LI
LK
LU
LV
MC

MG
ML
MN

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

MR
MW
NE
NL
NO
NZ
PL

RO
RU
SD
SE
SI

SK
SN
™D
TG
TJ

UA
Us
UZ
VN

Mauritania

Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-1-

DIALOG ITEM INTERFACE DEFINITION OBJECT

LIMITED_COPYRIGHT WAIVER

A portion of the disclosure of this patent document contains material which
is subject to copyright protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document or the patent disclosure as
it appears in the U.S. Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.
BACKGROUND OF THE INVENTION
Field of the Invention

The present invention is directed to a system for defining, using and
customizing items in a dialog box.

Description of the Related Art

Many computers utilize a windows environment. A window is a user
interface element that delimits an area on the screen in which a user can enter and
view information. Software applications that have a user interface, can use windows
to communicate with the user. A software application (or simply "application") is
computer software that performs a particular task. Any piece of information that an
application needs to present to a user can be displayed in a window. Similarly, any
piece of information that an application needs to solicit from a user can be obtained
by requesting the user to perform appropriate actions in a window. Appropriate
actions means that the user types in information, edits information, checks a box or
uses a mouse to click on a button or icon.

There can be at least two general kinds of windows: document windows and
dialog boxes. Document windows are used primarily to allow the user to enter and
manipulate information, such as text, graphics or other data. Often, but not always,
the information in a document window can be stored in a file, from which the user
can later retrieve the information.

The dialog box is a window that is used for some special, limited purpose.
In the simplest case, a dialog box can be used to display information to the user. The
information might be a report of an error, a greeting, or a progress bar showing what

percentage of some operation has been completed. A dialog box is usually a pop-out

WO 95/31772 PCT/US95/06120

10

15

20

25

30

2-

window that an application uses to display or prompt for information. In some cases,
the information is needed to complete a command. Dialog boxes can display
information to the user, allow the user to change information and allow the user to
enter additional information. A dialog box can contain one or more items, with
which the user can type text, choose options, or direct the action of a particular

command. The items include, but are not limited to, a button, a check box, editable

’ text, a help item, icon, a picture, radio button, and static text. The above listed items

are predefined items. An applications developer also can create user-defined or
customized items.

Figure 1 shows dialog box 10, which may be used as part of an application
to draw Venn Diagrams. Dialog box 10 includes various items. For example, dialog
box 10 includes a button 12 ("Save current preferences"). If the user clicks on button
12, the application will save all the selections the user made in the dialog box. The
term "click” is defined to include the act of the user, using a mouse, placing the
cursor over the button and depressing a button on the mouse. The mouse can be
replaced by another apparatus for positioning the cursor. Dialog box 10 also includes
four check boxes 14, 16, 18, 20, all of which have associated static text. For
example, check box 14 has static text "Give existential import to subjects.” In an
alternative embodiment, each of the static text can be thought of as separate items.
While the dialog box is active on a screen, the user can click on the check box.
Clicking on the associated check box (14, 16, 18 and 20), toggles the check box
between chosen and unchosen states. When the user clicks on button 12, the features
that are chosen from check boxes 14, 16, 18 and 20 are stored and used by the
application in producing the Venn Diagram.

Dialog box 10 also includes eight radio buttons 30, 32, 34, 36, 38, 40, 42
and 44. Each radio button has an associated picture 46, 48, 50, 52, 54, 56, 58, and
60, respectively. Each of these pictures shows an available feature; for example,
picture 46, 48, 50 and 52, show the existence of symbols, and pictures 54, 56, 58
and 60 show emptiness patterns that can be used in the Venn Diagram. The user can
click on various radio buttons to select or deselect any of the symbols or emptiness
patterns. When the user clicks Save Button 12, the selected patterns and symbols are
stored. Alternatively, pictures 46, 48, 50, 52, 54, 56, 58 and 60 can be separate

icons.

WO 95/31772 PCT/US95/06120

10

15

20

25

30

3-

Dialog boxes tend to be easier to create and manage as compared to document
windows. Many computers will have a Dialog Manager that manages or oversees the
use of dialog boxes. The Dialog Manager reads a description of the dialog box and
the items inside the dialog box. The Dialog Manager then draws the dialog box and
process (or manage the response to) user actions that effect the dialog box. The

Dialog Manager’s duties include manipulating items in a dialog box, including but not

 limited to, drawing an item, erasing an item, changing the appearance of an item and

overseeing the handling of any event which effects the item.

Currently, the behavior of a dialog box and its items are defined in the Dialog
Manager, the windows system, or in an application. The phrase "defining behavior"
includes, but is not limited to, defining how and where to draw dialog boxes and
dialog items, various attributes of the items (e.g. font, point size, color, test, etc.)
and what actions need to be performed when an event occurs (for example when a
user clicks on an item, enters text in an item, edits text in an item or performs any
other action involving an item or dialog box). When designing a Dialog Manager
and accompanying software, the Dialog Manager includes predefined items for an
applications programmer to use in dialog boxes. Thus, a windows environment may
come with a library of predefined items.

The current use and structure of dialog boxes and dialog items has given rise
to some hardship in regard to software development. A first hardship occurs when
the provider of the Dialog Manager or windows system, and perhaps the operating
system, desires to make changes to the library of predefined items. Changes to the
library include adding more items or changing the definition of preexisting items.
Making changes to the library usually requires making changes to the Dialog
Manager, and possibly the windows system or the operating system (the Dialog
Manager may or may not be part of the operating system). Additionally, after
completing the changes to the library, the operating system and the Dialog Manager
may need to be recompiled in order to take advantage of new features. In most
cases, if the operating system, window system or Dialog Manager are recompiled,
applications that run on the operating system or windows system must be recompiled
in order to take advantage of the new features. Thus, as the provider of a window

system or Dialog Manager adds new items or changes items in the library, every

WO 95/31772 PCT/US95/06120

10

15

20

25

30

4-

application running on the system may need to be recompiled. This is burdensome
on the users and applications developers.

Furthermore, changes in the library may make other library items or software
applications obsolete. Specifically, if the definition of an item is changed other items
which incorporate that item or applications which incorporate that item will no longer
function properly and may need to be edited.

A third hardship arises when an application developer (developer) needs to
use an item that does not appear in the predefined item library. Thus, the
applications programmer creates a new, customized item. Currently, creating a
customized item requires a lot of effort. The applications programmer must
understand how the Dialog Manager works and how to override various features of
the Dialog Manager to deal with a new type of item. Also contributing to the
hardship is the possibility that the applications developer does not have the ability to
easily incorporate all the prior definitions and code used to define the original library.

Another problem is that each item’s behavioral definition may include
instructions for behaving in various situations. When the Dialog Manager accesses
an item’s behavioral definition, there is only one point of entry for the Dialog
Manager. Currently, behavioral definitions are typically defined by a list of
instructions. When the Dialog Manager accesses the item, the Dialog Manager reads
the first instruction on the list of instructions followed by reading the second
instruction and so on, until the Dialog Manager completes all the necessary steps as
defined in the list of instructions. However, the Dialog Manager may only need to
execute a small subset of instructions to carry out the desired task. Thus, it is a
waste of processing time for the Dialog Manager to execute instructions not pertinent
to the desired task. Additionally, having only one entry point requires a developer
to create code to handle the flow of control from that one entry point to all sets of
behavioral definitions. Thus, the developer may be required to create a large amount
of code for simple customizations.

When an applications developer creates a customized item, the module
defining the new item can be a separate file from or part of the application program.
The application may need to be compiled every time the definition of the item is
altered. Additionally, when the applications developer is creating a second

application, the item defined in the first application would not necessarily be able to

WO 95/31772 , PCT/US95/06120

10

15

20

25

30

-5-

be referenced by, for example, a pointer in the second application because part of the
code used to create the new dialog item is in the first application. Finally, because
the applications developer is overriding various segments of code in the Dialog
Manager, a change in the Dialog Manager could render an application (with a custom
or user-defined item) obsolete.

SUMMARY OF THE INVENTION

The present invention is directed to overcome the disadvantages of the prior
art. Thus, the present invention is directed to a dialog item interface definition object
which allows for the creation of customized dialog items in a simple and more
powerful manner. The advantages of the dialog item interface definition object
(hereinafter referred to as a "IDO") includes the property of longevity. That is, a
change in the dialog item library generally does not render an IDO obsolete.
Furthermore, an IDO is independent. That is, an IDO is nbt part of the operating
system, the windows system, Dialog Manager or the application. Thus, the IDO can
be edited without necessarily having to recompile the application, windows system,
Dialog Manager or operating system. Similarly, a change in the item library, or
Dialog Manager or application or windows system, would not necessarily require
recompiling the IDO.

Creation of a custom item using an IDO requires significantly less code to be
written and less understanding of the Dialog Manager. An item designed with an
IDO can include multiple entry points; therefore, reducing the time wasted executing
commands that are not pertinent to the behavior sought to be implemented.
Additionally, because there are multiple entry points, a developer creating an IDO
need only create code for the entry points that are being customized.

Finally, dialog items created using an IDO can be edited without affecting
other software and can include a system for self editing. Most editing tools are
packaged with a window system or are sold as an off the shelf item. These tools
would not necessarily know how to edit a custom dialog item. The self editing
capability of an IDO allows for the editing of a custom dialog item.

An IDO is implemented using an object oriented class library (or class
structure or class hierarchy). Each class can define the behaviors and attributes used
in a particular item. A class library can be created separately from the operating

system, windows system, Dialog Manager and application. The applications

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-
developer adds to the class library to customize a dialog item. When an application
is written, the application need only include a reference to a dialog window. A
resource is then created which defines the dialog window. This resource has
references to the various items needed in the window. The references could indicate
a class in the class library. Because the object oriented class library is used, defining

or customizing a new item allows for inheriting all the features of a superclass and

~ overriding only the pertinent features needed for customizing.

Accordingly, one aspect of the present invention includes a class structure
including a base class and a subclass. The base class has a method adapted to be
inherited by the subclass. The method is capable of defining a behavior of an item.
A resource, associated with the application, is included which is adapted to store a
reference to a particular subclass. The system includes a manager. The manager is
adapted to be in communication with the resource, such that the manager can find the
referenced subclass. The manager is adapted to manipulate an item in a dialog box
according to the behavior defined in the referenced subclass (or class). The base
class can have a plurality of methods. There can be more than one subclass and each
subclass can inherit all or some of the methods defined in the base class. Each
subclass can have its own subclass which can inherit methods. A subclass can be
compiled without compiling the base class (and vice versa). Additionally, a subclass
can be compiled without compiling the application, or the windows system, the
manager or the operating system (and vice versa).

Another aspect of the present invention includes a dialog interface definition
object for defining an item in a dialog box. The dialog box is used as part of an
application. The application includes a resource adapted to store and reference
information relative to the dialog box. The information is used by a manager to
manipulate the dialog box and the dialog items. An object is an instance of a class
in aclass library. The class includes attributes, inherited methods capable of defining
a first behavior of the item, and new methods which override a methods defined in
a superclass and are capable of defining a second behavior of the item. The new
methods are capable of being inherited by subclasses.

Another aspect of the invention includes a method for creating an item in a
dialog box. The method includes the steps of executing an instruction calling for the

dialog box and reading a resource associated with the dialog box. The step of

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-

reading a resource includes the steps of reading a list of items to be presented in the
dialog box and following a reference, in the list of items, which references an object.
The method further includes waiting for a first event and executing a first method
associated with the first event, without executing other methods in response to the
first event. The event can be a draw event, and thus a draw method is executed.

A further aspect of the present invention includes a method for defining the

“behavior of a new item to be used in the dialog. The method includes the steps of

defining attributes and inheriting a first method from a superclass. The first method
defines the first task to be performed in response to a first event. A second method
is overridden from the superclass, including the steps of defining a second task to be
performed at a second event. An application is created which includes a dialog box.
The application includes a reference path to the first and second methods. The first
method and the second method can be compiled without coupling the application.

These and other objects and advantages of the invention will appear more
clearly from the following description in which the preferred embodiments of the
invention have been set forth in detail in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a dialog box.

Figure 2 is a block diagram of a computer system which can be used to
implement the features of the present invention.

Figure 3 shows an overview of the systems software.

Figure 4 is a symbolic representation of the structure of a file.

Figure 5 is a symbolic representation of a resource.

Figure 6 is a symbolic representation of the structure of a dialog resource.

Figure 7 is a symbolic representation of the structure of a dialog item list
resource.

Figure 8 is a symbolic representation of the structure of an IDO item in the
dialog item list resource.

Figure 9 is a symbolic representation of a class library.

Figure 10 shows the flow chart describing the method of creating a new item
in a dialog box.

Figure 11 shows a dialog box with an item defined by an IDO.

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-8-

Figure 12 is a flow chart explaining how the Dialog Manager manipulates an
IDO.

Figure 13 is a symbolic representation of how an application, an IDO and the
Dialog Manger interact.

Figure 14 is a symbolic representation of how the Dialog Manger process
events pertaining to an IDO.

Figure 15 is a block diagram showing the various routines carried out by the
Dialog Manager.

Figure 16 shows the DLOG Resource Editor.

Figure 17 shows the DLOG Menu.

Figure 18 shows a window for setting the DLOG characteristics.

Figure 19 shows the DITL Editor.

Figure 20 shows the DITL Item Editor.

Figure 21 shows the DITL menu.

Figure 22 is a flow chart of the method for editing an IDO.
DESCRIPTION OF THE PREFERRED EMBODIMENTS

I Hardware Overview

Fig. 1 illustrates a computer system which can be used to implement the
features of the present invention. The computer system includes a host CPU 110
coupled to a system bus 111. The system includes a keyboard 112, a mouse 113
including a mouse button, or other pointing device, and a non-volatile memory 114,
such as a hard disk, floppy disk, non-volatile integrated circuit memory system, or
the like. Similarly, instruction memory 115 and working memory 116 are coupled
to the bus 111. The instruction memory 115 stores window management software,
among other software needed for operation of the system. The working memory 116
is used to maintain various tables needed by the software in the instruction memory
115 in order to maintain the display.

The system also includes a display controller 117 which includes video
memory. The display controller 117 drives a display 118 such as a CRT video
monitor, LCD flat panel display, or the like. The display system 118 has a screen,
generally 119. On screen 119, a workspace 120 is displayed. Workspace 120 is
implemented with a desktop metaphor in the Macintosh type systems with a menu bar

region 107 for pull-down menus, and a window region 108 for displaying windows

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-9-

and icons. Within the window region 108 of the desktop 120, a plurality of
identifiers may be displayed, such as the identifier 121 representing a hard disk drive,
the identifier 122 representing a floppy disk, and other identifiers not shown which
represent files, applications, control panels, or enclosures which enclose other
objects. Also in the window region of the desktop 120, a plurality of windows, such
as windows 143, 144, and 145 may be opened. The windows 143, 144, and 145

enclose identifiers, such as identifiers 146 and 147 in window 143, identifier 148 in

window 144, and identifier 149 in window 145.

Windows may overlap other windows, so identifiers in one window can
become obscured by another window. But the entire surface of the identifier is "hot"
during a drag, so the user only needs leave one pixel showing an identifier for the
entire identifier to be accessible.

In the figure, the identifiers are shown as graphical elements, or icons.
Alternative identifiers may be textual elements, such as the name of the corresponding
object. The behaviors described herein may be applied to both textual and graphical
elements, as may occur in windows opened in a view by name mode or a view by
icon mode in Macintosh computers.

Displayed within the desktop 120 is the cursor 105. In order to identify a
particular desired icon, the user moves the cursor on the display by moving the
mouse 113 in a corresponding motion. When the cursor is positioned over one of the
icons, the icon automatically changes to reverse video. The user can click on that
icon using the mouse button, and can drag it to another icon, either in the same
window or in a different window, and then release the mouse button to indicate
selection of objects corresponding to both the first and second icons.

II. Software Overview

System software is used to implement the various functions of the computer
and to provide routines available for application developers to call or include in an
application. Systems software routines can be logically divided into functional
groups, usually known as managers, that handle specific tasks or user interface
elements. For example, the Window Manager allows an application to create, move,
hide, resize and otherwise manipulate windows. Similarly, the parts of the system
software that allow a developer to create and manipulate menus belongs to the Menu

Manager. An application can call system software routines to create standard user

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-10-

interface elements and to coordinate its actions with other open applications. Fig. 3,
which depicts an overview of the systems software, shows a user 140 engaging the
mouse 113 and keyboard 112. Via a user interface 142, the user 140 interacts with
application 146. User interface 142 typically includes a display system; for example,
as described in Fig. 2. The application interacts with toolbox 148, operating system
150 and additional system software 152.

Toolbox 148 is used to implement the user interface, resource manégement,
sound input and output, text and graphics. The toolbox offers a common set of
routines that applications can call to implement various functions. The toolbox
ensures familiarity and consistency for the user and helps reduce an application’s code
size and development time. The toolbox is logically divided into functional groups,
usually known as managers, that handle specific tasks for user interface elements.
Following, is a description of some of the various managers a given toolbox can
have. A more detailed description of the toolbox and system software can be found
in "Inside Macintosh, Overview," Apple Computer, Inc., 1992, Addison-Wesiey
Publishing Company, incorporated herein by reference; and "Inside Macintosh,
Macintosh Toolbox Essentials," Apple Computer, Inc., 1992, Addison-Wesley
Publishing Company, incorporated herein by reference.

The Window Manager allows a developer to create and manage windows of
various types. The Dialog Manager allows a developer to create and manage dialog
boxes. The Control Manager allows the developer to create and manage controls
such as buttons, radio buttons, check boxes, pop up menus, scroll bars, and
application-defined controls. The Menu Manager allows the developer to create and
manage an application’s menu bars and the menus it contains. The Menu Manager
also handles the drawing of menus and user actions within a menu. The TextEdit
Manager provides simple text-formatting and text-editing capabilities, such as text
input, selection, cutting and pasting. Applications that are not primarily concerned
with text processing can use the TextEdit Manager to handle most text manipulation.
The Resource Manager allows an application to read and write resources. The Finder
Interface Manager allows an application to interact with the finder, the application
that helps keep track of files and manages the users desktop display. The Scrap
Manager allows an application to support cutting and pasting of information among

applications. The Help Manager allows an application to provide balloon help on-line

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-11-

assistance. The List Manager allows an application to create a visual list of items.
The Sound Manager provides sound output capabilities. The Sound Input Manager
provides sound input capabilities for computers equipped with a sound input device
such as a microphone. Each of the various managers can 'call other managers to
perform tasks. For example, the Dialog Manager can call the Window Manager to
set up a window for a dialog box.

The operating system provides routines that allow for performance of basic
low level tasks such as file input and output, memory management, and process
control. Toolbox 148 can call operating system 150 to perform low level operations.
An application may also be able to call operating system 150 directly.

The toolbox aliows for the creation and management of parts of an
application’s user interface, and in some sense mediates between the application and
the user. By contrast, the operating system essentially mediates between the
application and the hardware. For example, an application does not read and write
files by reading data directly from the medium from which they are stored. Rather,
the application calls appropriate File Manager routines. The File Manager locates the
desired data within the logical hierarchal structure of files and directories that it
manages: Then, the File Manager calls the Device Manager to rewrite the data on
the actual physical device. The File Manager and the Device Manager thereby
insulate an application from the low level details of interacting with the available data
storage hardware. Thus, toolbox 148 can be thought of as a level above operating
system 150. An alternative embodiment may have the toolbox at the same level.

Below is a description for the various main components of a preferred
operating system. The Process Manager handles the launching, scheduling and
termination of applications. It also provides information about open processes. The
Memory Manager manages the dynamic allocation and releasing of memory in an
applications memory partition. The Virtual Memory Manager provides virtual
memory services. That is, the ability to have a logical address space that is larger
than the total ambunt of available RAM. The File Manager provides access to the
file system; allows applications to create, open, read, write, and close files. The
Alias Manager helps locate specified files, directories, or volumes. The Disk
Initialization Manager manages the process of initializing disks. The Device Manager

provides input from and output to hardware devices attached to the computer. The

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-12-

SCSI Manager controls the exchange of information from the computer and a
peripheral device attached to a Small Computer Standard Interface (SCSI). The Time
Manager allows for the execution of a routine periodically or after a specified time
delay. The Vertical Retrace Manager allows the synchronizaiion of the execution of
a routine with the redrawing of the screen. The Shutdown Manager allows for the
execution of a routine while the computer is shutting down or restarting.

The system software includes a number of other parts, collectively called
additional system software 152, that do not historically belong to either the toolbox
148 or the operating system 150. Additional system software 152 provides an
extremely powerful set of services that can be used to handle text and to support the
varying text handling requirements of different languages and writing systems. The
additional system software 152 also includes an Inter-Application Communications
Architecture (IAC) and a communications toolbox.

The IAC provides a standard and extensible mechanism for communication
among applications. The IAC architecture includes the following main parts. The
Edit Manager allows applications to automate, copy and paste operations between
applications, so that data can be shared dynamically. The Event Manager allows
applications to send and respond to events. The Program to Program
Communications Toolbox (PPC) allows applications to exchange blocks of data with
each other by reading and writing low-level message blocks. It also provides a
standard user interface that allows a user working in one application to select another
application with which to exchange data.

The system software routines can be stored in a library and linked to an
application. In the preferred embodiment, these routines reside in a read only
memory (ROM), provided by special chips in the computer. When an application
calls a routine, the operating system intercepts the call and executes the appropriate
code contained in the ROM. This mechanism provides a way for the operating
system 150 to substitute the code that is executed in response to a particular system
software routine. Instead of executing the ROM based code for some routine, the
operating system may choose, at the instruction of the application developer, to load
some substitute code in the computer’s RAM. Then when the application calls the
routine in question, the operating system intercepts the call and executes the RAM
based code. RAM based code that substitutes for ROM based code is called a patch.

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-13-

Patches are usually stored in the system file, located in the system folder. The
system file also contains collections of data, known as resources, that applications can
use to help present the standard user interface. Another method for adding
capabilities to the system software is to include executable code of new routines as
a system extension. Extensions are stored in a special location, the Extension Folder
in the System Folder, and are loaded into memory at system startup time.

When an application calls a system software routine, it generally does not
matter whether the code that is executed resides in ROM, is a patch in RAM loaded
from the system file, or is part of a RAM-based extension. It is, however, important
that appropriate code exists in at least one of these locations, because the application
will crash if an attempt to call a routine that is not defined anywhere.

The system software breaks up the users actions into component events,
which are passed one by one to an application for handling. For example, when a
user 140 passes a key on the keyboard 112, the system sends the application
information about that event. Alternatively, an event could be the user 140 clicking
on the mouse 113 or placing a disk 160 in a disk drive 162. The event information
passed to the application includes which key was pressed, when the key was pressed
and were there any modifier keys (for instance, the Command key) were being held
down at a time for the key press and so forth. Applications respond to the event by
performing whatever actions are appropriate. Applications may receive many types
of events. Events are usually divided into three categories: low-level events,
operating system events and high-level events. The Event Manager returns low-level
events to an application for occurrences such as the user pressing the mouse button,
releasing the mouse button, pressing a key on the keyboard or inserting a disk. The
Event Manager also returns low-level events to an application if the application needs
to activate a window (that is, make changes to a window based on whether it is in
front or behind another window) or update a window (that is, redraw the windows
contents). When the application requests an event and there are no other events to
report, the Event Manager returns a null event. The Event Manager returns
operating-system events to an application when the processing status of the application
is about to change or has changed. For example, if a user brings an application to
the foreground, the Process Manager sends an event through the Event Manager to

an application. Some of the work of reactivating an application is done automatically,

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-14-

both by the Process Manager and by the Window Manager. Applications must take
care of any further processing needs as a result of an application being reactivated.
The Event Manager returns high-level events to an application as a result of
communication directed to the application from another application or process.
Figure 4 is a symbolic representation of the structure of a file in the preferred
embodiment. File 160 has a data fork 162 and a resource fork 164. File 160 is

treated as a named, ordered sequence of bytes stored on a volume and divided into

two forks. The data fork 162 contains data that usually corresponds to data created
by the users. The application creating the file can store and interpret the data in the
data fork in whatever manner is appropriate. Resource fork 164 consists of a
resource map and the resources themselves. A resource is any data stored according
to a defined structure. The data in the resource is interpreted according to the
resource type. Resources can be created by compiling code, using a resource
compiler, or using a resource editor. When data is written to a file, it is either
written to the file’s resource fork or the file’s data fork. Data is typically read from
the data fork using the File Manager routines, and read from and written to a
resource fork using the Resource Manager.

Resources typically store resources data that has a defined structure, such as
icons, sounds, and descriptions of menus, controls, dialog boxes and windows.
When a resource is created it is assigned a resource type and resource ID. A
resource type is a sequence of characters that uniquely identifies a specific type of
resource, and a resource ID identifies by number a specific resource. Examples of
resource types include CODE, DLOG, DITL, and ICON. An ICON resource type
is used to define an icon. A WIND resource is used to define a window. A DLOG
resource is used to define a dialog box. A DITL resource is used to define a dialog
item list (which is a lot of items in a given dialog box). Resources specific to a given
application, such as descriptions of windows, menus, controls and dialog boxes, are
stored in the resource fork of the given application. A resource fork has a resource
map which contains entries that provide the location of each resource in the resource
fork. When the Resource Manager opens the resource fork of a file, it reads the
resource map into memory. As the Resource Manager reads resources into memory,

it replaces their entities in the resource map with handles to the data in memory.

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-15-

When a user opens an application, the system software opens the application’s
resource fork. When the application opens a file, the application typically opens both
the files data fork and the files resource fork. When the application requests a
resource from the Resource Manager, the Resource Manager files a specific search
order. The Resource Manager normally looks first for the resource in the resource
fork of the last file that the application opened. If the Resource Manager does not
find the resource there, it continues to search each resource fork open to the
application in reverse order that the files were opened. After looking in the resource
forks of files the application has opened, the Resource Manager searches the
application’s resource fork. If it is not found, the Resource Manager searches the

resource fork of the system file.

III. Dialog Boxes

A dialog box was previously described in the background of the invention.
This section provides further details of the preferred embodiment dialog box. When
creating a dialog box, the application developer needs to define a dialog resource
(DLOG) and a dialog item list resource (DITL). The Dialog Manager gets most of
the descriptive information about dialog boxes from these resources. Fig. 5 shows
the resources for an application that contains dialog boxes. Resource fork 164
includes a first resource for storing code 182. The application calls for two dialog
boxes; therefore, resource 164 includes two dialog resources: DLOG, 184 and
DLOG, 186. For each dialog resource there is a corresponding dialog item list.
Thus, DLOG, 184 corresponds to DITL, 188, and DLOG, 186 corresponds to DITL,
190.

Fig. 6 shows a structure of a DLOG resource 200. Rectangle field 202
determines the dialog box’s dimensions. Window definition ID 204 (Procld) is used
to determine what type of dialog box is being defined. For example, types of dialog
boxes can include dialog boxes that can be moved across the screen (i.e. dragged with
a mouse), dialog boxes which must be dismissed by a user action before any other
actions can take place (modal dialog box), and dialog boxes which can be used now
or put in the background and used later. If the visibility field 206 is set to a value
of 1, the Dialog Manager displays this dialog box as soon as the dialog box is called
in the application. Alternatively, the dialog box can be defined and set up in memory

when called, and would require a draw dialog box command to be displayed. Close

10

15

20

25

30

WO 95/31772 PCT/US95/06120

-16-

box specification 208 specifies whether to draw a close box. A close box is a box
drawn in the dialog box that, when clicked on, causes the dialog box to be closed.
Field 212 is reference constant (refCon), which contains any data that an application
stores here. For example, an application can store a number that represents an item
of data, or a pointer to data. Item list ID 216 is the identification of the item list
resource (DITL) that specifies the items in the dialog box. Window title 218 is a
Pascal string displayed in the dialog boxes title bar. Alignment by 220 is an extra
byte added if necessary to make the previous Pascal string end on a word boundary.
Dialog box position 222 specifies the position of the dialog box on the screen.

A dialog item list (DITL) resource is used to specify what items are being
included in the dialog box. The format and structure of a DITL 230 is shown in Fig.
7. Field 232 (item count minus 1) stores the value of one less than the total number
of items defined in this resource. Below that count is a variable number of items
(234 ...236...).

Figure 8 shows the format of an individual IDO item in a DITL. Display
Rectangle 242 is used to define the size and location of the item in the dialog box.
The display rectangle is specified in corners local to the dialog box; these corners
specify the upper left and lower right hand corners of the item. Item Type 244
contains a value which indicates the type of item being defined. For example, this
field may be loaded with a first constant if the item type is a button, a second
constant if the item type is a check box, a third constant if the item type is an IDO,
etc. Handle 246 is a pointer which references a class (classes are discussed below).
IDO Name stores the name of the class (referencing the class) which defines the IDO.
IV. Object Oriented Programming

The IDO of the present invention is a product of object oriented
programming. In object-oriented programming, action and data are closely coupled.
That is, when a programmer defines data, action can also be defined. Instead of a
set of routines that do something to data, there is 4 set of objects interacting with each
other.

An object is an entity that contains some data and an associated set of actions
that operate on the data. To make an object perform one of the actions, the object
is sent a message. For example, one might create an object that represents a

rectangle. Its data contains the locations of the rectangles four corner points and its

10

15

20

25

30

WO 95/31772 PCT/US95/06120

-17-

actions might include drawing, erasing and moving. To draw a rectangle, one sends
a draw message to the rectangle.

Every object belongs to a class, which defines the implementation of a
particular kind of object. A class describes the object’s data and how the object
responds to a message. An object is called an instance of a class.

Classes are very much like record declarations. A programmer defines the
private data for the class similar to the fields of a record. In classes, the fields are
called instance variables (or attributes). Each instance of a class has its own instance
variables just as each variable of a record type has the same fields. When a message
is sent to an object, a software routine implements that message. This routine is
called a method. Thus, a class definition includes instance variables and methods.
One important thing to keep in mind is that message and method are not the same.
A message is what is sent to an object. How an object responds to a message is the
method. Thus, a given class will have a class name, instance variables, messages that
it can be sent, and methods it will carry out when received a particular message.

A class can be defined in terms of an existing class. The new class is called
the subclass and the existing class is called the superclass. A class without a
superclass is said to be a root class. A subclass inherits all the instance variables and
methods of its superclass. Inheriting means that a variable or method existing in a
given class will automatically exist in the subclass. Subclasses can define additional
instance variables and methods. Subclasses can also override methods defined by the
superclass. Overriding a method means creating a new set of instructions such that
the subclass responds to the same message as a superclass but uses its own method
(new method) to respond to the message. If a method is not overridden, the subclass
responds to the method in the same manner as the superclass.

Fig. 9 shows a hierarchical class library (or class structure or class
hierarchy). Class 300 represents the root class. Class 302 is a subclass of the root
class. Class 304 is also a subclass of the root class 300. Class 304 also has.
subclasses 306 and 308. Therefore, class 304 is a superclass of 306 and 308, but a
subclass of class 300. Thus, any method defined in class 300 can be inherited in
classes 304, 306 and 308. If class 304 overrides a method in class 300, class 306
and class 308 inherit the new method. For example, class 300 defines how to draw

a circle (see box 301), and has two instance variables, Center and Radius. Class 300

10

15

20

25

30

WO 95/31772 PCT/US95/06120

-18-

also has two methods: DrawCircle and EraseCircle. The DrawCircle method draws
a circle when class 300 received the message "DrawCircle." When class 300 receives
the message "EraseCircle," the method EraseCircle erases the circle that was drawn.
Subclass 302 contains one additional instance variable: Color. That means that class
302 also inherits Center and Radius from class 300. Furthermore, class 302 inherits
DrawCircle from class 300. Class 302 however, overrides the EraseCircle, so that
when a message "EraseCircle" is sent to an object of class 302 a new EraseCircle
method is performed. Class 302 also includes another method, FillInCircle, that fills
in a previously drawn circle to make it solid. The ink used to fill in the circle is
designated by the variable Color. Thus, a routine trying to draw a circle that is solid
sends a message first indicating the value of Color, next send a message of Radius,
next send a message of Center, next send a message indicating to DrawCircle and
then send a message indicating to FilllnCircle. When the application is done a
message is sent to EraseCircle. Box 310 represents an object, which is an instance
of class 302. Object 310 is created in an application. Within the application,
messages can be sent to object 310.
V. System Object Model

IBM’s System Object Model (SOM) which is known in the art, is a
technology for packaging object-oriented class libraries. SOM allows objects in
classes to be shared and imported across languages, and it does not compete with
such languages as SmallTalk, C+ + or any other programming language. Instead,
SOM compliments languages because SOM is not so much a language technology as
it is a packaging technology for binary code. This feature lets vendors ship properly
compiled object libraries without source code. SOM allows the creation of language
independent objects. This means that class libraries built with SOM in one language
can be used and extended by client programs written in another language. SOM
allows a developer, because of its breakdown of the language barrier, to more easily
change the implementation details of a SOM class - such as adding new methods,
editing or deleting variables, inserting new parent class in the inheritance hierarchy,
removing methods outwards in the hierarchy - without requiring client programs to
be recompiled. This enhances the ability to distribute truly upward compatible class
libraries. Although SOM is used in the preferred embodiment, SOM can be replaced

by another model, or by an environment where language compatibility is not a

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-19-

problem. More information about SOM can be found in "0S/2 2.1 Application
Programmer’s Guide," by Jody Kelly, Craig Swearingen, Dawn Bezviner and

Theodore Shrader, 1994, Van Nostrand Reinhold, incorporated herein by reference.

VI. Interface Definition Objects
An IDO is an object used to define an item in a dialog box. An IDO is an

instance of a class. The class library (or class hierarchy or class structure) is set up
using SOM. Each class will define a different type of item. For example, a button
can be defined with one class, an icon can be defined with a second class, a box can
be defined with a third class, etc. An IDO is an object (or instance) of one of these
classes.

Since an IDO is an instance of a class, the class inherits all the methods and
instance variables of the superclass. The class hierarchy used has a base class. The
base class is a relative root class. A base class can be the same as a root class or,
a base class can be a subclass of a root class. The base class is the effective or
relative root class for a species of objects. Thus, for purposes of dialog boxes one
particular class in a perhaps giant system class hierarchy will serve as the base class.
In effect, this may not be the root class for the entire class hierarchy. However, for
purposes of dialog boxes it will appear to be the root class. Alternatively, there may
be a separate class hierarchy for dialog boxes; therefore, the base class would also
be the root class. Below is an example of one type (the preferred embodiment) of a
base class for an IDO.

BASE CL.ASS

Copyright Apple Computer, Inc. 1994
#include <somobj.idl>

#include <somcls.idl>
#include <types.IDO>

interface DialogltemDefinitionObject : SOMObject

{
/* attributes (or fields) */
attribute DialogRef fDialog;
attribute DialogltemIndex1 fIndex;
attribute Rect fRect;

attribute short fldleTimeWaitPeriod;

10

15

20

25

30

35

40

WO 95/31772

PCT/US95/06120

-20-

/* following are the methods */
/* initialization and disposal */
void Initialize ();
void Dispose ();

/* editing item data - for resource editors */
void EditStaticData ();

/* handle specific events */

void DoDraw ();

void Doldle ();

void DoActivate (in boolean isActive);
void CursorEnteredRect ();

void SimulateClick ();

void SetKeyboardFocus (in boolean isFocus);
boolean DoMouseDown (in EventRecord *theEvent);
boolean DoKeyDown (in EventRecord *theEvent);

/* drag manager routines */

boolean DragEnteredItem (in DragReference theDrag);
void Draglnltem (in DragReference theDrag);

void DragLeftltem (in DragReference theDrag);
OSErr Droplnltem (in DragReference theDrag);

/* utility routines - these should never be overridden,
* and are intended to be callable only by subclasses */
OSErr GetProperty (in OSType propertyType,
in void *propertyData, in unsigned long propertySize,
out unsigned long actualPropertySize);
OSErr SetProperty (in OSType propertyType,
in void *propertyData, in unsigned long propertySize);
Handle GetResourceFromMyChain (in OSType resType, in short resID);

implementation {
passthru C_h = "#include <Dialogs.h>";

/* Release Orer. Note, only append to the end of this

* list, so that the base class is forward compatible. */
releaseorder: fDialog, fIndex, fRect, fldleTimeWaitPeriod,
Initialize, Dispose, GetData, EditStaticData, DoDraw,
EraseBackground, Doldle, DoActivate,
CursorEnteredRect, SimulateClick, SetKeyboardFocus,
DoMouseDown, DoKeyDown, _get fDialog, _set_fDialog,
_get_fIndex, _set_fIndex, _get fRect, _set fRect,
_get_fldleTimeWaitPeriod, _set_fldleTimeWaitPeriod,
DragEnteredItem, DragInltem, DraglLeftltem, DropInltem,
GetProperty, SetProperty, GetResourceFromMyChain;

10

15

20

25

30

WO 95/31772 PCT/US95/06120

21-

The following is a description of the fields of the base class.
"DialogRef fDialog" indicates the dialog box that owns this item.
“DialogltemIndex1 fIndex" indicates the term of that item within the dialog box.

Thus by using fDialog and fIndex, the IDO can access and set any generic

‘information for itself by using GetDialogltem and GetDialogltemProperty, etc. "Rect

fRect" indicates the item’s bounding rectangle (in coordinates local to the dialog in
which it resides). "Short fldleTimeWaitPeriod" specifies how long (in 1/60 of a
second) the Dialog Manager should wait in between calls to this item’s idle
procedure. Thus, any item can receive idle time. If the item does not need idle
time, it should set this field to kDoesNotNeedIdleTime (-1). By default, items will
not get idle time.

The following text describes the methods of the base class. Note that if a
class only performs standard behavior, for a given method, then the class does not
have to override the method of the superclass. The Dialog Manager will call through
to the item’s inherited method if no method is implemented by the class. Usually,
the behavior defined in the base class will involve doing very little or doing nothing.

"Initialize (void)" is called when an instance of the IDO is created (at dialog
box creation time) to allow the IDO to set its fields appropriately. The IDO calls the
inherited SetData before doing any of its own work, to do the default initialization
tasks. This includes setting the appropriate value for fldleTimeWaitPeriod. (By
default this is set to -1. If a dialog item needs idle time, it should set fNeedsIdleTime
to the number of ticks desired between calls to the Doldle method.)

Before this method is invoked, the Dialog Manager will have set all of the
IDO item’s properties that define its static startup data. (For example, a text
displaying IDO has a property of type "TEXT" that specifies its initial text.) The
IDO can access any of these properties by a GetProperty utility method.

"Dispose (void)" is called at disposal time for the item (usually when its
dialog is disposed) so that it can be free any dynamically allocated data.

"GetStaticData (void)" is called when the Dialog Manager needs an
encapsulated form of the item’s data (that it can read in with the SetData method).

"EditStaticData (void)" is called to allow an item to be edited. It is similar

to what happens when somebody double clicks on a dialog item in ResEdit: a dialog

10

15

20

25

30

WO 95/31772

PCT/US95/06120

-22-

box is displayed on the screen allowing the user to specify specific fields for the item.

"DoActivate (Boolean isActive)" is called when the item’s dialog receives an
activate event. IsActive is true when the item should be activated, and false when it
should be deactivated. .

"DoDraw (void)" is called when an item redraws itself. The IDO can assume
that its port (its dialog) has been set, and that its state (including the port’s pen style,
text info, etc.) will be preserved, regardless of what the IDO does when it draws
itself. The IDO can also assume that the EraseBackground method has been called
already.

"CursorEnteredRect (void)" is called when the cursor has entered the item’s
rect. If the IDO wants to change the cursor at this time, it implements this method;
otherwise, it does not have to.

"DoMouseDown (EventRecord *theEvent)" is called when the user has
clicked inside the item’s rect. The method returns true if it has been selected by the
user, indicating that the Dialog Manager sends the item’s index back to the
application through DialogSelect or ModalDialog (in the parameter itemHit).

"DoKeyDown (EventRecord *theEvent)" is called to react to a DoKeyDown
event (depressing a key on the keyboard). The return value is similar to the return
value of DoMouseDown.

"SetKeyboardFocus (Boolean isFocussed)" is called when the user has tabbed
or clicked into (or out of, depending on the value of isFocussed) the item’s area and
it now has keyboard focus, and thus, should draw itself differently.

"DragEnteredItem (DragReference theDrag)" is called when a Drag Manager
drag has entered the IDO item’s bounding rect. If this item can accept this drag, it
should call ShowDragHilite, and return true. Otherwise, it should return faise.

"Draglnltem (DragReference theDrag)" is called when a drag continues over
the given IDO item. It is only called if this item returned true in the
DragEnteredItem routine. This method draws an insertion point or do any item-
specific drag feedback as appropriate.

"DragLeftltem (DragReference theDrag)" is called if a drag is leaving this
item’s bounding rectangle. The Dialog Manager will call HideDragHilite before
calling this method, but any other drag-tracking cleanup duties should be performed

here.

10

15

20

25

30

WO 95/31772 PCT/US95/06120

-23-

"Droplnitem (DragReference theDrag)" is called when the dialog receives
a drag in this item’s bounding rectangle. It is the item’s duty to take the data in the
drag and update its own data accordingly. The method returns any OSErr that is
valid for a DragReceiverHandler (see the Drag Manager documentation for details.)
The following utility methods are implemented in the base class for an IDO,

intended as utility routines for use by any subclassed IDO item. These methods

'should not be overridden.

"SetProperty (OSType propertyType, void* propertyData, unsigned long
propertySize)" allows an item to assign data of any type and size to itself, such that
it is (a) accessible by the item, application or the Dialog Manager, and (b) arbitrarily
storable in a "flat" manner, so that any item can arbitrarily store its static data in a
consistent manner. This routine calls through to SetDialogltemProperty to
accomplish this. |

"GetProperty (OSType propertyType, void* propertyData, unsigned long
propertySize, unsigned long* actualPropertySize)" is the complement to the
GetProperty method, allowing the item to access any arbitrary property.

"Handle GetResourceFromMyChain (OSType resType, short resID) sets up
the resource chain such that the IDO’s resource fork is included. This allows IDO’s
resource to be bundled with associated resources.

As described above, each class can have many methods. When a message
is sent to a object by the Dialog Manager, only one method need be invoked. Thus,
the Dialog Manager enters the object at the particular method. That is, each method
can be looked at as an entry point. If only one method needs to be executed, there
is no reason for the computer to read or execute other lines of code that are not
pertinent to that one method. Thus, it is said that each object has multiple points of
entry. Each point of entry being at a method.

In Appendix A is a more detailed code listing for each method in the base
class. Most of the methods in the base class set up definitions for development in
subclasses. The next step is to set up subclasses. Since each subclass is part of the
class hierarchy, the subclasses may inherit all the instance variables, or attributes, and
the methods from the base class. The developer overrides the methods in the base

class as necessary in order to perform the behavior of the desired item. Overriding

10

15

20

25

30

WO 95/31772 PCT/US95/06120

24-

a method includes adding instructions (source code) to define a list of steps to be
taken when a message is received invoking that method.

For example, one subclass might define how to draw a rectangle as a box.
Then, if an application developer needed a rectangle as an item in a dialog, the
developer sets up an object referencing that particular subclass. If an application
developer needed a box which had text inside, the developer creates a new subclass
from the box subclass. The new subclass, let’s call it GroupingRect, will then inherit
all the methods from the box subclass. Furthermore, the new subclass may modify
some of the methods from the box subclass to add text.

Using IDOs, it is fairly simple to create a new item. A developer looks for
the class closest in form to the new item. Once that class is located, the developer
merely sets up a new subclass, inheriting all the methods and instance variables. The
developer does not need to know all the details of the inherited methods. The
developer does not need to know the flow of control of the Dialog Manager. The
developer merely needs to override whatever methods are necessary to implement the
customization of the new item.

Figure 10 shows the method of creating a new type of dialog item. The first
step (350), is to set up a new subclass. Setting up a new subclass requires a linking
or interfacing with the class hierarchy. The developer must decide what existing
class in the class hierarchy should be the immediate superclass to the new subclass.
For example, in the GroupingRect example described below, the immediate
superclass is the base class. The developer needs to decide what variables or methods
to override and what new methods or variables to add. The developer then (step 352)
defines any new instance variables. It is possible that the developer may not need to
define any new variables. The developer will then (step 354) override any methods
necessary to customize the new item. It is possible that no methods may need to be
overridden. The developer may also append to the subclass (step 356). Appending
to the subclass includes adding new instance variables and adding new methods. At
that point, the developer compiles the subclass (step 358). If the rest of the class
hierarchy is already compiled, there is no need to recompile the class hierarchy after
compiling a new subclass because the new subclass should be binary compatible with
the class hierarchy. Furthermore, if the application program is already compiled,

there is no need to compile the application program after compiling the subclass.

10

15

20

25

30

WO 95/31772 PCT/US95/06120

25-

Development of the item can end at step 358 or it can continue. For example, after
using the item or testing the item, the developer may decide that the IDO needs to be
edited (step 360). The IDO can be edited by editing text or by using resource editor
(see discussion below). After editing is complete, the subclass will need to be
compiled again (step 362). When the subclass is recompiled (step 362), there may

be no need to recompile the rest of the class hierarchy, the application or the Dialog

‘Manager code.

In order to better understand an IDO, the following example is presented.
Figure 11 shows a dialog window 320. Dialog window 320 has four items: button
322, StaticText 324, StaticText 326 and GroupingRect 328. GroupingRect 328 is an
IDO. GroupingRect is a rectangle.

Let’s start with the scenario that a developer is creating an application and
decides that a GroupingRect is needed. The GroupingRect is a customized IDO since
it does not exist. First, the developer creates a new subclass, a GroupingRect
subclass. GroupingRect is a subclass of the base class. Therefore, the GroupingRect
inherits the methods and instance variables of the base class. Further, GroupingRect
overrides any methods necessary to draw the rectangle. For this example,
GroupingRect overrides the function DoDraw. The new DoDraw includes
instructions to draw a rectangle. Furthermore, GroupingRect may override the
method EditStaticData. Below is code for the GroupingRect class. This code is
written in IDL, the native language of SOM.

GROUPING RECT

Copyright Apple Computer, Inc. 1994
#include "DialogltemDefinitionObject.idl"

interface GroupingRect : DialogltemDefinitionObject
{
implementation {
// method overrides
DoDraw: override;
EditStaticData: override;

10

15

20

25

30

35

40

WO 95/31772

-26-

The instructions for the new methods can be written in C:

#define GroupingRect_Class_Source
#include <Drag.h>

#include <GroupingRect.ih>.

/ x*
HRRARRRRRB AR B RRRARRR R R BB BB R R R R Y
HHH#
HEERE
DoDraw

FUNCTION: Draw the grouping rectangle
INPUTS: none
OUTPUTS: none

RETURNS: void
*/
SOM_Scope void SOMLINK DoDraw(GroupingRect *somSelf, Environment *ev)
{
Rect theRect;
Str255 theTitle;
OSErr theError;

/* get the title - it’s stored in a property */
theError = _GetProperty (somSelf, ev,
kTextDialogltemProperty,
(void *) &theTitle[0],
sizeof (theTitle),
NULL);

/* if no title is available, the title defaults to "" */
if (theError != noErr)
theTitle[0] = *\0’;

theRect = __ get fRect (somSelf, ev);
PenNormal ();
FrameRect (&theRect);

}

/ %
BRR R R R B B B BB R R R R R BB BB
#ii#
#RBRR
EditStaticData

FUNCTION: Edit the grouping rectangle’s static data. Callable by
ResEdit and other similar resource editing programs.
INPUTS: none

PCT/US95/06120

10

15

20

25

30

35

WO 95/31772 PCT/US95/06120

27-

OUTPUTS: none

RETURNS: void

*/

SOM_Scope void SOMLINK EditStaticData(GroupingRect *somSelf,

Environment *ev)
{
/ *
* this is pseudo-code:
create a dialog to find out what the title should be;
wait until the user is done with the dialog;
if the user selected "ok" {
get the title that the user entered;
set my title property to be that title
}
otherwise, the user selected cancel. Don’t
bother changing the title.
*/
}

Now that a class is set up, the applications developer can create an application
that calls a dialog box. The following source code (written in ¢) shows an application
program that calls a dialog box. Although a dialog box was called, there was no
mention to what items are in the dialog box. That information is loaded into a

resource.

APPLICATION
Copyright Apple Computer, Inc. 1994

#include <Dialogs.h>
#include < Quickdraw.h>
#include < TextEdit.h>
#include <Events.h>
#include <TextEdit.h>
#include <Menus.h>
#include < Windows.h>
#include <Fonts.h>
#include <Resources.h>

#if __powerc
QDGlobals qd;

10

15

20

25

30

35

WO 95/31772

#endif

PCT/US95/06120

28-

void main (void)

{

DialogPtr theDialog;
short itemHit;
EventRecord theEvent;
short i;

InitGraf (&qd.thePort);
InitFonts ();
InitWindows ();
InitMenus ();

TElnit (;

InitDialogs (NULL);

for(i=1;i < 10;i++)
WaitNextEvent (-1, &theEvent, 0, NULL);

theDialog = GetNewDialog (128, NULL, (WindowPtr) -1);

while (itemHit = 4)
ModalDialog (NULL, &itemHit);

DisposeDialog (theDialog);

After creating the application program, the applications developer then must

set up a resource. The developer sets up a dialog resource (DLOG) and a dialog

items resource (DITL) as described above. The DLOG source code is shown below:

DLOG

Copyright Apple Computer, Inc. 1994

#include "Types.r"

/* This is the dialog displayed by IDOTest */
resource "DLOG’ (128) {

{100, 100, 210, 360},

dBoxProc,

visible,

noGoAway,

0,

128, /lindicates we our items are in DITL 128

L)

10

15

20

25

30

35

WO 95/31772 PCT/US95/06120

-29-

The above resource shows that the dialog box’s dimensions are given by the
following four values (100, 100, 210, 360). Window definition ID is dBoxProc
which means that this is a modal dialog box. The dialog box is visible and no close
box will be drawn. The item list ID points to DITL 128.

Below is the source code representation of DITL 128.

DITL

Copyright Apple Computer, Inc. 1994

/* This is a list of the items in the dialog */
resource 'DITL’ (128) {

{10, 100, 25, 155 },

StaticText {
enabled,
"IDO Test"

b

{30, 30, 45, 130},
StaticText {
enabled,
"GroupingRect"

b,

/* Here’s the new IDO dialog item.
* note that we only have to specify
* the name of the IDO - in this
* case we have a Grouping Rectangle. */
{30, 140, 45, 250},
IDOltem {
enabled,
"GroupingRect"

}’

{75, 105, 95, 155},
Button {
enabled,

"Quit"

In the DITL there are four items listed. The first item is StaticText at the
size and location indicated by the four values (10, 100, 25, 155). The StaticText is
to be put into the dialog is "IDO Test".

10

15

20

25

30

WO 95/31772 PCT/US95/06120

-30-

The second item is also StaticText at the size and location defined by the four
values (30, 30, 45, 130). The text to be displayed is "GroupingRect".

The third item is an IDO dialog item. The size and location are defined by
the four values (30, 140, 45, 250). The item type is specified to be an IDO item and
the name of the IDO class is GroupingRect.

The fourth item is a button. It’s location and size are defined by the values
(75, 105, 95, 155). Included with the button is the text "Quit".

The Dialog Manager uses the name of the IDO class to find the IDO class.
After locating the IDO class, the Dialog Manager stores a pointer to the IDO class
in the handle field (see Fig. 8, reference # 246). Additionally, note how the format
of an IDO in a DITL is slightly different than the format for a predefined item. Each
predefined item has its own format known by the Dialog Manager. It is contemplated
that in one embodiment all predefined items are eliminated and only IDO’s exist. In
the preferred embodiment, predefined items are not eliminated in order to be
compatible with existing software.

Note that all the customization is done in the class definition. The resource
has a pointer to the class. The application source code does not include any reference
to the class. The application source code merely instructs that a dialog box is to be
used. The resource only knows that a dialog box is to be set up with an IDO named
GroupingRect. GroupingRect can be changed any time without requiring compiling
of the application source code or resource or any of its subclasses. Thus, the class
which is the definition of the item is set up separately from the application. Editing
and compiling the class will not require a revision of the application, operating
system or Dialog Manager. The developer setting up the GroupingRect does not need
to know anything about the application. Furthermore, the developer of GroupingRect
does not need to know very much about the Dialog Manager or even the details of

the implementation of all the methods in the superclasses.

VII. Operation of Dialog Manager
Figure 12 shows a flow chart of how the Dialog Manager works with an

IDO. First, the given application will have an instruction to set up a dialog. Thus,
in step 400 the Dialog Manager will begin setting up the new dialog. The first step

is to read the resource of the application (402). When reading the resource, the

10

15

20

25

30

WO 95/31772 PCT/US95/06120

31-

Dialog Manager will first read the DLOG resource which will point to a DITL
resource. Reading the DITL, the Dialog Manager will see all the different items.
The Dialog Manager then creates the dialog box (404). If there is an IDO item in
the DITL, the IDO item will include a reference to a class. The Dialog Manager will
read the appropriate class and store the handle in the DITL (406). After reading all
the appropriate classes, the dialog is displayed (410). Alternatively, the Dialog
Manager may wait to create the dialog box until after the class is read.

After displaying the dialog box, the Dialog Manager gives control back to the
application (410). When an event occurs that is relevant to the Dialog Manager,
control is passed to the Dialog Manager for overseeing the processing of the event
(412). In another embodiment, the Dialog Manager may receive the event itself, or
may receive the event from the Event Manager or other Managers in the toolbox.
Once receiving the event, the Dialog Manager or the other tool that sends the event
must figure out what type of event it is and where the event occurred. Figuring out
where the event occurred means figuring out what item did the event effect. If the
event occurred to a dialog item that was created by an IDO, the Dialog Manager
figures out which is the effected IDO. In step 414, the Dialog Manager causes the
execution of the appropriate method. Note that the only method executed is the one
that the Dialog Manager messages. Figure 13 shows a symbolic representation which
can aid in the explanation of the flow chart of Figure 12.

Figure 13 shows an application 420 with the data fork 422 and a resource
424. Resource 424 includes a DLOG 426 with a handle 428 pointing to a DITL 430.
DITL 430 includes an item that is an IDO and, thus, there is a handle 434 pointing
to the GroupingRect class 436. GroupingRect class 436 is part of a class hierarchy
437, which includes a base class 438. Base class 438 has two subclasses,
GroupingRect 436 and Circle 440. Circle 440 has two subclasses, Solidcircle 442
and Brokencircle 444.

When setting up a resource, Dialog Manager 446 reads DLOG 426 which
points the Dialog Manager to DITL 430. Since DITL 430 includes an item which
is defined by an IDO, Dialog Manager 446 sets up handle 434 to reference the
GroupingRect class 436. Dialog Manager 446 then creates an IDO 448. IDO 448
is shown in broken lines because it represents an instance of GroupingRect class 446.

Dialog Manager 446 uses the behavior defined in IDO 448 to manipulate the item.

10

15

20

25

30

WO 95/31772 PCT/US95/06120

-32-

Manipulating an item, in the preferred embodiment, may include sending messages
that call for the performance of any of the methods of the IDO.

Figure 14 shows a symbolic representation of how the Dialog Manager 446
deals with events. For illustration purposes, the event that occurs in this drawing is
the user pressing one of the keys on the keyboard 112. Bidirectional arrow 449
indicates that the Dialog Manager processes events with the help of other tools in the
toolbox. At one point, Dialog Manager 446 is idle (waiting for an event); for
example, the application has control. The user presses the key on the keyboard 112
and triggers a KeyDown event. Control is passed to the Dialog Manager which
figures out what item the KeyDown pertains to. In this particular dialog (fictitious
dialog) there were three items defined by IDOs. The first item 450 includes instance
variables 456, a DoDraw method 452, a DoKeyDown method 456 and other methods
458. Dialog item 460 includes instance variables 462, DoDraw method 464,
DoKeyDown method 466 and other methods 468. Dialog item 470 includes instance
variables 472, DoDraw method 474, DoKeyDown method 476 and other methods
478. As illustrated, each of the three items (450, 460, 470) each have a DoKeyDown
method. Any or all of the three items (IDOs) could have inherited the DoKeyDown
method from the superclass or could have overridden the DoKeyDown method from
the superclass.

Once the Dialog Manager figures out that it is a DoKeyDown event and
which item the event happened to, the Dialog Manager goes to the appropriate object
and looks for the DoKeyDown method. That is, a message is sent to the object
indicating the DoKeyDown method. In this instance if the key was depressed by the
user while on top of the item defined by IDO 460, the Dialog Manager will message
DoKeyDown method 466.

The Dialog Manager performs all the tasks described with respect to Figs. 11-
13 while utilizing various routines. Fig. 15 shows the Dialog Manager and a
symbolic representation of the routines that are pertinent to dialog items.

CountDITL 502 determines the number of items in a dialog item list.
GetDialogltem 504 returns all pertinent information regarding an item.
SetDialogltem 506 sets the given specifications for the dialog item at the given index
in the item list. SetDialogDefaultitem 508 indicates which item in the give dialog

box is the default choice. SetDialogCancelltem 510 indicates which item in the

10

15

20

25

30

WO 95/31772 PCT/US95/06120

-33-

dialog box is a cancel button. For example, a dialog box may ask the user whether
user wants all changes to be saved in a file and the choices may be "yes" or "cancel."
HideDialogltem 512 hides a given dialog item in the given dialog. ShowDialogltem
514 shows the given dialog item in the given dialog. DrawDialog 516 draws each
item in the dialog. UpdateDialog 518 draws each item in the dialog that lies within
the given update region. The update region is the area on the screen where visual
elements must be redrawn. FindDialogltem 520 returns the first dialog item whose
rect encloses the given point. GetDialogltemCommon 522 is common code for
getting a dialog item. This is called to get an individual DITL item.
GetCompleteltemRect 524 returns the rect of the entire drawing area given a
particular item. NextDialogltem 526 skips to the next dialog item ahead of the one
passed to Dialog Manager. This function assumes that the Dialog Manager was
passed a valid DITL item. FirstDialogltem 528 determinesv the first item in the
dialog’s item list. InitDialogltem 530 initializes the given dialog item as appropriate.
DisposeDialogltem 532 disposes of the given dialog item. InitControlltem 534
initializes the given control dialog item. GetltemListCopy 536 gets a copy of the
item list for the given DITL. SetupltemList 538 reloads the DITL resource if it was
purged and locks it (cannot move around in memory). DoneWithltemList 540 is
called when the Dialog Manager is done working with the DITL. The DITL is
unlocked. FrameDialogltem 542 places a framed round rectangle around the dialog
item. DoForEachltem 544 cycles through the item list (DITL) and applies the given
function to each item. DrawDialogltem 546 draws a given dialog item in the given
dialog. UpdateDialogitem 548 redraws a given dialog item if it is in the given update
region. SetDialogltemKeyboardFocus 550 sets the keyboard focus on the given
dialog item. UnsetDialogltemKeyboardFocus 552 unsets the keyboard focus on the
given dialog item. GetDialogKeyboardFocusltem 554 returns the current keyboard
focus item in the dialog. If none is focussed, search for the first item in the DITL
that can take a keyboard focus.
Below is pseudo-code for the routine DrawDialogitem:
DRAW DIALOG ITEM

DrawDialogltem (Dialogltem theltem, Dialog theDialog)

if (IsControlltem (theltem))

10

15

20

25

30

35

WO 95/31772

PCT/US95/06120

-34-

call control manager routines draw the item’s control
else if (IsTextltem (theltem))
call text routines to draw the item’s text
else if (IsPictureltem (theltem))
call QuickDraw to draw the item’s picture
else if (Islconltem (the Item))
call Icon Utilities to draw the item’s icon
else if (IsSIDOltem (theltem))
dispatch to that item’s DoDraw method

VIII. Editing A Dialog Item
Editing a dialog item is defined as changing the data that defines the item’s

state; for example, change static text, position coordinates, fonts, colors, etc. Dialog
items can be edited in at least two different ways. First, create a resource using
source code as shown in the code representing the resource for the GroupingRect
shown above. The dialog box can be edited by using the Text Editor to edit the
source code and then recompiling the source code. The source code for the dialog
item and all other resources is independent from the source code for the application.

A second method for editing dialogs includes creating and editing resources
with an interactive graphics-oriented resource editor; for example, ResEdit™ by Apple
Computer. A more detailed description of ResEdit™ can be found in "ResEdit™
Reference For ResEdit version 2.1," 1991, Addison-Wesley Publishing Company,
incorporated herein by reference.

ResEdit™ is an application that can read a resource, and then provide the user
with a dialog window presenting the data inside the resource. Using the dialog
window, the user can edit the data in the resource.

When editing a DLOG resource, ResEdit™ will display a window or dialog
box 600 shown in Fig. 16. At the top of window 600 is a pictorial list 602 of the
selectable window styles for the dialog box. Below that is a miniscreen 604 that
shows a small picture 606 of the dialog box. Coordinates top 608, left 610, bottom
612, right 614 correspond to rectangle 202 in the dialog resource shown in Fig. 6.
DITL ID 616 corresponds to item list ID 216 in dialog resource 200 of Fig. 6.
Visible 618 corresponds to visibility 206 in dialog resource 200 of Fig. 6. Close box
620 corresponds to close box 210 in dialog resource 200 of Fig. 6. |

When a DLOG resource is displayed in ResEdit™ a corresponding menu

appears. This menu 630 is shown in Fig. 16. "Set DLOG’ characteristics" brings

10

15

20

25

30

WO 95/31772 PCT/US95/06120

-35-

up a dialog box 640 shown in Fig. 18, which allows the user to title the window and
set its refCon and procID. If the procID is not associated with any of the pictures
at the top of the main window, none of those pictures are selected.

"Preview at Full Size" displays the resource size as its normal display.

" Autoposition" allows the system to position a window automatically when
it is drawn.

"Never Use Custom "WDEF’ for Drawing" when true (default) causes the
resource to be drawn with the standard "WDEF’ resource from the system file
regardless of the value assigned to the procID.

"Show Height & With" changes the editable fields (top, bottom, left, right)
at the bottom of the window to show relative size position information.

"Show Bottom & Right" changes the editable fields (left, right) at the bottom
of the window to show absolute size/position information.

"Use Color Picker" lets the user use an automatic color picker to set the
colors of the various parts of the resource. The color picker is optional and is not
necessary.

When a user is interacting with window 600, shown in Fig. 16, the user can
open up the DITL resource editor by double clicking on the picture 652 of the dialog
box in the DLOG resource editor. Alternatively, the DITL resource editor can be
invoked directly. When the DITL resource editor 654 (Fig. 19) is invoked, it
displays an image of the items from the list just as they are displayed in a dialog box.
When an item is selected a dotted rectangle is drawn around it. The rectangle has a
size box in its lower right corner so you can change the size of the rectangle. The
DITL editor uses the Dialog Manager to display the DITL resources. This ensures
that the items look the same when the application displays them as they do in
ResEdit™. To create a new item, the user drags the type that the user wants from the
item palate 656. To edit an existing item, the user double clicks on the item or select
the item and press the return key. When an item is selected, ResEdit™ sets up the
item editor shown as 660 in Fig. 20. In the case of the item editor 660, the user
double clicked on item 9 shown in the DITL resource editor as reference 655 and
shown in the DLOG picture as reference 658. Item 9 is StaticText.

When the user double clicks on any of the items, an item editor is set up for

that item. Each type of item has its own item editor. That is, there is a button item

WO 95/31772 PCT/US95/06120

10

15

20

25

30

-36-

editor, a check box item editor, a radio button editor, etc. This is so because button,
check box and radio button are predefined items and ResEdit™ can be programmed
to edit those items. However, if the item is an IDO, ResEdit™ will not know the
structure, behavior or definition of the IDO. Therefore, ResEdit™ will not have item
editor for an IDO. Thus, each IDO must have its own editor embedded inside the
IDO. This will be discussed below.

Looking at Fig. 20, the user can edit the rectangle values by manipulating the
numbers in boxes 662. Additionally, the text can be edited by moving the cursor into
box 664, and with the keyboard, typing new text. When using the DITL resource
editor 654 of Fig. 19, the user has a DITL menu, shown in Fig. 21. The DITL
menu 670, contains the following commands:

"Renumber Items" allows a user to reorder items in the "DITL’ resource.

"Set Item Number . . ." allows a user to specify a new number for a selected
item. Some of the items may need to be renumbered.

"Select Item Number . . ." allows a user to select an item by specifying its
number. This is useful for items that are obscured by other items or are outside the
window. Once an item is selected, it can be opened by pressing the Return key.

"Show Item Numbers" sets the display to show the number of each item in
the *DITL’ resource.

“"Align To Grid" aligns the items on an invisible grid, the size of which
defaults to 10 by 10 pixels. If the location of the item is changed while Align To
Grid is on, the location is adjusted such that the upper-left corner lies on the grid
point nearest to the location given. If an item’s size is changed, it is constrained to
be a multiple of the current grid setting in each dimension.

"Grid Settings . . ." allows for the setting of the horizontal and vertical grid
sizes. These both default to 10 pixels.

"Show All Items" adjusts the window size so that all items in the item list are
visible in the window (or makes the window as large as the current screen size
allows, if the screen is smaller). This command is present solely for convenience
when editing the dialog items.

“View As . . ." brings up a dialog box, that allows the setting of the typeface
and size in which Edit Text and Static Text items are displayed in the editor. This

command does not actually change the resource itself. It is useful if a user is

10

15

20

25

30

WO 95/31772 PCT/US95/06120

37-

designing a dialog box that is to be displayed using a different font from the default
font of the editor, which is 12-point Chicago.

"Balloon Help . . ." brings up a dialog box with items that relate to Balloon
Help in the system software.

In regard to editing an IDO, the problem is that ResEdit™ will not know the
structure of an IDO. Thus, the ResEdit™ will not know how to edit an IDO. The

solution is that the IDOs must include methods that tell ResEdit™ how to edit the

IDO. For example, one of those methods is EditStaticData. Below is a pseudocode
for the method EditStaticData.

EDIT STATIC DATA
void GroupingRect::EditStaticData (void)

{
create a dialog to find out what the title should be (702)

wait until the user is done with the dialog (704)

if the user selected "ok" { (706)
get the title that the user entered

set my title property to be that title (708)

}

otherwise, the user selected cancel. Don’t
bother changing the title. (710)

After the various lines of pseudocode, there is a number included in
parenthesis. This number corresponds to the step in the flow chart of Fig. 22. The
first step of the method is to create a dialog to get the Static Data from the user
(700). The method then creates (702) a dialog box 702a, which shows a rectangle
702b and has a predefined text string 702¢ in the rectangle 702b. At that point, the
user can erase text 702e and type in new text. When the user is done entering
information, the user can choose one of two buttons: OK button 702¢ or the cancel
button 702d. By pushing either of the two buttons, the user is dismissing (704) the
dialog box. If the user pressed cancel (710), the edits by the user will not be saved.
If the user pressed OK (706), the user’s inputs are stored (708). The next time the
item is called, the text inputted by the user will show up in the dialog box. Finally
the method is finished (712).

WO 95/31772 PCT/US95/06120

10

15

20

25

30

35

-38-

All the instructions for doing these edits will be found in the EditStaticData
method. If ResEdit™ attempts to edit an IDO, ResEdit™ will see that it is an IDO and
pass control to the proper method. Other methods would be used to edit other
aspects of various items. One skilled in the art will be able to use the description
above to create other types of edit methods.

The foregoing description of a preferred embodiment of the invention has
been presented for purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form disclosed, and obviously many
modifications and variations are possible in light of the above teaching. The
preferred embodiment was chosen and described in order to best explain the
principles of the invention and its practical application to thereby enable others skilled
in the art to best utilize the invention in various embodiments and with various
modifications as are suited to particular use contemplated. It is intended that the

scope of the invention be defined by the claims appended hereto.

APPENDIX A
Copyright Apple Computer, Inc. 1994

#define DialogltemDefinitionObject_Class_Source
#include <Drag.h>

#include <Errors.h>

#include <Resources.h>

#include <Dialogs.h>

#include "DialogltemDefinitionObject.ih"

1%
g g i g L g i g g g

Initialize

FUNCTION: Sets the IDO’s data handle and its other fields at initialization time.
INPUTS: itsDialog: the IDO’s owning dialog

itsIndex: the IDO’s index in its dialog’s item list

itsRect: the IDO’s bounding rect

theData: the IDO’s data (to be defined by subclasses.)
OUTPUTS: none
RETURNS: void
*/
SOM_Scope void SOMLINK Initialize(DialogltemDefinitionObject *somSelf,
Environment *ev)

DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

WO 95/31772 PCT/US95/06120

10

15

20

25

30

35

40

45

-39-

/* assume that we don’t want idle time. It’s the subclass’s
responsibility
* to reset _fldleTimeWaitPeriod if it wants idle time. */
_fldleTimeWaitPeriod = -1;
}

%
i g g g g g g a d g T T e T

. EditStaticData

FUNCTION: Method called to allow easier manipulation of an IDO at creation time, so
IDO editors (like future versions of ResEdit) can edit any IDO without knowing its
characteristics.

Any static data for an IDO item should be stored in properties

(using the SetProperty utility routine) This method is never

called by the dialog manager itself.

INPUTS: none

OUTPUTS: none

RETURNS: void

*/

SOM_Scope void SOMLINK EditStaticData(DialogltemDefinitionObject *somSelf,
Environment *ev)

{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

}

J
g g g 2t g g T g a2

Dispose

FUNCTION: Dispose the IDO’s dynamically allocated data

INPUTS: none

OUTPUTS: none

RETURNS: void

*/

SOM_Scope void SOMLINK Dispose(DialogltemDefinitionObject *somSelf,
Environment *ev)

{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

}

1
g g g g g 3 a0 07

DoDraw

FUNCTION: Draw the IDO. Assumes that the port has been set to the

10

15

20

25

30

35

40

WO 95/31772 PCT/US95/06120

40-

IDO’s dialog, and that the port’s state is being preserved.

INPUTS: none

OUTPUTS: none

RETURNS: void

*/ .
SOM_Scope void SOMLINK DoDraw(DialogltemDefinitionObject *somSelf,
Environment *ev)

{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

}

%
G G g g g g g g dg g g da i s 7

Doldle

FUNCTION: Do whatever is necessary at idle time. This is only called if the
fNeedsIdleTime field was set when SetData was called.

INPUTS: none

OUTPUTS: none

RETURNS: void

*/

SOM_Scope void SOMLINK Doldle(DialogltemDefinitionObject *somSelf,
Environment *ev)

{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

}

%
G g g g G g g g T T g g g g g g d g T 1

DoActivate

FUNCTION: Activate or DeActivate the IDO.

INPUTS: isActive: true if we are activating, false if we are
deactivating

OUTPUTS: none

RETURNS: void

*/

SOM_Scope void SOMLINK DoActivate(DialogltemDefinitionObject *somSelf,
Environment *ev,

boolean isActive)
{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

}

10

15

20

25

30

35

40

45

WO 95/31772 PCT/US95/06120

41-

J*
g g i e g g g g g

CursorEnteredRect

FUNCTION: adjust the cursor as it has just entered this item’s bounds
rect.

INPUTS: none

OUTPUTS: none

RETURNS: void

*/

SOM_Scope void SOMLINK CursorEnteredRect(DialogltemDefinitionObject
*somSelf, Environment *ev)

{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

/* by default, IDO’s have the arrow cursor */
InitCursor ();

}

J*
g g g g g g g g g

SetKeyboardFocus

FUNCTION: when the user has tabbed into or clicked into a new item, this method is
called to allow the item to visually show its keyboard focus.

INPUTS: isFocus: if true, then we are setting keyboard focus to this item;
otherwise, focus is being removed from this item and

it should be redrawn normally.

OUTPUTS:

RETURNS:

*/

SOM_Scope void SOMLINK SetKeyboardFocus(DialogitemDefinitionObject
*somSelf, Environment *ev,

boolean isFocus)
{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

}

%
g g g g g g g g g d

DoMouseDown

FUNCTION: the user has just clicked inside this IDO. react to the MouseDown event
as necessary.

INPUTS: theEvent: the MouseDown event that indicates the click in this IDO
OUTPUTS: none

10

15

20

25

30

35

40

45

WO 95/31772 PCT/US95/06120

42-

RETURNS: true if we want to return this item’s index to the app
(through
dialog select or ModalDialog)

*/
SOM_Scope boolean SOMLINK DoMouseDown(DialogltemDefinitionObject
*somSelf, Environment *ev,

EventRecord* theEvent)
{

DialogltemDefinitionObjectData *somThis =

. DialogltemDefinitionObjectGetData(somSelf);

/* Return statement to be customized: */
return;

}

/%
G g g g e d g g g g i g it d g g g dd

DoKeyDown

FUNCTION: The user has just pressed a key and this is the dialog’s keyboard
focus item. react to the keystroke as necessary.
INPUTS: theEvent: the KeyDown event that indicates the keystroke in this IDO
OUTPUTS: none
RETURNS: true if we want to return this item’s index to the app
(through
dialog select or ModalDialog)
*/
SOM_Scope boolean SOMLINK DoKeyDown(DialogltemDefinitionObject
*somSelf, Environment *ev,
EventRecord* theEvent)

{

DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

/* Return statement to be customized: */
return;

}

%
i g g g g g g e i g g gt g e

SimulateClick

FUNCTION: simulate the selection of this item (eg, when the equivalent
shortcut
key is pressed)
INPUTS: none
OUTPUTS: none
RETURNS: void

*/

WO 95/31772 PCT/US95/06120

10

15

20

25

30

35

43-

SOM_Scope void SOMLINK SimulateClick(DialogltemDefinitionObject
*somSelf, Environment *ev)

{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

}

i

R G g g g g g g g g g g

DragEnteredItem

FUNCTION: React to a drag entering this item’s rect

INPUTS: theDrag: the drag that has entered this item

OUTPUTS: none

RETURNS: true if this item can accept the given drag.

*/

SOM_Scope boolean SOMLINK DragEntereditem(DialogltemDefinitionObject
*somSelf, Environment *ev,

DragReference theDrag)
{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

return false;

}

[
g g g g g g g g g g g g g g e 7

DraglInltem

FUNCTION: continue to track drag in this item’s rect

INPUTS: theDrag: the drag that has entered this item

OUTPUTS: none

RETURNS: void

*/

SOM_Scope void SOMLINK Draglnltem(DialogltemDefinitionObject *somSelf,
Environment *ev,

DragReference theDrag)
{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

}

[
L g g g g g g g

Dragleftltem

FUNCTION: React to a drag leaving this item’s rect

10

15

20

25

30

35

45

WO 95/31772 PCT/US95/06120

-44-

INPUTS: theDrag: the drag that has entered this item
OUTPUTS: none
RETURNS: void
*/
SOM_Scope void SOMLINK DragLeftltem(DialogltemDefinitionObject
*somSelf, Environment *ev,
DragReference theDrag)
{

DialogltemDefinitionObjectData *somThis =

.DialogltemDefinitionObjectGetData(somSelf);

}

J*
i i g g g s g

DroplInltem

FUNCTION: React to a drag manager reception in this item’s rect
INPUTS: theDrag: the drag that has entered this item
OUTPUTS: none

RETURNS: OSErr as appropriate.

*/

SOM_Scope OSErr SOMLINK Droplnitem(DialogltemDefinitionObject
*somSelf, Environment *ev,

DragReference theDrag)
{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

return dragNotAcceptedErr;

}

/%
G G G e i g g i g g g dd g g g d a2 g

GetProperty

FUNCTION: Get a property associated with this item
INPUTS: propertyType: the type of property we’re looking for
propertySize: expected size of the property’s data
OUTPUTS: propertyData: the property’s data
actualPropertySize: the actual size of the property’s data
RETURNS: OSErr as appropriate.
*/
SOM_Scope OSErr SOMLINK GetProperty(DialogltemDefinitionObject
*somSelf, Environment *ev,
OSType propertyType,
void* propertyData,
unsigned long propertySize,
unsigned long* actualPropertySize)

10

15

20

25

30

35

40

45

WO 95/31772 PCT/US95/06120

45-

DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

/* simply call through to the dialog manager’s property managerment
routines */
return GetDialogltemProperty (_fDialog, _flndex, propertyType,
propertyData, propertySize, actualPropertySize);
}

[*

g e T e g g e g i g g g g s
SetProperty

FUNCTION: Set a property associated with this item
INPUTS: propertyType: the type of property we’re looking for
propertySize: size of the property’s data
propertyData: the property’s data
OUTPUTS: none.
RETURNS: OSErr as appropriate.
*/
SOM_Scope OSErr SOMLINK SetProperty(DialogltemDefinitionObject
*somSelf, Environment *ev,
OSType propertyType,
void* propertyData,
unsigned long propertySize)

{
DialogltemDefinitionObjectData *somThis =
DialogltemDefinitionObjectGetData(somSelf);

/* simply call through to the dialog manager’s property managerment
routines */
return SetDialogltemProperty (_fDialog, _fIndex, propertyType,
propertyData, propertySize);
}

%
G g g g g g g g g

GetResourceFromMyChain

FUNCTION: Just like toolbox GetResource, but sets up the resource chain
such that this IDO can have its own associated resources.
INPUTS: resType: type of the desired resource
resID: ID of the desired resource
OUTPUTS: none
RETURNS: The resource or NULL if we had an error. (Check ResError()
for details)
*/
SOM_Scope Handle SOMLINK
GetResourceFromMyChain(DialogltemDefinitionObject *somSelf, Environment

*ev,

WO 95/31772 PCT/US95/06120

OSType resType,
short resID)

{
DialogltemDefinitionObjectData *somThis =
5 DialogltemDefinitionObjectGetData(somSelf);
Handle theResource;

/* Set up the resource chain such that the ido’s file is in it */

/* now, get the resource */
theResource = GetResource (resType, resID);

10 /* restore the resource chain */

return theResource;

}

APPENDIX B
Copyright Apple Computer, Inc. 1994

15 #include <Memory.h>
#include <Dialogs.h>
#include <OSUtils.h>
#include <Resources.h>
#include <Memory.h>

20 #include <LowMem.h>
#include <Exceptions.h>
#include < Quickdraw.h>
#include <ToolUtils.h>

#include <LowMemPriv.h>
25 #include <DialogsPriv.h>
#include <MixedModePriv.h>

#include "DialogsAllocate.h"
#include "Dialogltems.h"
#include "DialogsInternal.h"
30 #include "DialogsText.h"
#include "DialogsAuxInfo.h"
#include "DialogAccessors.h"
#include "DialogIDOs.h"
#include "DialogEvents.h"

35 /*
G g g g g g ag a3 8 s 0t 7 g

__CountDITL

10

15

20

25

30

35

WO 95/31772

PCT/US95/06120

47-

FUNCTION: detrermines the number of items in the dialog item list
INPUTS: theDialog: the dialog we’re working with

OUTPUTS: none

RETURNS: number of items in the item list

*/

pascal DialogltemIndex1 _ CountDITL (DialogRef theDialog)

{

DITLHeaderPtr theDITL;
Handle itemList;
DialogPeek realDialog = (DialogPeek) theDialog;

require (realDialog ! = NULL, NULLDialog);
require (realDialog- > items != NULL, NULLItemList);

/* get the item list handle. If it has been purged, recover it */
itemList = realDialog-> items;

if (*itemList == NULL) {
LoadResource (itemList);

require (ResError() == noErr, ResourceError);

}

/* get the DITL to count the number of items, and return that number
* (converted to 1-based) */

theDITL = (DITLHeaderPtr) *itemList;

return theDITL- >numlitems + 1;

/* we get here if a problem was encountered trying to count the items.
* return O as an error value */

ResourceError:
NULLItemList:
NULLDialog:

}
1*

return O;

i g g T

__GetDialogltem

FUNCTION: given a dialog and an item index, return al pertinent

information regarding the item at that index

INPUTS: theDialog: the dialog we’re working with

itemNum: index of the item we want to find (1-based)

OUTPUTS: itemType: the item’s type

itemData: a handle to the item’s data (NULL if we can’t find
an item at the given index)
itemRect: the item’s bounding rectangle

RETURNS: void.

WO 95/31772

10

15

20

25

30

35

40

*/

PCT/US95/06120

48-

pascal void __ GetDialogltem (DialogRef theDialog, DialogltemIndex1
itemNum,

{

DialogltemType *itemType, Handle *itemData, Rect *itemRect)
DITLItemPtr theltem;

/* make sure our DITL list is loaded and locked */
SetupltemList ((DialogPeek) theDialog);

/* get the item from our item list. If it exists (ie, if
* itemNum is a valid index) then set our output
* variables accordingly */
if (GetDialogltemCommon ((DialogPeek) theDialog, ittmNum, &theltem)) {

/* jam the appropriate values into our outputs */
*itemType = theltem-> itemType & OxFF; 1/

low byte only

}

/%

*itemData = theltem-> itemHandle;
*itemRect = theltem-> itemRect;

/* if an invalid index, set itemData to NULL, indicating the
* jtem doesn’t exist */
else

*jitemData = NULL;

/* unlock the DITL list again */
DoneWithItemList ((DialogPeck) theDialog);

G L g G g g g g e g g g g g g g g g g

__SetDialogltem

FUNCTION: set the given specifications for the dialog item

at the given index in its item list.

INPUTS: theDialog: the dialog we're working with

itemNum: index of the item we want to find (1-based)
itemType: the item’s type

itemData: a handle to the item’s data

itemRect: the item’s bounding rectangle

OUTPUTS: none.
RETURNS: void.

*/

pascal void __SetDialogltem (DialogRef theDialog, DialogltemIndex1
itemNum,

{

DialogltemType itemType, Handle itemData, const Rect *itemRect)

DITLItemPtr theltem;

10

15

20

25

30

35

40

WO 95/31772

PCT/US95/06120

49-

/* make sure our DITL list is loaded and locked */
SetupltemList ((DialogPeek) theDialog);

/* get the item from our item list. If it exists (ie, if

* itemNum is a valid index) then set the item’s attributes

* accordingly */

if (GetDialogltemCommon ((DialogPeek) theDialog, itemNum, &theltem)) {

/* jam the appropriate values into our outputs */

theltem- > itemType = (SignedByte) (itemType & OxFF); /"
low byte only
theltem- > itemHandle = itemData;
theltem- > itemRect = *itemRect;
}

}

/%

/* unlock the DITL list again */
DoneWithltemList ((DialogPeek) theDialog);

L g i g dd g g g it g d g 3 3 002 1 7

__SetDialogDefaultltem

FUNCTION: Indicate which item in the given dialog box is the default.
INPUTS: theDialog: the dialog that owns this item

itemNum: index of the default item (1-based)

OUTPUTS: none
RETURNS: noErr

*/

pascal OSErr __SetDialogDefaultltem (DialogRef theDialog,
DialogltemIndex! itemIndex)

{

DialogPeek realDialog = (DialogPeek) theDialog;
AuxDialogHandle auxDialog = GetAuxDialog (realDialog);

DITLItemPtr defaultltem;
OSErr theError;

/* set the current default item */
realDialog- > dlgDefaultButtonltem = itemIndex;

/* get the default item and set its control attribute accordingly */
if (GetDialogltemCommon (realDialog, itemIndex, &defaultltem) == false)
return -1;

/* we should always have an auxDialog rec */
check (auxDialog != NULL);

/* if this is a control and the control can draw itself in
* "Default” mode, tell the control that it is default */
if (IsControlltem (defaultItem)) {

WO 95/31772 PCT/US95/06120

10

15

20

25

30

35

-50-
ControlRef theControl;
theControl = (ControlRef) defaultltem- > itemHandle;
if (GetControlProperty (theControl,
kSupportsDrawingCallsControl Property,
NULL, 0, NULL) == noErr) {

Boolean isDefault = true;

theError = SetControlProperty (theControl,

kIsKeyboardFocusControlProperty,

(void *) &isDefault, sizeof (isDefault));
require (theError ! = noErr, CouldNotSetProperty);

(**auxDialog).drawDefaultButton = true;

else

(**auxDialog).drawDefaultButton = false;

}

else
(**auxDialog).drawDefaultButton = false;

if (defaultltem == 0)
(**auxDialog).handleDefaultButton = false;

else
(**auxDialog).handleDefaultButton = true;
return noErr;
CouldNotSetProperty:
return theError;
}
%

i i g e g g g g g g i d
_ SetDialogCancelltem

FUNCTION: Indicate which item in the given dialog box is the cancel
button.
INPUTS: theDialog: the dialog that owns this item

itemNum: index of the default item (1-based)
OUTPUTS: none

RETURNS: noErr
*/
pascal OSErr __ SetDialogCancelltem (DialogRef theDialog,
DialogltemIndex1 cancelltem)
{
DialogPeek realDialog = (DialogPeek) theDialog;
AuxDialogHandle auxDialog = GetAuxDialog (realDialog);

WO 95/31772
5
10
}
/%

15

20

25

30

35

40

g

-51-

/* set the current cancel item */
realDialog- > dlgCancelButtonltem = cancelltem;

/* we should always have an auxDialog rec */
check (auxDialog != NULL);

/* remember whether or not we handle the default button */
if (cancelltem == 0) '
(**auxDialog).handleCancelButton = false;
else
(**auxDialog).handleCancelButton = true;

return noErr;

__HideDialogltem

FUNCTION: Hide the given dialog item in the given dialog
INPUTS: theDialog: the dialog we’re working with

itemNum: index of the item we want to hide

OUTPUTS: none
RETURNS: void

*/

pascal void __HideDialogltem (DialogRef theDialog, DialogltemIndex1
itemNum)

{

GrafPtr oldPort;

DialogPeek realDialog = (DialogPeek) theDialog;
DITLItemPtr theltem;

DialogitemIndex0 newEditField;

/* set the port and set up our item list */
BeginInWind (realDialog, &oldPort);

(void) GetDialogltemCommon (realDialog, itemNum, &theltem);
require (theltem != NULL, CouldNotFindItem);

itemNum--;

/* if the item isn’t already hidden, hide it */

if (IsVisibleltem (realDialog, itemNum)) {
Rect oldRect;
AuxDialogltemPtr auxitem;

/* get the item’s aux record == it holds the visible attribute == and

* set the attribute to false */
auxltem = GetAuxDialogltem (realDialog, itemNum);
auxlItem- > isVisible = false;

PCT/US95/06120

WO 95/31772 PCT/US95/06120

10

15

20

25

30

35

45

-52-
/* if the item is the active edit text field, deactivate
* it before we move its rect */
if (realDialog- > editField == itemNum)
DeactivateEditField (realDialog);

/* save the old item’s rect and erase that area */
GetCompleteltemRect (theltem, &oldRect);

EraseRect (&oldRect); // NNN does this have to change for
MASH?
/* if we just hid the active edit text item, find a new
* one and activate it */
if (realDialog- > editField == kNoEditField) {
newEditField = GetDialogKeyboardFocusltem (realDialog,
NULL);

if (newEditField != kNoEditField) {
DITLItemPtr newTextItem;

(void) GetDialogltemCommon (realDialog,
newEditField + 1,
&newTextitem);

SetDialogltemKeyboardFocus (realDialog,
newEditField, newTextltem,

}

0, 0);

}

/* if this item is a control, hide it */
if (IsControlltem (theltem))
HideControl ((ControlRef) theltem- > itemHandle);

}
CouldNotFindltem:

EndInWind (realDialog, oldPort);
}
1%

G G g g g g g g g a2 s 3
__ShowDialogltem

FUNCTION: Show the given dialog item in the given dialog
INPUTS: theDialog: the dialog we’re working with
itemNum: index of the item we want to show (0-based)

OUTPUTS: none
RETURNS: void
*/
pascal void __ ShowDialogltem (DialogRef theDialog, DialogltemIndex1
itemNum)
{

DialogPeck realDialog = (DialogPeek) theDialog;

10

15

20

25

30

35

WO 95/31772 PCT/US95/06120

-53-

GrafPtr savedPort;
DITLItemPtr theltem;

/* save our port */
BeginInWind (realDialog, &savedPort);

/* get the item we’re going to show. bail if twe can’t find it */
(void) GetDialogltemCommon (realDialog, itemNum, &theltem);
require (theltem != NULL, CouldNotFindItem);

/* use a 0-based item offset */
itemNum--;

/* if the item is invisible, show it */

if (! IsVisibleltem (realDialog, itemNum)) {
Rect redrawRect;
AuxDialogltemPtr auxltem;

auxltem = GetAuxDialogltem (realDialog, itemNum);
auxltem->isVisible = true;

/* if the dialog does not have a keyboard-focused item, and this

* jtem can take keyboard focus, set focus onto this item */

if ((realDialog- > editField == kNoEditField) &&
(IsKeyboardSelectableltem (realDialog, itemNum, theltem)))

SetDialogltemKeyboardFocus (realDialog, itemNum,
theltem, 0, 0);
/* if this is a control, show it */
if (IsControlltem (theltem))
ShowControl ((ControlRef) theltem- > itemHandle);
/* invalidate the item’s rect so it will be redrawn */
GetCompleteltemRect (theltem, &redrawRect);
InvalRect (&redrawRect);
}
CouldNotFindItem:
EndInWind (realDialog, savedPort);
}
%

G G g g g g g g
__DrawDialog

FUNCTION: Draws each item in the dialog
INPUTS: theDialog: the dialog we want to draw
OUTPUTS: none

RETURNS: void

*/
pascal void __DrawDialog (DialogRef theDialog)

WO 95/31772 PCT/US95/06120

10

15

20

25

30

35

40

-54-

DialogPeek realDialog = (DialogPeek) theDialog;
GrafPtr savedPort;

/1 set the port
BeginlnWind (realDialog, &savedPort);

// draw all controls
DrawControls (theDialog);

// draw all the items
DoForEachltem (realDialog, kDraw, NULL);

// restore port
EndInWind (realDialog, savedPort);

}

%
i T g g g i i g g g g g g g i g g g g

__UpdateDialog

FUNCTION: Draws each item in the dialog that lies within the given
update region
INPUTS: theDialog: the dialog we want to draw
updateRegion: the region in which items should be redrawn
OUTPUTS: none
RETURNS: void
*/
pascal void __ UpdateDialog (DialogRef theDialog, RgnHandle
updateRegion)

WindowRef dialogWindow = GetDialogWindow (theDialog);
DialogPeek realDialog = (DialogPeek) theDialog;
GrafPtr savedPort;

/1 set the port
BeginInWind (realDialog, &savedPort);

// draw all controls
DrawControls (dialogWindow);

/I draw all the items
DoForEachltem (realDialog, kUpdate, updateRegion);

/] restore port
EndInWind (realDialog, savedPort);

}

/* :
g g g g g g g g g g

10

15

20

25

30

35

45

WO 95/31772 PCT/US95/06120

-55-
__FindDialogltem

FUNCTION: returns the first dialog item whose rect encloses the given
point
INPUTS: theDialog: the dialog in which we are searching
thePoint: the point that is enclosed by the item we return (nice
english!)
OUTPUTS: none
RETURNS: index of the first item whose rect encloses the given point
(0-based),
or kNoltemHit (-1) if no item surrounds this point
*/
pascal DialogltemIndex0 __ FindDialogltem (DialogRef theDialog, Point
thePoint)
{
DITLItemPtr currentltem;
DialogPeck realDialog = (DialogPeek) theDialog;
DialogltemIndex1 numltems = CountDITL (theDialog);
DialogltemIndex0 itemIndex;

SetupltemList (realDialog);
currentltem = FirstDialogltem (realDialog);

for (itemIndex = 0; itemIndex < numltems; itemIndex+ +) {
if ((PtInRect (thePoint, ¤tltem- > itemRect)) &&
(IsVisibleltem (realDialog, itemIndex))) {
DoneWithltemList (realDialog);
return itemIndex;

}

currentltem = NextDialogltem (currentltem);

}

DoneWithItemList (realDialog);
return kNoltemHit;

}

%
b T i g g g g A T

GetDialogltemCommon

FUNCTION: Common code for getting a dialog item. Call this from inside
the dialog manager to get an individula DITL item.

INPUTS: theDialog: the dialog we’re working with

itemIndex: the index of the item we want (1-based)
OUTPUTS: theltem: the item we want (or NULL if no such item exists)
RETURNS: true if the index points to a real item

*/
Boolean GetDialogltemCommon (DialogPeek theDialog, DialogltemIndex1
itemIndex, DITLItemPtr *theltem)

10

15

20

25

30

35

40

WO 95/31772 PCT/US95/06120

-56-

Dialogltemlndex1 i;
DITLItemPtr currentltem;

require (itemIndex <= CountDITL ((DialogRef) theDialog), BadIndex);

/* get the first item */
currentltem = FirstDialogltem (theDialog);

/* skip ahead to each item in the DITL */
for i = 1;1 < itemIndex; i+ +)
currentltem = NextDialogltem (currentltem);

/* all done - set the index appropriately and return true, indicating
success */
*theltem = currentltem;

return true,
BadIndex:
*theltem = NULL,;
return false;
}
*

BB B R o R R R R R R R BB R R R
GetCompleteltemRect

FUNCTION: Given an item, return the rect of its entire drawing area.
(for edit text and default buttons, this area is outside
the bounds of its rect)

INPUTS: theltem: the item whose rect we want

OUTPUTS: theRect: the entire drawing area rect for this item

RETURNS: void

*/

void GetCompleteltemRect (DITLItemPtr theltem, Rect *theRect)

{

SInt16 inset;

if (IsEditTextltem (theltem))
inset = -3;

else if (IsButtonControlltem (theltem))
inset = -kDefaultltemSlop;
else
inset = 0;

/* get the item’s rect and inset it */
*theRect = theltem- > itemRect;
InsetRect (theRect, inset, inset);

WO 95/31772 PCT/US95/06120

10

15

20

25

30

35

40

-57-

J*
BB R R R R R R R R R R R R R AR R

NextDialogltem

FUNCTION: skips to the next dialog item ahead of the one passed to us.
Assumes we are passed a valid DITL item.
INPUTS: currentltem: the current item in a DITL list
OUTPUTS: none
RETURNS: next item after currentltem in the DITL
NOTE: will not check to see if we have gone beyond the end of

the
DITL!
*/
DITLItemPtr NextDialogltem (DITLItemPtr currentltem)
{
Ulntl6 offset;
/* calculate the offset from currentltem - take the base size and add
the
* length of the string at the end */
offset = DITLItemSizeWithNoData + StrLength (currentltem- > itemData);
/* make the offset even */
if ((offset & 1) != 0)
offset++;
return (DITLItemPtr) BYTE_OFFSET (currentltem, offset);
}
J*

i i i g
FirstDialogltem

FUNCTION: determines the first item in the dialog’s item list.
INPUTS: theDialog: the dialog we’re working with
OUTPUTS: none

RETURNS: first item of the DITL of this dialog

*/
DITLItemPtr FirstDialogitem (DialogPeek theDialog)

{
DITLHeader *theDITL;

/* get the dialog’s items */
theDITL = (DITLHeader *) *theDialog- > items;
check (theDITL != NULL);

/* return the first member of the item list */
return theDITL- > items;

10

15

20

25

30

35

WO 95/31772 PCT/US95/06120

-58-
}
/ *
e L
InitDialogltem

FUNCTION: Initializes the given dialog item as appropriate.

INPUTS: theDialog: the dialog we’re working with
theltem: the DITL item within theDialog
itemIndex: O-based index of that item.

OUTPUTS: none

RETURNS: void

*/

void InitDialogltem (DialogPeek theDialog, DITLItemPtr theltem,

DialogltemIndex0 itemIndex)

{
require (theltem->itemHandle == NULL, DoNotlnitialize);

if (IsControlltem (theltem))
InitControlltem (theDialog, theltem, itemIndex);

/* text item - just create a handle to the text for the item from
* its data and place it into the item’s data handle */
else if ((IsStaticTextltem (theltem)) || (IsEditTextltem (theltem))) {
Handle textHandle;
Ptr textPtr;
SInt32 handleLength;
OSErr theError;

textPtr = (Ptr) &(theltem-> itemData[1]);
bandleLength = StrLength (theltem- > itemData);

theError = PtrToHand (textPtr, &textHandle, handleLength);

/* check for memory error */
check (theError == noErr);

theltem- > itemHandle = textHandle;

}

/* icon item - try for a color icon first, then a b/w one. Place
* the icon into the item’s handle */

else if (Islconltem (theltem)) {
Handle iconHandle;
IconDITLItemPtr iconDITLItem;

/* this is a fixed-length item with the resource id

* at the last word. */

iconDITLItem = (IconDITLItemPtr) theltem;

iconHandle = (Handle) GetClcon (iconDITLItem- > resourcelD);

WO 95/31772 PCT/US95/06120

10

15

20

25

30

35

-59-

/* no color icon? try for a black and white one */
if (iconHandle == NULL)
iconHandle = Getlcon (iconDITLItem- > resourcelD);

iconDITLItem- > itemHandle = iconHandle;

/* picture item - try to get the corresponding picture
* resource, and put it into the item’s handle */
else if (IsPictureltem (theltem)) {
PicHandle pictureHandle;
PictureDITLItemPtr pictureDITLItem;

/* this is a fixed-length item with the resource id

* at the last word. */
pictureDITLItem = (PictureDITLItemPtr) theltem;
pictureHandle = GetPicture (pictureDITLItem- > resourcelD);

pictureDITLItem- > itemHandle = (Handle) pictureHandle;
}

/* new IDO item - Get the IDO and initialize it */
eise if (IsSIDOItem (theltem)) {
OSErr theError;

theError = InitIDOItem (theDialog, theltem, itemIndex);

if (theError == noErr)
AddToldleTimeltemList (theDialog, itemIndex);
}

/* otherwise, the item is a user field and doesn’t need a special
* initialization */

DoNotlInitialize:
return;

}

%

R R R R R R R R R R R R R R R A R R R R e
DisposeDialogltem

FUNCTION: Disposes the given dialog item

INPUTS: theltem: the item we’re disposing

OUTPUTS: none

RETURNS: void

*/

static void DisposeDialogltem (DialogPeek theDialog, DITLItemPtr
theltem,

10

15

20

25

30

35

40

WO 95/31772

-60-
DialogltemIndex0 itemIndex)

/* special case for controls. The window manager may have
* disposed this already (in the case of a DisposeWindow,
* wherein it disposes all controls in its list. If this
* is the case, then the window’s controlList will
* be null, and don’t bother doubly disposing the control */
if (IsControlltem (theltem)) {
WindowRef dialogWindow;

PCT/US95/06120

dialogWindow = GetDialogWindow ((DialogRef) theDialog);

if (GetWindowControlList (dialogWindow) != NULL)

DisposeControl ((ControlRef) theltem- > itemHandle);

}

else if (IsStaticTextItem (theltem) || IsEditTextltem (theltem))
DisposeHandle (theltem- > itemHandle);

else if (Islconltem (theltem)) {
Size iconSize;

iconSize = GetHandleSize (theltem- >itemHandle);
if (iconSize > kBWIconSize)

DisposeClcon ((ClconHandle) theltem- > itemHandle);

}

else if (IsIDOItem (theltem)) {
DisposelDOltem (theltem);
RemoveFromldleTimeltemList (theDialog, itemIndex);

}

/* regardless, NULL out the item’s handle */
theltem- > itemHandle = NULL;

/%

G s g

InitControlltem

FUNCTION: Initializes the given control item

INPUTS: theDialog: the dialog we’re working with
theltem: the DITL item within theDialog
itemIndex: O-based index of that item.

OUTPUTS: none

RETURNS: void

*/

void InitControlltem (DialogPeek theDialog, DITLItemPtr theltem,

DialogltemIndex0 itemIndex)

{

ControlRef theControl;

10

15

20

25

30

35

40

WO 95/31772 PCT/US95/06120

-61-
ControlDITLItemPtr controlDITLItem;
CCTabHandle controlColorTable;
WindowRef dialogWindow;

dialogWindow = GetDialogWindow ((DialogRef) theDialog);

/* if this is a resources based control, get the control
* resource */ '
if (IsResourceControlltem (theltem)) {
/* this DITL item is fixed length with the resource id
* at the end. */
controlDITLItem = (ControlDITLItemPtr) theltem;

/* get the new control and position it */

theControl = GetNewControl (controlDITLItem- > resourcelD,
dialogWindow);

MoveControl (theControl, theltem-> itemRect.left,
theltem- > itemRect.top);

}

/* otherwise, create a new control. The CDEF’s index is indicated in
* the lower 2 bits of the type field */
else {

SInt16 itemControlType;

itemControlType = GetltemType (theltem) & 3;

theControl = NewControl (dialogWindow, &(theltem->itemRect),
(ConstStr255Param) theltem- > itemData, true, 0, 0, 1,
itemControlType,

0);
}

/* if this is a color control, set its accordingly */

controlColorTable = (CCTabHandle) NewHandle (0);
if (MemError () ! = noErr) {
if (GetControlitemColorTable (theDialog, itemIndex,
&controlColorTable))
SetControlColor (theControl, controlColorTable);

DisposeHandle ((Handle) controlColorTable);
}

/* all done coloring. Validate the control’s rectangle to avoid
redraw,
* and place it into the item’s handle for future use. */
ValidRect (&(theltem- > itemRect));
theltem- > itemHandle = (Handle) theControl;

}

o
L G i g g

WO 95/31772

10

15

20

25

30

35

-62-

GetltemListCopy

FUNCTION: Gets a copy of the item list for the given *DITL’
INPUTS: resourcelD: resource ID for the dialog’s *DITL’.
OUTPUTS: theDITL: copy of the DITL resource.

RETURNS:

*/

OSErr GetltemListCopy (ResourcelD resourcelD, Handle *theDITL,
.ICTBHeaderHandle *theICTB)

{

OSErr theError;

Handle ditiResource;
Handle ictbResource;

#if HandlesICTBs

#else

#endif

/%
* get the ictb and copy it

*/

MyTemplnsertROMMap (true);

ictbResource = GetResource (ictb’, resourcelD);

if (ictbResource != NULL) {
theError = HandToHand (&ictbResource);

if (theError != noErr)
return theError;

}

/* fill in our copied ictb */
if (theICTB != NULL)
*theICTB = (ICTBHeaderHandle) ictbResource;

*theICTB = NULL;

%

* get the DITL and copy it

*/

MyTemplnsertROMMap (true);

ditIResource = GetResource ("DITL’, resourcelD);

if (ditIResource != NULL) {
theError = HandToHand (&ditlResource);

if (theError ! = noErr)
return theError;

PCT/US95/06120

the appropriate error value (MemError or ResError) if we
don’t succeed; noErr if everything is cool.

WO 95/31772 PCT/US95/06120

10

15

20

25

30

35

40

63-

/* fill in our copied DITL */
if (theDITL != NULL)
*theDITL = ditIResource;

/* if we had a resource error, indicate this in the return value */
return ResError ();

}

A*

i i i A g g g i g e e g g
SetupltemList

FUNCTION: reloads the DITL resource if it was purged. locks it.
also locks the AuxDialog handle.

INPUTS: theDialog: the dialog we're working with

OUTPUTS: none

RETURNS: void

*/

void SetupltemList (DialogPeek theDialog)

{

Handle items;
AuxDialogHandle auxDialog;

items = theDialog-> items;

/* sanity check */
check (items ! = NULL);

/* purged? get it again. */
if (*items == NULL) {
LoadResource (items);

/* we should check for ResError,
check (ResError() == noErr);
}

/* lock this down */
HLock (items);

/* get and lock the dialog’s AuxlItems */
auxDialog = GetAuxDialog (theDialog);
if (auxDialog != NULL)

HLock ((**auxDialog).auxItems);

}

%
s g g g g g

DoneWithItemList

FUNCTION: Call this when done working with the DITL; it unlocks

10

15

20

25

30

35

WO 95/31772 PCT/US95/06120

-64-

the DITL handle and the aux dialog item handle
INPUTS: theDialog: the dialog we’re working with
OUTPUTS: none
RETURNS: void

*/
void DoneWithltemList (DialogPeek theDialog)
{
AuxDialogHandle auxDialog;
HUnlock ((Handle) theDialog- > items);
auxDialog = GetAuxDialog (theDialog);
if (auxDialog != NULL)
HUnlock ((**auxDialog).auxItems);
}
%

G G g g g g g g g g g g a3 g g S e g e d
FrameDialogltem

FUNCTION: Place a framed round rectangle around the given dialog item rect

INPUTS: theRect: the rectangle around which we set the frame
frameThickness: thickness of the frame in pixels
frameCorner: oval width and height for the RoundRect
frameOutset: outset from theRect that we set the frame for.

OUTPUTS: none

RETURNS: void

*/

void FrameDialogltem (Rect *theRect, SInt16 frameThickness, SInt16

frameCorner,

SInt16 frameOQutset)

{
/* frame the given rect at the given outset, thickness and corner */
PenSize (frameThickness, frameThickness);
InsefRect (theRect, -frameOutset, -frameOutset);
FrameRoundRect (theRect, frameCorner, frameCorner);
/* restore theRect */
InsetRect (theRect, frameOutset, frameOutset);
}
[

B R R R R R B R B R R R R B BB R R R R
DoForEachltem

FUNCTION: cycle through each item in the list and apply the given
function

to each item.
INPUTS: theDialog: the dialog we are working with

10

15

20

25

30

35

WO 95/31772

-65-

function: indicates what to do with each item
updateRegion: if NULL, apply to all items. If not null, apply
only to items in this region.
OUTPUTS: none
RETURNS: void
*/
void DoForEachltem (DialogPeek theDialog, ScanDialogFunction function,
RgnHandle updateRegion)

{
DITLItemPtr currentltem;
DialogltemIndex1 itemIndex, numltems;
/* get the number of items in the ditl */
numitems = CountDITL ((DialogRef) theDialog);
/* loop through all the items in the list */
currentltem = FirstDialogltem (theDialog);
for (itemIndex = 0; itemIndex < numltems; itemIndex+ +) {
/* apply the given function to the current item */
switch (function) {
case klnitialize:
InitDialogltem (theDialog, currentitem, itemIndex);
break;
case kDraw:
DrawDialogltem (theDialog, currentltem, itemIndex);
break;
case kDispose:
DisposeDialogltem (theDialog, currentltem, itemIndex);
break;
case kUpdate:
UpdateDialogltem (theDialog, currentltem, itemIndex,
updateRegion);
break;
default:
/* should never get here */
check (true);
}
/* move on to the next item in the list */
currentltem = NextDialogltem (currentltem);
}
}
%

G g g g g

DrawDialogltem

PCT/US95/06120

10

15

20

25

30

35

WO 95/31772 PCT/US95/06120

-66-

FUNCTION: draw the given dialog item in the given dialog
INPUTS: theDialog: the dialog we are working with
theltem: the item to be drawn
itemIndex: the index of the item in the dialog’s DITL (0-based)
OUTPUTS: none
RETURNS: void
*/
void DrawDialogltem (DialogPeek theDialog, DITLItemPtr theltem,
DialogltemIndex0 itemIndex)

{
UserltemUPP userltemProc;
DialogSaveState saveState;
Boolean doSaveAndRestore;
/* if the item is invisible, don’t draw anything */
if (! IsVisibleltem (theDialog, itemIndex))
return;
/* if this item is a user field, draw it */
if (IsUserltem (theltem)) {
/* get the user item’s drawing proc - it’s in its itemHandle */
userltemProc = (UserltemUPP) (theltem- > itemHandle);
/* is there one? If so, save our state and call the proc to
* draw it */
if (userltemProc !'= NULL) {
/* if we're a color dialog, we have to save and restore
* the dialog’s state */
doSaveAndRestore = DialogHasColorltems (theDialog);
if (doSaveAndRestore) {
/* set our port, since the item will be drawn in the
dialog */
SetPort ((GrafPtr) theDialog);
/* preserve our dialog state - anything could happen [
*/
SaveDialogState (theDialog, kDontRestoreTextEditInfo,
&saveState);
}
SetEmulatorRegister (kRegisterD1, 1);
/* call through to the user item procedure */
(void) CallUserltemProc (userltemProc, (DialogRef) theDialog,
itemIndex

+ 1);

WO 95/31772 PCT/US95/06120

67-

/* if we’re a color dialog, restore the state */

if (doSaveAndRestore) {
/* just in case the user item did something nasty... */
SetPort ((GrafPtr) theDialog);

5 /* restore everything */
RestoreDialogState (theDialog,
kDontRestoreTextEditInfo, &saveState);

}
: }
10 }
/* control item? only draw a hilight around it if it’s
* the keyboard foucs item */
else if (IsControlltem (theltem)) {
#if ControlltemsAreKeyboardSelectable
15 if (itemIndex == theDialog- > editField)
FrameDialogltem (&theltem->itemRect, 1, 1, 1);

#endif
}
/* text item? call through to DrawTextDialogltem */
20 else if (IsStaticTextItem (theltem))
DrawTextDialogltem (theDialog, theltem, itemIndex, true);
else if (IsEditTextItem (theltem))
DrawTextDialogltem (theDialog, theltem, itemIndex, false);
/* picture item? draw it */
25 else if (IsPictureltem (theltem)) {
PicHandle thePicture;
thePicture = (PicHandle) theltem- > itemHandle;
if (*thePicture == NULL)
LoadResource ((Handle) thePicture);
30 DrawPicture (thePicture, &theltem- > itemRect);
}
else if (Islconltem (theltem)) {
Size iconSize;
iconSize = GetHandleSize (theltem->itemHandle);
35 if (iconSize <= 0)

k4

/* assume we have a b/w icon if the icon’s size is
* the standard b/w icon size. Otherwise, draw a
* color icon. */

10

15

20

25

30

35

45

WO 95/31772 PCT/US95/06120

68-

else if (iconSize == kBWIconSize)
Plotlcon (&theltem- > itemRect, theltem- > itemHandle);
else
PlotClcon (&theltem- > itemRect, (ClconHandle)
theltem- > itemHandle); .

}

/*1IDO - send it a draw message */
else if (IsIDOltem (theltem))
DrawIDOltem (theDialog, theltem);

}

Jk
g g g g g g

UpdateDialogltem

FUNCTION: if the given dialog item is inside the given region, draw it
INPUTS: theDialog: the dialog we are working with
theltem: the item to be drawn
itemIndex: the index of the item in the dialog’s DITL (0-based)
updateRegion: the region in which items should be redrawn
OUTPUTS: none
RETURNS: void
*/
static void UpdateDialogltem (DialogPeek theDialog, DITLItemPtr
theltem, DialogltemIndex0 itemlIndex,
RgnHandle updateRegion)
{

Rect itemRect;

/* get the item’s rect, but give it a 4 pixel buffer (for the frame

* around the default button) */

itemRect = theltem- > itemRect;

InsetRect (&itemRect, -kDefaultBorderOutset, -kDefaultBorderOutset);

/* if this rect lies within the update region, draw this item */
if (RectlnRgn (&itemRect, updateRegion))
DrawDialogltem (theDialog, theltem, itemIndex);

}

/%
R R R R R A R R R R R R R R AR R RR RS

SetDialogltemKeyboardFocus

FUNCTION: Sets keyboard focus on the given dialog item

INPUTS: theDialog: the dialog we’re working with
itemIndex: index of item we're setting focus on
theltem: the item we’re focusing on
selStart, selEnd: if we are setting focus on an edit

text item, the selection range for that item
OUTPUTS: none

WO 95/31772 PCT/US95/06120

10

15

20

25

30

35

-69-

RETURNS: void
*/
void SetDialogltemKeyboardFocus (DialogPeek theDialog, DialogltemIndex0
itemIndex,

DITLItemPtr theltem, TextSelectionPoint selStart, TextSelectionPoint
selEnd)

{
check (IsKeyboardSelectableltem (theDialog, itemIndex, theltem));

if (IsEditTextltem (theltem))
ActivateNewEditField (theDialog, itemIndex, selStart, selEnd);

else if (IsSIDOItem (theltem))
SetIDOItemKeyboardFocus (theltem, true);

#if ControlltemsAreKeyboardSelectable
else if (IsControlitem (theltem)) {
/1 tell the control it has focus
}

#endif

else

check (true); // we don’t know how to
select other items

}

%
G g g g s g g 0 4 g g 2y d g 2 a7 3]

UnsetDialogltemKeyboardFocus

FUNCTION: Unsets keyboard focus on the given dialog item
INPUTS: theDialog: the dialog we’re working with
OUTPUTS: none

RETURNS: void

*/
void UnsetDialogltemKeyboardFocus (DialogPeek theDialog)
{

DialogltemIndex0 itemIndex;

DITLItemPtr theltem;

itemIndex = theDialog-> editField;

/* try to get the item that has keyboard focus. If there
* is an item, unset the focus */
if (GetDialogltemCommon (theDialog, itemIndex + 1, &theltem)) {
if (IsEditTextItem (theltem))
DeactivateEditField (theDialog);

else if (IsIDOItem (theltem))
SetIDOItemKeyboardFocus (theltem, false);

#if ControlltemsAreKeyboardSelectable

10

15

20

25

30

35

40

WO 95/31772

#endif

}

/%

PCT/US95/06120

-70-

else if (IsControlltem (theltem)) {
// tell the control it lost its focus
}

B g g g g G g g g g g g g g g d g s 2

GetDialogKeyboardFocusItem

FUNCTION: return the current keyboard focus item in the dialog. If none is focused,
search for the first item in the DITL that can take keyboard focus

INPUTS: theDialog: the dialog we are working with

OUTPUTS: edititem: the edit field’s DITL item (NULL if none found)
If passed in as NULL, don’t fill it in

RETURNS: the index of the item in the list (kNoEditField if none found)

- 0 based

*/

DialogltemIndex0 GetDialogKeyboardFocusltem (DialogPeck theDialog,

DITLItemPtr *editltem)

{

/* if we already have an focused item, return that item */

if (theDialog-> editField != kNoEditField) {

&dummyltem)) {

}

DITLItemPtr dummyltem;

/* if there is an item that corresponds to editField’s
* index, return that item and its index */
if (GetDialogltemCommon (theDialog, theDialog-> editField + 1,

if (editltem != NULL)
*editltem = dummyltem;
return theDialog- > editField;

/* otherwise, scan the list of items, and return the first
* visible keyboard focus item we find */

else {

DITLItemPtr currentltem;
DialogltemIndex0 itemIndex, numltems;

/* get the number of items in the ditl */
numltems = CountDITL ((DialogRef) theDialog);

/* loop through all of the items in this dialog */
currentitem = FirstDialogltem (theDialog);
for (itemIndex = 0; itemIndex < numltems; itemIndex+ +) {

WO 95/31772 PCT/US95/06120

T1-

/* if the current item’s type is edit text and it’s visible, we’re
* done - return this item */
if ((IsKeyboardSelectableltem (theDialog, itemIndex,
currentltem))
5 && (IsVisibleltem (theDialog,
itemlndex))) { .
if (editltem != NULL)
*editltem = currentltem;
, return itemIndex;
10 }
/* move on to the next item */
currentltem = NextDialogltem (currentltem);

}

15 /* we get here if we didn’t find an edit field. Indicate thus in the
return value */
if (edititem != NULL)
*editltem = NULL;
return kNoEditField;
20 }

00 3 ON WV AW =

W AW N

WO 95/31772 PCT/US95/06120

-72-
CLAIMS
What is claimed is:
1. A system for providing an item in a dialog box, comprising:
a class structure including a base class and a subclass, said base class having

a first method adapted to be inherited by said subclass, said method being capable of

defining a behavior of the item;

a resource adapted to store a reference to said subclass; and
a manager, adapted to be in communication with said resource such that said
manager can use said reference to find said referenced subclass, said manager adapted

to manipulate said item according to the behavior defined in said referenced subclass.

2. A system according to claim 1, wherein:

said first method is adapted to define a first behavior;

said base class further including a second method adapted to define a second
behavior; and

said first subclass inherits said first method and overrides said second method.
3. A system according to claim 2, 7, wherein said class structure further
includes a second subclass, said second subclass inherits said second method and

overrides said first method.

4. A system according to claim 1, wherein said first subclass includes a

second method adapted to define how the item can be drawn.

5. A system according to claim 1, wherein said first subclass includes a

second method adapted to define how the item reacts to a given event.

6. A system according to claim 1, wherein said first subclass includes a

method adapted to define how the item can be edited.

7. A system according to claim 1, wherein said class structure is hierarchical.

8. A system according to claim 1, wherein:

WO 95/31772 PCT/US95/06120

AW N =

O 0 I O i & W N =

73-

said first subclass includes at least two methods; and

said manager can enter said first subclass at either of said two methods.

9. A system according to claim 1, wherein:
said first subclass includes at least three methods; and

said manager can enter said first subclass at any of said three methods.

10. A system according to claim 1, wherein said first subclass can be

recompiled while remaining binary compatible with said base class.

11. A system according to claim 1, wherein said first subclass is adapted to

be compiled without compiling said resource.

12. A system according to claim 1, wherein said first subclass is adapted to

be compiled without compiling said manager.

13. A system according to claim 1, wherein:
said resource includes an item list;
said item list includes a first entry; and

said first entry having an item type, an attribute and said reference.

14. A system for providing an item in a dialog box, comprising:

a class library including a first class, said first class including a first method
adapted to be inherited by a second class, said second class being capable of defining
a behavior of the item;

a resource adapted to reference said second class; and

a manager, adapted to be in communication with said resource such that said
manager can use said reference to set up an object of said second class, said manager
adapted to manipulate said item according to the behavior defined in said second

class.

15. A system according to claim 14, wherein:

said first class includes a second method; and

W =

—

N N R W N -

WO 95/31772 PCT/US95/06120

74-

said second class overrides said second method, creating a new method.

16. A system according to claim 15, wherein said manager manipulates said

item according to instructions in said new method.

17. A system according to claim 15, wherein:
said manager enters said object at said first method in response to a first
event; and

said manager enters said new method in response to a second event.

18. A system according to claim 14, wherein any class in said class library

can be compiled without compiling said manager.

19. A system for providing an item in a dialog box, comprising:

class means for storing classes in an object oriented fashion, at least two
classes capable of defining a behavior of the item;

an application, said application including a resource means for referencing
one of said classes, said referenced class defining a behavior of the item; and

dialog means for managing the dialog, said dialog means including means of

reacting to events, as defined by the referenced class.

20. A system according to claim 19, wherein the class means can be edited

and compiled without compiling the dialog means or the application.

21. A system according to claim 19, wherein the referenced class includes a

plurality of methods, each method defining a behavior of the item.

22. A system according to claim 21, wherein the dialog means reacts to

events by executing the behavior defined in an appropriate method.

23. A structure for defining items in a dialog box, said dialog box being used

as part of an application, said application including a resource adapted to store and

WO 95/31772 PCT/US95/06120

O 00 0 O W B W N =

b et
- O

O 00 3 O W AW N

-75-

reference information relevant to said dialog box, said information used by a manager
to manipulate the dialog, said structure comprising:

a base class, said base class including a plurality of methods, said methods
adapted to define item behavior; and

a first subclass capable of inheriting a first subset of said plurality of methods
and capable of overriding a second subset of said plurality of methods thereby
creating a third set of methods;

an object, being an instance of said first subclass, said object capable of being
referenced by said resource, said object capable of receiving messages invoking one
method of said first subset, and the manager can enter the object at any method in

said first subset and said third set.

24. A structure according to claim 23, wherein one of said third set of

methods defines how said object can be edited.

25. A structure according to claim 23, wherein one of said third set of

methods defines how to draw a particular item.

26. A dialog interface definition object for defining an item in a dialog box,
said dialog box being used as part of an application, said application including a
resource adapted to store and reference information relevant to said dialog box
including information relevant to said object, said object being an instance of a class
in a class library, said information used by a manager to manipulate the dialog, said
object comprising:

an inherited method capable of defining a first behavior of the item; and

an overriding method capable of defining a second behavior of the item, said

overriding method capable of being inherited by a subclass object.

27. An object according to claim 26, wherein said one of said third set of

methods defines how said object can be edited.

28. An object according to claim 26, further including attributes.

WO 95/31772 PCT/US95/06120

0 3 O U A W N =

0O NN N W A WON

W N -

-76-

29. A method for using an item in a dialog box, comprising the steps of:
(a) executing an instruction calling for the dialog box;
(b) reading a resource associated with the dialog box, including the steps of:

reading a list of items to be presented in the dialog;

following a reference, in the list of items, which references an object;
(c) waiting for a first event; and
(d) after step (c), executing a first method in the object, without executing

other methods, said first method being associated with said first event.

30. A method according to claim 29, further including the step of:
(e) waiting for a draw event; and

(f) after step (e), executing a draw method, without executing other methods.

31. A method according to claim 29, further including the step of:
(g) waiting for an edit event; and

(h) after step (g), executing an edit method, without executing other methods.

32. A method for defining the behavior of a new item to be used in a dialog
box, the method comprising the steps of:

inheriting a first method from a higher class, said first method defining a first
task to be performed at a first event;

overriding a second method from a super class including the step of defining
a second task to be performed at a second event; and

creating an application, said application including a reference path to said first

and second methods.

33. A method according to claim 32, further including the step of defining
attributes.

34. A method according to claim 32, further including the steps of:
(a) compiling the application, without compiling the second method; and
(b) after step a, compiling the second method, without compiling the

application.

WO 95/31772 PCT/US95/06120
77-

35. A method according to claim 32, further including the steps of:
(a) compiling the application; and

(b) after step a, editing the second method, without compiling the application.

36. A method according to claim 32, wherein said first method is independent

of said application.

37. A method according to claim 32, further including the step of overriding
a third method from a superclass, including the step of providing instructions for

editing the new item.

38. A method according to claim 32, further including the step of providing
2 the ability to enter the behavioral definition at the first method and at the second
method.

WO 95/31772 PCT/US95/06120

1/15

/-1 0
[ELJ== Venn Diagram Preferences
44 Emptiness Pattern 38,54
L~60 58 | ~56
CugAe
40

0~ 46 Existence Symbol 25
Q< NN Q 0 CS I

~[] Randomly select next sefflngs

~D< Automatically adjust diagram

~X] Show Scholastic names of valid forms
~[] Give existential import to subjects

20~

18-
16—
14

[Save current preferencegﬁj
\

\—!2

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 95/31772

2/15

PCT/US95/06120

13N
MOUSE/ /e
MOUSE BUTTON KEYHOLD
110
\ CPU
>
Non-voL. | 144
MEM
115‘\ INSTR
MEM
117
N oY oo
MEM VIDEO MEMORY
V
118
e)
107~ MENU BAR
121
=g
A\ e 1485
O =
149 {105—
(O IR ¢
145
/
119—
_ J
DISPLAY SYSTEM
FIG., 2

SUBSTITUTE SHEET (RULE 26)

PCT/US95/06120

WO 95/31772

3/15

v 914

95"

901N0S3Yy

W%N./

£ 914

SalIn JayiQ-

}40ddns apimp|iop - so1ydni9. juswabouou ss9301(.
X0Q|00] SUOI }DIIUNULOY) - 1Xa]. yuawabouow 8d1A3(-
VI - jndyno pup |ndur punog - #:memmocws Kioua -

awi | yaIng - Juswaboubw 321nosay- jusuwsboubu 3j! 4.

91DM)} J0S 920JJajul Jasp. waysAg

wa}sAS |ouol}1ppy |=>| xoqjoo] ysojujapy| c=>| buijoiady ysoyuiooy

esF-" m_ @ES 8o ¥ @ \pcr

0}pg

uoi}poy | ddy
grr

:q CRIWENT) ER)

ol 4

095

cv¥

ory

SUBSTITUTE SHEET (RULE 26)

WO 95/31772

4/15

PCT/US95/06120

180
N CcopE o
DLoG, | &
DLOG, | 184
DITL, \\155
DITL, \\185
: o190
FIG. 5 /200
202\ 'DLOG’ resource type Bytes
- Rectangle <=8
204
205\\ Window definition ID 2
Iy Visibiliy i
210 Reserved 1
212\“ Close box specification 1
T~ Reserved 1
214
L Reference constant 4
BIE\N Item list ID 2
- Window title <1 to 256
220
N Alignment byte 0 or 1
22— | Dialog box position 2

FIG. 6

SUBSTITUTE SHEET (RULE 26)

WO 95/31772 PCT/US95/06120

5/15
/'230
'DITL' resource type Bytes
232
\ Item count minus 1 2
234 '
\> First item (Variable)
n (variable format) T
- -
236
\ Last item e
< (variable format) <~ (Variable)
FIG. 7

/240

242
N Display Rectangle
244~ Item Type

245\ Handle
248~ Class Name

FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 95/31772

6/15

PCT/US95/06120

301
Va

Class: Circle

Instance Variables:
Center
Radius

Methods:

Draw Circle
Erase Circle

FIG. 9

310
L/

Class: Solid Circle
Super Class: Circle

New Instance Variable:

Color
Overide Method:
Erase Circle

New Method:
Fill In Circle

SUBSTITUTE SHEET (RULE 26)

WO 95/31772 PCT/US95/06120

7/15

Create 250
Subclass L

Define
Instance | 392
Variables

354 320

Override 324
Methods IDO Test—

GroupingRegt |
326 \\~328

lll!ll'\»322

/356

Append to

Subclass

358

. FIG. 11
Compile

360

Edit

/‘352

Compile

FIG. 10

SUBSTITUTE SHEET (RULE 26)

WO 95/31772

FI6. 12

8/15
Set Up 400
New Dialog ///‘
Read 402
Resource //F
Create 404
Dialog ///F
Box
Read Class 406
Structure ///F
Display 408
Dialog Box //’

Pass Control

To Application

///—410

Process
Event

412
//,

Execute
Appropriate
Method

//r414

SUBSTITUTE SHEET (RULE 26)

PCT/US95/06120

PCT/US95/06120

WO 95/31772

9/15

4IOVNVN 901vId

EF 914
_{ oar
gy 2=
l S Tl
\
\
\
N err~_ \
3]211ouayoug 8]2419p1| 03 \

/
/
< /

812410 ﬁommzm%oho

Qwv.w////////\\\\\\‘ \“ger

aspg

s
LEv gcr

304N0S3Y vivad
,,, 0Eh
=<3 1Td 5
5070
) ger
ver’ zzr-
NOILVOI1ddV
oz

SUBSTITUTE SHEET (RULE 26)

PCT/US95/06120

WO 95/31772

10/15

vi 914

QVVJ/

J3OVNVA
001vIdA

QyvOgA3X

ar—" N
9/r — | umoqhayoq
prr—"] MD1O(
e/p— Al
va'\\
g9y = A
ggy——"| umoqhajoq
POy — mpigoq
29— | AT
FST\
86y — N
9cp — umoghayoq
pCp— mpigoq
2y~ M

12144

eri-’

SUBSTITUTE SHEET (RULE 26)

WO 95/31772

PCT/US95/06120

/‘542

FrameDialogItem

544

DoForEachItem

11/15
Dialog
Manager
502
CountDITL GetDialogItemCommon

504 522/ 524

GetDia logItem | GetCompleteItemRect
/906 526

SetDialogItem

NextDialogItem

/545

508

s 528

DrawDialogItem

SetDialogDefaultItem

FirstDialogItem

548

510

530

UpdateDialogItem

SetDiclogCance!Item

InitDialogItem

550

SetDialogIltem

512

Is h32

KeyboardFocus

HideDialogItem

DisposeDialogItem

552

UnsetDialogItem
KeyboardFocus

514

534

ShowDialogItem

516

InitControlltem

554

GetDialog
KeyboardFocusItem

DrawDialog

rb36

GetItemListCopy

518

UpdateDialog

538

r&20

SetUpItemList

FindDialogItem

540

DoneWithItemlList

SUBSTITUTE SHEET (RULE 26)

FIG. 15

WO 95/31772 PCT/US95/06120

12/15

600
/,
o~ = [T T====0106 "allace Greenslade, R.1.P." 10 =191 froa Ono-Sendai
i
604 OFile Edit Window Color:® Default
“\\\ _ O Custon
NG
606— T C .
616
/
tﬂZB—\\ DITL ID: 1951
Top Bottom:[165 | 51— lnlilully visible
Close box
Left: 4 142] Right: % D\
620
\ N\
5]0 614 612
FIG. 16
630
pLoc \ /

Set 'DLOG’ Characteristics...
Preview at Full Size
Auto Position..

v'Never use custom ’WDEF’ for druwung

wSMwHﬂwi&Wmm
Show Botiom & nghi

Use Color P|cker

FIG. 17

SUBSTITUTE SHEET (RULE 26)

WO 95/31772

13/15

PCT/US95/06120

'DLOG' Characteristics

..

Window title: | This is the BBC...|

refCon: | 0

ProciD: |1

Cancel

FIG. 18

654 656
/o 6

___IECIZ DITL 1D = 5120 fron Finder /==
= = =g E \
‘ E ‘_1 = Button |
BFDI = W'bd X Check Box
D[:; sedil Dm o g E CE]B Radio Button
'_T-’ Control
E Q I T: Static Text
3 = 5 Edit Text
2LteRnis / 6
8l not available |17} o I?on
L Picture
— 9]l | O 100
fea L]
Top: | 38 Boiiom:[
l 0] C10
Left: |0 Righi:[r mlm
= =

FIG. 19

SUBSTITUTE SHEET (RULE 26)

WO 95/31772 PCT/US95/06120

14/15

660
s

— —
=[]===¢Edit DITL item #9 =
Text: Text
Static Text v
O Enabled Top: | 10 Bottom: | 61
Left:] 16 Right: | 257
662~ 660/ 662/ 559/
FI6. 20
670
DITL \ /

Renumber ltenms...
Set Item Number...
Select Item Number...
Show {iem Numbers

Align To Grid
Grid Settings...

Show all Items
Use lten’s Rectangle

Balloon Help...

FIG. 21

SUBSTITUTE SHEET (RULE 26)

WO 95/31772

PCT/US95/06120

15/15

Dialog Item Interface Definition Object
EditStaticData Method Flow Chart

700

Entry

Create A Dialog

To Get The
Static Data

From The User

N 700

704

Wait until the user
dismisses the

dialog

706

Did the
user press

OK?

Yes

/-7 023

Edit GroupingRect

ye 7020

Title:

GroupingRect title

T 702c 702e

(o)

708

Get the user’s input from
the dialog and put the
values into the item's
properties (using the
SetProperty call)

712

FIG. 22

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Internauo.

PCT/US 95/06120

pplication No

A. C
IPC 6

LASSIFICATION OF SUBJECT MATTER
GO6F9/44

According to International Patent Classification (IPC) or to hoth national classification and IPC

B. FIELDS SEARCHED

Mimmum documentation searched (classification system followed by classification symbols)

IPC 6

GO6F

Documentation searched other than minimum documentation to the extent that such docurnents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to clarm No.

SCOTT DANFORTH, PAUL KOENEN AND BRUCE
TATE: 'Objects for 0S/2'

1994 , VAN NOSTRAND REINHOLD , NEW YORK,
us

see page 72, line 13 - page 73, line 45
see page 222, line 1 - page 233, line 8;
figure 16.1

see page 261, line 1 - page 291, line 33;
figure 18.1

IBM: '0S/2 2.0 Technical Library:
Presentation Manager Programming Reference
Volume III'

March 1992 , IBM , DENMARK

see page 32-1, line 1 ~ line 5

see page 32-19, line 9 - page 32-23, line

19-38

1-18

1-18

19-38

28; figures 32-1

../__

m Further documents are listed in the conunuation of box C.

m Patent family members are listed 1n annex.

° Special categories of cited documents :

A"

g

L’

0

p*

document defining the general state of the art which 1s not
considered to be of particular relevance

earlier document but published on or after the international
filing date

document which may throw doubts on prionity ciaim(s) or
which is cited to establish the publicaton date of another
citation or other special reason (as specificd)

docurnent referring to an oral disclosure, use, exhibition or
other means

document published prior to the international filing date but
later than the priority date claimed

T

later document published after the international filing date
or prionty date and not in conflict with the application but
cited to understand the pninciple or theory underlying the
invention

" document of particular relevance; the claimed invention

cannot he considered novel or cannot be considered to
involve an inventive step when the document 1s taken alone

document of particular relevance; the claimed inventton
cannot be considered to involve an inventive step when the
document ts combined with one or more other such docu-
ments, such combination being obvious to a person skilled
n the art.

document member of the same patent family

Date of the actual completion of the international search

13 September 1995

Date of mailing of the international search report

27.03 9

Name and mailing address of the [SA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+ 31-70) 340-3016

Authonized officer

Fonderson, A

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Internauon. splicauon No

PCT/US 95/06120

C.(Conunuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citauon of document, with indication, where appropriate, of the relevant passages

Relevant to claam No.

A

BYTE,

vol.14, no.7, July 1989, ST PETERBOROUGH
Us

pages 88IS-49 - 88IS-54

LAURENCE H. LOEB: 'Understanding the
Macintosh Resource Editor'

see the whole document

EP,A,0 304 072 (WANG LABORARORIES INC.) 22
September 1989

see page 19, line 37 - line 53

see page 29, line 32 - line 44

see page 51, line 1 - page 54, line 40

see page 73, line 36 - page 84, line 5;
figures 10A,10B

1-38

1,13,14,
23,26,29

Form PCT/ISA.210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Internation pplication No

PCT/US 95/06120

Information on patent family members

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0304072 22-02-89 AU-B- 612681 18-07-91

AU-B- 2098188 23-02-89
DE-D- 3853751 14-06-95
JP-A- 1140238 01-06-89
UsS-A- 5369778 29-11-94

- s - " 0 o 0 o e T (i P T e D Bt T B B o P S Y T D R S

Form PCT/ISA;210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

