

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification³ : H01P 11/00		A1	(11) International Publication Number: WO 84/01058 (43) International Publication Date: 15 March 1984 (15.03.84)
(21) International Application Number: PCT/US83/01371			(81) Designated States: AT (European patent), AU, BE (European patent), CH (European patent), DE (European patent), DK, FR (European patent), GB (European patent), JP, LU (European patent), NL (European patent), NO, SE (European patent).
(22) International Filing Date: 1 September 1983 (01.09.83)			
(31) Priority Application Number:	414,222		Published <i>With international search report.</i> <i>With amended claims and statement.</i>
(32) Priority Date:	2 September 1982 (02.09.82)		
(33) Priority Country:	US		
(71) Applicant: HUGHES AIRCRAFT COMPANY [US/US]; 200 North Sepulveda Boulevard, El Segundo, CA 90245 (US).			
(72) Inventor: COBB, Jack, M. ; 31551 Los Cerritos Avenue, San Juan Capistrano, CA 92675 (US).			
(74) Agents: RUNK, Thomas, A. et al.; Hughes Aircraft Company, Post office Box 1042, Bldg. C2, M.S. A126, El Segundo, CA 90245 (US).			

(54) Title: METHOD FOR FABRICATING CORRUGATED MICROWAVE COMPONENTS**(57) Abstract**

In the disclosed method for fabricating corrugated microwave components, a billet assembly is formed of electrically conductive plates (10) sandwiched with chemical etching sensitive spacer material (20) and clamped together (30 and 31). An inside surface (40) is formed in the billet and a mandrel (50) inserted. An outer contoured surface (55) is then formed on the mandrel-billet assembly. The outer surface is then plated (60) to a desired thickness. The mandrel (50) is removed and the spacers (20) chemically etched away leaving the finished component. With the disclosed method, microwave device fabrication for frequencies including 100 GHz and higher is possible.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	LI	Liechtenstein
AU	Australia	LK	Sri Lanka
BE	Belgium	LU	Luxembourg
BR	Brazil	MC	Monaco
CF	Central African Republic	MG	Madagascar
CG	Congo	MR	Mauritania
CH	Switzerland	MW	Malawi
CM	Cameroon	NL	Netherlands
DE	Germany, Federal Republic of	NO	Norway
DK	Denmark	RO	Romania
FI	Finland	SE	Sweden
FR	France	SN	Senegal
GA	Gabon	SU	Soviet Union
GB	United Kingdom	TD	Chad
HU	Hungary	TG	Togo
JP	Japan	US	United States of America
KP	Democratic People's Republic of Korea		

METHOD FOR FABRICATING CORRUGATED
MICROWAVE COMPONENTS

1

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the fabrication of microwave components and specifically to the fabrication of corrugated or ridged microwave components.

2. Description of the Prior Art

Corrugated or ridged feeds, horns, waveguide sections, filters and other devices are useful in a wide variety of microwave applications. These corrugated devices are difficult to fabricate with accuracy and the higher their frequency of operation, the more difficult it is to obtain the required accuracy. At frequencies exceeding approximately 10 GHz, dimension control of fins, fin spacing and wall thicknesses become difficult and costly. Furthermore, weight of the microwave device becomes a factor of importance in certain applications, such as in satellite communications.

A prior art method for fabricating corrugated horns was electroforming on a mandrel. The mandrel would have the desired taper and slots for fins and after the electroforming of the device onto the mandrel was completed, the mandrel would be removed by chemical etching. This method is in many cases satisfactory for operational frequencies lower than approximately 10 GHz. Above that frequency, accurate

1 fin thickness is difficult to obtain in the mandrel
due to the small size of the fins. Also the fin depth
is restricted since structurally, the mandrel could
only be slotted to a certain depth. Due to these
5 mechanical restrictions, the fin width to depth ratio
is limited and this limits the maximum frequency of
operation. Since the mandrel was chemically etched
away it is not reusable thus adding to the cost of
fabrication. Also, the etching process can be lengthy
10 which adds to the cost and lessens the ease of manu-
facture.

A second method of fabrication used in the prior
art is casting. This method has found little appli-
cation in the higher frequency ranges since required
15 accuracy is extremely difficult or impossible to obtain.
Above approximately 10 GHz, it is extremely difficult
to obtain the small fin width required. Also, casting
molds are relatively expensive.

Another prior art fabrication method is presented
20 in the article entitled: "Characteristics of a
Broadband Microwave Corrugated Feed: A Comparison
Between Theory and Experiment," by Dragone in The Bell
System Technical Journal, Vol. 56, No. 6, July-August
1977, pages 869 to 888. This method is claimed to be
25 a novel fabrication technique usable at very high
frequencies, as high as 100 GHz (page 887). According
to this article, a block of sandwiched aluminum and
brass disks is assembled. Then an outer surface is
machined and a wall of metal is electroplated onto this
30 surface. Then an inner surface is machined. After
that machining, the aluminum is removed with a solvent,
thus leaving the final product, a corrugated horn.
The article analyzes the performance of a feed made in
accordance with this fabrication technique at frequencies
35 ranging from 17 GHz to 35 GHz (page 871).

1 Although it is claimed that a horn operable as
high as 100 GHz may be constructed using Dragone's
process, (page 887) there are several disadvantages.
Because the outside surface is formed and plated first,
5 this plating must be strong enough to support the sub-
sequent machining of the inside surface. Thus a rela-
tively thick plating is necessary, which increases both
the weight and size of the corrugated horn. Also, using
10 Dragone's process, horn throat sections, flanges or
transitions must be internally machined at the same time
as the inner surface. This technique becomes physically
difficult or impracticable at frequencies above approxi-
mately 20 GHz due to very small apertures and required
very close tolerances.

15 It is a purpose of the invention to provide a
simple and reliable method for fabricating corrugated
microwave components with a lower manufacturing cost
than prior art methods.

20 It is also a purpose of the invention to provide
a method for fabricating corrugated microwave components
where more accurate dimension control is possible than
prior art methods.

25 It is also a purpose of the invention to provide
a method for fabricating corrugated microwave components
where the component can be made lighter than prior art
methods permitted.

30 It is also a purpose of the invention to provide
a method for fabricating corrugated microwave components
where the fabrication may be completed faster than with
prior art methods.

35 It is also a purpose of the invention to provide
a method for fabricating corrugated microwave components
which are usable at high frequencies including and
exceeding the 100 GHz frequency range.

1 It is also a purpose of the invention to provide
a method for fabricating corrugated microwave components
where preconstructed components such as throat sections,
flanges or transitions may be added thereby providing
5 an integrated assembly.

SUMMARY OF THE INVENTION

10 The above purposes and additional purposes are
accomplished by the invention wherein corrugated micro-
wave components are fabricated in accordance with the
basic steps as described below.

15 In the basic method of the invention, a set of
plates of predetermined thickness separated by spacers
of predetermined thickness is clamped together. This
sandwich billet has the inside surface, which will
be the depth of the fins of the microwave component,
formed in it. A mandrel is formed with the same taper
as the inside surface and is inserted into that surface
in order to provide disk clamping and support for sub-
sequent fabrication steps. Preconstructed components
20 such as flanges, transition sections, etc. may be added
to the billet as desired. The outside surface of the
microwave component is then formed to the desired con-
tour. The contoured billet with the added preconstructed
components, if any, is then plated on the outside to
25 the desired plating wall thickness. The mandrel is
constructed so that it prevents plating from reaching
the inside surface. After plating, the mandrel is
removed and the spacers are chemically etched away
30 leaving the complete corrugated microwave component.

35 The novel features which are believed to be
characteristic of the invention together with further
purposes and advantages will be better understood from
the following description considered in connection with
the accompanying drawings.

1

BRIEF DESCRIPTION OF THE DRAWINGS

5

FIGS. 1, 2, 3, 4, 5, 6, 7 and 8 illustrate the cross-sections of waveguide horn structures at successive stages of fabrication according to the basic method of the invention. Cross-sections of horn structures resulting from the fabrication method in accordance with the invention are illustrated in FIGS. 7 and 8.

10

FIG. 9 is a perspective view of a corrugated horn structure and flange assembly which was fabricated in accordance with the basic method of the invention.

15

DETAILED DESCRIPTION OF THE INVENTION

20

Referring to the drawings with greater particularity, in FIG. 1 there is shown a block assembly or sandwich billet which consists of alternating materials clamped together. In the embodiment shown in FIG. 1, plates 10 are sandwiched next to spacers 20. Any suitable material may be chosen for the plates 10 including copper, brass, gold, silver, etc. and they may be in any shape depending upon manufacturing conveniences. Disks are used here for convenience of explanation. The thickness of disks 10 will be the fin thickness and the thickness of spacers 20 will determine the fin spacing after these spacers are later removed. Likewise, the material of the spacers is arbitrary, however, it should be of a material which can easily be removed with chemical etching, such as aluminum, as will be further discussed later. Rods 30 with nuts 31 clamp the sandwiched materials together in order to support subsequent fabrication steps. Other clamping methods known in the art may be substituted for rods 30 and nuts 31.

25

30

35

1 In FIG. 2, an inside surface 40 is formed into the
billet. This inside surface defines the spacing between
the tops of the fins and its dimensions are chosen in
accordance with required electrical performance. A
5 tapered surface is shown in FIG. 2 however the degree
of taper, if any, is likewise in accordance with required
electrical performance. This surface may be fabricated
by installing the billet in a lathe and machining this
inside surface. The use of a lathe and the method of
10 forming the surface by machining are used here for
explanation only; other methods known in the art such
as broaching may be used to fabricate inside surface 40.
Machining is used here since it is known that very accu-
rate dimension control may be obtained through its use.

15 Alternatively, an inside surface could have been
formed in the individual plates and spacers before sand-
wiching. In that case, only a shaping of that surface
may be required later.

20 A mandrel 50 is then fabricated by machining or
other suitable method and has the same taper and size
as inside surface 40. This mandrel 50 is then inserted
into inside surface 40 as shown in FIG. 3. In this
embodiment, the purpose of the mandrel 50 is to provide
disk clamping support for subsequent fabrication steps.
25 Clamp 51 and the taper of the mandrel 50 clamp the
billet together. The mandrel 50 has a second purpose
relevant to the subsequent plating step. The mandrel
prevents the plating of inside surface 40. This mandrel
is reusable and can be made of any suitable material
30 such as stainless steel, aluminum, etc. Because it is
reusable, manufacturing costs are correspondingly
lowered and repeatability of results is correspondingly
raised.

1 One of the advantages of the invention is that
preconstructed additional sections may be added to the
device under construction. As is shown in FIG. 6, a
5 flange 52 and throat section 53 have been added to the
billet. They may be temporarily secured in place to
the billet by clamp 51 which is threaded into mandrel
50. Other methods known in the art may be used to
secure flange 52 to the billet. Thus the invention
avoids the problem of internally machining the throat
10 section as pointed out in the Dragone process.

15 In FIG. 4, outside surface 55 is formed. The
contour of this surface determines fin depth, operation
frequency, and other electrical parameters. As is
shown in FIG. 8, a matching section 70 with associated
greater fin depth may be fabricated. The contouring
15 of this section 70 would occur in this step.

20 In FIG. 5, outer surface 55 is plated to the
desired plating wall thickness 60. Electroforming a
copper plating is one method and one material which
20 will accomplish this step. Other materials may be
plated onto outer surface 55 such as gold, silver,
nickel, etc. In addition, multiple layers of plating
of different materials may be applied such as a first
layer of copper and a second layer of nickel to add
25 strength. Because of the invention, this plating 60
can be kept to a small thickness. The environmental
requirements of the application such as shock, vibration,
etc. will determine the actual thickness of the plating
along with strength necessary to support the fins 10.
30 In the Dragone process, this plating wall 60 must be
thick enough to also support a subsequent step of
machining the inside surface. The thickness required
to support this machining step causes a much thicker
wall than one obtained by use of the invention. This
35 added thickness increases both the weight and the size

1 of the product. In satellite, missile and many other
2 applications, both weight and size can be of critical
3 importance. As another example, where the end product
4 is a waveguide horn and it is to be used in a planar
5 array antenna with possibly 100 other identical horns,
minimum weight and size are desired characteristics.

6 In FIG. 6, it is also shown that an additional
7 component, if any, is also plated 61 along with outside
8 surface 55, thus resulting in an integrated assembly.
9 In this embodiment, flange 52 with throat section 53
10 have been integrated. As can be seen, the invention
11 solves the previously discussed prior art problem of
12 difficult or impractical internal machining of such
13 throat sections for high frequency devices. The
14 formation of the throat section 53 was accomplished
15 before it was integrated with the horn section.
Likewise, matching sections and other transition
sections may be preformed before integration.

16 In FIG. 7 it is shown that the mandrel 50 has
17 been removed and spacers 20 have been removed. The
18 spacers 20 have been chemically etched away in order
19 to remove them thus leaving the completed horn.

20 In FIG. 8, also there is shown a completed horn
21 with a matching section 70 formed by contouring the
22 outside surface 55 as previously discussed. The angle
23 of section 70 and its dimensions vary as dictated by
24 performance requirements.

25 FIG. 9 presents an assembly of a horn structure
26 fabricated in accordance with the invention, having
27 fins 10, plated surface 60 and a matching section 70.
The horn structure is connected to flange 80. The
invention is applicable to a variety of microwave
devices where corrugation is desired. For example,
corrugated filters, phase shifters and waveguide
30 sections along with the example used above, the horn

1 structure, may all be fabricated with use of the
invention. A corrugated waveguide filter fabricated in
accordance with the invention is presented in FIG. 10.
It, likewise, has fins 10', outside surface 55', plating
5 60' and two integrated flanges 81. It should be noted
that a mandrel differing in shape from that shown
previously would be required to fabricate this embodi-
ment, however, this does not depart from the scope of
the invention.

10 A microwave horn with an integrated transition
section and flange similar to that shown in FIG. 9 was
constructed. The frequency of operation was 94 GHz and
the embodiment operated successfully.

15 Although the invention has been shown and
described with respect to specific methods and
devices, nevertheless, various changes and modifi-
cations obvious to one skilled in the art to which
the invention pertains are deemed to lie within the
purview of the invention.

20

25

30

35

CLAIMSWhat is Claimed is:

- 1 1. A method for fabricating corrugated microwave components, said method comprising the steps of:
 providing a billet of sandwiched spacer material (20) and electrically conductive plates (10)
5 having a hole (40) therein;
 inserting a mandrel (50) in said hole;
 forming an outside surface (55) on said billet;
 plating (60) said outside surface;
 removing said mandrel (50); and
10 removing said spacer material (20).
- 1 2. The method as recited in Claim 1 wherein said mandrel (50) is shaped such that its insertion into said hole (40) provides support for said step of forming an outside surface (55) on said billet and said step of plating (60) said outside surface (55).
- 1 3. The method as recited in Claim 2 wherein said mandrel (50) is shaped such that its insertion into said hole (40) prevents plating of the inside surface of said hole (40).
- 1 4. The method as recited in Claim 3 wherein said spacer material (20) is removed by chemical etching.
- 1 5. The method as recited in Claim 4 further comprising the step of abutting a preconstructed component (52) to said billet before said step of plating (61) said outside surface.

1 6. The method as recited in Claim 5 wherein said
step of abutting a preconstructed component (52) to said
billet is accomplished before said step of forming an
outside surface (55) on said billet.

1 7. A method for fabricating corrugated microwave
components, said method comprising the steps of:
5 sandwiching electrically conductive plates
(10) alternately with chemical etching sensitive spacer
material (20) to form a billet;
 forming an inside surface (40) in said billet;
 inserting a mandrel (50) into and in contact
with said inside surface (40); and thereafter
 forming an outside surface (55) on said billet;
10 plating (60) said outside surface (55);
 removing said mandrel (50); and
 removing said spacer material (20) by chemical
etching.

1 8. The method as recited in Claim 7 wherein
said mandrel (50) is shaped such that its insertion
into said inside surface (40) prevents plating of said
inside surface (40).

1 9. The method as recited in Claim 8 further
comprising the step of abutting a preconstructed
component (52) to said billet before said step of
plating (61) said outside surface.

1 10. The method as recited in Claim 9 wherein
said step of abutting a preconstructed component (52)
to said billet is accomplished before said step of
forming an outside surface (55) on said billet.

11. A method for fabricating corrugated microwave components, said method comprising:

a first step of sandwiching electrically conductive plates (10) alternatively with chemical etching sensitive spacer material (20) to form a billet;

a second step of forming an inside surface (40) in said billet;

a third step of inserting a mandrel (50) into and in contact with said inside surface (40);

a fourth step of forming an outside surface (55) on said billet;

a fifth step of plating (60) said outside surface (55);

a sixth step of removing said mandrel means (50); and

a seventh step of removing said spacer material (20) by chemical etching.

- 13 -

AMENDED CLAIMS

[received by the International Bureau on 08 February 1984 (08.02.84);
original claims 1 and 11 amended; claims 2 to 6 cancelled]

- 1 1. A method for fabricating corrugated microwave components, said method comprising the steps of:
 providing a billet of sandwiched spacer material (20) and electrically conductive plates (10)
5 having a hole (40) therein;
 inserting a mandrel (50) in said hole;
 abutting a preconstructed component (52) to said billet;
 forming an outside surface (55) on said billet
10 after said step of abutting a preconstructed component (52) to said billet;
 plating (60) said outside surface;
 said mandrel (50) being shaped such that its insertion into said hole (40) provides support for said
15 step of forming an outside surface (55) on said billet and said step of plating (60) said outside surface (55), said mandrel (50) also being shaped such that its insertion into said hole (40) prevents plating of the inside surface of said hole (40);
20 removing said mandrel (50); and
 removing said spacer material (20) by chemical etching.

2. (Canceled)

3. (Canceled)

4. (Canceled)

5. (Canceled)

6. (Canceled)

1 7. A method for fabricating corrugated microwave
components, said method comprising the steps of:
 sandwiching electrically conductive plates
 (10) alternately with chemical etching sensitive spacer
5 material (20) to form a billet;
 forming an inside surface (40) in said billet;
 inserting a mandrel (50) into and in contact
 with said inside surface (40); and thereafter
 forming an outside surface (55) on said billet;
10 plating (60) said outside surface (55);
 removing said mandrel (50); and
 removing said spacer material (20) by chemical
 etching.

1 8. The method as recited in Claim 7 wherein said
mandrel (50) is shaped such that its insertion into
said inside surface (40) prevents plating of said inside
surface (40).

1 9. The method as recited in Claim 8 further
comprising the step of abutting a preconstructed
component (52) to said billet before said step of
plating (61) said outside surface.

1 10. The method as recited in Claim 9 wherein said
step of abutting a preconstructed component (52) to
said billet is accomplished before said step of forming
an outside surface (55) on said billet.

- 15 -

1 11. A method for fabricating corrugated microwave
components, said method comprising the following steps
in the sequence set forth:

5 a first step of sandwiching electrically
conductive plates (10) alternatively with chemical
etching sensitive spacer material (20) to form a billet;

10 a second step of forming an inside surface
(40) in said billet;

10 a third step of inserting a mandrel (50) into
and in contact with said inside surface (40);

15 a fourth step of forming an outside surface
(55) on said billet;

15 a fifth step of plating (60) said outside
surface (55);

15 a sixth step of removing said mandrel means
(50); and

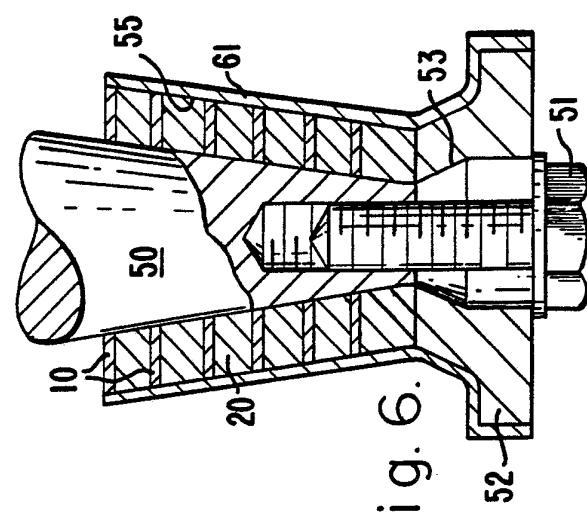
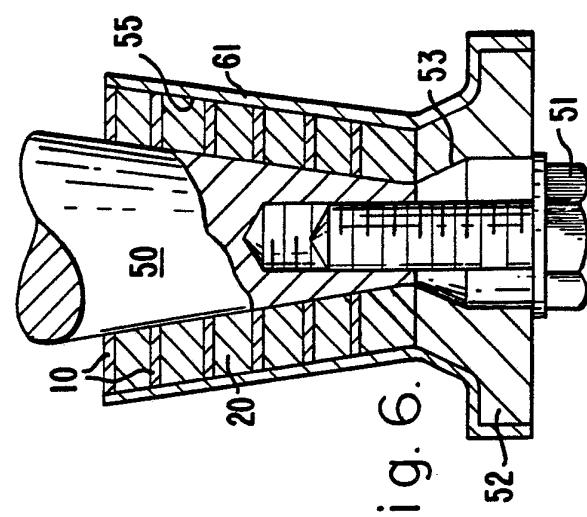
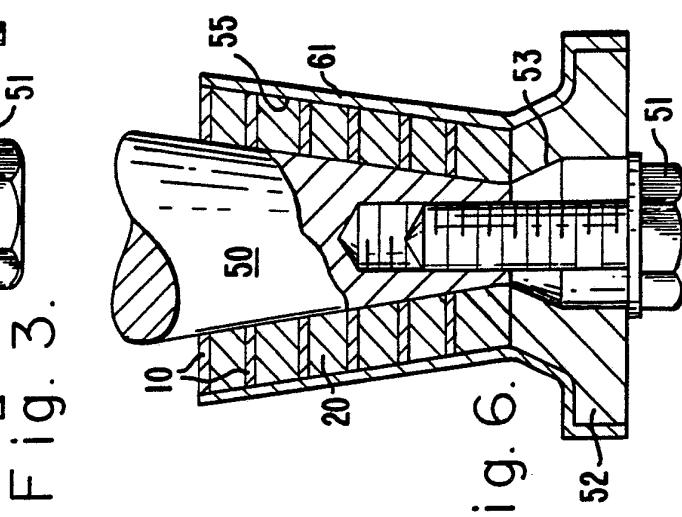
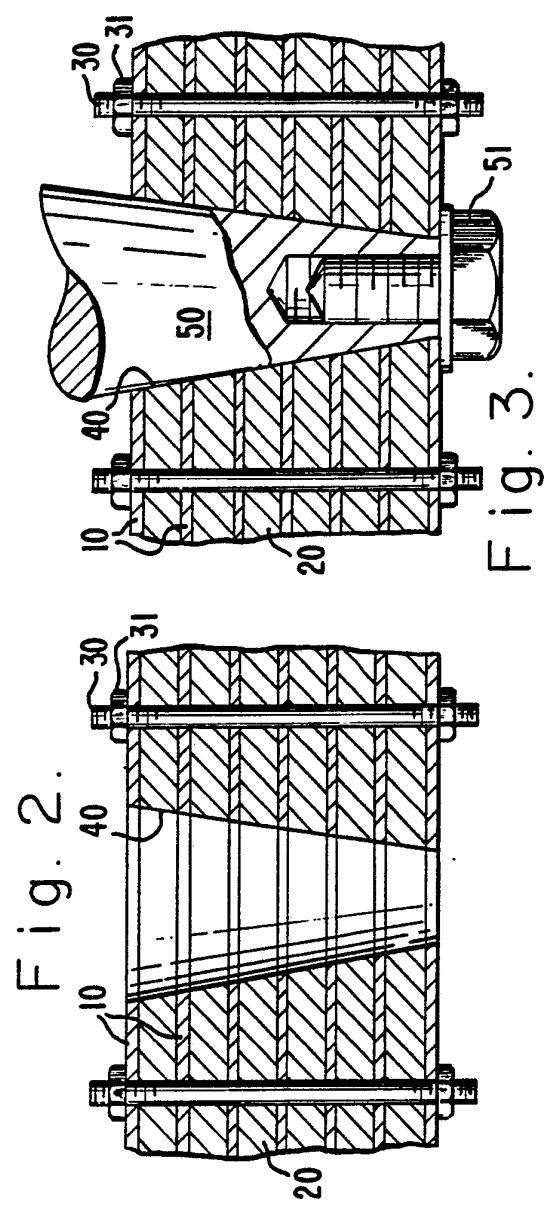
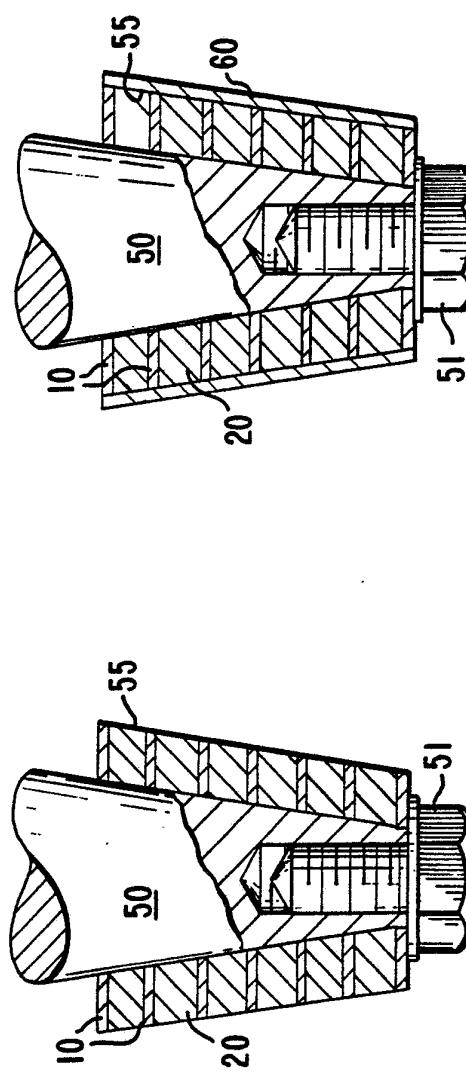
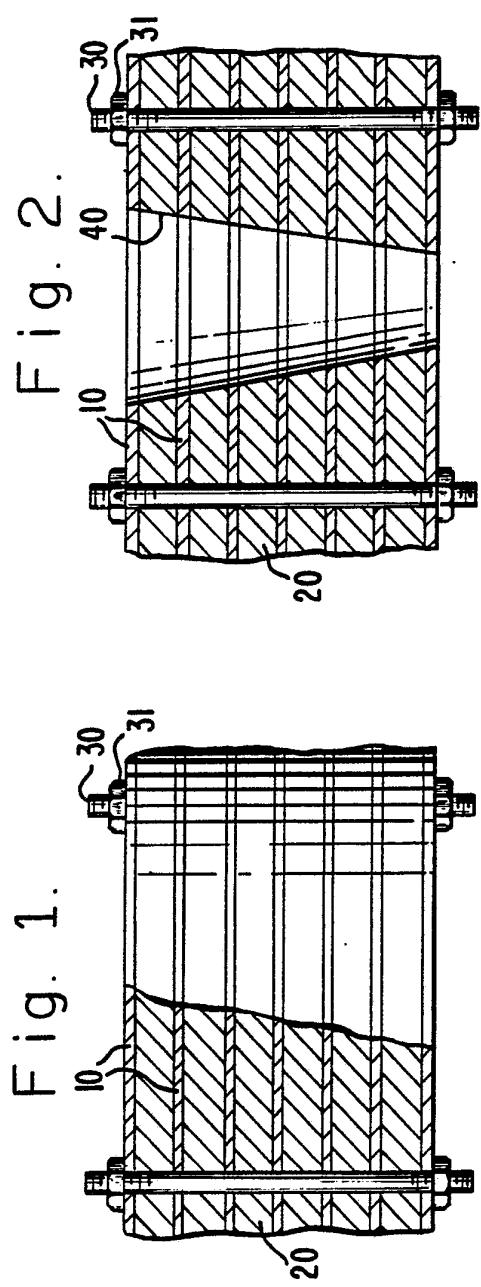
15 a seventh step of removing said spacer material
(20) by chemical etching.

-16-

STATEMENT UNDER ARTICLE 19

Claim 1 has been amended to include the limitations of previous Claim 6. Since previous Claim 6 was dependent upon previous Claim 5 which was dependent upon previous Claim 4, and so on down through previous Claim 1, the limitations of previous Claims 2 through 6 have all been added to previous Claim 1 to result in amended Claim 1.

Claims 2 through 6 have been canceled without prejudice.







Claim 11 has been amended to clarify the sequence of steps in the claimed method.

Claims 1 and 7 through 11 are in the application.

The above amendments to the Claims are within the disclosure in the international application as filed and entry of these amendments is respectfully requested.

1/2

2/2

Fig. 10.

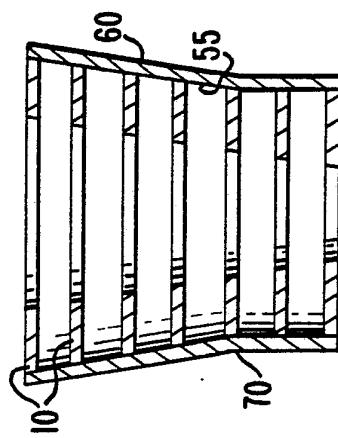
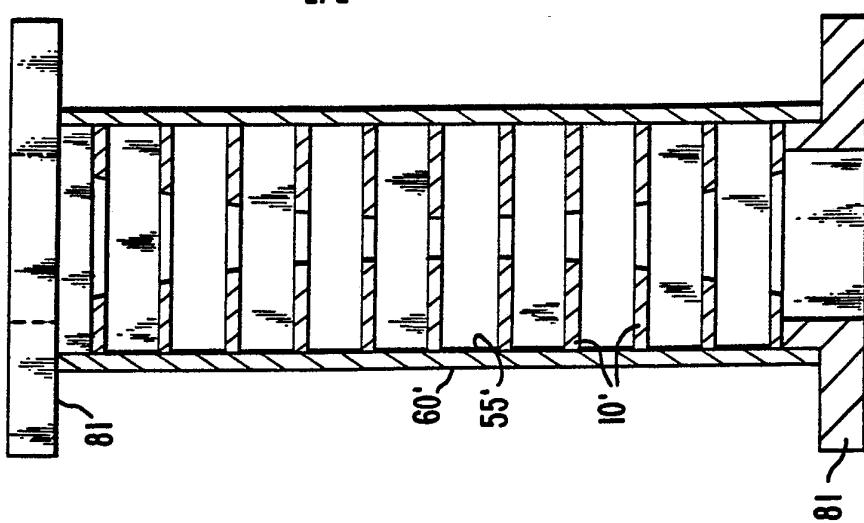



Fig. 7.

Fig. 8.

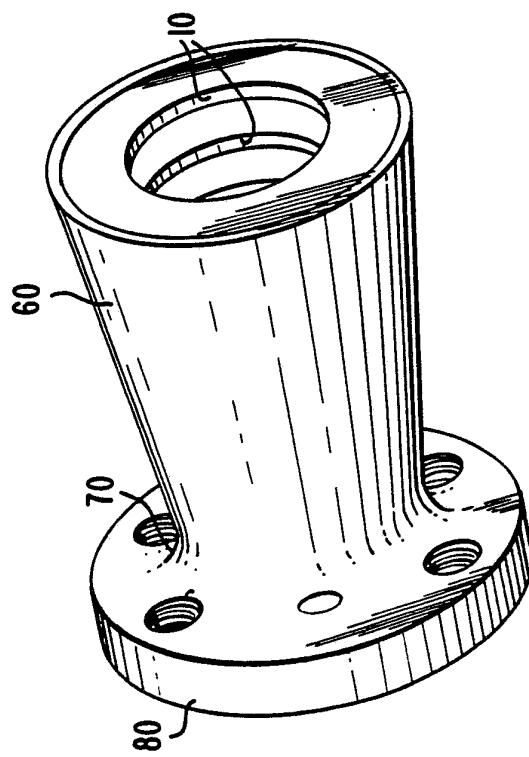
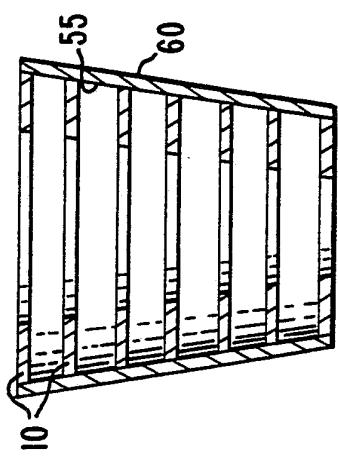



Fig. 9.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US 83/01371

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ³

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC³: H 01 P 11/00

II. FIELDS SEARCHED

Minimum Documentation Searched ⁴

Classification System	Classification Symbols
IPC ³	H 01 P

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched ⁵

III. DOCUMENTS CONSIDERED TO BE RELEVANT ¹⁴

Category ⁶	Citation of Document, ¹⁶ with indication, where appropriate, of the relevant passages ¹⁷	Relevant to Claim No. ¹⁸
X	US, A, 2761828 (A.L. ELDREDGE et al.) 4 September 1956 see the entire document	1,2,4
Y	FR, A, 2414256 (THOMSON-CSF) 3 August 1976 see the entire document	3,5,7-9,11
Y	FR, A, 1462893 (M.M. ESIDENKO et al.) 16 December 1966 see page 2, right-hand column, penultimate line - page 3, left-hand column, line 10	3,7,8,11

* Special categories of cited documents: ¹⁶

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search ¹⁹
15th November 1983

Date of Mailing of this International Search Report ²⁰

13 DEC. 1983

International Searching Authority ¹

EUROPEAN PATENT OFFICE

Signature of Authorized Officer ²¹

G.L.M. Kreydenberg

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON

INTERNATIONAL APPLICATION NO. PCT/US 83/01371 (SA 5772)

This Annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 01/12/83

The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US-A- 2761828		None	
FR-A- 2414256	03/08/79	None	
FR-A- 1462893		None	
