LITHIUM-ION CELL VOLTAGE TELEMETRY CIRCUIT

Abstract: A battery is a collection of cells place in a series, parallel, or both. A telemetry circuit (20) is presented with determining the individual voltage of each cell (22) making up a battery. This device uses a high voltage isolation circuit (21) to isolate each cell (22) from the remainder of the measuring circuitry (24, 25). This is to ensure precise cell voltage measurements are made even at high common-mode voltages. This is an inherent problem for high voltage battery telemetry designs.
LITHIUM-ION CELL VOLTAGE TELEMETRY CIRCUIT

BACKGROUND OF THE INVENTION

Field Of The Invention

The present invention relates to voltage sensing and measuring, and more specifically, to an apparatus for sensing and measuring voltage with greater precision. The apparatus uses an isolation circuit to isolate the signal provided by a voltage source, such as a lithium-ion cell, from the remainder of the measuring circuit to ensure precision measurement even at high voltage levels.

Description Of The Related Art

Lithium-ion cells are being used in greater numbers of space applications, such as to power satellite electronics and control systems. Accurate sensing of the state of the charge of these cells is very critical for lowering system mass and increasing battery life. Typically, the state of charge of a lithium-ion battery can be derived from the voltage of each cell. Therefore, voltage telemetry precision is of utmost importance. The more components used in the circuit, means more tolerance that must be accounted for in a worst case accuracy analysis.

U.S. Patent No. 6,211,650 to Mumaw describes a method of limiting the charging voltage applied to an individual cell of a plurality of cells making up a battery in which the actual voltage of an individual cell has been sensed. However, this patent does not suggest a use for precision measurements of voltage by means of an isolation circuit. In addition, this patent does not suggest an attempt to reduce the measurement error through a minimal number of elements.

U.S. Patent 6,157,171 to Smith describes a method for monitoring the voltage of a rechargeable battery using an integrated circuit. This patent does not suggest the use of a circuit, such as a transformer, to isolate the cell from the rest of the circuit. Furthermore, there is no suggestion that an emphasis has been placed on precision and accuracy of the measurements.
U.S. Patent 6,077,624 to Mitchell describes the general operation of a lithium-ion battery. The patent suggests an improved method to improve the thermal stability of a lithium-ion cell. While the detailed components and operation of this type of cell are described in the patent, there is no description of a voltage sensing device that employs an isolation circuit.

A continuing need exists for improved circuitry for measuring voltage levels on a precision and accuracy basis.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a voltage telemetry circuit which uses a “minimal” circuit approach to sampling cell voltage.

Another object of the present invention is to provide a voltage telemetry circuit that minimizes errors related to component tolerances, and allows the voltage to be determined repeatedly and predictably.

A further object of the invention is to provide a method for isolating the input signal to the isolation circuit from the measurement circuitry.

The present invention meets these objectives by providing an isolation circuit that isolates a cell from measurement circuitry. Preferably, the invention provides an output voltage that is the same as the input voltage applied to the isolation circuit. An approximation of an ideal isolation circuit provides an output that differs from the input of the isolation circuit by a predictable amount. One such circuit is a pulse transformer. The output of a pulse transformer includes a predictable and repeatable offset from the input.

Other and further objects of the present invention will be apparent from the following description and claims and are illustrated in the accompanying drawings, which by way of illustration, show preferred embodiments of the present invention. Other embodiments of the invention embodying the same or equivalent principles may be used and structural changes may be made as desired by those skilled in art without departing from the present invention and the purview of the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of an exemplary system embodying the present invention.

Figure 2a-2d are graphic displays of the magnitude of the voltage at various points in the Figure 1 circuit.
Figure 3 is a schematic diagram of an exemplary pulse transformer, driving circuit and enable circuit.

Figure 4 is a schematic diagram of a sample and hold and analog-to-digital converter.

Figure 5 is a schematic diagram of a simplified pulse transformer model.

Figure 6 is a graph showing voltage offsets of a pulse transformer at different voltage levels over a period of time.

Figure 7 is a graph showing the highest voltage level from Figure 6.

Figure 8 is a graph showing the lowest voltage level from Figure 6.

Figure 9 is a graph showing the minimum and maximum offsets, with errors accounted for, over the entire cell voltage range.

Figure 10 is a graph showing variations in an error band at time t1.

Figure 11 is a graph showing signals generated at different points in the circuit.

Figure 12 is a graph showing sampling inaccuracy caused by insufficient delay time.

Figure 13 is a graph showing timing of events that occur in an exemplary circuit in further detail.

Figure 14 is a graph showing changes in the transformer offset voltage due to temperature change.

Figure 15 is a graph showing offsets measured in the lab at room temperature compared to the theoretical offset.

Figure 16 is a graph showing offsets at different temperatures compared to the theoretical offset.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figure 1 is a block diagram of an exemplary system embodying the present invention. A signal detection circuit 20 measures and/or senses the voltage of a voltage source 22, such as a lithium-ion cell. This exemplary embodiment includes a pulse transformer 21 to which a driving circuit 23 is operatively connected. The Figure 1 embodiment also includes a sample and hold circuit 24 operatively connected to the pulse transformer 21. An enable signal 26 enables the driving circuit 23. The pulse transformer 21 is then switched on by the driving circuit 23. A 12-bit analog-to-digital converter 25 is operatively connected to the sample and hold circuit 24. The sample and hold circuitry may not be a separate circuit element. For example, it may be part of the analog-to-digital conversion, which conversion may be implemented, for example, by a dedicated circuit or by software. The output of the analog-
to-digital converter 25 can be connected to any desired circuitry, such as a display and/or subsequent processing circuitry.

Figures 2a-2d are graphic displays of the magnitude of the voltage at various points in the Figure 1 circuit. Figure 2a shows the output dc voltage of the voltage source 22 in Figure 1 with respect to time. For the time period shown, it is assumed to be constant. So, it is represented by a straight horizontal line. Figure 2b is a graph showing the output of the pulse transformer 21, V_{xfrm}. As seen in Figure 2b, the magnitude of the signal decreases by a known amount. Figure 2c graphically illustrates the voltage at the output of the sample and hold 24 shown in Figure 1. The voltage magnitude at the sample and hold circuit 24 differs from the input magnitude of the voltage source 22 by a known amount called the offset 28. The analog-to-digital converter 25 converts the output of the sample and hold 24 to a digital word 27.

Figure 3 is a schematic diagram of an exemplary pulse transformer, driving circuit, and enable circuit. In this exemplary embodiment shown in Figure 3, cell 22 shown in Figure 1 connects to the circuit at the on/off switch 29. The input capacitor C1 is constantly charged to the cell's DC voltage level through resistor R1. The cell voltage changes very slowly. When switch X1 is turned on briefly (e.g., about 10uS), the output waveform shown in Figure 2b is generated across output resistor R2. A diode D1 protects the input of the sample and hold circuit 24 from the negative voltage of transformer T1. In the preferred embodiment, transformer T1 has a 1:1 ratio in order to match the cell voltage 22 to the input range of the sample and hold 24 and analog-to-digital converter 25.

Transformer T2 is used to drive switch X1. Transistor Q1 is used to quickly discharge switch X1, thereby insuring that the cell voltage from source 22 is only sampled for the intended duration. In this exemplary embodiment, chip 31 debounces switch S1 and creates a signal with a positive edge. Chip 32 receives the debounced signal from chip 31 and creates a pulse output with a short duration, for example, of 14uS. A driving circuit 30 is triggered by this pulse output, the pulse is also applied to the sample and hold 24 and analog-to-digital converter 25. Upon being activated, the driving circuit 30 turns on switch X1, allowing transformer T1 to sample the input voltage. Of course, the exemplary embodiment described can be altered for various applications.

Figure 4 is a schematic diagram of an exemplary sample and hold 24 and analog-to-digital converter 25. In this embodiment, the enable signal clocks the flip-flop 33. The output of flip-flop 33 drives delayed controls for the sample and hold 24 and analog-to-digital
converter 25. Flip-flop 33 is reset after each measurement. In general, comparators 37 and 38 provide delay 1 at time t1 (Figure 1). The output of these two comparators is applied to the sample and hold circuit 36. It is also applied to comparators 39, 40, 41, and 42, which provide delay 2 at time t2 (Figure 2d). The output of comparator 42 is applied to the analog-to-digital converter 35. Of course, any desired method can be used to provide the delays and should be adjusted according to the specific application.

The output of transformer T1 is applied to the input of the sample and hold 36 shown in Figure 4 on signal line 34. At time t1, this signal is sampled and held. At time t2, the analog-to-digital conversion takes place. The output of the analog-to-digital converter 35 can be applied to any desired computational or display circuitry.

Figure 5 is a schematic diagram of a simplified pulse transformer model. The Figure 5 circuit models the pulse transformer as a parallel RLC circuit. Since the transformer T1 shown in Figure 3 has a 1:1 ratio, it is modeled using only its magnetizing inductance Lm. The approximation assumes that switch X2 is an ideal switch. The input voltage is the voltage from cell 22 of Figure 1. At time t0, switch X2 is briefly closed. Ideally the voltage across resistor R3 will have a waveform such as shown in Figure 2b.

Figure 6 is a graph showing voltage offsets of a pulse transformer at different voltage levels over a period of time. The graph represents a cell discharge over a period of time when six measurements are taken. From examining waveform 43 and 44, a noticeable trend is apparent. The lower the initial voltage of the cell, the smaller the offset voltage. The drop changes linearly with the cell voltage.

Figure 7 is a graph showing the highest voltage level from Figure 6. The horizontal axis represents time measured in seconds and the vertical axis represents voltage measured in volts. If the cell 22 is at 4 volts, the \(V_{xfrn} \) signal 2b has its maximum offset. The black solid line 45 represents the theoretical drop for nominal values of R3 and Lm (Figure 5), at time t1 where the sample and hold 24 takes place. If for example, the cell voltage is sampled at t1=8us the measured voltage has a value of 3.998V. The repeatable maximum offset at this voltage (4V) is 12.2 mV. However, this measurement may have errors due to changes in R3 and Lm (Figure 5) as well as the timing t1. Assuming variations of R3 and Lm to be +/-10%, the transformer voltage may be at its minimum value shown by line 46, or its maximum value shown by line 47. Also, a timing error (e.g., +/- 10%) shown by lines 48 and 49 may contribute to the overall error band. So at its extremes, the measurement could take place where line 48 intercepts waveform 47 – the maximum offset minus error, or when line 49
intercepts waveform 46 – the maximum offset plus error. The offset minus error in this case equals about 10mV, and the offset plus error equals about 14mV.

Figure 8 is a graph showing the lowest voltage level from Figure 6. The axes are the same as in Figure 7. The noticeable differences from Figure 7 are the initial cell voltage of 2V and the lower offset, which is approximately half the offset of the 4V signal in Figure 7. By analyzing Figure 8 in the same manner as Figure 7, the repeatable minimum offset is calculated to be approximately 6mV. The minimum offset minus error is approximately 5mV, and the minimum offset plus error is approximately 7mV.

Figure 9 is a graph showing the minimum and maximum offsets, with errors accounted for, over the entire cell voltage range. The cell voltage ranging from 2 to 4 volts is shown on the horizontal axis, and the offset measured in millivolts is shown on the vertical axis. The maximum and minimum offsets accounting for error were calculated from an analysis of Figures 7 and 8. The offset varies linearly with the cell voltage, so by obtaining the offsets at a cell voltage of 2V and 4V, a line representing the entire spectrum of cell voltages can be constructed. In the worst case scenario, the offsets plus error were calculated to be between 7 and 14mV (line 50). The offset without any error was calculated to be between 6 and 12mV (line 51). Finally, the offset minus error was calculated to be between 5 and 10mV (line 52).

Figure 10 is a graph showing the variations in the error band at time t1 (Figure 2c). The horizontal axis represents cell voltage measured in volts and the vertical axis represents voltage measured in millivolts. In the analysis of Figure 8, the minimum offset minus error was calculated to be 5mV. The minimum offset plus error was calculated to be 7mV. This means there is a possible 2mV error if the cell voltage is 2V. Similar analysis of Figure 7 shows the error to be between 10mV and 14mV. This means there is a possible error of 4mV when the cell 24 is at 4V. Figure 10 results when the error at each of the two cell voltages (2V and 4V) are plotted and connected by a straight line.

Figure 11 is a graph showing the signals generated at different points in the circuit. Time is shown on the horizontal axis. The enable signal 53 triggers the driving circuit 23 to produce the transformer output voltage 54. Small distortions can be seen at the positive edge of waveform 53 and 54. To eliminate the possibility of these errors being sampled, the sample and hold 55 takes place after a significant delay. In this exemplary model, the sample and hold 55 takes place 5uS after the positive edges of the enable 53 and \text{V}_{x\text{fm}} 54. By
delaying the sample and hold 55, the possibility of any errors being sampled is reduced to zero.

Figure 12 is a graph showing the sampling inaccuracy caused by insufficient delay time between the rising edge of the V_{xfrm} pulse 54 and the rising edge of the sample and hold pulse 55. This delay was varied between 1uS and 7uS. Figure 13 shows that sampling of the input voltage should occur using a delay of approximately 5uS. This sampling time will allow enough time for a correct sampling of the cell voltage without causing an unnecessarily long delay. This delay is, however, dependent upon the circuitry used and would be adjusted for various applications.

Figure 13a-13d are graphs showing the timing of events in further detail. Figure 13a shows the pulse transformer output that is applied to the sample and hold 24. The sample and hold 24 output is shown in Figure 13b. To improve sampling accuracy, a delay is inserted between an input voltage, such as the transformer activation at t_0, and any hold commands (t_1). Figure 13c shows an example of one such delay. In this example, logic low samples the input, and logic high holds the value. Once the sampling operation is completed, the analog-to-digital conversion begins at t_2, shown in Figure 13d.

Figure 14 is a graph showing the change in transformer offset voltage due to temperature change. Cell voltage measured in volts is shown on the horizontal axis, and offset in volts is shown on the vertical axis. Every cell voltage measurement shown in this figure was executed five times to ensure accuracy. If the least significant bit was between resolution levels, the result was not used. Using a 12-bit A/D with 10V input range gives a resolution of 2.4414 mV. Figure 14a shows the offset voltage of transformer T1 (Figure 3) at 83.6 degrees C. Figure 14b shows the offset voltage at 24.8 degrees C. Finally, Figure 14c shows the offset voltage at -2.3 degrees C.

Figure 15 is a graph comparing the offset measured in the lab at room temperature to the theoretical offset. The figure shows offsets measured at a time when the sample and hold 24 takes place. Cell voltage is shown on the horizontal axis and offset is shown on the vertical axis. Both are measured in volts. The theoretical offset was calculated using a computer simulation and analysis of the RLC circuit (Figure 5). The lab offset 59 is approximately 6.5 millivolts greater on average than the theoretical band 56, but it is repeatable and included within an error band bounded by line 57 and 58. The 6.5mV difference can be explained by considering four facts that the theoretical calculation does not account for. First, theoretical calculations do not account for the parasitics of the various
circuit components. Also unaccounted for in the theoretical analyses are common ground errors, errors contributed by the sample and hold and A/D, and measurement errors that occur in a laboratory setting.

Figure 16 is a graph showing the offset at different temperatures compared to the theoretical offset. Due to the temperature change, the offset varies on average +/- least significant bit = 2.44mV, and follows a staircase shape, which can best be seen on the cold data line 61. The bottom line 62, which is around zero voltage, represents the error contributed by the sample and hold and A/D at room temperature. To acquire these experimental readings, the pulse transformer circuit 21 is bypassed, and the cell voltage is applied directly to the input of the sample and hold 24.

The designed voltage telemetry circuit performed well in laboratory testing. The lab results confirm the theoretical predictions and meet the maximum measurement error requirement of 0.5%. The lab data shows the error to be less than 0.25% for all measurements taken. Each measurement generated a repeatable voltage offset, whose average can be easily predicted. Because the theoretical calculations are based on a very simplified pulse transformer model (Figure 5), the lab results do not follow the calculated lines exactly. The measured voltage drop over the entire cell range is about 6mV higher on average than the theoretical line. Using a more detailed modeling of the pulse transformer would bring the theoretical and laboratory lines closer together.

Although the invention has been described with reference to particular embodiments, it will be understood to those skilled in the art that the invention is capable of a variety of alternative embodiments within the spirit of the appended claims.
Claims

1. A device for measuring a voltage, comprising:
 an isolation circuit operatively connectable to receive the voltage;
 a driving circuit operatively connected to the isolation circuit;
 sampling circuitry operatively connected to the isolation circuit;

2. The device according to claim 1, wherein said isolation circuit comprises a pulse transformer.

3. The device according to claim 1, further including:
 an enable circuit operatively connected to activate said driving circuit.

4. The device according to claim 1, wherein said sampling circuitry comprises a sample and hold circuit.

5. The device according to claim 1 further comprising:
 processing circuitry operatively connected to said sample and hold circuit.

6. The device according to claim 5, wherein said processing circuitry comprises:
 an analog-to-digital converter operatively connected to said sample and hold circuitry;
 an LED display operatively connected to said analog-to-digital converter;

7. The device according to claim 1, further comprising:
 delay circuitry operatively connected to said sample and hold circuit and said analog-to-digital converter.

8. The device according to claim 3, wherein said enable circuit is operatively connected to activate said delay circuit.

9. The device according to claim 4, wherein said sample and hold circuit is operatively connected to receive an output of said isolation circuit.

10. The device according to claim 9, wherein said sample and hold circuit is operatively connected to provide an output that reflects the output of said isolation circuit.

11. The device according to claim 1, wherein said driving circuit is operatively connected to activate said isolation circuit.

12. The device according to claim 7, wherein said delay circuit delays operation of said sample and hold circuit by a predetermined amount of time after operation of said isolation circuit.

13. The device according to claim 7, wherein said delay circuit delays operation of said analog-to-digital converter by a predetermined amount of time after operation of said sample and hold circuit.
14. A method for measuring a voltage using a measurement circuit, comprising:
 receiving a voltage to be measured;
 isolating said voltage from at least a part of said measurement circuit;
 providing a representation of said isolated voltage;
 sampling said representation of said isolated voltage;

15. The method according to claim 14, wherein said sampling of said representation of said
 isolated voltage occurs at a predetermined time after said isolating of said voltage.

16. The method according to claim 14, further comprising:
 processing said sampled representation of said isolated voltage.

17. The method according to claim 16, wherein said processing comprises converting said
 sampled voltage into digital format and displaying said sampled voltage.

18. The method according to claim 16, wherein said processing of said representation of said
 isolated voltage occurs at a predetermined time after said isolating of said voltage.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
 IPC(7) : G01N 27/416; G01R 31/02
 US CL. : 324/434, 72
 According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
 Minimum documentation searched (classification system followed by classification symbols)
 U.S. : 324/434, 72
 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5,499,776 (HIRSCH) 12 March 1996 (12.03.1996), Figure 2, column 2, lines 48-60, and column 3, lines 56- column 4 line 13.</td>
<td>1-5, 9-11, 14 and 16</td>
</tr>
<tr>
<td>Y</td>
<td>US 5,948,105 (SKURNEK et al) 07 September 1999 (07.09.1999), Figure 1, column 5, lines 7-10 and 35-36, and column 7, lines 47-67.</td>
<td>6, 8 and 17</td>
</tr>
<tr>
<td>X</td>
<td>US 3,796,947 (HARROD et al) 12 March 1974 (12.03.1974), Figures 1 and 5 and column 4, lines 10-12 and 25-28.</td>
<td>7, 12, 13, 15, and 18</td>
</tr>
<tr>
<td>X</td>
<td>US 6,281,684 B1 (JAMES) 28 August 2001 (28.08.2001), Figure 3.</td>
<td>4, 6</td>
</tr>
<tr>
<td>Y</td>
<td>US 6,140,927 (WHITMIRE) 31 October 2000 (31.10.2000), Figure 4.</td>
<td>6</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
03 March 2003 (03.03.2003)

Date of mailing of the international search report
19 May 2003

Authorized officer
N. Le

Telephone No. 703-308-0956