EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 28.07.82
Application number: 79301790.6
Date of filing: 31.08.79

Self crimping yarn, process for producing a self crimping yarn, and textured yarn having a wool-like hand.

Priority: 02.10.78 US 947687
Date of publication of application: 16.04.80 Bulletin 80/8
Publication of the grant of the patent: 28.07.82 Bulletin 82/30
Designated Contracting States: BE CH DE FR GB IT NL

References cited:
DE - A - 1 934 845
DE - A - 2 409 053
DE - A - 2 539 272
DE - B - 1 238 610
GB - A - 1 103 728
US - A - 3 444 681
US - A - 3 497 585

Proprietor: MONSANTO COMPANY
Patent Department 800 North Lindbergh Boulevard
St. Louis, Missouri 63166 (US)

Inventor: Blackmon, Lawrence Everett
P.O. Box 1034
Foley, Alabama 36535 (US)
Inventor: Dees, John Robert
1055 Farmington Road
Pensacola, Florida 32504 (US)
Inventor: Kelly, Darrell Albert
Route 5 Box 413-B
Milton, Florida 32570 (US)
Inventor: Mowe, Wayne Thomas
3825 Scenic Highway
Pensacola, Florida 32503 (US)
Inventor: Yu, Jing-peir
6541 Scenic Highway
Pensacola, Florida 32504 (US)

Representative: McLean, Peter et al,
Monsanto House 10-18 Victoria Street
London, SW1H ONQ (GB)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European patent convention).

EP 0 009 883 B1

The invention relates to the art of melt-spun synthetic yarns and processes for their production, and more particularly to such yarns which combine high bulk with a wool-like hand. European Patent Application No. 79301386.3 (0007237), which was unpublished at the filing date of the present application, discloses a textured yarn having a soft luxuriant hand and improved wicking, characterized by:

a. a first plurality of filaments comprising alternating S-twisted and Z-twisted helically coiled regions connected by twist reversal regions, each of said first plurality of filaments having a cross-sectional area which varies from small values in thin regions to large values in thick regions along its length, said large values being at least 10% greater than said small values, said thick and thin regions being out of phase from filament to filament along the length of said yarn, and

b. a second plurality of filaments comprising alternating S-twisted and Z-twisted helically coiled regions connected by twist reversal regions, each of said second plurality of filaments having a cross-section comprising a spiral and wherein the outer portion of said spiral lies at the inside of the coils of said helically coiled regions.

It is known to produce somewhat bulky yarns by combining filaments with different shrinkages into a yarn, then shrinking so that the resulting longer filaments protrude in loops from the yarn. This may be done by spinning the filaments from different polymers, as in Reese U.S. Patent 3,444,681, or by spinning from different filament cross-sections from a common polymer, as typified by several patents. Such known yarns ordinarily do not have high bulk, nor do fabrics made therefrom ordinarily provide a hand similar to that of wool, combining an initial crispness on light touch with softness on more firm compression.

These and other difficulties of the prior art are avoided by the present invention, which provides novel and useful processes and improved yarn products.

According to a first major aspect of the invention, there is provided a process for producing a self-crimping yarn comprising first and second types of filaments of different shrinkages, the process comprising spinning the first type of filaments by generating first and second individual streams of molten polymer of fiber-forming molecular weight, the individual streams travelling at different velocities; converting the individual streams side-by-side to form a combined stream; and quenching the combined stream to form a combined filament; spinning the second type of filaments by extruding a third stream of molten polymer of fiber-forming molecular weight from an orifice selected to give a filament with lower shrinkage than said combined filament, at a given common spinning speed; and quenching the third stream into a filament; withdrawing the filaments from the streams at the given common spinning speed in excess of 2200 meters per minute; and combining the filaments into a yarn.

According to another aspect, each of the streams is of polyester polymer.

According to another aspect, the spinning speed is selected such that the yarn has a shrinkage below 20%.

According to another aspect, the spinning speed is selected such that the yarn has a shrinkage below 8%.

According to another major aspect of the invention, there is provided a multifilament yarn comprising first and second classes of filaments of different shrinkages, each of the first class of filaments having a periodic variation in denier of greater than ±10% about a mean value and possessing latent crimp; each of the second class of filaments having lower shrinkage than the shrinkage of the filaments of the first class.

According to another aspect, each of the second class of filaments has a denier larger than the average denier of the first class of filaments.

According to another major aspect of the invention, there is provided a multifilament yarn comprising first and second classes of filaments; each of the filaments of the first class having a periodic variation in denier of greater than ±10% about a mean value and possessing developed crimp; each of the filaments of the second class being longer than the filaments of the first class whereby the filaments of the second class protrude from the yarn in loops.

According to another aspect, each of the second class of filaments has a denier larger than the average denier of the first class of filaments.

These and other aspects of the invention will in part appear hereinafter and will in part appear hereinafter in the following detailed description taken in connection with the accompanying drawings wherein:

Figure 1 is a vertical sectional view of a spinneret orifice;

Figure 2 is a bottom plan view of the Figure 1 orifice, looking up;

Figure 3 is a graph of shrinkage versus spinning speed used in explaining the principles upon which certain aspects of the invention are based;

Figure 4 is a cross-sectional view of a filament according to certain aspects of the invention;
Figure 5 is a side elevation view of the molten streams issuing from the Figure 1 spinneret according to certain aspects of the invention;

Figure 6 is a graph illustrating the variation in denier along a representative filament according to certain aspects of the invention; and

Figure 7 is a graph illustrating the distribution of the fluctuations illustrated in Figure 5 for a representative multiple orifice spinneret according to certain aspects of the invention.

The invention will be specifically exemplified using polyester polymer, it being understood that certain aspects of the invention are applicable to the class of melt-spinnable polymers generally. “Polyester” as used herein means fiber-forming polymers at least 85% by weight of which is formable by reacting a dihydric alcohol with terephthalic acid. Polyester typically is formed either by direct esterification of ethylene glycol with terephthalic acid, or by ester interchange between ethylene glycol and dimethylterephthalate.

Figures 1 and 2 illustrate the preferred embodiment of a spinneret design which can be employed for obtaining the first type of filaments according to the invention. The spinneret includes a large counterbore 20 formed in the upper surface 21 of spinneret plate 22. Small counterbore 24 is formed in the bottom of and at one side of large counterbore 20. A large capillary 26 extends from the bottom of large counterbore 20 at the side opposite small conguerbore 24, and connects the bottom of large counterbore 20 with the lower surface 28 of plate 22. Small capillary 30 connects the bottom of counterbore 24 with surface 28. Capillaries 26 and 30 are each inclined four degrees from the vertical, and thus have an included angle of eight degrees. Counterbore 20 has a diameter of 0.113 inch (2.87 mm), while counterbore 24 has a diameter of 0.052 inch (1.32 mm). Capillary 26 has a diameter of 0.016 inch (0.406 mm) and a length of 0.146 inch (3.71 mm), while capillary 30 has a diameter of 0.009 inch (0.229 mm) and a length of 0.032 inch (0.813 mm). Land 32 separates capillaries 26 and 30 as they emerge at surface 28, and has a width of 0.0043 inch (0.109 mm). Plate 22 has a thickness of 0.554 inch (14.07 mm). Capillaries 26 and 30 together with counterbores 20 and 24 constitute a combined orifice for spinning various novel and useful filaments according to the invention, as will be more particularly described hereinafter.

Figure 3 is a graph showing how polyester filament shrinkage varies with spinning speed for two illustrative cases of jet stretch. The curve in dotted lines shows that the shrinkage falls from about 85% at 3400 ypm (about 3100 mpm) to about 5% at 5000 ypm (about 4500 mpm) when using spinneret capillaries having diameters of 0.063 inch (1.6 mm) and when simultaneously spinning 34 such filaments to be false-twist draw-textured to yield a textured yarn having 150 denier. The solid curve shows that the shrinkage drops off at higher speeds when using spinneret capillaries having diameters of 0.015 inch (0.38 mm) when similarly simultaneously spinning 34 such filaments to be false-twist draw-textured to yield a textured yarn having 150 denier. Using different capillary diameters produces a family of curves between, to the left, and to the right of those illustrated. The curves also can be shifted (for a given capillary diameter) by varying the polymer throughput. In other words, the curves can be shifted by varying the jet stretch, which is the ratio of yarn speed just after solidification to average speed of molten polymer in the capillary. It is thus possible to provide a combined orifice for spinning a composite filament of a single polymer wherein one side of the filament has a much higher shrinkage than the other side. This is done by selecting the individual capillaries to give different jet stretches, and also selecting the spinning speed within the range wherein an individual filament quenched from one of the individual streams would have a shrinkage at least ten percentage points higher than that of an individual filament quenched from the other of the individual streams. Under the spinning conditions illustrated in Figure 3, at a spinning speed of 5000 yards per minute (4572 mpm) the individual streams would have shrinkages differing by about 25 percentage points. Combining these molten streams into a side-by-side configuration results in a highly crimped filament in its as-spun form, without the necessity of drawing the yarn to develop the crimp. Such combining may be done using a spinneret design similar to that disclosed in Figure 1, or the spinneret may merge the two streams at or just prior to emergence of the streams from surface 28. In any event, the two streams merge substantially coincident with the face of the spinneret according to this aspect of the invention.

Advantageously, the spinneret is so designed that one of the individual streams has a velocity in its capillary between 2.0 and 7 times (preferably between 3.5 and 5.5 times) the velocity of the other of the streams in its capillary. Further advantages are obtained when the faster of the two streams has a smaller cross-sectional area than the slower of the streams, particularly in degree of crimp and spinning stability. Productivity is increased when the spinning speed is selected such that the combined filament has a shrinkage less than 30%, and is maximized when the shrinkage is less than 10%.

Further aspects of the invention, applicable to melt-spinnable polymers as a class, are achievable by use of spinnerets wherein the streams intersect outside the spinneret. As a specific example, molten polyester polymer of normal textile molecular weight is metered at a
temperature of 290°C through a spinneret having 34 combined orifices as above specifically disclosed. The polymer throughput is adjusted to produce filaments of 4 average denier per filament at a spinning speed of 5200 yards per minute (4755 mpm), the molten streams being conventionally quenched into filaments by transversely directed quenching air.

Under these spinning conditions a remarkable phenomenon occurs, as illustrated in Figure 5, due to the geometry of the spinneret construction, the polymer flowing through the smaller capillaries 30 has a higher velocity than that flowing through the larger capillaries. The speeds and moments of the paired streams issuing from each combined orifice and the angle at which the streams converge outside the spinneret are such that the slower streams 34 travel in substantially straight lines after the points at which the paired streams first touch and attach, while each of the smaller and faster of the streams 36 forms sinuous loops back and forth between successive points of attachment 38 with its associated larger streams. This action can be readily observed using a stroboscopic light directed onto the stream immediately below the spinneret face 28. As the molten streams leave the spinneret, the slower stream attenuates between the points of attachment 38 and the loops of the faster stream become straightened until the faster stream is brought into continuous contact with the slower stream. The slower stream attenuates more between than at the points of first attachment, so that the resulting combined stream has a cross-section which is larger at the points of first attachment than in the regions between these points. The resulting combined stream is then further attenuated somewhat until it is solidified into a filament 40 by the transverse quench air.

Each solidified filament 40 has non-round cross-sectional areas which vary repetitively along their lengths and, after being heated while under low tension, have variable pitch S-twisted and Z-twisted helically coiled sections, the sections being less tightly coiled in regions of large cross-sectional area than in regions of small cross-sectional area. As illustrated qualitatively in Figure 6, when using the above spinning conditions, the filament cross-sectional area repetitively varies at a repetition rate of about one per meter, although this can be varied by modifying the spinning conditions and the geometry of the spinneret passages.

Due to minor differences between combined orifices, temperature gradations across the spinneret, and other like deviations from exactly the same treatment for each pair of streams, a multiple orifice spinneret will typically provide somewhat different repetition rates among the several resulting streams and filaments. An example of this is qualitatively shown in Figure 7, wherein is shown that various orifices produce somewhat different repetition rates as determined by stroboscopic examination of the combined streams just below the spinneret face. The repetition rate is proportional to the stroboscope frequency bringing about apparent cessation (or freezing) of movement of the thick and thin regions of the filament. A number of such frequencies are plotted along the horizontal axis of Figure 7, and on the vertical axis are plotted the number of orifices giving filaments wherein such freezing was observed, at each given stroboscope frequency. In the resulting multifilament yarn, the filaments have non-round cross-sections which vary by more than ±10% along the length of the filaments, and alternating S-twisted and Z-twisted helically crimped sections being out of phase from filament to filament.

For certain effects, it is advantageous that the filaments vary repetitively along their lengths by more than ±25% (preferably more than ±30%) in cross-sectional area. The effects are particularly pronounced when the yarn has a Uster unevenness of at least 2.5%. The Uster measurement is made using the Uster Evenness Tester, Model C, together with integrator ltg-101 for this instrument. The yarn speed is 182.8 meters per minute (200 ypm), the service selector is set on normal, and the sensitivity selector is set to 12.5%. The % U is read from the integrator after a sample run time of 5 minutes.

Shrinkage is determined by the method disclosed in this paragraph. Generally speaking, a sample yarn's initial length L₀ is determined while the yarn is under a tension of 0.1 grams per denier. The yarn is then subjected to a tension of 0.0025 grams per denier and placed in an oven at 120°C for five minutes. The yarn is then removed from the oven, again subjected to a tension of 0.1 grams per denier and its length L₂ determined. Shrinkage percentage equals

\[\frac{L_0 - L_2}{L_0} \times 100 \]

The second class of filaments may be spun from spinneret orifices selected such that, at the given common spinning speed, the filaments of the first class will have a higher shrinkage than those of the second class. As a specific example, molten polyethylene terephthalate polymer of normal molecular weight of textile apparel yarns is extruded simultaneously through two spinnerets, one of which contains 34 combined orifices as above described and the other of which contains 34 round orifices having diameters of 0.009 inch (0.229 mm). The extrusion rates are selected such that each resulting class of 34 filaments has a denier of 77 at a winding or spinning speed of 5600 ypm (about 5100 meters per minute). The 68 molten streams are quenched into filaments by transversely directed moving air, and the 68 filaments are converged into a
common yarn bundle and wound on a bobbin at 5600 ypm as a yarn having a denier of 154.
The yarn is heated to 150°C while under low tension to develop the latent crimp in those filaments of the first class and to develop the shrinkage differences between the two classes of filaments. Those filaments of the first class, collected separately, have a shrinkage of 10.6%, while those of the second class, collected separately, have a shrinkage of 4.5%. The combined yarn has a shrinkage of 6.3%. Each filament of the first class has a periodic variation in denier from approximately one denier to approximately four denier, while the filament of the second class protrude in relatively large loops from the yarn bundle.

To produce a more wool-like hand, the denier per filament of the filaments of the second class can be increased, the range of about 5—9 dpf being particularly suitable.

Claims

1. A process for producing a self-crimping yarn comprising first and second types of filaments of different shrinkages, characterized by:
 a. spinning said first type of filaments by
 (1) generating first and second individual streams of molten polymer of fiber-forming molecular weight, said individual streams travelling at different velocities;
 (2) converging said individual streams side-by-side to form a combined stream; and
 (3) quenching said combined stream to form a combined filament;
 b. spinning said second type of filaments by
 (1) extruding a third stream of molten polymer of fiber-forming molecular weight from an orifice selected to give a filament with lower shrinkage than said combined filament at a given common spinning speed; and
 (2) quenching said third stream into a filament;
 c. withdrawing said filaments from said streams at said given common spinning speed in excess of 2200 meters per minute; and
d. combining said filaments into a yarn.

2. The process of Claim 1, characterized in that each of said streams is of polyester polymer.
2. The process of Claim 2, characterized in that said spinning speed is selected such that said yarn has a shrinkage below 20%.
4. The process of Claim 3, characterized in that said spinning speed is selected such that said yarn has a shrinkage below 8%.
5. The process of Claim 1, characterized in that said spinning speed is between 4572 and 5486 mpm (5000 and 6000 yards per minute), and wherein each of said first type of filaments is polyester.

6. A multifilament yarn comprising first and second classes of filaments of different shrinkages characterized by:
 a. each of said first class of filaments having a periodic variation in denier greater than ±10% about a mean value and possessing latent crimp;
 b. each of said second class of filaments having lower shrinkage than the shrinkage of said filaments of said first class.

7. The yarn of Claim 6 characterized in that each of said second class of filaments has a denier larger than the average denier of said first class of filaments.
8. The yarn of Claim 6 characterized in that said first class of filaments are polyester.
9. A multifilament yarn comprising first and second classes of filaments characterized by:
 a. each of the filaments of said first class having a periodic variation in denier of greater than ±10% about a mean value and possessing a developed crimp;
 b. each of the filaments of said second class being longer than said filaments of said first class whereby said filaments of said second class protrude from said yarn in loops.

10. The yarn of Claim 9 characterized in that each of said second class of filaments has a denier larger than the average denier of said first class of filaments.
11. The yarn of Claim 9 characterized in that said first class of filaments are polyester.

Revalidations

1. Procédé de fabrication d'un filé à autosfrisage, comprenant des premier et second types de filaments de rétrécissements différents, caractérisé en ce qu'il comprend les étapes suivantes:
 a. le filage du premier type de fils en
 (1) générant des premier et second courants individuels de polymère à l'état fondu d'un poids moléculaire apte à former des fibres, les courants, individuels se déplaçant à des vitesses différentes,
 (2) faisant converger les courants individuels côté à côté, de façon à former un courant combiné, et
 (3) refroidissant le courant combiné de façon à former un filament combiné,
 b. le filage du second type de fils en
 (1) extrudant un troisième courant de polymère à l'état fondu d'un poids moléculaire apte à former des fibres à partir d'un orifice choisi de façon à donner un filament ayant un rétrécissement inférieur à celui du filament combiné
pour une vitesse de filage commune donnée, et
(2) refroidissant le troisième courant pour constituer un filament,
c. l’extraction des filaments des courants à la vitesse de filage commune donnée supérieure à 2200 mètres par minute, et
d. la combinaison des filaments pour constituer un filé.

2. Procédé selon la revendication 1, caractérisé en ce que chacun des courants est en polymère polyester.

3. Procédé selon la revendication 2, caractérisé en ce que la vitesse de filage est choisie de façon que le filé ait un rétrécissement inférieur à 8%.

4. Procédé selon la revendication 3, caractérisé en ce que chaque filament de la deuxième classe a une variation périodique en dénier supérieur à ±10% autour d’une valeur moyenne et possède un frisage latent.

5. Procédé selon la revendication 1, caractérisé en ce que la vitesse de filage est choisie de façon que le filé ait un rétrécissement inférieur à 20%.

6. Filé à multifilaments comprenant des première et seconde classes de filaments de rétrécissements différents, caractérisé en ce que:
a. chaque filament de la première classe de fils a une variation périodique en dénier supérieure à ±10% autour d’une valeur moyenne et possède un frisage développé;
b. chaque filament de la seconde classe de fils a un rétrécissement inférieur à celui des filaments de la première classe.

7. Filé selon la revendication 6, caractérisé en ce que chaque filament de la seconde classe a un dénier supérieur au denier moyen de la première classe de fils.

8. Filé selon la revendication 6, caractérisé en ce que la première classe de fils est en polyester.

9. Filé à multifilaments comprenant des première et seconde classes de filaments, caractérisé en ce que:
a. chaque filament de la première classe a une variation périodique en dénier supérieure à ±10% autour d’une valeur moyenne et possède un frisage développé;
b. chaque filament de la seconde classe est plus long que les filaments de la première classe, d’où il résulte que les filaments de la seconde classe débordent du filé en formant des boucles.

10. Filé selon la revendication 9, caractérisé en ce que chaque filament de la seconde classe a un dénier supérieur au denier moyen de la première classe de fils.

11. Filé selon la revendication 9, caractérisé en ce que les filaments de la première classe sont en polyester.

Patentansprüche

1. Verfahren zur Herstellung eines selbstkräuselnden Games aus ersten und zweiten Filamentarten unterschiedlicher Schrumpfung, dadurch gekennzeichnet, daß man

a. die erste Filamentart verspint, indem man
(1) erste und zweite individuelle Ströme geschmolzenen Polymers mit einem faserbildenden Molekulargewicht erzeugt, welche mit unterschiedlichen Geschwindigkeiten bewegt werden;
(2) die einzelnen Ströme seitlich unter Bildung eines kombinierten Stromes zusammenführt; und
(3) den kombinierten Strom unter Bildung eines kombinierten Filaments abschreckt;

b. die zweite Filamentart verspint, indem man
(1) einen dritten Strom geschmolzenen Polymers mit einem faserbildenden Molekulargewicht aus einer Öffnung extrudiert, die so ausgewählt ist, daß sie bei einer gegebenen gemeinsamen Spinngeschwindigkeit ein Filament mit geringer Schrumpfung als der des kombinierten Filaments ergibt; und
(2) den dritten Strom zu einem Filament abschreckt;

c. die Filamente bei der gegebenen gemeinsamen Spinngeschwindigkeit oberhalb 2200 Meter pro Minute aus den Strömen abzieht; und

d. die Filamente zu einem Garn vereinigt.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß jeder der Ströme aus einem Polyester-Polymer besteht.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Spinngeschwindigkeit derart ausgewählt ist, daß das Garn eine Schrumpfung von weniger als 20% besitzt.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Spinngeschwindigkeit derart ausgewählt ist, daß das Garn eine Schrumpfung von weniger als 8% aufweist.

5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Spinngeschwindigkeit zwischen 4572 und 5486 Meter pro Minute (5000 und 6000 Yards pro Minute) liegt und die erste Filamentart aus Polyester besteht.

6. Multifilamentgarn aus ersten und zweiten Filamentarten unterschiedlicher Schrumpfung, dadurch gekennzeichnet, daß

a. jedes der Filamente der ersten Art eine periodeändernde Änderung des Titors von mehr als ±10% um einen Mittelwert aufweist und eine latente Kräuselung besitzt;
b. jedes der Filamente der zweiten Art eine geringere Schrumpfung aufweist als die Schrumpfung der Filamente der ersten Art.
7. Garn nach Anspruch 6, dadurch gekennzeichnet, daß jedes der Filamente der zweiten Art einen Titer besitzt, der größer ist als der Durchschnitts-Titer der Filamente der ersten Art.
8. Garn nach Anspruch 6, dadurch gekennzeichnet, daß die Filamente der ersten Art aus Polyester bestehen.
9. Multifilamentgarn aus ersten und zweiten Filamentarten, dadurch gekennzeichnet, daß
 a. jedes der Filamente der ersten Art eine periodische Änderung des Titors von mehr als ±10% um einen Mittelwert aufweist und
 b. jedes der Filamente der zweiten Art länger ist als die Filamente der ersten Art, so daß die Filamente der zweiten Art in Form von Schlingen aus dem Garn vorstehen.
10. Garn nach Anspruch 9, dadurch gekennzeichnet, daß jedes der Filamente der zweiten Art einen Titer aufweist, der größer ist als der Durchschnitts-Titer der Filamente der ersten Art.
11. Garn nach Anspruch 9, dadurch gekennzeichnet, daß die Filamente der ersten Art aus Polyester bestehen.