

US 20050106571A1

(19) **United States**

(12) **Patent Application Publication** (10) **Pub. No.: US 2005/0106571 A1**
Erlenbach et al. (43) **Pub. Date: May 19, 2005**

(54) **MAMMALIAN T1R3 SWEET TASTE
RECEPTORS**

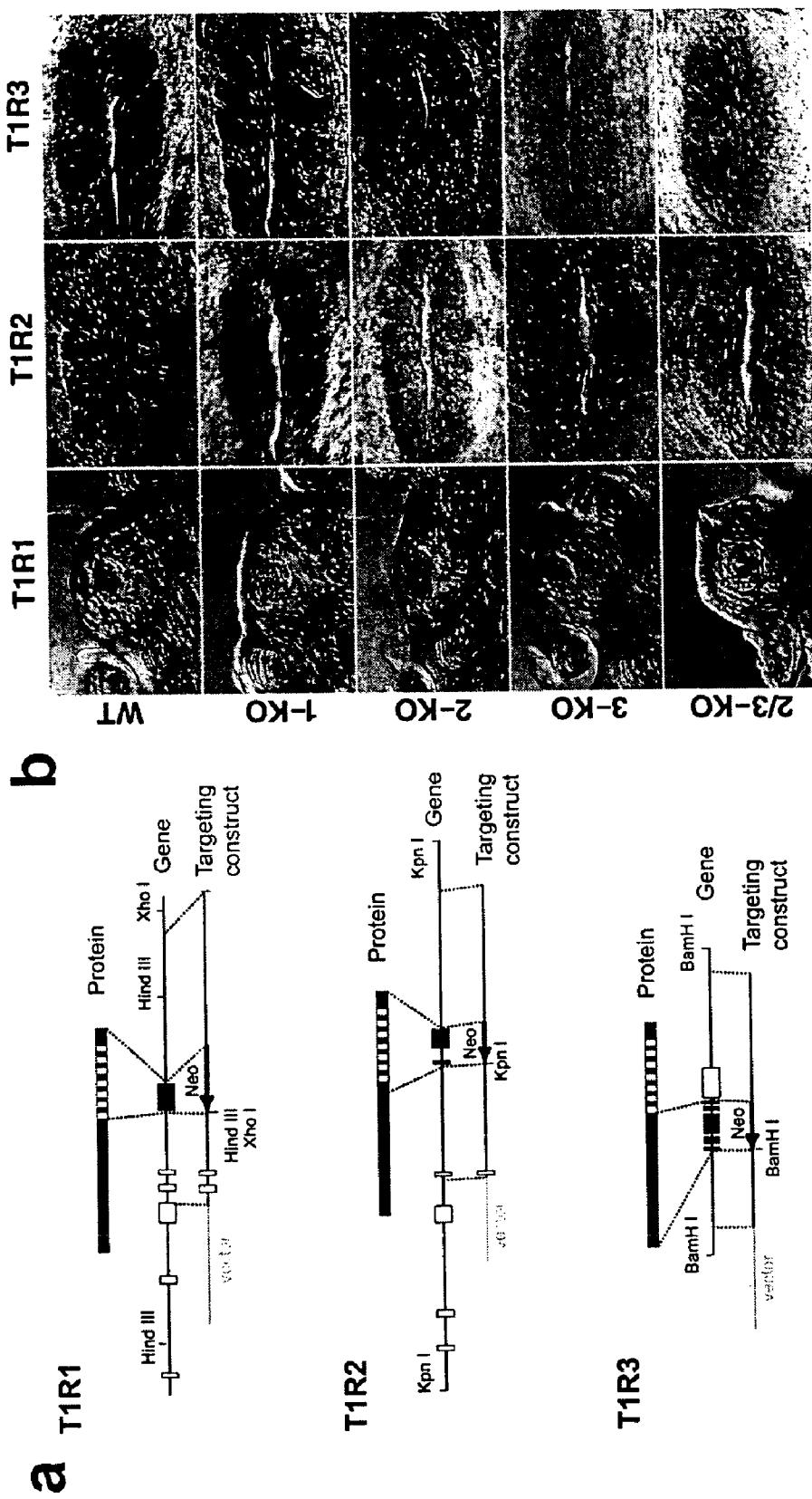
(75) Inventors: **Isolde Erlenbach**, Bethesda, MD (US);
Nicholas J.P. Ryba, Bethesda, MD (US); **Grace Zhao**, Los Angeles, CA (US); **Charles S. Zuker**, San Diego, CA (US)

Correspondence Address:
**TOWNSEND AND TOWNSEND AND CREW,
LLP**
TWO EMBARCADERO CENTER
EIGHTH FLOOR
SAN FRANCISCO, CA 94111-3834 (US)

(73) Assignees: **The Regents of the University of California**, Oakland, CA; **The Government of the U.S.A. as represented by the Secretary of the Dept. of Health & Human Services**, Rockville, MD

(21) **Appl. No.: 10/679,102**

(22) **Filed: Oct. 2, 2003**


Publication Classification

(51) **Int. Cl.⁷** **C12Q 1/68**; C07H 21/04; C07K 14/705

(52) **U.S. Cl.** **435/6**; 435/69.1; 435/320.1; 435/325; 530/350; 536/23.5

(57) ABSTRACT

The present invention provides isolated nucleic acid and amino acid sequences of sweet taste receptors, the receptors comprising consisting of a monomer or homodimer of a T1R3 G-protein coupled receptor polypeptide, antibodies to such receptors, methods of detecting such nucleic acids and receptors, and methods of screening for modulators of sweet and amino acid taste receptors.

Figure 1

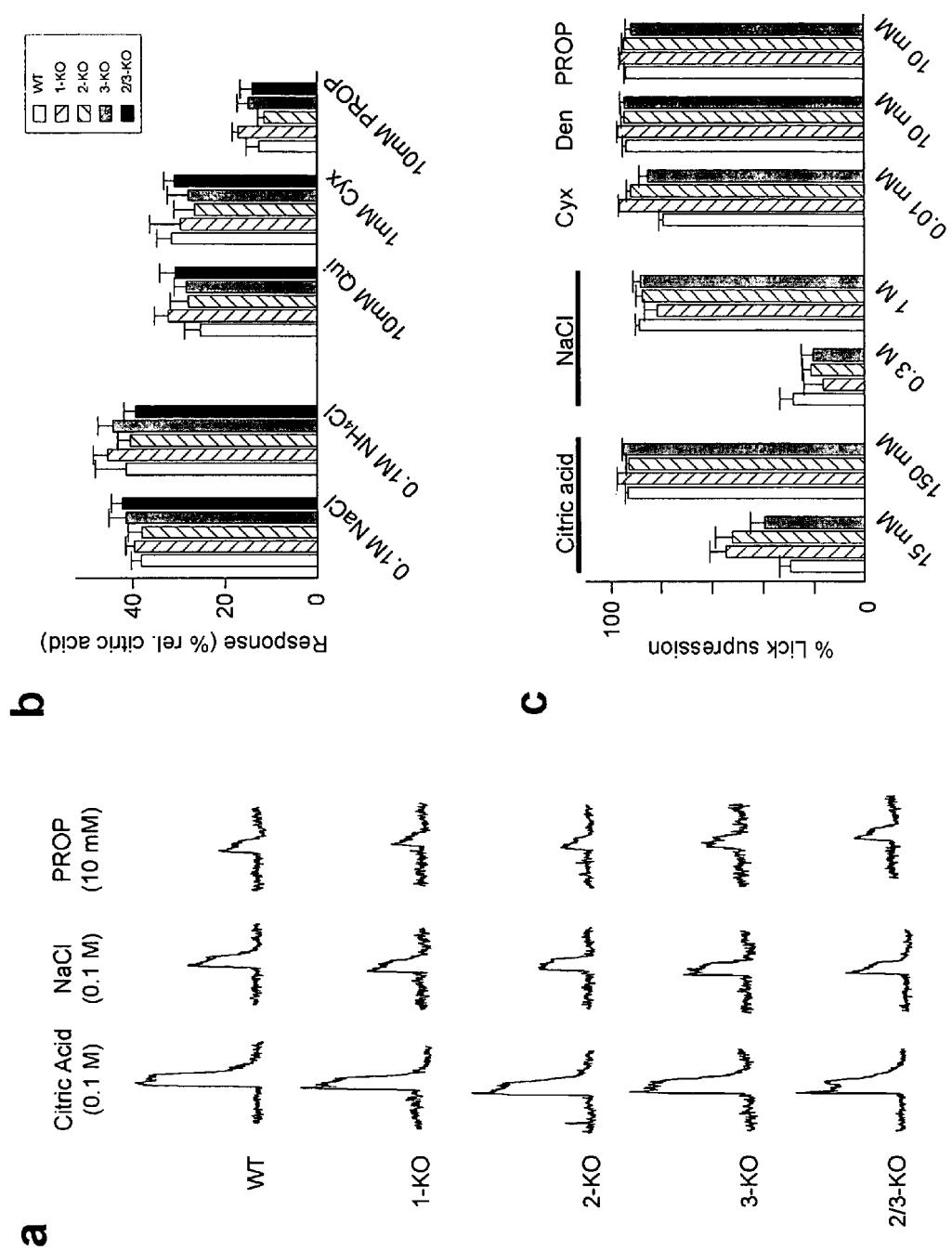


Figure 2

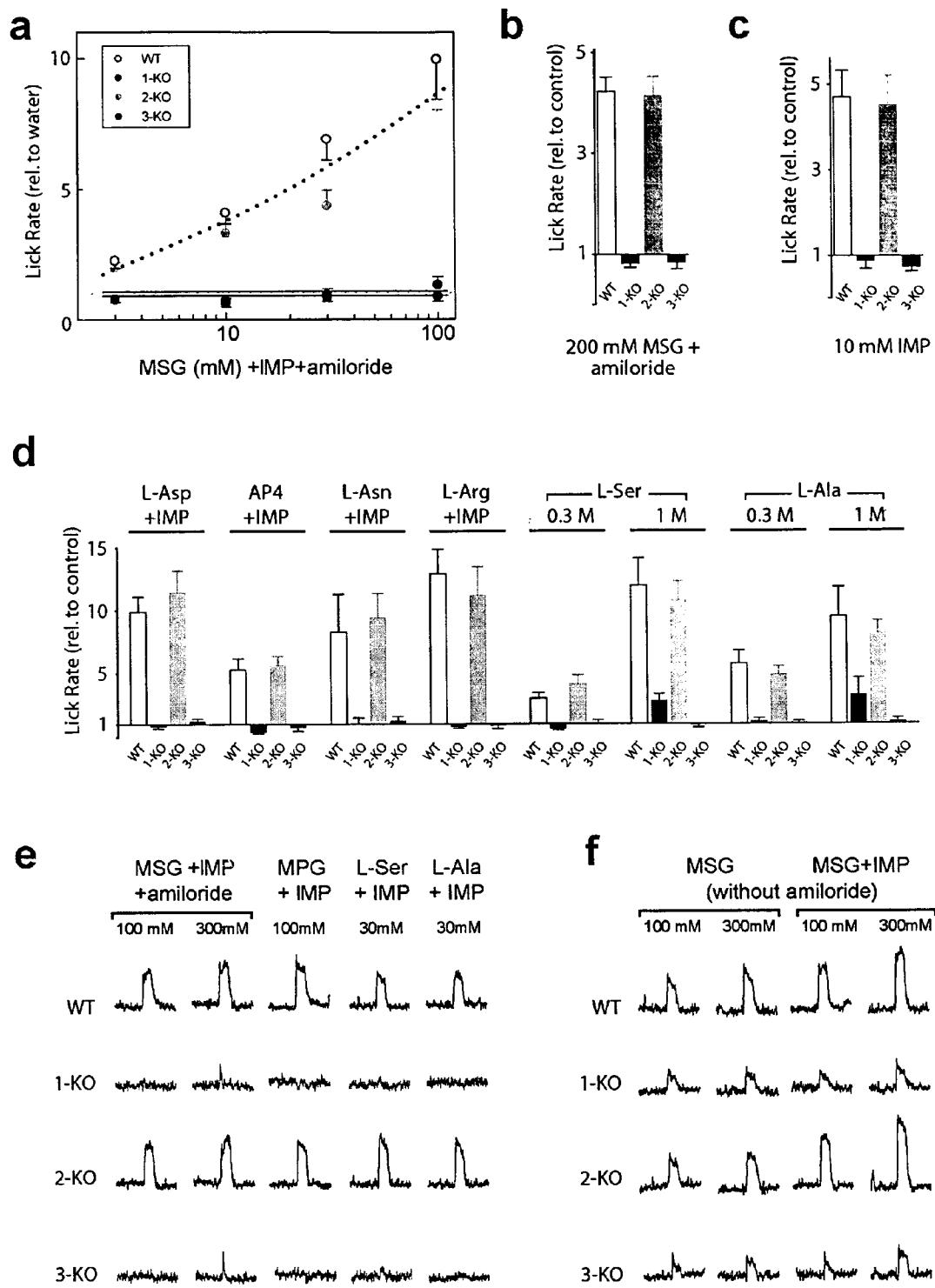


Figure 3

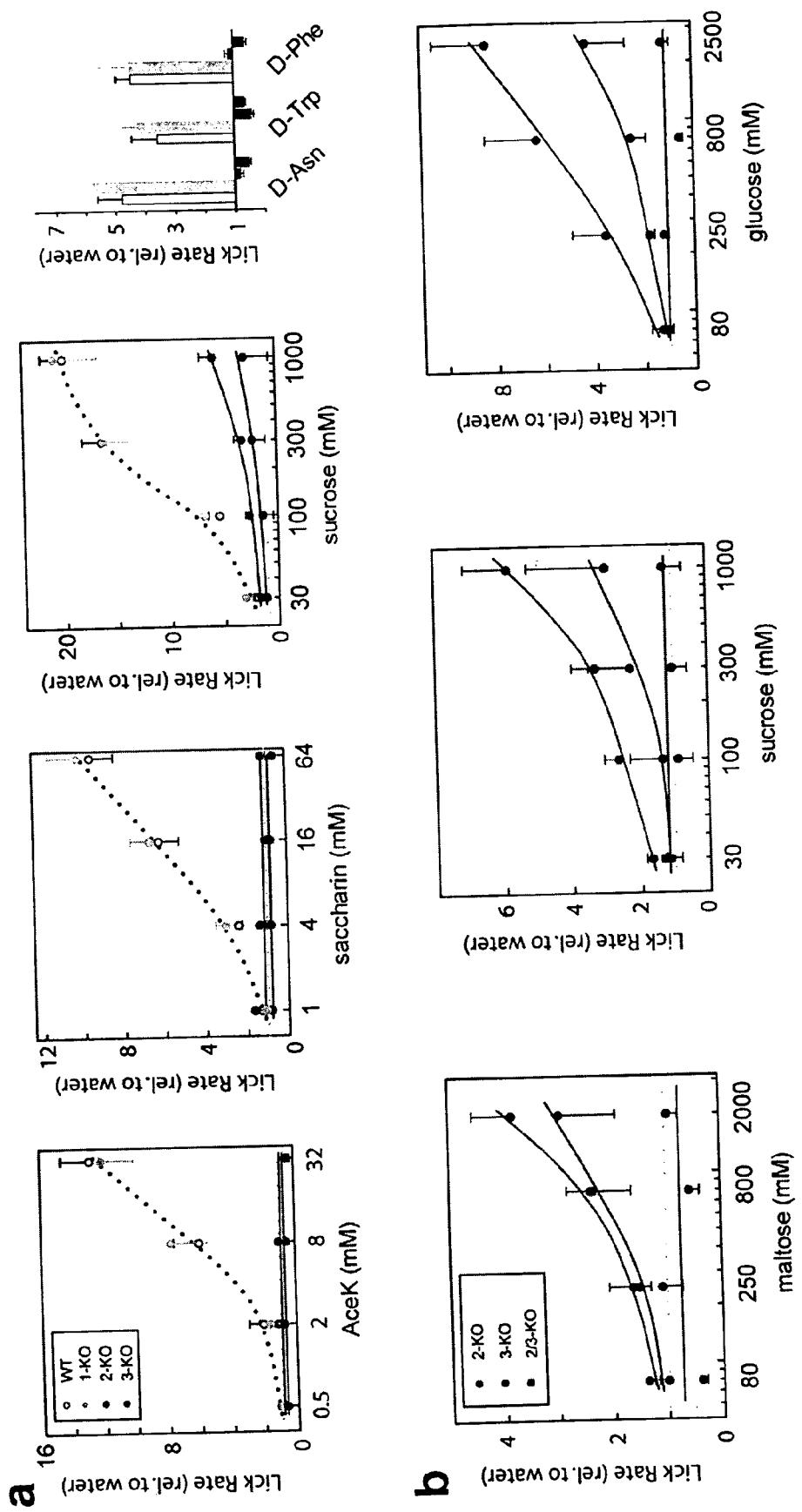
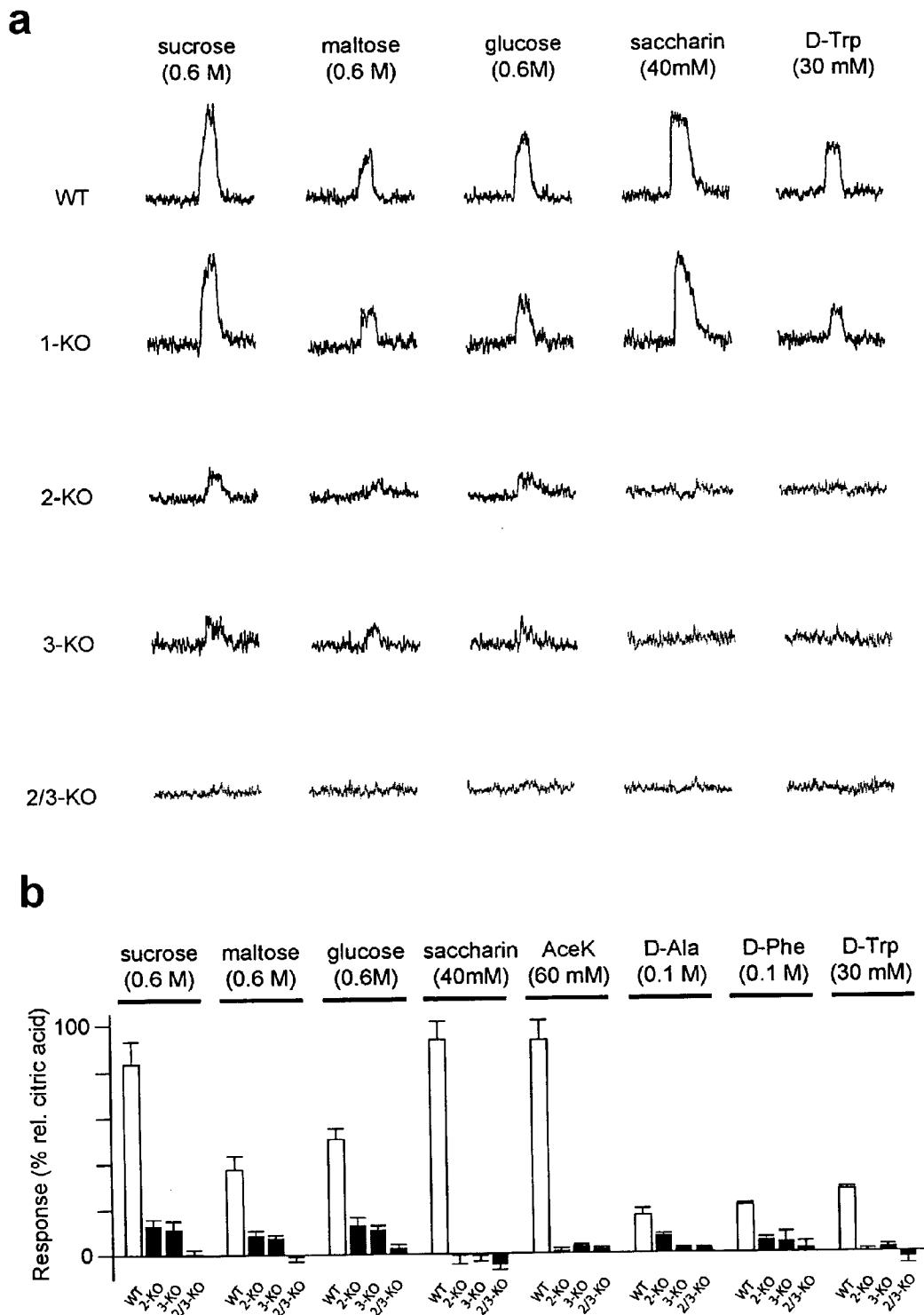



Figure 4

Figure 5

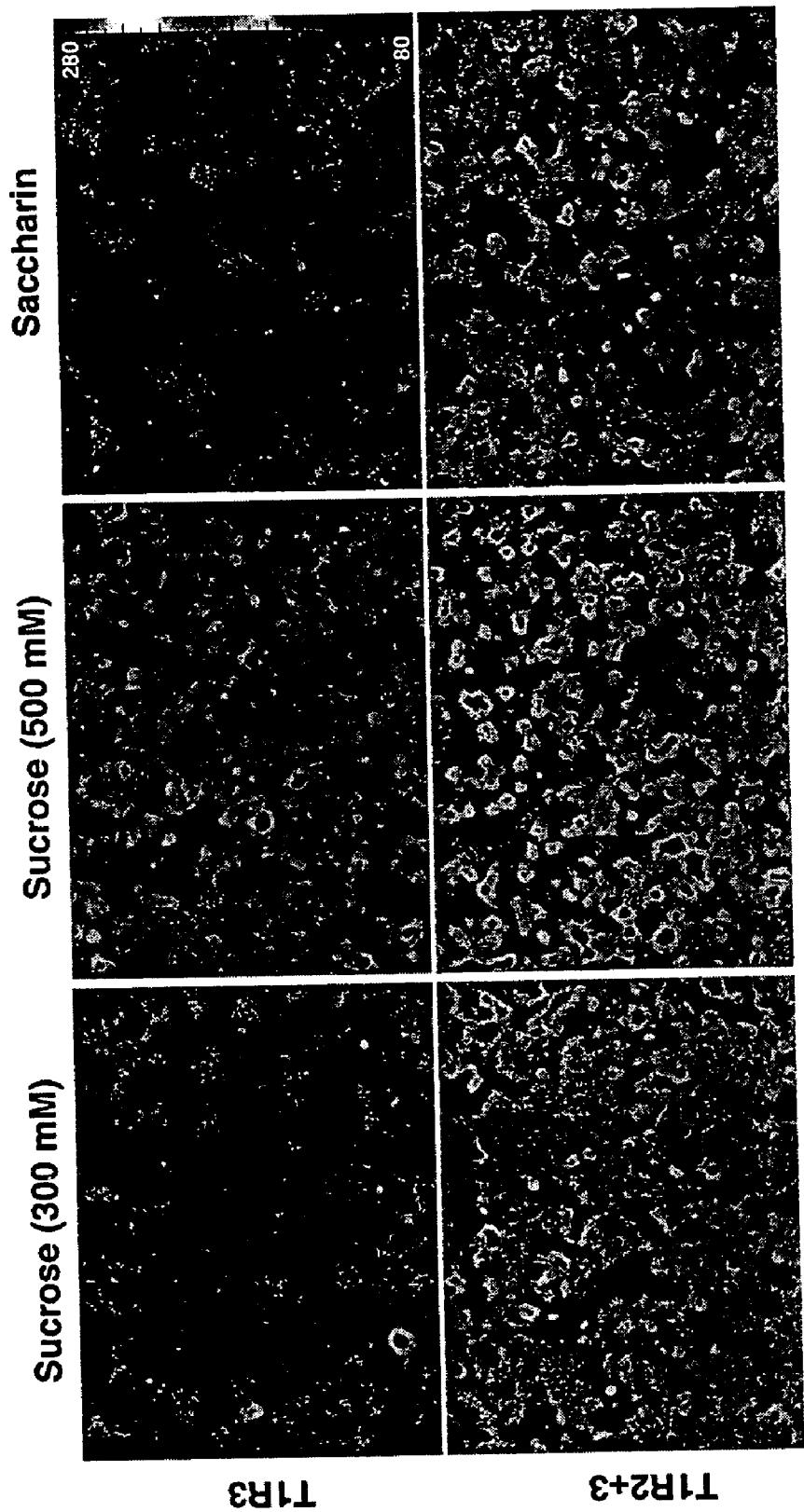


Figure 6

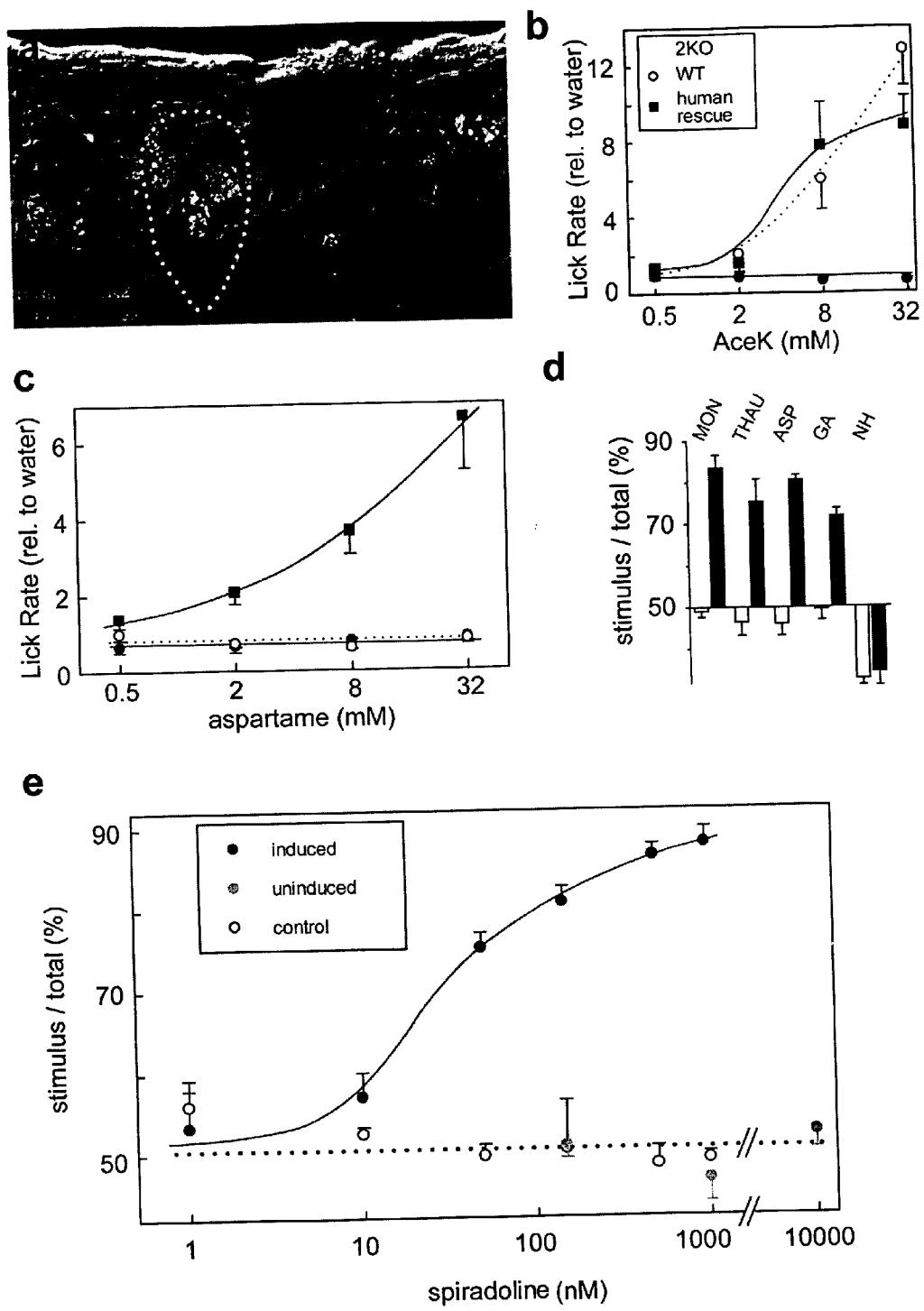


Figure 7

hT1R1 SEQ ID NO: 26

ATGCTGCTCTGCACGGCTCGCCTGGCGGCTGCAGCTTCTCATTTCTGCTGCTGGCCCTTG
TGCTGCCATAGCACGGAGTCTTCTCCTGACTTCACCCCTCCCCGAGATTACCTCCGGCA
GGCCTGTTCCCTCTCCATTCTGGCTGCTGCAGGTGAGGCACAGACCCGAGGTGACCCCTGT
GTGACAGGTCTTGTAGCTTCAATGAGCATGGCTACCACCTTCCAGGCTATGCGGCTTGG
GGTGAGGAGATAAACAACTCCACGGCCCTGTCGCCAACATCACCCCTGGGTACCAAGCT
GTATGATGTGTCTGACTCTGCCATGTGTATGCCACGCTGAGAGTGCTCTCCCTGCCA
GGGCAACACCAACATAGAGCTCCAAGGAGACCTCTCCACTATTCCCTACGGTGTGGCAG
TGATTGGGCTGACAGCACCAACCGTGTGCCACCAAGCCGCTGCTGAGCCCTTCT
GGTGCCTGATTAGCTATGCCACGCGAGACGCTCAGCGTGAAGCGGCAGTATCC
CTCTTCTGCGCACCATCCCCAATGACAAGTACCAAGGTGGAGACCATGGTGTGCTGCTG
CAGAAGTTGGGTGGACCTGGATCTCTGGTGGCAGCAGTGAAGACTATGGCAGCTA
GGGGTGCAGGCAGTGGAGAACCAACCAAGGCGACTGGTCAAGGGATCTGCATTGCTTCAAGGAC
ATCATGCCCTCTCTGCCAGGTGGCGATGAAGAGGATGCACTGCCTCATGOGCCACCTGG
CCAGGGCCGGGCCACCGTCGTGGTGTGTTTCCAGCCGGCAGTGGCAGGGTGTGTTT
CGAGTCGGTGGCTGACCAACCTGACTGGCAAGGTGTGGCTGCCCTCAGAAGCCTGGC
CCTCTCAGGCACATCACTGGGTGCCCGGATCCAGCGCATTGGATGGTGTGGCGT
GGCCATCCAGAAGAGGCTGTCCCTGCCCTGAAGGGTTGAAGAAGCTATGCCGGGC
AGACAAGAAGGCCCTAGGCCCTGCCACAAGGGCTCTGGTGCAGCAGCAATCAGCTCTG
CAGAGAATGCCAAGCTTCACTGGCACACACGATGCCAAGCTCAAAGCCTCTCCATGAGT
TCTGCCCTAACGCATACCGGCTGTGTATGCCGTTGGCCATGCCCTCCACAGCTCTGG
GCTGTGCCCTGGAGCTTGTCCAGGGCCAGTCTACCCCTGGCAGCTTGGAGCAGAT
CCACAAGGTGCATTCTCTACACAAGGACACTGTGGCTTAAATGACAACAGAGATCCC
CTCAGTAGCTATAACATAATTGCCCTGGACTGGATGGACCCAAGTGGACCTCAGGTCC
TCGGTTOCTCCACATGGCTCCAGTCTCAGCTAAACATAATGAGACCAAAATCCAGTGGCA
CGGAAAGGACAACCAGGTGCCCTAAGTCTGTGTGTTCCAGCGACTGTCTGAAAGGGCACCA
GGAGGAGGGTACGGGTTCCATCACTGCTGCTTGTGAGTGTGCTGCTGCTGCTGCTG
TTOCTCAACAAGAGTGAACCTCTACAGATGCCAGCCTGTGGAAAGAAGAGTGGCAGCT
GAGGGAGGCCAGACCTGCTCCCGCGACTGTGGTGTGTTGGCTTGGCTGAGCACACCT
CTGGGTGCTGGCAGCTAACACGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTGCTG
GTTGCCCTGGCACCTAGACACCCCTGTGGTGGAGGTCAAGCAGGGGCCGCTGTGCTTCT
ATGCTGGCTCCCTGGCAGGGTAGTGGCAGGCTATGGCTTGGGAAACCAACAA
GGCCTGCGTGCCTGCTACGCCAGGCGCTTTCGCTTGGCTTACCATCTCCCTGCTCTG
CTGACAGTTCGCTCATTCACAACTAATCATCTCAAGTCTTCCACCAAGGTACCTACATT
CTACACGCCCTGGTOCAAAACCAACGGTGTGGCTGTTGTGATGATCAGCTCAGGGCC
CAGCTGCTTACGCTAACTGGCTGGTGTGGACCCACTGCCCTGCTAGGAAATACC
AGCGCTTCCCGACATCTGGTGTGATGCTTGGAGTGCACAGAGACCAACTCCCTGGCTTCAACT
GGCCTTCCCTCAATGGCTCTCCATCAGTGCCTTGCCTGCAAGCTACCTGGTAAG
GACTGCCAGAGAACTACAACGAGGCCAAATGTGTACCTTCAGCCTGCTCTCAACTTCG
TGTCTGGATGCCCTCTCACCAACGCCAGCGTCAAGACGGCAAGTACCTGCCCTGCC
CAACATGATGGCTGGCTGAGCAGCCTGAGCAGCGCTTGGTGGTATTTCTGCCCTAAG
TGCTACGTGATCCTCTGCCGOCAGACCTCAACAGCACAGAGCACTCCAGGCGCTCCACCTGA
AGGACTACAGGAGGCCAGCGCTGCCCTGCCACCTGA

Figure 8

hT1R1 SEQ ID NO: 27

MLLCTARLVGLQLLISCCWAFACHSTESSPDFILPGDYLLAGLFPLHSGCLQVRHRPEVLCDR
SCSFNEHGYHLFQAMRLGVVEINNSTALLPNTLGYQLYDVCSDSANVYATLRVLSLPGQHHIE
LQGDLHYSPTVLAVIGPDSTNRAATTAAALLSPFLVPMISYASSETLSVKRQYPSFLRTIPNDK
YQVETMVLLLQKFGWTWISLVGSSDDYGQLGVQALENQATGQGICIAFKDIMPFSAQVGDER
MQCLMRHLAQAGATVVVVFSSRQLARVFFESVLTNLTGKVVVASEAWALSRHITGVPGIQR
IGMVLGVVAIQKRAVPGLKAFEEAYARADKAPRPCHKGSWCSSNQLCRECQAFMAHTMPKL
KAFSMSSAYNAYRAVYAVAHGLHQLLGCASGACSRGRVYPWQLLEQIHKVHFLLHKDTVAF
NDNRDPLSSYNIIAWDWNGPKWTFVLGSSTWSPVQLNINETKIQWHGKDQVPKSVCSSDC
LEGHQRRVVTGFHHCCFECVPCGAGTFLNKSDLYRCQPCGKEEWAPEGSQTCFRTVVFLALRE
HTSWVLLAANTLLLLLGTAGLFAWHLDTPVVRSAAGGRLCFLMLGSLAAGSGSLYGFGEPT
RPACLLRQALFALGFTIFLSCLTVRSFQLIIFKFSTKVPTFYHAWVQNHGAGLFVMISSAAQLI
CLTWLVVWTPLPAREYQRFPHLVMLECTETNSLGFILAFLYNGLLSISAFACSYLGKDLPEYN
EAKCVTFSLLFNFVSWIAFFTASVYDGKYLPAANMMAGLSSLSSGFGGYFLPKCYVILCRPDL
NSTEHFQASIQDYTRRCGST

Figure 9

Human T1R2 nucleotide sequence--SEQ ID NO:28

1 ATGGGGCCCA GGGCAAAGAC CATCTGCTCC CTGTTCTTCC TCCTATGGGT CCTGGCTGAG
 61 CCGGCTGAGA ACTCGGACTT CTACCTGCCT GGGGATTACC TCCTGGGTGG CCTCTTCTCC
 121 CTCCATGCCA ACATGAAGGG CATTGTTCAC CTTAACCTCC TGCAGGTGCC CATGTGCAAG
 181 GAGTATGAAG TGAAGGTGAT AGGCTACAAC CTCATGCAGG CCATGCCTT CGCGGTGGAG
 241 GAGATCAACA ATGACAGCAG CCTGCTGCCT GGTTGCTGTC TGGGCTATGA GATCGTGGAT
 301 GTGTGCTACA TCTCCAACAA TGTCAGGCC GTGCTCTACT TCCTGGCACA CGAGGACAAC
 361 CTCCCTCCCA TCCAAGAGGA CTACAGTAAC TACATTTCCC GTGTGGTGGC TGTCAATTGGC
 421 CCTGACAACT CCGAGTCGT CATGACTGTG GCCAACTTCC TCTCCCTATT TCTCCTTCCA
 481 CAGATCACCT ACAGCGCCAT CAGCGATGAG CTGCGAGACA AGGTGGCTT CCCGGCTTTG
 541 CTGCGTACCA CACCCAGGCC CGACCACAC GTGAGGCCA TGGTGCAGCT GATGCTGCAC
 601 TTCCGCTGGA ACTGGATCAT TGTGCTGGT AGCAGCGACA CCTATGGCCG CGACAATGGC
 661 CAGCTGCTTG GCGAGCGCGT GGCCCCGCC GACATCTGCA TCGCCTTCCA GGAGACGCTG
 721 CCCACACTGC AGCCCAACCA GAACATGACG TCAGAGGAGC GCCAGCGCT GGTGACCATT
 781 GTGGACAAGC TGCAAGCAGAG CACAGCGCGC GTGCGTGGTGG TGTTCTCGCC CGACCTGACC
 841 CTGTACCACT TCTTCAATGA GGTGCTGCC CAGAACTTCA CGGGCCCGT GTGGATCGCC
 901 TCCGAGTCCT GGGCCATCGA CCCGGTCCGT CACAACCTCA CGGAGCTGGG CCACTTGGG
 961 ACCTTCCCTGG GCATCACCAT CCAGAGCGTG CCCATCCCAGG GCTTCAGTGA GTTCCGCGAG
 1021 TGGGGCCCAC AGGCTGGGGC GCCACCCCTC AGCAGGACCA GCCAGAGCTA TACCTGCAAC
 1081 CAGGAGTGCG ACAACTGCCT GAACGCCACC TTGTCCTTCA ACACCATTCT CAGGCTCTCT
 1141 GGGGAGCGTG TCGTCTACAG CGTGTACTCT GGGGTCTATG CTGTCGCCA TGCCCTGCAC
 1201 AGCCTCCTCG GCTGTGACAA AAGCACCTGC ACCAAGAGGG TGGTCTACCC CTGGCAGCTG
 1261 CTTGAGGAGA TCTGGAAGGT CAACTTCACT CTCCCTGGACC ACCAAATCTT CTTCGACCCG
 1321 CAAGGGGACG TGGCTCTGCA CTTGAGGATT GTCCAGTGGC AATGGGACCG GAGCCAGAAT
 1381 CCCTTCCAGA GCGTCGCCCTC CTACTACCCCC CTGCAGCGAC AGCTGAAGAA CATCCAAGAC
 1441 ATCTCCTGGC ACACCGTCAA CAACACGATC CCTATGTCCA TGTGTTCCAA GAGGTGCCAG
 1501 TCAGGGCAAA AGAAGAAAGCC TGTGGGCATC CACGTCTGCT GCTTCAGGTG CATCGACTGC
 1561 CTTCCCGGCA CCTTCCTCAA CCACACTGAA GATGAATATG AATGCCAGGC CTGCCCGAAT
 1621 AACGAGTGGT CCTACCAAGAG TGAGACCTCC TGCTTCAAGC GGCAGCTGGT CTTCCTGGAA
 1681 TGGCATGAGG CACCCACCAT CGCTGTGGCC CTGCTGGCCG CCCTGGCTT CCTCAGCACC
 1741 CTGGCCATCC TGGTGATAATT CTGGAGGCAC TTCCAGACAC CCATAGTTCG CTGGCTGGGG
 1801 GGCCCCATGT GCTTCCGTGAT GCTGACACTG CTGCTGGTGG CATACATGGT GGTCCCCGGTG
 1861 TACGTGGGGC CGCCCAAGGT CTCCACCTGC CTCTGCCGCC AGGCCCTCTT TCCCCTCTGC
 1921 TTCACAATTG GCATCTCTG TATGCCGTG CGTTCTTCC AGATCGTCTG CGCCCTCAAG
 1981 ATGGCCAGCC GCTTCCACG CGCCTACAGC TACTGGGTCC GCTACCAGGG GCCCTACGTC
 2041 TCTATGGCAT TTATCACGGT ACTCAAAATG GTCAATTGGTGG TAATTGGCAT GCTGGCCACG
 2101 GGCCTCAGTC CCACCAACCG TACTGACCCCC GATGACCCCA AGATCACAAT TGTCTCTGT
 2161 AACCCCAACT ACCGCAACAG CCTGCTGTT AACACCAGCC TGGACCTGCT GCTCTCAGTG
 2221 GTGGGTTTCA GCTTCGCCTA CATGGGCAAA GAGCTGCCA CCAACTACAA CGAGGCCAAG
 2281 TTCATCACCC TCAGCATGAC CTTCTATTTC ACCTCATCCG TCTCCCTCTG CACCTTCATG
 2341 TCTGCCCTACA GCGGGGTGCT GGTCAACCATC GTGGACCTCT TGGTCACTGT GCTCAACCTC
 2401 CTGGCCATCA GCCTGGCTA CTTGGGCCCA AAGTGCTACA TGATCCCTT CTACCCGGAG
 2461 CGCAACACGC CGCCTACTT CAACAGCATG ATCCAGGCT ACACCATGAG GAGGGACTAG

Figure 10

Figure 11

Human T1R2 amino acid sequence--SEQ ID NO: 29
MGPRAKTICSLFFLLWVLAEP AENSDFYLP GDYLLGGL FSLHANMKGIVH LNFQVPM CKEY
EVKVI GYNL M QAMR FAV E EINNDSSLLPGVLLGYEIVDVCYI SNNVQPVLYFLAHE DNL LPI
QEDYSNYI S R VV A V I G P D N S E S V M T V A N F L S F L L P Q I T Y S A I S D E L R D K V R F P A L L R T T P S
ADHHVEAMVQLMLHFRWNWI I LVSSDTYGRDNGQLLGERVARRDICIAFQETLPTLQPNQN
MTSEERQRLVTIVDKLQQSTARVVVFSPDLTLYHFFNEVLRQNFTGAVWIASESWAIDPV L
HNLTELGHGTFLGITIQSVP IPGFSEFREWGPQAGPPPLSRTSQSYTCNQECDNCLNATLS
FNTILRLSGERVVYSVYSAVYAVAHALHSSLGCDKSTCKR VVYPWQ LLEEIWKVNF TLLDH
QIFFDPQGDVALHLEI VQWQWDRSQNP FQSVASYYPLQRQLKNIQDI SWHTVNNTI PMSMCS
KRCQSGQKKKPVG I H VCCFECIDCLPGTFLNHTED EYE CQACP NNEWSYQSETSCFKRQLVF
LEWHEAPTI AVALLAALGFLSTLAILV I FWRHFQTPIVRSAGGPMCFMLTLLVAYM VVPV
YVGPPKVSTCLCRQALFPLCFTICISCI A VRSFQIVCAF KMASRFPR AYSYW VRYQGPYVSM
AFITVLKMVIVVIGMLARPQSHPRTDPDDPKITIVSCNPYRN SLLFNTSLD LLSVVGFSF
AYMGKELPTNYNEAKFITLSMTFYFTSSVSLCTFMSAYSGV LVTIVD L LVTVLNLLAISLGY
FGPKC YMILFYPERNTPAYFNSMIQGYTMRRD

HT1R3

SEQ ID NO: 30

Figure 12.

hT1R3 SEQ ID NO: 31

MLGPAVLGLSLWALLHPGTGAPLCLSQQQLRMKGDYVLGLFPLGEAEEAGLRSRTRPSSPVCT
RFSSNGLLWALAMKMAVEEINNSDLPGLRLGYDLFDTCSPEPVVAMKPSLMFLAKAGSRDI
AAYCNYTQYQPRVLAVIDPHSSELAMVTGKFFSFLMPHYGASMELLSARETFPSFFRTVPSDR
VQLTAAAELLQEFGWNWVAALGSDDEYGRQGLSIFSLAAARGICIAHEGLVPLPRADDSRLG

KVQDVLHQVNQSSVQVVLFAVHAAHALFNYSISSRLSPKVWWASEAWLTSDELVMGLPGM
AQMGTVLGLQRGAQLHEFPQYVKTHLALATDPAFCASLGEREQGLEEDVVGQRCOPQCDCT
LQNVSAGLNHHQTFSVYAAVYSAQALHNTLQCNASGCPAQDPVKPWQLLENMYNLTFHVG
GLPLRFDSSGNVDMYEYDLKLWVWQGSVPRLHDVGRFNGSLRTERLKIRWHTSDNQKPVSRCS
RQCQEGQVRRVKGFHSCCYDCVDCEAGSYRQNPDIACTFCGQDEWSPERSTRCFRRRSRFLA
WGEPAVLLLLLSSLALGLVLAALGLFVHRSPLVQAISGGPLACFGLVCLGLVCLSVLLFPG
QSPPARCLAQQPLSHLPLTGCLSTLFLQAAEIFVESELPLSWADRLSGCLRGPAWLVVLLAML
VEVALCTWYLVAFPPEVVTDWHLPLTEALVHCRTRSWVSFGLAHATNATLAFLCFLGTLVR
SQPGCYNRARGLTFAMLAYFTIWVSVFVPLLANVQVVLRAVQMGALLCVLGILAAFHLPRCY
LIMRQPGLNTPEFFLGGGPDAQGQNDGNTGNQGKHE

Figure 13

MAMMALIAN T1R3 SWEET TASTE RECEPTORS**CROSS-REFERENCES TO RELATED APPLICATIONS**

[0001] Not applicable.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

[0002] Not applicable.

FIELD OF THE INVENTION

[0003] The present invention provides isolated nucleic acid and amino acid sequences of sweet taste receptors, the receptors comprising consisting of a monomer or homodimer of a T1R3 G-protein coupled receptor polypeptide, antibodies to such receptors, methods of detecting such nucleic acids and receptors, and methods of screening for modulators of sweet taste receptors.

BACKGROUND OF THE INVENTION

[0004] The sense of taste is responsible for detecting and responding to sweet, bitter, sour, salty and umami (amino acid) stimuli. It is also capable of distinguishing between these various taste modalities to generate innate behavioral responses. For instance, animals are vigorously averse to bitter-tasting compounds, but are attracted to sweet and umami stimuli. To examine taste signal detection and information processing, we have focused on the isolation and characterization of sweet, umami and bitter taste receptors. These receptors provide powerful molecular tools to delineate the organization of the taste system, and to help define the logic of taste coding.

[0005] Two families of candidate mammalian taste receptors, the T1Rs and T2Rs, have been implicated in sweet, umami and bitter detection. The T2Rs are a family of ~30 taste-specific GPCRs distantly related to opsins, and clustered in regions of the genome genetically linked to bitter taste in humans and mice (Adler et al., *Cell* 100, 693-702 (2000); Matsunami et al., *Nature*, 404, 601-604 (2000)). Several T2Rs have been shown to function as bitter taste receptors in heterologous expression assays, substantiating their role as bitter sensors (Chandrashekhar et al., *Cell*, 100, 703-711 (2000); Bufe et al., *Nat Genet*, 32, 397-401 (2002)). Most T2Rs are co-expressed in the same subset of taste receptor cells (Adler, E. et al., *Cell* 100, 693-702 (2000)), suggesting that these cells function as generalized bitter detectors.

[0006] The T1Rs are a small family of 3 GPCRs expressed in taste cells of the tongue and palate epithelium, distantly related to metabotropic glutamate receptors, the calcium sensing receptor and vomeronasal receptors (Hoon et al., *Cell*, 96, 541-551 (1999); Kitagawa et al., *Biochem Biophys Res Commun*, 283, 236-242 (2001); Max et al., *J Sac. Nat Genet*, 28, 58-63 (2001); Montmayeur et al., *Nat Neurosci*, 4, 492-498 (2001); Nelson et al., *Cell*, 106, 381-390 (2001); Sainz et al., *J Neurochem*, 77, 896-903 (2001)). T1Rs combine to generate at least two heteromeric receptors: T1R1 and T1R3 form an L-amino acid sensor, which in rodents recognizes most amino acids, and T1R2 and T1R3 associate to function as a broadly tuned sweet receptor (Nelson, G. et al., *Cell*, 106, 381-390 (2001); Nelson, G. et

al., *Nature*, 416, 199-202 (2002); Li, X. et al., *Proc Natl Acad Sci U S A*, 99, 4692-4696 (2002); see also WO 00/06592, WO 00/06593, and WO 03/004992).

[0007] Animals can detect a wide range of chemically distinct sweet tasting molecules, including natural sugars, artificial sweeteners, D-amino acids and intensely sweet proteins. How many different receptors does it take to taste the sweet universe? The human and rodent T1R2+3 heteromeric sweet receptors respond in cell-based assays to all classes of sweet compounds, and do so with affinities that approximate their respective in vivo psychophysical and/or behavioral thresholds (Nelson et al., *Cell*, 106, 381-390 (2001); Li et al., *Proc Natl Acad Sci USA*, 99, 4692-4696 (2002)). At a fundamental level, the evolution of sweet taste most likely reflects the need to detect and measure sugar content in potential food sources. Therefore, a single broadly tuned receptor for natural sugars might be all that is required. On the other hand, a number of studies with various sugars and artificial sweeteners insinuate the possibility of more than one sweet taste receptor (Schiffman et al., *Pharmacol Biochem Behav*, 15, 377-388 (1981); Ninomiya et al., *J Neurophysiol*, 81, 3087-3091 (1999)).

[0008] In humans, monosodium L-glutamate (MSG) and L-aspartate, but not other amino acids, elicit a distinctive savory taste sensation called umami (Maga, 1983). Notably, unlike the rodent T1R1+3, the human T1R1+3 amino acid taste receptor is substantially more sensitive to L-glutamate and L-aspartate than to other L-amino acids (Li et al., *Proc Natl Acad Sci USA*, 99, 4692-4696 (2002)). These findings led to the proposal that T1R+3 may be the mammalian umami receptor (Nelson. et al., *Nature*, 416, 199-202 (2002); Li. et al., *Proc Natl Acad Sci USA*, 99, 4692-4696 (2002)). However, a number of studies, including the recent analysis of T1R3 KO mice (Damak et al., *Science*, 301, 850-853 (2003)) have suggested that umami taste is mediated by mGluR4t, a truncated variant of the metabotropic glutamate receptor (Chaudhari et al., *Neurosci*, 16, 3817-3826 (1996); Chaudhari. et al., *Nat Neurosci*, 3, 113-119 (2000)).

[0009] How are the different taste qualities encoded at the taste cell level? In mammals, taste receptor cells are assembled into taste buds that are distributed in different papillae in the tongue epithelium. Each taste bud contains 50-150 cells, including precursor cells, support cells, and taste receptor cells (Lindemann, *Physiol Rev*, 76, 718-766 (1996)). The receptor cells are innervated by afferent fibers that transmit information to the taste centers of the cortex through synapses in the brain stem and thalamus. In the simplest model of taste coding at the periphery, each taste modality would be encoded by a unique population of cells expressing specific receptors (e.g. sweet cells, bitter cells, salt-sensing cells, etc.). In this scenario, our perception of any one taste quality would result from the activation of distinct cell types in the tongue (labeled line model). Alternatively, individual taste cells could recognize multiple taste modalities, and the ensemble firing pattern of many such broadly tuned receptor cells would encode taste quality (across fiber model).

[0010] Recently, we showed that T1Rs and T2Rs are expressed in completely non-overlapping populations of receptor cells in the lingual epithelium (Nelson et al., *Cell*, 106, 381-390 (2001)), and demonstrated that bitter-receptor

expressing cells mediate responses to bitter but not to sweet or amino acid tastants (Zhang et al., *Cell*, 112, 293-301 (2003)). Together, these results argued that taste receptor cells are not broadly tuned across all modalities, and strongly supported a labeled line model of taste coding at the periphery. A fundamental question we address now is how many types of cells and receptors are necessary to mediate sweet and umami, the two principal attractive taste modalities. We now show that sweet and umami tastes are exclusively mediated by T1Rs, and demonstrate that genetic ablation of individual T1R subunits selectively affects these two attractive taste modalities. The identification of cells and receptors for sweet and umami sensing also allowed us to devise a strategy to separate the role of receptor activation from cell stimulation in encoding taste responses. We show that animals engineered to express a modified k-opioid receptor in T1R2+3-expressing cells become specifically attracted to a k-opioid agonist, and prove that activation of sweet-receptor expressing cells, rather than the T1R receptors themselves, is the key determinant of behavioral attraction to sweet tastants. Finally, we now demonstrate that T1R1 alone, either as a monomer or as a homodimer, acts as a receptor for naturally occurring sugars.

BRIEF SUMMARY OF THE INVENTION

[0011] The present invention thus provides for the first time a homodimeric sweet taste receptor, the receptor comprising or consisting of two T1R3 polypeptides. The present invention also provides a monomeric sweet taste receptor comprising or consisting of one T1R3 polypeptide. The receptors transduce a signal in response to sweet taste ligands when T1R3 is expressed in a cell. In one embodiment, the sweet taste ligands are naturally occurring sweet tasting molecules. In another embodiment, the sweet taste ligands and artificial and mimic naturally occurring sweet tasting molecules. In one embodiment, the T1R3 polypeptides of the homodimer are non-covalently linked.

[0012] In one aspect, the present invention provides a sweet taste receptor comprising a T1R3 polypeptide, the T1R3 polypeptide comprising greater than about 80% amino acid sequence identity to an amino acid sequence of SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID NO:31 or encoded by a nucleotide sequence hybridizing under moderately or highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID NO:31.

[0013] In one embodiment, the T1R3-comprising receptor specifically binds to polyclonal antibodies generated against SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID NO:31. In another embodiment, the receptor has G-protein coupled receptor activity. In another embodiment, the T1R3 polypeptide has an amino acid sequence of SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID NO:31. In another embodiment, the receptor is from a human, a rat, or a mouse.

[0014] In another embodiment, the sweet receptor comprises a T1R3 polypeptide and recognizes natural sugars, e.g., glucose, galactose, fructose, maltose, lactose, and sucrose.

[0015] In one aspect, the present invention provides an isolated polypeptide comprising an extracellular, a trans-

membrane domain, or a cytoplasmic domain of a sweet T1R3-comprising homodimeric or monomeric taste receptor, the extracellular, a transmembrane domain, or a cytoplasmic domain comprising greater than about 80% amino acid sequence identity to the extracellular, a transmembrane domain, or a cytoplasmic domain of SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID NO:31. In another embodiment, the extracellular, transmembrane, or cytoplasmic domain hybridize under highly stringent conditions to an extracellular, transmembrane, or cytoplasmic domain of an amino acid sequence of SEQ ID NO:15, 20, 23, 25, or 31.

[0016] In one embodiment, the polypeptide encodes the extracellular, a transmembrane domain, or a cytoplasmic domain of SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID NO:31. In another embodiment, the extracellular, a transmembrane domain, or a cytoplasmic domain is covalently linked to a heterologous polypeptide, forming a chimeric polypeptide. In another embodiment, the chimeric polypeptide has G-protein coupled receptor activity.

[0017] In one aspect, the present invention provides an antibody that selectively binds to a homodimeric or monomeric sweet taste receptor, the receptor comprising one or two T1R3 polypeptides but no T1R1 or T1R2 polypeptides, the antibody raised against a receptor comprising a T1R3 polypeptide comprising greater than about 80% amino acid sequence identity to an amino acid sequence of SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:31 or encoded by a nucleotide sequence hybridizing under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID NO:31.

[0018] In another aspect, the present invention provides a method for identifying a compound that modulates sweet taste signaling in taste cells, the method comprising the steps of: (i) contacting the compound with a homodimeric or monomeric receptor comprising a T1R3 polypeptide but not a T1R1 or a T1R2 polypeptide, the polypeptide comprising greater than about 80% amino acid sequence identity to SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID NO:31; or encoded by a nucleotide sequence hybridizing under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID NO:31; and (ii) determining the functional effect of the compound upon the receptor.

[0019] In one embodiment, the functional effect is determined in vitro. In one embodiment, the polypeptide is expressed in a cell or cell membrane. In another embodiment, the receptor is linked to a solid phase, either covalently or non-covalently.

[0020] In another aspect, the present invention provides a method for identifying a compound that modulates sweet taste signaling in taste cells, the method comprising the steps of: (i) contacting a cell with the compound, the cell expressing a homodimeric or monomeric receptor comprising a T1R3 polypeptide but not expressing a T1R1 or a T1R2 polypeptide, the T1R3 polypeptide comprising greater than about 80% amino acid sequence identity to SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID

NO:31; or encoded by a nucleotide sequence hybridizing under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, SEQ ID NO:20, SEQ ID NO:23, SEQ ID NO:25, or SEQ ID NO:31; and (ii) determining the functional effect of the compound upon the receptor.

[0021] In one embodiment, the functional effect is determined by measuring changes in intracellular cAMP, IP3, or Ca2+. In another embodiment, the functional effect is a chemical or phenotypic effect. In another embodiment, the functional effect is a physical effect. In another embodiment, the functional effect is determined by measuring binding of the compound to the extracellular domain of the receptor. In another embodiment, the polypeptide is recombinant. In another embodiment, the cell is a eukaryotic cell, e.g., a mammalian cell, e.g., a human cell. In another embodiment, the cell expresses G protein Gα15.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] **FIG. 1:** Targeted KO of T1R1, T1R2 and T1R3.

[0023] (a) Schematic drawing showing the structure of the three T1R genes and the strategy for generating knockout animals. The targeting constructs deleted all seven predicted transmembrane helices of T1R1 and T1R2, and the entire extracellular ligand binding domain of T1R3. (b) In situ hybridization labeling demonstrating robust expression of T1Rs in taste buds of wild-type animals, but complete absence in the corresponding knock-out mice.

[0024] **FIG. 2:** T1R mutants respond normally to sour, salty and bitter stimuli

[0025] (a) Wild-type (WT), T1R1, T1R2 and T1R3 knock-out mice (1-KO, 2-KO, 3-KO) show robust neural responses to sour (100 mM citric acid), salty (100 mM NaCl) and bitter (10 mM PROP) tastants. (b) Integrated neural responses, such as those shown in (a), were normalized to the response elicited by 100 mM citric acid; control and KO animals are indistinguishable from each other. The values are means±s.e.m. (n=4). The data represent chorda tympani responses (see Experimental Procedures for details). (c), Taste preferences of wild-type and T1R knockout animals were measured relative to water using a brief access taste test (Zhang, Y. et al., *Cell*, 112, 293-301 (2003)). All four lines showed normal responses to sour, salty and bitter stimuli. The values are means±s.e.m. (n=7). Similar results were obtained using a standard two bottle preference assay (data not shown). Cyx, cycloheximide; Den, denatonium benzoate; PROP, 6-n-propyl-thiouracil; Qui, quinine.

[0026] **FIG. 3:** T1R1+3 functions as the mammalian umami receptor (a-d) Taste preferences of wild-type (open circles, dashed lines), T1R1 KO (blue circles and bars), T1R2 KO (gray circles and bars) and T1R3 KO mice (brown circles and bars) were measured relative to water using a brief access taste test. T1R2 KO mice are equivalent to wild type controls. In contrast, T1R1 and T1R3 knockout animals exhibit a complete loss in preference for umami tastants (a) MSG+1 mM IMP, (b) MSG, (c) IMP, and (d) L-Asp (100 mM), and AP4 (30 mM). In addition, both knockout have marked impairments in other amino acid responses. L-Asn (100 mM) and L-Arg were used at 100 mM each. (e-f) Integrated chorda tympani responses to umami tastants and amino acids. T1R1 and T1R3 knockouts have a complete

loss of responses to (e) umami agonists and L-amino acids if salt effects are avoided by using either amiloride or the potassium salt of MSG (MPG). In contrast, (f) if high concentrations of salt are used (e.g. 100 mM MSG), residual responses are detected.

[0027] **FIG. 4:** T1R2 and T1R3 are essential for sweet taste perception

[0028] (a) Taste preferences of wild-type (open circles, dashed lines), T1R1 KO (gray circles and bars), T1R2 KO (green circles and bars) and T1R3 KO mice (brown circles and bars) were measured relative to water using a brief access taste test. T1R1 KO mice are equivalent to wild type controls. In contrast, T1R2 and T1R3 knockout animals exhibit a complete loss in preference for artificial sweeteners and D-amino acids, but retain residual responses to high concentration of natural sugars. These are highlighted in (b) as dose responses in expanded scale for maltose, sucrose and glucose. However, T1R2/T1R3 double KO animals (red circles) have a complete loss of all sweet responses. The values are means±s.e.m. (n=7). D-Asn and D-Phe were 100 mM each, and D-Trp was used at 30 mM.

[0029] **FIG. 5:** T1R2 and T1R3 encode the mammalian sweet taste receptors

[0030] Panel (a) shows integrated chorda tympani responses to natural sugars, artificial sweeteners and D-amino acids in wild type (WT) and T1R knockout animals (1-KO, 2-KO, 3-KO). T1R2 and T1R3 knockouts have a complete loss of responses to artificial sweeteners and D-amino acid (red traces), but show small neural responses to high concentrations of natural sugars. These, however, are completely abolished in T1R2/T1R3 double KO mice (bottom red traces). Panel (b) shows average neural responses to an expanded panel of tastants; wild type, white bars; T1R2 KO, green bars; T1R3 KO, brown bars; T1R2/T1R3 double KO, red bars. The values are means±s.e.m. (n=4) of normalized chorda tympani responses.

[0031] **FIG. 6:** T1R3 responds to high concentrations of natural sugars

[0032] HEK-293 cells co-expressing the promiscuous G protein G_{gust-25} (see Experimental Procedures) and the mouse T1R3 GPCR, or co-transfected with both T1R2 plus T1R3, were stimulated with various sweet compounds. Upper panels show increases in [Ca²⁺]_i upon stimulation of T1R3-expressing cells with 500 mM, but not 300 mM sucrose. No responses were detected with artificial sweeteners (300 mM saccharin, right panel), or in cells without receptors or G_{gust-25}; scale indicates [Ca²⁺]_i (nM) determined from FURA-2 F₃₄₀/F₃₈₀ ratios. As expected, control cells expressing T1R2+3 (lower panels) respond robustly to lower concentrations of natural (300 mM sucrose) and artificial sweeteners (30 mM saccharin).

[0033] **FIG. 7:** Activation of T1R2-expressing cells triggers behavioral attraction

[0034] (a) Wild type and T1R2 KO mice expressing a human T1R2 gene under the control of the rodent T1R2-promoter were (b-d) tested for behavioral responses to a variety of human sweet tastants: (b) Ace-K, acesulfame-K, (c) aspartame, and (d) MON, monellin (~10 μM); THAU, thaumatin (~5 μM); ASP, aspartame (10 mM); GA, glycer-rhizic acid (500 μM); NH, neohesperidin dihydrochalcone

(400 μ M). The human T1R2 taste receptor is (a) selectively expressed in T1R2-cells, and (b) effectively rescues sweet taste responses of T1R2 KO mice. Importantly, the presence of the transgene (c-d) humanizes the sweet taste preferences of the transgenic animals. See text for details. (e) Expression of RASSL (Redfem, C. H. et al., *Nat Biotechnol*, 17, 165-169 (1999)) in T1R2-cells generates animals that exhibit specific behavioral attraction to spiradoline. Note that no responses are seen in uninduced animals, or control mice, even at 100 \times the concentration needed to elicit strong responses in RASSL-expressing animals. The values are means \pm s.e.m. (n=7)

[0035] FIG. 8

[0036] FIG. 8 provides a nucleotide sequence of hT1R1 (SEQ ID NO:26).

[0037] FIG. 9

[0038] FIG. 9 provides an amino acid sequence of hT1R1 (SEQ ID NO:27).

[0039] FIG. 10

[0040] FIG. 10 provides a nucleotide sequence of hT1R2 (SEQ ID NO:28).

[0041] FIG. 11

[0042] FIG. 11 provides a amino acid sequence of hT1R2 (SEQ ID NO:29).

[0043] FIG. 12

[0044] FIG. 12 provides a nucleotide sequence of hT1R3 (SEQ ID NO:30).

[0045] FIG. 13

[0046] FIG. 13 provides an amino acid sequence of hT1R3 (SEQ ID NO:31).

DETAILED DESCRIPTION OF THE INVENTION

[0047] Introduction

[0048] T1Rs and T2Rs are two families of G-protein-coupled receptors (GPCRs) selectively expressed in subsets of taste receptor cells (Hoon et al., *Cell* 96:541-551 (1999); Adler et al., *Cell* 100:693-702 (2000); Chandrashekar et al., *Cell* 100:703-711 (2000); Matsunami et al., *Nature* 404:601-604 (2000); Nelson et al., *Cell* 106:381-390 (2001); Kitagawa et al., *Biochem. Biophys. Res. Commun.* 283:236-242 (2001); Montmayeur et al., *Nature Neurosci.* 4:492-498 (2001); Max et al., *Nature Genet.* 28:58-63 (2001); Sainz et al., *J. Neurochem.* 77:896-903 (2001)). T2Rs are involved in bitter taste detection (Adler et al., *Cell* 100:693-702 (2000); Chandrashekar et al., *Cell*, 100:703-711 (2000)); T1R2 and T1R3 combine to function as a sweet taste receptor (see also Nelson et al., *Cell* 106:381-390 (2001); and T1R1 and T1R3 combine to function as an amino acid taste receptors, as described herein (see also Nelson et al., *Nature* 24 Feb. 2002 and WO 03/004992)). We have now identified a homodimeric taste receptor, in which two T1R3 polypeptides combine to function as a sweet taste receptor. The monomeric form of T1R3 also acts as a sweet receptor.

[0049] Using a heterologous expression system, we demonstrate that T1R3 combines with itself and also acts as a monomer to function as a sweet receptor, recognizing sweet-

tasting molecules such as sucrose, galactose, fructose, glucose, maltose, and lactose. Candidate receptors are expressed in human embryonic kidney (HEK) cells containing the $\text{G}\alpha_{16}$ - $\text{G}\alpha_z$ and $\text{G}\alpha_{15}$ promiscuous G proteins (Offermanns et al., *J. Biol. Chem.* 270:15175-15180 (1995); Mody et al., *Mol. Pharmacol.* 57:13-23 (2000)), and assayed for stimulus-evoked changes in intracellular calcium. In this system, receptor activation leads to activation of phospholipase C β (PLC- β) and release of calcium from internal stores, which can be monitored at the single-cell level using calcium-indicator dyes (Chandrashekar et al., *Cell* 100:703-711 (2000); Nelson et al., *Cell* 106:381-390 (2001); Tsien et al., *Cell Calcium* 6:145-157 (1985)).

[0050] These nucleic acids and proteins encoding the receptors provide valuable probes for the identification of taste cells, as the nucleic acids are specifically expressed in taste cells. The receptors are useful for assaying for novel tastants, such as artificial sweetener molecules. For example, probes for GPCR polypeptides and proteins can be used to identify subsets of taste cells such as foliate cells, palate cells, and circumvallate cells, or specific taste receptor cells, e.g., sweet taste receptor cells. They also serve as tools for the generation of taste topographic maps that elucidate the relationship between the taste cells of the tongue and taste sensory neurons leading to taste centers in the brain. Furthermore, the nucleic acids and the proteins they encode can be used as probes to dissect taste-induced behaviors.

[0051] The invention also provides methods of screening for modulators, e.g., activators, inhibitors, stimulators, enhancers, agonists, and antagonists, of these novel monomeric or homodimeric sweet taste receptors comprising T1R3. In one embodiment, the monomeric or homodimeric T1R3-comprising receptors of the invention can be used to screen for naturally occurring or artificial sweet tasting molecules or modulators of sweet taste transduction, e.g., small organic molecules, amino acids, peptides, carbohydrates, lipids, polysaccharides, etc. For example, homodimeric or monomeric T1R3-comprising receptors of the invention recognize naturally occurring sweet tastants, as described below in the example section. Such receptors can be used to screen for artificial sweeteners, or altered naturally occurring sweeteners, that mimic the naturally occurring sugar ligands of the homodimeric or monomeric T1R3-comprising receptor. Such modulators of sweet taste transduction are useful for pharmacological and genetic modulation of sweet taste signaling pathways, and for the discovery of novel sweet taste ligands. These methods of screening can be used to identify agonists and antagonists of sweet taste cell activity. These modulatory compounds can then be used in the food and pharmaceutical industries to customize taste. Thus, the invention provides assays for taste modulation, where the T1R3-comprising receptor acts as a direct or indirect reporter molecule for the effect of modulators on sweet taste transduction. GPCRs can be used in assays, e.g., to measure changes in ligand binding, G-protein binding, regulatory molecule binding, ion concentration, membrane potential, current flow, ion flux, transcription, signal transduction, receptor-ligand interactions, neurotransmitter and hormone release; and second messenger concentrations, in vitro, in vivo, and ex vivo. In one embodiment, a receptor comprising T1R3 can be used as an indirect reporter via attachment to a second reporter molecule such as green fluorescent protein (see, e.g., Mistili & Spector, *Nature Biotechnology* 15:961-964 (1997)). In another

embodiment, a receptor comprising T1R3 is recombinantly expressed in cells that do not express either T1R1 or T1R2, and modulation of taste transduction via GPCR activity is assayed by measuring changes in Ca²⁺ levels.

[0052] Methods of assaying for modulators of taste transduction include in vitro ligand binding assays using receptors comprising T1R3, portions thereof such as the extracellular domain, or chimeric proteins comprising one or more domains of T1R3, and in vivo (cell-based and animal) assays such as oocyte T1R3 receptor expression; tissue culture cell T1R3 receptor expression; transcriptional activation of T1R3; phosphorylation and dephosphorylation of GPCRs; G-protein binding to GPCRs; ligand binding assays; voltage, membrane potential and conductance changes; ion flux assays; changes in intracellular second messengers such as cAMP and inositol triphosphate; changes in intracellular calcium levels; and neurotransmitter release.

[0053] Definitions

[0054] A “T1R family taste receptor” refers to a receptor comprising a member of the T1R family of G-protein coupled receptors, e.g., T1R1, T1R2, and T1R3, or any combination thereof as a homodimer receptor, a heterodimer receptor, or a monomer receptor. In one embodiment, the T1R family receptor comprises T1R3 (a “T1R3-comprising taste receptor” or a “T1R3-comprising sweet taste receptor”). In one embodiment, the T1R family receptor comprises a first T1R3 polypeptide and a second T1R3 polypeptide, which form a homodimeric receptor, either covalently or non-covalently linked. In another embodiment, the T1R family receptor comprises a single T1R3 polypeptide and no other T1R polypeptide, and forms a monomeric receptor. In another embodiment, the T1R family receptor comprises T1R3 and a heterologous polypeptide of the T1R family. In one embodiment, the receptor comprises T1R1 and T1R3. In another embodiment, the receptor comprises T1R2 and T1R3. In one embodiment the T1R3-comprising receptor is active when the two members of the receptor are co-expressed in the same cell, e.g., T1R3 and T1R3, or T1R1 and T1R3 or T1R2 and T1R3. In another embodiment, the T1R polypeptides are co-expressed in the same cell and form a heterodimeric or homodimeric receptor, in which the T1R polypeptides of the receptor are non-covalently linked or covalently linked. The receptor has the ability to recognize, e.g., naturally occurring and/or artificial sweet tasting molecule such as sucrose, fructose, galactose, mannose, glucose, lactose, saccharin, dulcin, acesulfame-K, as well as other molecules, sweet and non-sweet. These molecules are examples of compounds that “modulate sweet taste signal transduction” by acting as ligands for the taste-transducing G protein coupled receptor comprising T1R3.

[0055] The terms “GPCR-B3 or T1R1,” “GPCR-B4 or T1R2,” and “T1R3” or a nucleic acid encoding “GPCR-B3 or T1R1,” “GPCR-B4 or T1R2,” and “T1R3” refer to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologs that are members of the T1R family of G protein coupled receptors and: (1) have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% or greater amino acid sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200,

500, 1000, or more amino acids, to an amino acid sequence encoded by SEQ ID NO:1, 2, 3, 7, 8, 9, 15, 18, 20, 23, 25, 27, or 31; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by SEQ ID NO:1, 2, 3, 7, 8, 9, 15, 18, 20, 23, 25, 27, or 31, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to an anti-sense strand corresponding to a nucleic acid sequence encoding a T1R protein, e.g., SEQ ID NO:4, 5, 6, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 24, 26, 28, or 30, and conservatively modified variants thereof, (4) have a nucleic acid sequence that has greater than about 60% sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99%, or higher nucleotide sequence identity, preferably over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to SEQ ID NO:4, 5, 6, 10, 11, 12, 13, 14, 16, 17, 19, 21, 22, 24, 26, or 28, or 30. The T1R family polypeptide of the invention (e.g., T1R1, T1R2, or T1R3) or T1R3-comprising receptor (e.g., T1R3, T1R3+T1R3, T1R1+3 or T1R2+3) further has G protein coupled receptor activity, either alone or when co-expressed in the same cell, or when co-expressed as a monomer, homodimer, or heterodimer with another T1R family member. Accession numbers for amino acid sequences and nucleotide sequences of human, rat, and mouse T1R1, T1R2, and T1R3 can be found in GenBank (for human T1R1 amino acid sequences, see, e.g., Accession No. DAA00012 and NP_619642; for human T1R1 nucleotide sequences, see, e.g., Accession No. BK000153; for human T1R2 amino acid sequences, see, e.g., Accession No. DAA00019, AAM12239, and NP_619642.1, for human T1R2 nucleotide sequences, see, e.g., Accession No. BK000151, NM_138697.1, AF458149S1-6; for human T1R3 amino acid sequences, see, e.g., Accession No. DAA00013, for human T1R3 nucleotide sequences, see, e.g., Accession NO. BK000152). See also WO 00/06592, WO 00/06593, WO 01/66563, WO 03/001876, WO 02/064631, WO 03/004992, WO 03/025137, WO 02/086079 and WO 01/83749 for amino acid and nucleotide sequences of T1R1, T1R2, and T1R3, each herein incorporated by reference in its entirety.

[0056] T1R proteins have “G-protein coupled receptor activity,” e.g., they bind to G-proteins in response to extracellular stimuli, such as ligand binding (e.g., sweet ligands), and promote production of second messengers such as IP3, cAMP, and Ca²⁺ via stimulation of enzymes such as phospholipase C and adenylyl cyclase. Such activity can be measured in a heterologous cell, by coupling a GPCR (or a chimeric GPCR) to either a G-protein or promiscuous G-protein such as G α_{15} or G α_{16} -G α_2 and an enzyme such as PLC, and measuring increases in intracellular calcium using (Offermans & Simon, *J. Biol. Chem.* 270:15175-15180 (1995)). Receptor activity can be effectively measured, e.g., by recording ligand-induced changes in [Ca²⁺], using fluorescent Ca²⁺-indicator dyes and fluorometric imaging.

[0057] Such GPCRs have transmembrane, extracellular and cytoplasmic domains that can be structurally identified using methods known to those of skill in the art, such as sequence analysis programs that identify hydrophobic and hydrophilic domains (see, e.g., Kyte & Doolittle, *J. Mol. Biol.* 157:105-132 (1982)). Such domains are useful for making chimeric proteins and for in vitro assays of the invention (see, e.g., WO 94/05695 and U.S. Pat. No. 5,508, 384).

[0058] The phrase “functional effects” in the context of assays for testing compounds that modulate activity (e.g., signal transduction) of a sweet taste receptor or protein of the invention includes the determination of a parameter that is indirectly or directly under the influence of a GPCR or sweet taste receptor, e.g., a physical, phenotypic, or chemical effect, such as the ability to transduce a cellular signal in response to external stimuli such as ligand binding, or the ability to bind a ligand. It includes binding activity and signal transduction. “Functional effects” include in vitro, in vivo, and ex vivo activities.

[0059] By “determining the functional effect” is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a T1R GPCR protein or a sweet taste receptor comprising one or more T1R GPCR proteins, e.g., physical and chemical or phenotypic effect. Such functional effects can be measured by any means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index); hydrodynamic (e.g., shape); chromatographic; or solubility properties for the protein; measuring inducible markers or transcriptional activation of the protein; measuring binding activity or binding assays, e.g., binding to antibodies; measuring changes in ligand binding activity or analogs thereof, either naturally occurring or synthetic; measuring cellular proliferation; measuring cell surface marker expression, measurement of changes in protein levels for T1R-associated sequences; measurement of RNA stability; G-protein binding; GPCR phosphorylation or dephosphorylation; signal transduction, e.g., receptor-ligand interactions, second messenger concentrations (e.g., cAMP, cGMP, IP3, PI, or intracellular Ca^{2+}); neurotransmitter release; hormone release; voltage, membrane potential and conductance changes; ion flux; regulatory molecule binding; identification of downstream or reporter gene expression (CAT, luciferase, β -gal, GFP and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, and inducible markers.

[0060] “Inhibitors,” “activators,” and “modulators” of T1R family polynucleotide and polypeptide sequences and T1R family taste receptors are used to refer to activating, inhibitory, or modulating molecules identified using in vitro and in vivo assays of T1R polynucleotide and polypeptide sequences and T1R family taste receptors, including monomeric, homodimeric and heterodimeric receptors. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of the T1R family of taste receptors such as a receptor comprising a T1R3 polypeptide, e.g., antagonists. “Activators” are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate a T1R family taste receptor, such as a receptor comprising a T1R3 polypeptide, e.g., agonists. Inhibitors, activators, or modulators also include genetically modified versions of T1R family taste receptors, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, antisense molecules, ribozymes, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing T1R family taste receptors in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. In one embodiment, taste receptor comprising a T1R3 polypep-

tide has the ability to recognize a sweet tasting molecule such as sucrose, glucose, fructose, lactose, mannose, galactose, saccharin, dulcin, acesulfame-K. In another embodiment, a taste receptor comprising a T1R3 polypeptide has the ability to recognize other molecules, such as potential artificial sweeteners. These molecules are examples of compounds that modulate taste signal transduction by acting as extracellular ligands for the G protein coupled receptor and activating the receptor. In other embodiments, compounds that modulate taste signal transduction are molecules that act as intracellular ligands of the receptor, or inhibit or activate binding of an extracellular ligand, or inhibit or activate binding of intracellular ligands of the receptor.

[0061] Samples or assays comprising the T1R family of taste receptors are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a T1R family receptor is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation of a T1R family receptor is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably 1000-3000% higher.

[0062] The term “test compound” or “drug candidate” or “modulator” or grammatical equivalents as used herein describes any molecule, such as an artificial sweetener or naturally occurring sugar, either naturally occurring or synthetic, e.g., protein, oligopeptide (e.g., from about 5 to about 25 amino acids in length, preferably from about 10 to 20 or 12 to 18 amino acids in length, preferably 12, 15, or 18 amino acids in length), small organic molecule, polysaccharide, lipid, fatty acid, polynucleotide, oligonucleotide, etc., to be tested for the capacity to directly or indirectly modulation taste. The test compound can be in the form of a library of test compounds, such as a combinatorial or randomized library that provides a sufficient range of diversity. Test compounds are optionally linked to a fusion partner, e.g., targeting compounds, rescue compounds, dimerization compounds, stabilizing compounds, addressable compounds, and other functional moieties. Conventionally, new chemical entities with useful properties are generated by identifying a test compound (called a “lead compound”) with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

[0063] A “small organic molecule” refers to an organic molecule, either naturally occurring or synthetic, that has a molecular weight of more than about 50 daltons and less than about 2500 daltons, preferably less than about 2000 daltons, preferably between about 100 to about 1000 daltons, more preferably between about 200 to about 500 daltons.

[0064] “Biological sample” include sections of tissues such as biopsy and autopsy samples, and frozen sections taken for histologic purposes. Such samples include blood, sputum, tissue, cultured cells, e.g., primary cultures, explants, and transformed cells, stool, urine, etc. A biologi-

cal sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or a bird; reptile; or fish.

[0065] A “heterodimer” is a dimer receptor comprising two different polypeptide subunits, e.g., two different polypeptides, where the molecules are associated via either covalent, e.g., through a linker or a chemical bond, or non-covalent, e.g., ionic, van der Waals, electrostatic, or hydrogen bonds linkages. The T1R3-comprising receptors of the invention function when co-expressed in the same cell, preferably when co-expressed so that they form a heterodimer, either covalently or non-covalently linked. For example, T1R1 and T1R3 form a heteromeric receptor, and T1R2 and T1R3 form a heteromeric receptor.

[0066] A “homodimer” is a dimer receptor comprising two of the same polypeptide subunits, e.g., two T1R3 polypeptides, where the molecules are associated via either covalent, e.g., through a linker or a chemical bond, or non-covalent, e.g., ionic, van der Waals, electrostatic, or hydrogen bonds linkages. The T1R3-comprising receptors of the invention function when co-expressed in the same cell, preferably when co-expressed so that they form a homodimer, either covalently or non-covalently linked.

[0067] A “monomer” is a receptor comprising one polypeptide subunit, e.g., one T1R3 polypeptide.

[0068] The terms “identical” or percent “identity,” in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same (i.e., about 60% identity, preferably 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region (e.g., nucleotide sequences SEQ ID NO:1-25), when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site or the like). Such sequences are then said to be “substantially identical.” This definition also refers to, or may be applied to, the compliment of a test sequence. The definition also includes sequences that have deletions and/or additions, as well as those that have substitutions. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

[0069] For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

[0070] A “comparison window”, as used herein, includes reference to a segment of any one of the number of con-

tiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, *Adv. Appl. Math.* 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, *J. Mol. Biol.* 48:443 (1970), by the search for similarity method of Pearson & Lipman, *Proc. Nat'l. Acad. Sci. USA* 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection (see, e.g., *Current Protocols in Molecular Biology* (Ausubel et al., eds. 1995 supplement)).

[0071] A preferred example of algorithm that is suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., *Nuc. Acids Res.* 25:3389-3402 (1977) and Altschul et al., *J. Mol. Biol.* 215:403-410 (1990), respectively. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (<http://www.ncbi.nlm.nih.gov/>). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, *Proc. Natl. Acad. Sci. USA* 89:10915 (1989)) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

[0072] The terms “polypeptide,” “peptide,” and “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid poly-

mers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymer.

[0073] The term “amino acid” refers to naturally occurring and synthetic amino acids, enantiomers (D- and L-forms), and achiral amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

[0074] Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

[0075] “Conservatively modified variants” applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode any given protein. For instance, the codons GCA, GCC, GCG and GCU all encode the amino acid alanine. Thus, at every position where an alanine is specified by a codon, the codon can be altered to any of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are “silent variations,” which are one species of conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes every possible silent variation of the nucleic acid. One of skill will recognize that each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally identical molecule. Accordingly, each silent variation of a nucleic acid which encodes a polypeptide is implicit in each described sequence with respect to the expression product, but not with respect to actual probe sequences.

[0076] As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a “conservatively modified variant” where the alteration

results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention.

[0077] The following eight groups each contain amino acids that are conservative substitutions for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, *Proteins* (1984)).

[0078] Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts et al., *Molecular Biology of the Cell* (3rd ed., 1994) and Cantor and Schimmel, *Biophysical Chemistry Part I: The Conformation of Biological Macromolecules* (1980). “Primary structure” refers to the amino acid sequence of a particular peptide. “Secondary structure” refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains, e.g., extracellular domains, transmembrane domains, and cytoplasmic domains. Domains are portions of a polypeptide that form a compact unit of the polypeptide and are typically 15 to 350 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. “Tertiary structure” refers to the complete three dimensional structure of a polypeptide monomer. “Quaternary structure” refers to the three dimensional structure formed by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

[0079] “Nucleic acid” refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form, as well as the complements of any such sequence. Also included are DNA, cDNA, RNA, polynucleotides, nucleotides, and the like. The term encompasses nucleic acids containing known nucleotide analogs or modified backbone residues or linkages, which are synthetic, naturally occurring, and non-naturally occurring, which have similar binding properties as the reference nucleic acid, and which are metabolized in a manner similar to the reference nucleotides. Examples of such analogs include, without limitation, phosphorothioates, phosphoramidates, methyl phosphonates, chiral-methyl phosphonates, 2-O-methyl ribonucleotides, peptide-nucleic acids (PNAs).

[0080] A particular nucleic acid sequence also implicitly encompasses “splice variants.” Similarly, a particular protein encoded by a nucleic acid implicitly encompasses any protein encoded by a splice variant of that nucleic acid. “Splice variants,” as the name suggests, are products of alternative splicing of a gene. After transcription, an initial nucleic acid transcript may be spliced such that different (alternate) nucleic acid splice products encode different polypeptides. Mechanisms for the production of splice variants vary, but include alternate splicing of exons. Alternate polypeptides derived from the same nucleic acid by read-through transcription are also encompassed by this defini-

tion. Any products of a splicing reaction, including recombinant forms of the splice products, are included in this definition.

[0081] A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include ^{32}P , fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide.

[0082] The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, for example, recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all.

[0083] The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein indicates that the protein comprises two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

[0084] The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in Tijssen, *Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Probes*, "Overview of principles of hybridization and the strategy of nucleic acid assays" (1993). Generally, stringent conditions are selected to be about 5-10° C. lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m , 50% of the probes are occupied at equilibrium). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions can be as following: 50% formamide, 5 \times SSC, and 1% SDS, incubating at 42° C., or, 5 \times SSC, 1% SDS, incubating at 65° C., with wash in 0.2 \times SSC, and 0.1% SDS at 65° C.

[0085] Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if

the polypeptides which they encode are substantially identical. This occurs, for example, when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 1 \times SSC at 45° C. A positive hybridization is at least twice background. Those of ordinary skill will readily recognize that alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., and *Current Protocols in Molecular Biology*, ed. Ausubel, et al.

[0086] For PCR, a temperature of about 36° C. is typical for low stringency amplification, although annealing temperatures may vary between about 32° C. and 48° C. depending on primer length. For high stringency PCR amplification, a temperature of about 62° C. is typical, although high stringency annealing temperatures can range from about 50° C. to about 65° C., depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include 30-40 cycles of the following conditions: a denaturation phase of 90° C.-95° C. for 30 sec-2 min., an annealing phase lasting 30 sec.-2 min., and an extension phase of about 72° C. for 1-2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis et al., *PCR Protocols, A Guide to Methods and Applications* (1990).

[0087] "Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD and IgE, respectively. Typically, the antigen-binding region of an antibody will be most critical in specificity and affinity of binding.

[0088] An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

[0089] Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, for example, pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)_2 , a dimer of Fab which itself is a light chain joined to $V_H\text{-C}_1$ by a disulfide bond. The F(ab)_2 may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)_2 dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see *Fundamental Immunology* (Paul ed., 3d ed. 1993). While various

antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized de novo either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized de novo using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty et al., *Nature* 348:552-554 (1990)).

[0090] For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many techniques known in the art can be used (see, e.g., Kohler & Milstein, *Nature* 256:495-497 (1975); Kozbor et al., *Immunology Today* 4: 72 (1983); Cole et al., pp. 77-96 in *Monoclonal Antibodies and Cancer Therapy*, Alan R. Liss, Inc. (1985); Coligan, *Current Protocols in Immunology* (1991); Harlow & Lane, *Antibodies, A Laboratory Manual* (1988); and Goding, *Monoclonal Antibodies: Principles and Practice* (2d ed. 1986)). Techniques for the production of single chain antibodies (U.S. Pat. No. 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty et al., *Nature* 348:552-554 (1990); Marks et al., *Biotechnology* 10:779-783 (1992)).

[0091] A "chimeric antibody" is an antibody molecule in which (a) the constant region, or a portion thereof, is altered, replaced or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the variable region, or a portion thereof, is altered, replaced or exchanged with a variable region having a different or altered antigen specificity.

[0092] In one embodiment, the antibody is conjugated to an "effector" moiety. The effector moiety can be any number of molecules, including labeling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the antibody modulates the activity of the protein.

[0093] The phrase "specifically (or selectively) binds" to an antibody or "specifically (or selectively) immunoreactive with," when referring to a protein or peptide, refers to a binding reaction that is determinative of the presence of the protein, often in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bind to a particular protein at least two times the background and more typically more than 10 to 100 times background. Specific binding to an antibody under such conditions requires an antibody that is selected for its specificity for a particular protein. For example, polyclonal antibodies raised to a T1R protein or a homodimeric or heterodimeric T1R3-comprising taste receptor comprising a sequence of or encoded by SEQ ID NO:1-25, polymorphic variants, alleles, orthologs, and conservatively modified variants, or splice variants, or portions

thereof, can be selected to obtain only those polyclonal antibodies that are specifically immunoreactive with T1R proteins and/or homodimeric or heterodimeric T1R3-comprising taste receptors and not with other proteins. In one embodiment, the antibodies react with a homodimeric T1R3-comprising taste receptor, but not with individual protein members of the T1R family. This selection may be achieved by subtracting out antibodies that cross-react with other molecules. A variety of immunoassay formats may be used to select antibodies specifically immunoreactive with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies specifically immunoreactive with a protein (see, e.g., Harlow & Lane, *Antibodies, A Laboratory Manual* (1988) for a description of immunoassay formats and conditions that can be used to determine specific immunoreactivity).

[0094] Isolation of Nucleic Acids Encoding T1R Family Members

[0095] This invention relies on routine techniques in the field of recombinant genetics. Basic texts disclosing the general methods of use in this invention include Sambrook et al., *Molecular Cloning, A Laboratory Manual* (2nd ed. 1989); Kriegler, *Gene Transfer and Expression: A Laboratory Manual* (1990); and *Current Protocols in Molecular Biology* (Ausubel et al., eds., 1994)).

[0096] T1R nucleic acids, polymorphic variants, orthologs, and alleles that are substantially identical to an amino acid sequences disclosed herein can be isolated using T1R nucleic acid probes and oligonucleotides under stringent hybridization conditions, by screening libraries. Alternatively, expression libraries can be used to clone T1R protein, polymorphic variants, orthologs, and alleles by detecting expressed homologs immunologically with antisera or purified antibodies made against human T1R or portions thereof.

[0097] To make a cDNA library, one should choose a source that is rich in T1R RNA, e.g., taste buds such as circumvallate, foliate, fungiform, and palate. The mRNA is then made into cDNA using reverse transcriptase, ligated into a recombinant vector, and transfected into a recombinant host for propagation, screening and cloning. Methods for making and screening cDNA libraries are well known (see, e.g., Gubler & Hoffman, *Gene* 25:263-269 (1983); Sambrook et al., *supra*; Ausubel et al., *supra*).

[0098] For a genomic library, the DNA is extracted from the tissue and either mechanically sheared or enzymatically digested to yield fragments of about 12-20 kb. The fragments are then separated by gradient centrifugation from undesired sizes and are constructed in bacteriophage lambda vectors. These vectors and phage are packaged in vitro. Recombinant phage are analyzed by plaque hybridization as described in Benton & Davis, *Science* 196:180-182 (1977). Colony hybridization is carried out as generally described in Grunstein et al., *Proc. Natl. Acad. Sci. USA.*, 72:3961-3965 (1975).

[0099] An alternative method of isolating T1R nucleic acid and its orthologs, alleles, mutants, polymorphic variants, and conservatively modified variants combines the use of synthetic oligonucleotide primers and amplification of an RNA or DNA template (see U.S. Pat. Nos. 4,683,195 and 4,683,202; *PCR Protocols: A Guide to Methods and Appli-*

cations (Innis et al., eds, 1990)). Methods such as polymerase chain reaction (PCR) and ligase chain reaction (LCR) can be used to amplify nucleic acid sequences of human T1R directly from mRNA, from cDNA, from genomic libraries or cDNA libraries. Degenerate oligonucleotides can be designed to amplify T1R homologs using the sequences provided herein. Restriction endonuclease sites can be incorporated into the primers. Polymerase chain reaction or other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of T1R encoding mRNA in physiological samples, for nucleic acid sequencing, or for other purposes. Genes amplified by the PCR reaction can be purified from agarose gels and cloned into an appropriate vector.

[0100] Gene expression of T1R can also be analyzed by techniques known in the art, e.g., reverse transcription and amplification of mRNA, isolation of total RNA or poly A⁺ RNA, northern blotting, dot blotting, in situ hybridization, RNase protection, high density polynucleotide array technology, e.g., and the like.

[0101] Nucleic acids encoding T1R protein can be used with high density oligonucleotide array technology (e.g., GeneChipTM) to identify T1R protein, orthologs, alleles, conservatively modified variants, and polymorphic variants in this invention (see, e.g., Gunthand et al., *AIDS Res. Hum. Retroviruses* 14: 869-876 (1998); Kozal et al., *Nat. Med.* 2:753-759 (1996); Matson et al., *Anal. Biochem.* 224:110-106 (1995); Lockhart et al., *Nat. Biotechnol.* 14:1675-1680 (1996); Gingeras et al., *Genome Res.* 8:435-448 (1998); Hacia et al., *Nucleic Acids Res.* 26:3865-3866 (1998)).

[0102] The gene for T1R is typically cloned into intermediate vectors before transformation into prokaryotic or eukaryotic cells for replication and/or expression. These intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors.

[0103] Expression in Prokaryotes and Eukaryotes

[0104] To obtain high level expression of a cloned gene, such as those cDNAs encoding a T1R protein, one typically subclones T1R into an expression vector that contains a strong promoter to direct transcription, a transcription/translation terminator, and if for a nucleic acid encoding a protein, a ribosome binding site for translational initiation. The T1R nucleic acids can be co-expressed or separately expressed, preferably co-expressed on the same or a different vector. Suitable bacterial promoters are well known in the art and described, e.g., in Sambrook et al., and Ausubel et al, *supra*. Bacterial expression systems for expressing the T1R protein are available in, e.g., *E. coli*, *Bacillus* sp., and *Salmonella* (Palva et al., *Gene* 22:229-235 (1983); Mosbach et al., *Nature* 302:543-545 (1983). Kits for such expression systems are commercially available. Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available. In one preferred embodiment, retroviral expression systems are used in the present invention.

[0105] Selection of the promoter used to direct expression of a heterologous nucleic acid depends on the particular application. The promoter is preferably positioned about the same distance from the heterologous transcription start site

as it is from the transcription start site in its natural setting. As is known in the art, however, some variation in this distance can be accommodated without loss of promoter function.

[0106] In addition to the promoter, the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the T1R encoding nucleic acid in host cells. A typical expression cassette thus contains a promoter operably linked to the nucleic acid sequence encoding T1R and signals required for efficient polyadenylation of the transcript, ribosome binding sites, and translation termination. Additional elements of the cassette may include enhancers and, if genomic DNA is used as the structural gene, introns with functional splice donor and acceptor sites.

[0107] In addition to a promoter sequence, the expression cassette should also contain a transcription termination region downstream of the structural gene to provide for efficient termination. The termination region may be obtained from the same gene as the promoter sequence or may be obtained from different genes.

[0108] The particular expression vector used to transport the genetic information into the cell is not particularly critical. Any of the conventional vectors used for expression in eukaryotic or prokaryotic cells may be used. Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and fusion expression systems such as MBP, GST, and LacZ. Epitope tags can also be added to recombinant proteins to provide convenient methods of isolation, e.g., c-myc. Sequence tags may be included in an expression cassette for nucleic acid rescue. Markers such as fluorescent proteins, green or red fluorescent protein, β -gal, CAT, and the like can be included in the vectors as markers for vector transduction.

[0109] Expression vectors containing regulatory elements from eukaryotic viruses are typically used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, retroviral vectors, and vectors derived from Epstein-Barr virus. Other exemplary eukaryotic vectors include pMSG, pAV009/A⁺, pMTO10/A⁺, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the CMV promoter, SV40 early promoter, SV40 later promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.

[0110] Expression of proteins from eukaryotic vectors can be also be regulated using inducible promoters. With inducible promoters, expression levels are tied to the concentration of inducing agents, such as tetracycline or ecdysone, by the incorporation of response elements for these agents into the promoter. Generally, high level expression is obtained from inducible promoters only in the presence of the inducing agent; basal expression levels are minimal.

[0111] In one embodiment, the vectors of the invention have a regulatable promoter, e.g., tet-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, *Proc. Nat'l Acad. Sci. USA* 89:5547 (1992); Oligino et al., *Gene Ther.* 5:491-496 (1998); Wang et al., *Gene Ther.* 4:432-441 (1997); Neering et al., *Blood* 88:1147-1155 (1996); and Rendahl et al., *Nat. Biotechnol.* 16:757-761 (1998)). These

impart small molecule control on the expression of the candidate target nucleic acids. This beneficial feature can be used to determine that a desired phenotype is caused by a transfected cDNA rather than a somatic mutation.

[0112] Some expression systems have markers that provide gene amplification such as thymidine kinase and dihydrofolate reductase. Alternatively, high yield expression systems not involving gene amplification are also suitable, such as using a baculovirus vector in insect cells, with a T1R encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.

[0113] The elements that are typically included in expression vectors also include a replicon that functions in *E. coli*, a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of eukaryotic sequences. The particular antibiotic resistance gene chosen is not critical, any of the many resistance genes known in the art are suitable. The prokaryotic sequences are preferably chosen such that they do not interfere with the replication of the DNA in eukaryotic cells, if necessary.

[0114] Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of T1R protein, which are then purified using standard techniques (see, e.g., Colley et al., *J. Biol. Chem.* 264:17619-17622 (1989); *Guide to Protein Purification*, in *Methods in Enzymology*, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, *J. Bact.* 132:349-351 (1977); Clark-Curtiss & Curtiss, *Methods in Enzymology* 101:347-362 (Wu et al., eds, 1983)).

[0115] Any of the well-known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, biolistics, liposomes, microinjection, plasma vectors, viral vectors and any of the other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing T1R.

[0116] After the expression vector is introduced into the cells, the transfected cells are cultured under conditions favoring expression of T1R, which is recovered from the culture using standard techniques identified below.

Purification of T1R Polypeptides

[0117] Either naturally occurring or recombinant T1R polypeptides or T1R3-comprising receptors can be purified for use in functional assays. Naturally occurring T1R proteins or T1R3-comprising receptors can be purified, e.g., from human tissue. Recombinant T1R proteins or T1R3-comprising receptors can be purified from any suitable expression system. T1R polypeptides are typically co-expressed in the same cell to form T1R3-comprising receptors.

[0118] The T1R protein or T1R3-comprising receptor may be purified to substantial purity by standard techniques, including selective precipitation with such substances as

ammonium sulfate; column chromatography, immunopurification methods, and others (see, e.g., Scopes, *Protein Purification: Principles and Practice* (1982); U.S. Pat. No. 4,673,641; Ausubel et al., supra; and Sambrook et al., supra).

[0119] A number of procedures can be employed when recombinant T1R protein or T1R3-comprising receptor is being purified. For example, proteins having established molecular adhesion properties can be reversibly fused to the T1R protein or T1R3-comprising receptor. With the appropriate ligand, T1R protein or T1R3-comprising receptor can be selectively adsorbed to a purification column and then freed from the column in a relatively pure form. The fused protein is then removed by enzymatic activity. Finally, T1R protein or T1R3-comprising receptor could be purified using immunoaffinity columns.

[0120] A. Purification of T1R from Recombinant Bacteria

[0121] Recombinant proteins are expressed by transformed bacteria in large amounts, typically after promoter induction; but expression can be constitutive. Promoter induction with IPTG is one example of an inducible promoter system. Bacteria are grown according to standard procedures in the art. Fresh or frozen bacteria cells are used for isolation of protein.

[0122] Proteins expressed in bacteria may form insoluble aggregates ("inclusion bodies"). Several protocols are suitable for purification of T1R protein or T1R3-comprising receptor inclusion bodies. For example, purification of inclusion bodies typically involves the extraction, separation and/or purification of inclusion bodies by disruption of bacterial cells, e.g., by incubation in a buffer of 50 mM TRIS/HCl pH 7.5, 50 mM NaCl, 5 mM MgCl₂, 1 mM DTT, 0.1 mM ATP, and 1 mM PMSF. The cell suspension can be lysed using 2-3 passages through a French Press, homogenized using a Polytron (Brinkman Instruments) or sonicated on ice. Alternate methods of lysing bacteria are apparent to those of skill in the art (see, e.g., Sambrook et al., supra; Ausubel et al., supra).

[0123] If necessary, the inclusion bodies are solubilized, and the lysed cell suspension is typically centrifuged to remove unwanted insoluble matter. Proteins that formed the inclusion bodies may be renatured by dilution or dialysis with a compatible buffer. Suitable solvents include, but are not limited to urea (from about 4 M to about 8 M), formamide (at least about 80%, volume/volume basis), and guanidine hydrochloride (from about 4 M to about 8 M). Some solvents which are capable of solubilizing aggregate-forming proteins, for example SDS (sodium dodecyl sulfate), 70% formic acid, are inappropriate for use in this procedure due to the possibility of irreversible denaturation of the proteins, accompanied by a lack of immunogenicity and/or activity. Although guanidine hydrochloride and similar agents are denaturants, this denaturation is not irreversible and renaturation may occur upon removal (by dialysis, for example) or dilution of the denaturant, allowing reformation of immunologically and/or biologically active protein. Other suitable buffers are known to those skilled in the art. Human T1R proteins or T1R3-comprising receptors are separated from other bacterial proteins by standard separation techniques, e.g., with Ni-NTA agarose resin.

[0124] Alternatively, it is possible to purify T1R protein or T1R3-comprising receptor from bacteria periplasm. After

lysis of the bacteria, when the T1R protein or T1R3-comprising receptor is exported into the periplasm of the bacteria, the periplasmic fraction of the bacteria can be isolated by cold osmotic shock in addition to other methods known to skill in the art. To isolate recombinant proteins from the periplasm, the bacterial cells are centrifuged to form a pellet. The pellet is resuspended in a buffer containing 20% sucrose. To lyse the cells, the bacteria are centrifuged and the pellet is resuspended in ice-cold 5 mM MgSO₄ and kept in an ice bath for approximately 10 minutes. The cell suspension is centrifuged and the supernatant decanted and saved. The recombinant proteins present in the supernatant can be separated from the host proteins by standard separation techniques well known to those of skill in the art.

[0125] B. Standard Protein Separation Techniques for Purifying T1R Proteins

[0126] Solubility Fractionation

[0127] Often as an initial step, particularly if the protein mixture is complex, an initial salt fractionation can separate many of the unwanted host cell proteins (or proteins derived from the cell culture media) from the recombinant protein of interest. The preferred salt is ammonium sulfate. Ammonium sulfate precipitates proteins by effectively reducing the amount of water in the protein mixture. Proteins then precipitate on the basis of their solubility. The more hydrophobic a protein is, the more likely it is to precipitate at lower ammonium sulfate concentrations. A typical protocol includes adding saturated ammonium sulfate to a protein solution so that the resultant ammonium sulfate concentration is between 20-30%. This concentration will precipitate the most hydrophobic of proteins. The precipitate is then discarded (unless the protein of interest is hydrophobic) and ammonium sulfate is added to the supernatant to a concentration known to precipitate the protein of interest. The precipitate is then solubilized in buffer and the excess salt removed if necessary, either through dialysis or diafiltration. Other methods that rely on solubility of proteins, such as cold ethanol precipitation, are well known to those of skill in the art and can be used to fractionate complex protein mixtures.

[0128] Size Differential Filtration

[0129] The molecular weight of the T1R proteins or T1R3-comprising receptors can be used to isolate it from proteins of greater and lesser size using ultrafiltration through membranes of different pore size (for example, Amicon or Millipore membranes). As a first step, the protein mixture is ultrafiltered through a membrane with a pore size that has a lower molecular weight cut-off than the molecular weight of the protein of interest. The retentate of the ultrafiltration is then ultrafiltered against a membrane with a molecular cut off greater than the molecular weight of the protein of interest. The recombinant protein will pass through the membrane into the filtrate. The filtrate can then be chromatographed as described below.

[0130] Column Chromatography

[0131] The T1R proteins or T1R3-comprising receptors can also be separated from other proteins on the basis of its size, net surface charge, hydrophobicity, and affinity for ligands. In addition, antibodies raised against proteins can be conjugated to column matrices and the proteins immunopurified. All of these methods are well known in the art. It will

be apparent to one of skill that chromatographic techniques can be performed at any scale and using equipment from many different manufacturers (e.g., Pharmacia Biotech).

[0132] Assays for Modulators of T1R Protein

[0133] A. Assays

[0134] Modulation of a T1R3-comprising taste receptor, and corresponding modulation of taste, can be assessed using a variety of in vitro and in vivo assays. Such assays can be used to test for inhibitors and activators of T1R3-comprising taste receptors, and, consequently, inhibitors and activators of taste. Such modulators of T1R3-comprising sweet taste receptors, which are involved in taste signal transduction. Modulators of T1R3-comprising taste receptors are tested using either recombinant or naturally occurring T1R3-comprising taste receptors, preferably human receptors.

[0135] In one embodiment, the monomeric or homodimeric T1R3-comprising receptors of the invention can be used to screen for naturally occurring or artificial sweet tasting molecules, e.g., small organic molecules, amino acids, peptides, carbohydrates, lipids, polysaccharides, etc. For example, homodimeric or monomeric T1R3-comprising receptors of the invention recognize naturally occurring sweet tastants, as described below in the example section. Such receptors can be used to screen for artificial sweeteners, or altered naturally occurring sweeteners, that mimic the naturally occurring sugar ligands of the homodimeric or monomeric T1R3-comprising receptor.

[0136] Preferably, the T1R3-comprising taste receptor will have a sequence as encoded by a sequence provided herein or a conservatively modified variant thereof. Alternatively, the T1R3-comprising taste receptor of the assay will be derived from a eukaryote and include an amino acid subsequence having substantial amino acid sequence identity to the sequences provided herein or is encoded by a nucleotide sequence that hybridizes under stringent conditions (moderate or high) to a nucleotide sequence as described herein. Generally, the amino acid sequence identity will be at least 60%, preferably at least 65%, 70%, 75%, 80%, 85%, or 90%, most preferably at least 95%.

[0137] Measurement of sweet taste signal transduction or loss-of-sweet taste signal transduction phenotype on T1R3-comprising taste receptor or cell expressing the T1R3-comprising taste receptor, either recombinant or naturally occurring, can be performed using a variety of assays, in vitro, in vivo, and ex vivo, as described herein. A suitable physical, chemical or phenotypic change that affects activity or binding can be used to assess the influence of a test compound on the polypeptide of this invention. When the functional effects are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of signal transduction, e.g., ligand binding, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as pH changes, and changes in intracellular second messengers such as Ca²⁺, IP₃, cGMP, or cAMP.

[0138] In Vitro Assays

[0139] Assays to identify compounds with T1R3-comprising taste receptor modulating activity can be performed in

vitro. Such assays can use a full length T1R3-comprising taste receptor or a variant thereof, or a fragment of a T1R3-comprising taste receptor, such as an extracellular domain, fused to a heterologous protein to form a chimera (see, e.g., WO 01/66563, WO 03/001876, WO 02/064631, and WO 03/004992). Purified recombinant or naturally occurring T1R3-comprising taste receptor can be used in the in vitro methods of the invention. In addition to purified T1R3-comprising taste receptor, the recombinant or naturally occurring T1R3-comprising taste receptor can be part of a cellular lysate or a cell membrane. As described below, the binding assay can be either solid state or soluble. Preferably, the protein or membrane is bound to a solid support, either covalently or non-covalently. Often, the in vitro assays of the invention are ligand binding or ligand affinity assays, either non-competitive or competitive (with known extracellular ligands as described herein, or with a known intracellular ligand GTP). Other in vitro assays include measuring changes in spectroscopic (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein.

[0140] In one embodiment, a high throughput binding assay is performed in which the T1R3-comprising taste receptor or chimera comprising a fragment thereof is contacted with a potential modulator and incubated for a suitable amount of time. In one embodiment, the potential modulator is bound to a solid support, and the T1R3-comprising taste receptor is added. In another embodiment, the T1R3-comprising taste receptor is bound to a solid support. A wide variety of modulators can be used, as described below, including small-organic molecules, peptides, antibodies, and T1R3-comprising taste receptor ligand analogs. A wide variety of assays can be used to identify T1R3-comprising taste receptor-modulator binding, including labeled protein-protein binding assays, electrophoretic mobility shifts, immunoassays, enzymatic assays such as phosphorylation assays, and the like. In some cases, the binding of the candidate modulator is determined through the use of competitive binding assays, where interference with binding of a known ligand is measured in the presence of a potential modulator. Ligands for T1R3-comprising taste receptors are provided herein. Either the modulator or the known ligand is bound first, and then the competitor is added. After the T1R3-comprising taste receptor is washed, interference with binding, either of the potential modulator or of the known ligand, is determined. Often, either the potential modulator or the known ligand is labeled.

[0141] Cell-Based In Vivo Assays

[0142] In another embodiment, a T1R3-comprising taste receptor is expressed in a cell (e.g., by expression or co-expression one or two members of the T1R family such as T1R1 and T1R3 or T1R2 and T1R3, preferably by expression of T1R3 alone without expression of any other T1R family members), and functional, e.g., physical and chemical or phenotypic, changes are assayed to identify T1R3-comprising taste receptor taste modulators. Cells expressing T1R3-comprising taste receptor can also be used in binding assays. Any suitable functional effect can be measured, as described herein. For example, ligand binding, G-protein binding, and GPCR signal transduction, e.g., changes in intracellular Ca^{2+} levels, are all suitable assays to identify potential modulators using a cell based system.

Suitable cells for such cell based assays include both primary cells and cell lines, as described herein. The T1R3-comprising taste receptor can be naturally occurring or recombinant. Also, as described above, chimeric T1R3-comprising taste receptors with GPCR activity can be used in cell based assays. For example, the extracellular domain of an T1R protein can be fused to the transmembrane and/or cytoplasmic domain of a heterologous protein, preferably a heterologous GPCR. Such a chimeric GPCR would have GPCR activity and could be used in cell based assays of the invention.

[0143] In another embodiment, cellular T1R polypeptide levels are determined by measuring the level of protein or mRNA. The level of T1R protein or proteins related to T1R signal transduction are measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the T1R3-comprising taste receptor or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNase protection, dot blotting, are preferred. The level of protein or mRNA is detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

[0144] Alternatively, T1R3-comprising receptor expression can be measured using a reporter gene system. Such a system can be devised using an T1R protein promoter operably linked to a reporter gene such as chloramphenicol acetyltransferase, firefly luciferase, bacterial luciferase, β -galactosidase and alkaline phosphatase. Furthermore, the protein of interest can be used as an indirect reporter via attachment to a second reporter such as red or green fluorescent protein (see, e.g., Mistili & Spector, *Nature Biotechnology* 15:961-964 (1997)). The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

[0145] In another embodiment, a functional effect related to GPCR signal transduction can be measured. An activated or inhibited T1R3-comprising G-coupled protein receptor will alter the properties of target enzymes, second messengers, channels, and other effector proteins. The examples include the activation of cGMP phosphodiesterase, adenylyl cyclase, phospholipase C, IP₃, and modulation of diverse channels by G proteins. Downstream consequences can also be examined such as generation of diacyl glycerol and IP₃ by phospholipase C, and in turn, for calcium mobilization by IP₃. Activated GPCR receptors become substrates for kinases that phosphorylate the C-terminal tail of the receptor (and possibly other sites as well). Thus, activators will promote the transfer of ³²P from gamma-labeled GTP to the receptor, which can be assayed with a scintillation counter. The phosphorylation of the C-terminal tail will promote the binding of arrestin-like proteins and will interfere with the binding of G-proteins. For a general review of GPCR signal transduction and methods of assaying signal transduction, see, e.g., *Methods in Enzymology*, vols. 237 and 238 (1994) and volume 96 (1983); Bourne et al., *Nature* 10:349:117-27 (1991); Bourne et al., *Nature* 348:125-32 (1990); Pitcher et al., *Annu. Rev. Biochem.* 67:653-92 (1998).

[0146] As described above, activation of some G-protein coupled receptors stimulates the formation of inositol triphosphate (IP3) through phospholipase C-mediated hydrolysis of phosphatidylinositol (Berridge & Irvine, *Nature* 312:315-21 (1984)). IP3 in turn stimulates the release of intracellular calcium ion stores. Thus, a change in cytoplasmic calcium ion levels, or a change in second messenger levels such as IP3 can be used to assess G-protein coupled receptor function. Cells expressing such G-protein coupled receptors may exhibit increased cytoplasmic calcium levels as a result of contribution from both intracellular stores and via activation of ion channels, in which case it may be desirable although not necessary to conduct such assays in calcium-free buffer, optionally supplemented with a chelating agent such as EGTA, to distinguish fluorescence response resulting from calcium release from internal stores.

[0147] In one example, T1R3-comprising taste receptor GPCR activity is measured by expressing a T1R3-comprising taste receptor in a heterologous cell with a promiscuous G-protein that links the receptor to a phospholipase C signal transduction pathway (see Oeffermann & Simon, *J. Biol. Chem.* 270:15175-15180 (1995)). Modulation of signal transduction is assayed by measuring changes in intracellular Ca^{2+} levels, which change in response to modulation of the GPCR signal transduction pathway via administration of a molecule that associates with an T1R3-comprising taste receptor. Changes in Ca^{2+} levels are optionally measured using fluorescent Ca^{2+} indicator dyes and fluorometric imaging.

[0148] In another example, phosphatidyl inositol (PI) hydrolysis can be analyzed according to U.S. Pat. No. 5,436,128, herein incorporated by reference. Briefly, the assay involves labeling of cells with ^3H -myoinositol for 48 or more hrs. The labeled cells are treated with a test compound for one hour. The treated cells are lysed and extracted in chloroform-methanol-water after which the inositol phosphates were separated by ion exchange chromatography and quantified by scintillation counting. Fold stimulation is determined by calculating the ratio of cpm in the presence of agonist to cpm in the presence of buffer control. Likewise, fold inhibition is determined by calculating the ratio of cpm in the presence of antagonist to cpm in the presence of buffer control (which may or may not contain an agonist).

[0149] Other assays can involve determining the activity of receptors which, when activated, result in a change in the level of intracellular cyclic nucleotides, e.g., cAMP or cGMP, by activating or inhibiting enzymes such as adenylyl cyclase. In cases where activation of the receptor results in a decrease in cyclic nucleotide levels, it may be preferable to expose the cells to agents that increase intracellular cyclic nucleotide levels, e.g., forskolin, prior to adding a receptor-activating compound to the cells in the assay.

[0150] In one example, the changes in intracellular cAMP or cGMP can be measured using immunoassays. The method described in Oeffermann & Simon, *J. Biol. Chem.* 270:15175-15180 (1995) may be used to determine the level of cAMP. Also, the method described in Felley-Bosco et al., *Am. J. Resp. Cell and Mol. Biol.* 11:159-164 (1994) may be used to determine the level of cGMP. Further, an assay kit for measuring cAMP and/or cGMP is described in U.S. Pat. No. 4,115,538, herein incorporated by reference.

[0151] In one example, assays for G-protein coupled receptor activity include cells that are loaded with ion or voltage sensitive dyes to report receptor activity. Assays for determining activity of such receptors can also use known agonists and antagonists for other G-protein coupled receptors as negative or positive controls to assess activity of tested compounds. In assays for identifying modulatory compounds (e.g., agonists, antagonists), changes in the level of ions in the cytoplasm or membrane voltage will be monitored using an ion sensitive or membrane voltage fluorescent indicator, respectively. Among the ion-sensitive indicators and voltage probes that may be employed are those disclosed in the Molecular Probes 1997 Catalog. For G-protein coupled receptors, promiscuous G-proteins such as $\text{G}\alpha 15$ and $\text{G}\alpha 16$ can be used in the assay of choice (Wilkie et al., *Proc. Nat'l Acad. Sci. USA* 88:10049-10053 (1991)). Such promiscuous G-proteins allow coupling of a wide range of receptors.

[0152] Animal Models

[0153] Animal models of taste also find use in screening for modulators of taste, such as the T1R knockout mouse strains as described herein. Transgenic animal technology including gene knockout technology, for example as a result of homologous recombination with an appropriate gene targeting vector, or gene overexpression, will result in the absence or increased expression of the T1R3-comprising receptor or components thereof. When desired, tissue-specific expression or knockout of the T1R3-comprising receptors or components thereof may be necessary. Transgenic animals generated by such methods find use as animal models of taste modulation and are additionally useful in screening for modulators of taste modulation.

[0154] B. Modulators

[0155] The compounds tested as modulators of T1R3-comprising taste receptors can be any small organic molecule, or a biological entity, such as a protein, e.g., an antibody or peptide, an amino acid, a lipid, a fat, a sugar, e.g., a mono-, di-, or polysaccharide, a nucleic acid, e.g., an antisense oligonucleotide or a ribozyme, or a small organic molecule. Alternatively, modulators can be genetically altered versions of a T1R3-comprising taste receptor. Typically, test compounds will be small organic molecules, amino acids, peptides, lipids, and mono-, di- and polysaccharides.

[0156] Essentially any chemical compound can be used as a potential modulator or ligand in the assays of the invention, although most often compounds can be dissolved in aqueous or organic (especially DMSO-based) solutions are used. The assays are designed to screen large chemical libraries by automating the assay steps and providing compounds from any convenient source to assays, which are typically run in parallel (e.g., in microtiter formats on microtiter plates in robotic assays). It will be appreciated that there are many suppliers of chemical compounds, including Sigma (St. Louis, Mo.), Aldrich (St. Louis, Mo.), Sigma-Aldrich (St. Louis, Mo.), Fluka Chemika-Biochemica Analytika (Buchs Switzerland) and the like.

[0157] In one preferred embodiment, high throughput screening methods involve providing a combinatorial small organic molecule or peptide library containing a large number of potential therapeutic compounds (potential modulator

or ligand compounds). Such "combinatorial chemical libraries" or "ligand libraries" are then screened in one or more assays, as described herein, to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

[0158] A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis, by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library such as a polypeptide library is formed by combining a set of chemical building blocks (amino acids) in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks.

[0159] Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Pat. No. 5,010,175, Furka, *Int. J. Pept. Prot. Res.* 37:487-493 (1991) and Houghton et al., *Nature* 354:84-88 (1991)). Other chemistries for generating chemical diversity libraries can also be used. Such chemistries include, but are not limited to: peptoids (e.g., PCT Publication No. WO 91/19735), encoded peptides (e.g., PCT Publication No. WO 93/20242), random bio-oligomers (e.g., PCT Publication No. WO 92/00091), benzodiazepines (e.g., U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs et al., *Proc. Nat. Acad. Sci. USA* 90:6909-6913 (1993)), vinylogous polypeptides (Hagihara et al., *J. Amer. Chem. Soc.* 114:6568 (1992)), nonpeptidal peptidomimetics with glucose scaffolding (Hirschmann et al., *J. Amer. Chem. Soc.* 114:9217-9218 (1992)), analogous organic syntheses of small compound libraries (Chen et al., *J. Amer. Chem. Soc.* 116:2661 (1994)), oligocarbamates (Cho et al., *Science* 261:1303 (1993)), and/or peptidyl phosphonates (Campbell et al., *J. Org. Chem.* 59:658 (1994)), nucleic acid libraries (see Ausubel, Berger and Sambrook, all *supra*), peptide nucleic acid libraries (see, e.g., U.S. Pat. No. 5,539,083), antibody libraries (see, e.g., Vaughn et al., *Nature Biotechnology*, 14(3):309-314 (1996) and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang et al., *Science*, 274:1520-1522 (1996) and U.S. Pat. No. 5,593,853), small organic molecule libraries (see, e.g., benzodiazepines, Baum C&EN, Jan. 18, page 33 (1993); isoprenoids, U.S. Pat. No. 5,569,588; thiazolidinones and metathiazanones, U.S. Pat. No. 5,549,974; pyrrolidines, U.S. Pat. Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Pat. No. 5,506,337; benzodiazepines, U.S. Pat. No. 5,288,514, and the like).

[0160] Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville Ky., Symphony, Rainin, Woburn, Mass., 433A Applied Biosystems, Foster City, Calif., 9050 Plus, Millipore, Bedford, Mass.). In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, Mo., ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, Pa., Martek Biosciences, Columbia, Md., etc.).

[0161] C. Solid State and Soluble High Throughput Assays

[0162] In one embodiment the invention provides soluble assays using a T1R3-comprising taste receptor, or a cell or tissue expressing a T1R3-comprising taste receptor, either naturally occurring or recombinant. In another embodiment, the invention provides solid phase based *in vitro* assays in a high throughput format, where the T1R3-comprising taste receptor is attached to a solid phase substrate. Any one of the assays described herein can be adapted for high throughput screening, e.g., ligand binding, cellular proliferation, cell surface marker flux, e.g., screening, radiolabeled GTP binding, second messenger flux, e.g., Ca^{2+} , IP3, cGMP, or cAMP, cytokine production, etc.

[0163] In the high throughput assays of the invention, either soluble or solid state, it is possible to screen up to several thousand different modulators or ligands in a single day. This methodology can be used for T1R3-comprising taste receptors *in vitro*, or for cell-based or membrane-based assays comprising T1R3-comprising taste receptors. In particular, each well of a microtiter plate can be used to run a separate assay against a selected potential modulator, or, if concentration or incubation time effects are to be observed, every 5-10 wells can test a single modulator. Thus, a single standard microtiter plate can assay about 100 (e.g., 96) modulators. If 1536 well plates are used, then a single plate can easily assay from about 100-about 1500 different compounds. It is possible to assay many plates per day; assay screens for up to about 6,000, 20,000, 50,000, or more than 100,000 different compounds are possible using the integrated systems of the invention.

[0164] For a solid state reaction, the protein of interest or a fragment thereof, e.g., an extracellular domain, or a cell or membrane comprising the protein of interest or a fragment thereof as part of a fusion protein can be bound to the solid state component, directly or indirectly, via covalent or non covalent linkage e.g., via a tag. The tag can be any of a variety of components. In general, a molecule which binds the tag (a tag binder) is fixed to a solid support, and the tagged molecule of interest is attached to the solid support by interaction of the tag and the tag binder.

[0165] A number of tags and tag binders can be used, based upon known molecular interactions well described in the literature. For example, where a tag has a natural binder, for example, biotin, protein A, or protein G, it can be used in conjunction with appropriate tag binders (avidin, streptavidin, neutravidin, the Fc region of an immunoglobulin, etc.) Antibodies to molecules with natural binders such as biotin are also widely available and appropriate tag binders; see, SIGMA Immunochemicals 1998 catalogue SIGMA, St. Louis Mo.).

[0166] Similarly, any haptenic or antigenic compound can be used in combination with an appropriate antibody to form a tag/tag binder pair. Thousands of specific antibodies are commercially available and many additional antibodies are described in the literature. For example, in one common configuration, the tag is a first antibody and the tag binder is a second antibody which recognizes the first antibody. In addition to antibody-antigen interactions, receptor-ligand interactions are also appropriate as tag and tag-binder pairs. For example, agonists and antagonists of cell membrane receptors (e.g., cell receptor-ligand interactions such as

transferrin, c-kit, viral receptor ligands, cytokine receptors, chemokine receptors, interleukin receptors, immunoglobulin receptors and antibodies, the cadherin family, the integrin family, the selectin family, and the like; see, e.g., Pigott & Power, *The Adhesion Molecule Facts Book I* (1993). Similarly, toxins and venoms, viral epitopes, hormones (e.g., opiates, steroids, etc.), intracellular receptors (e.g. which mediate the effects of various small ligands, including steroids, thyroid hormone, retinoids and vitamin D; peptides), drugs, lectins, sugars, nucleic acids (both linear and cyclic polymer configurations), oligosaccharides, proteins, phospholipids and antibodies can all interact with various cell receptors.

[0167] Synthetic polymers, such as polyurethanes, polyesters, polycarbonates, polyureas, polyamides, polyethyleneimines, polyarylene sulfides, polysiloxanes, polyimides, and polyacetates can also form an appropriate tag or tag binder. Many other tag/tag binder pairs are also useful in assay systems described herein, as would be apparent to one of skill upon review of this disclosure.

[0168] Common linkers such as peptides, polyethers, and the like can also serve as tags, and include polypeptide sequences, such as poly gly sequences of between about 5 and 200 amino acids. Such flexible linkers are known to persons of skill in the art. For example, poly(ethelyne glycol) linkers are available from Shearwater Polymers, Inc. Huntsville, Ala. These linkers optionally have amide linkages, sulphydryl linkages, or heterofunctional linkages.

[0169] Tag binders are fixed to solid substrates using any of a variety of methods currently available. Solid substrates are commonly derivatized or functionalized by exposing all or a portion of the substrate to a chemical reagent which fixes a chemical group to the surface which is reactive with a portion of the tag binder. For example, groups which are suitable for attachment to a longer chain portion would include amines, hydroxyl, thiol, and carboxyl groups. Aminoalkylsilanes and hydroxyalkylsilanes can be used to functionalize a variety of surfaces, such as glass surfaces. The construction of such solid phase biopolymer arrays is well described in the literature. See, e.g., Merrifield, *J. Am. Chem. Soc.* 85:2149-2154 (1963) (describing solid phase synthesis of, e.g., peptides); Geysen et al., *J. Immun. Meth.* 102:259-274 (1987) (describing synthesis of solid phase components on pins); Frank & Doring, *Tetrahedron* 44:60316040 (1988) (describing synthesis of various peptide sequences on cellulose disks); Fodor et al., *Science*, 251:767-777 (1991); Sheldon et al., *Clinical Chemistry* 39(4):718-719 (1993); and Kozal et al., *Nature Medicine* 2(7):753759 (1996) (all describing arrays of biopolymers fixed to solid substrates). Non-chemical approaches for fixing tag binders to substrates include other common methods, such as heat, cross-linking by UV radiation, and the like.

Immunological Detection of T1R3-Comprising Receptors

[0170] In addition to the detection of T1R genes and gene expression using nucleic acid hybridization technology, one can also use immunoassays to detect T1R3-comprising taste receptors of the invention. Such assays are useful for screening for modulators of T1R3-comprising taste receptors, as well as for therapeutic and diagnostic applications. Immunoassays can be used to qualitatively or quantitatively analyze T1R3-comprising taste receptors. A general overview of the applicable technology can be found in Harlow & Lane, *Antibodies: A Laboratory Manual* (1988).

[0171] A. Production of Antibodies

[0172] Methods of producing polyclonal and monoclonal antibodies that react specifically with the T1R proteins and T1R3-comprising taste receptors are known to those of skill in the art (see, e.g., Coligan, *Current Protocols in Immunology* (1991); Harlow & Lane, supra; Goding, *Monoclonal Antibodies: Principles and Practice* (2d ed. 1986); and Kohler & Milstein, *Nature* 256:495-497 (1975). Such techniques include antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors, as well as preparation of polyclonal and monoclonal antibodies by immunizing rabbits or mice (see, e.g., Huse et al., *Science* 246:1275-1281 (1989); Ward et al., *Nature* 341:544-546 (1989)).

[0173] A number of immunogens comprising portions of T1R protein or T1R3-comprising taste receptor may be used to produce antibodies specifically reactive with T1R protein. For example, recombinant T1R protein or an antigenic fragment thereof, can be isolated as described herein. Recombinant protein can be expressed in eukaryotic or prokaryotic cells as described above, and purified as generally described above. Recombinant protein is the preferred immunogen for the production of monoclonal or polyclonal antibodies. Alternatively, a synthetic peptide derived from the sequences disclosed herein and conjugated to a carrier protein can be used as an immunogen. Naturally occurring protein may also be used either in pure or impure form. The product is then injected into an animal capable of producing antibodies. Either monoclonal or polyclonal antibodies may be generated, for subsequent use in immunoassays to measure the protein.

[0174] Methods of production of polyclonal antibodies are known to those of skill in the art. An inbred strain of mice (e.g., BALB/C mice) or rabbits is immunized with the protein using a standard adjuvant, such as Freund's adjuvant, and a standard immunization protocol. The animal's immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to the beta subunits. When appropriately high titers of antibody to the immunogen are obtained, blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich for antibodies reactive to the protein can be done if desired (see, Harlow & Lane, supra).

[0175] Monoclonal antibodies may be obtained by various techniques familiar to those skilled in the art. Briefly, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell (see, Kohler & Milstein, *Eur. J. Immunol.* 6:511-519 (1976)). Alternative methods of immortalization include transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other methods well known in the art. Colonies arising from single immortalized cells are screened for production of antibodies of the desired specificity and affinity for the antigen, and yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host. Alternatively, one may isolate DNA

sequences which encode a monoclonal antibody or a binding fragment thereof by screening a DNA library from human B cells according to the general protocol outlined by Huse, et al., *Science* 246:1275-1281 (1989).

[0176] Monoclonal antibodies and polyclonal sera are collected and titered against the immunogen protein in an immunoassay, for example, a solid phase immunoassay with the immunogen immobilized on a solid support. Typically, polyclonal antisera with a titer of 10⁴ or greater are selected and tested for their cross reactivity against non-T1R or T1R3-comprising taste receptor proteins, using a competitive binding immunoassay. Specific polyclonal antisera and monoclonal antibodies will usually bind with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Antibodies specific only for a particular T1R3-comprising taste receptor ortholog, such as human T1R3-comprising taste receptor, can also be made, by subtracting out other cross-reacting orthologs from a species such as a non-human mammal. In addition, individual T1R proteins can be used to subtract out antibodies that bind both to the receptor and the individual T1R proteins. In this manner, antibodies that bind only to a particular receptor may be obtained.

[0177] Once the specific antibodies against T1R3-comprising taste receptors are available, the protein can be detected by a variety of immunoassay methods. In addition, the antibody can be used therapeutically as a T1R3-comprising taste receptor modulators. For a review of immunological and immunoassay procedures, see *Basic and Clinical Immunology* (Sites & Terr eds., 7th ed. 1991). Moreover, the immunoassays of the present invention can be performed in any of several configurations, which are reviewed extensively in Enzyme Immunoassay (Maggio, ed., 1980); and Harlow & Lane, *supra*.

[0178] B. Immunological Binding Assays

[0179] T1R3-comprising taste receptors can be detected and/or quantified using any of a number of well recognized immunological binding assays (see, e.g., U.S. Pat. Nos. 4,366,241; 4,376,110; 4,517,288; and 4,837,168). For a review of the general immunoassays, see also *Methods in Cell Biology: Antibodies in Cell Biology*, volume 37 (Asai, ed. 1993); *Basic and Clinical Immunology* (Sites & Terr, eds., 7th ed. 1991). Immunological binding assays (or immunoassays) typically use an antibody that specifically binds to a protein or antigen of choice (in this case the T1R3-comprising taste receptor or antigenic subsequence thereof). The antibody (e.g., anti-T1R3-comprising taste receptor) may be produced by any of a number of means well known to those of skill in the art and as described above.

[0180] Immunoassays also often use a labeling agent to specifically bind to and label the complex formed by the antibody and antigen. The labeling agent may itself be one of the moieties comprising the antibody/antigen complex. Thus, the labeling agent may be a labeled T1R3-comprising taste receptor or a labeled anti-T1R3-comprising taste receptor antibody. Alternatively, the labeling agent may be a third moiety, such a secondary antibody, that specifically binds to the antibody/T1R3-comprising taste receptor complex (a secondary antibody is typically specific to antibodies of the species from which the first antibody is derived). Other

proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G may also be used as the label agent. These proteins exhibit a strong non-immunogenic reactivity with immunoglobulin constant regions from a variety of species (see, e.g., Kronval et al., *J. Immunol.* 111: 1401-1406 (1973); Akerstrom et al., *J. Immunol.* 135:2589-2542 (1985)). The labeling agent can be modified with a detectable moiety, such as biotin, to which another molecule can specifically bind, such as streptavidin. A variety of detectable moieties are well known to those skilled in the art.

[0181] Throughout the assays, incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, optionally from about 5 minutes to about 24 hours. However, the incubation time will depend upon the assay format, antigen, volume of solution, concentrations, and the like. Usually, the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures, such as 10° C. to 40° C.

[0182] Non-Competitive Assay Formats

[0183] Immunoassays for detecting T1R3-comprising taste receptors in samples may be either competitive or noncompetitive. Noncompetitive immunoassays are assays in which the amount of antigen is directly measured. In one preferred "sandwich" assay, for example, the anti-T1R3-comprising taste receptor antibodies can be bound directly to a solid substrate on which they are immobilized. These immobilized antibodies then capture T1R3-comprising taste receptors present in the test sample. T1R3-comprising taste receptors thus immobilized are then bound by a labeling agent, such as a second T1R3-comprising taste receptor antibody bearing a label. Alternatively, the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived. The second or third antibody is typically modified with a detectable moiety, such as biotin, to which another molecule specifically binds, e.g., streptavidin, to provide a detectable moiety.

[0184] Competitive Assay Formats

[0185] In competitive assays, the amount of T1R3-comprising taste receptor present in the sample is measured indirectly by measuring the amount of a known, added (exogenous) T1R3-comprising taste receptor displaced (competed away) from an anti-T1R3-comprising taste receptor antibody by the unknown T1R3-comprising taste receptor present in a sample. In one competitive assay, a known amount of T1R3-comprising taste receptor is added to a sample and the sample is then contacted with an antibody that specifically binds to a T1R3-comprising taste receptor. The amount of exogenous T1R3-comprising taste receptor bound to the antibody is inversely proportional to the concentration of T1R3-comprising taste receptor present in the sample. In a particularly preferred embodiment, the antibody is immobilized on a solid substrate. The amount of T1R3-comprising taste receptor bound to the antibody may be determined either by measuring the amount of T1R3-comprising taste receptor present in a T1R3-comprising taste receptor/antibody complex, or alternatively by measuring the amount of remaining uncomplexed protein. The amount of T1R3-comprising taste receptor may be detected by providing a labeled T1R3-comprising taste receptor molecule.

[0186] A hapten inhibition assay is another preferred competitive assay. In this assay the known T1R3-comprising taste receptor is immobilized on a solid substrate. A known amount of anti-T1R3-comprising taste receptor antibody is added to the sample, and the sample is then contacted with the immobilized T1R3-comprising taste receptor. The amount of anti-T1R3-comprising taste receptor antibody bound to the known immobilized T1R3-comprising taste receptor is inversely proportional to the amount of T1R3-comprising taste receptor present in the sample. Again, the amount of immobilized antibody may be detected by detecting either the immobilized fraction of antibody or the fraction of the antibody that remains in solution. Detection may be direct where the antibody is labeled or indirect by the subsequent addition of a labeled moiety that specifically binds to the antibody as described above.

[0187] Cross-Reactivity Determinations

[0188] Immunoassays in the competitive binding format can also be used for crossreactivity determinations. For example, a T1R3-comprising taste receptor can be immobilized to a solid support. Proteins (e.g., T1R3-comprising taste receptors and homologs) are added to the assay that compete for binding of the antisera to the immobilized antigen. The ability of the added proteins to compete for binding of the antisera to the immobilized protein is compared to the ability of the T1R3-comprising taste receptor to compete with itself. The percent crossreactivity for the above proteins is calculated, using standard calculations. Those antisera with less than 10% crossreactivity with each of the added proteins listed above are selected and pooled. The cross-reacting antibodies are optionally removed from the pooled antisera by immunoabsorption with the added considered proteins, e.g., distantly related homologs.

[0189] The immunoabsorbed and pooled antisera are then used in a competitive binding immunoassay as described above to compare a second protein, thought to be perhaps an allele or polymorphic variant of a T1R3-comprising taste receptor, to the immunogen protein. In order to make this comparison, the two proteins are each assayed at a wide range of concentrations and the amount of each protein required to inhibit 50% of the binding of the antisera to the immobilized protein is determined. If the amount of the second protein required to inhibit 50% of binding is less than 10 times the amount of the T1R3-comprising taste receptor that is required to inhibit 50% of binding, then the second protein is said to specifically bind to the polyclonal antibodies generated to a T1R3-comprising taste receptor immunogen.

[0190] Other Assay Formats

[0191] Western blot (immunoblot) analysis is used to detect and quantify the presence of T1R3-comprising taste receptors in the sample. The technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support, (such as a nitrocellulose filter, a nylon filter, or derivatized nylon filter), and incubating the sample with the antibodies that specifically bind T1R3-comprising taste receptors. The anti-T1R3-comprising taste receptor antibodies specifically bind to the T1R3-comprising taste receptor on the solid support. These antibodies may be directly labeled or alternatively may be subsequently detected using labeled antibodies (e.g., labeled

sheep anti-mouse antibodies) that specifically bind to the anti-T1R3-comprising taste receptor antibodies.

[0192] Other assay formats include liposome immunoassays (LIA), which use liposomes designed to bind specific molecules (e.g., antibodies) and release encapsulated reagents or markers. The released chemicals are then detected according to standard techniques (see Monroe et al., *Amer. Clin. Prod. Rev.* 5:34-41 (1986)).

[0193] Reduction of Non-Specific Binding

[0194] One of skill in the art will appreciate that it is often desirable to minimize non-specific binding in immunoassays. Particularly, where the assay involves an antigen or antibody immobilized on a solid substrate it is desirable to minimize the amount of non-specific binding to the substrate. Means of reducing such non-specific binding are well known to those of skill in the art. Typically, this technique involves coating the substrate with a proteinaceous composition. In particular, protein compositions such as bovine serum albumin (BSA), nonfat powdered milk, and gelatin are widely used with powdered milk being most preferred.

[0195] Labels

[0196] The particular label or detectable group used in the assay is not a critical aspect of the invention, as long as it does not significantly interfere with the specific binding of the antibody used in the assay. The detectable group can be any material having a detectable physical or chemical property. Such detectable labels have been well-developed in the field of immunoassays and, in general, most any label useful in such methods can be applied to the present invention. Thus, a label is any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Useful labels in the present invention include magnetic beads (e.g., DYNABEADS™), fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like), radiolabels (e.g., ³H, ¹²⁵I, ³⁵S, ¹⁴C, or ³²P), enzymes (e.g., horse radish peroxidase, alkaline phosphatase and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic beads (e.g., polystyrene, polypropylene, latex, etc.).

[0197] The label may be coupled directly or indirectly to the desired component of the assay according to methods well known in the art. As indicated above, a wide variety of labels may be used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions.

[0198] Non-radioactive labels are often attached by indirect means. Generally, a ligand molecule (e.g., biotin) is covalently bound to the molecule. The ligand then binds to another molecules (e.g., streptavidin) molecule, which is either inherently detectable or covalently bound to a signal system, such as a detectable enzyme, a fluorescent compound, or a chemiluminescent compound. The ligands and their targets can be used in any suitable combination with antibodies that recognize T1R3-comprising taste receptors, or secondary antibodies that recognize anti-T1R3-comprising taste receptor.

[0199] The molecules can also be conjugated directly to signal generating compounds, e.g., by conjugation with an

enzyme or fluorophore. Enzymes of interest as labels will primarily be hydrolases, particularly phosphatases, esterases and glycosidases, or oxidases, particularly peroxidases. Fluorescent compounds include fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, etc. Chemiluminescent compounds include luciferin, and 2,3-dihydrophthalazinediones, e.g., luminol. For a review of various labeling or signal producing systems that may be used, see U.S. Pat. No. 4,391,904.

[0200] Means of detecting labels are well known to those of skill in the art. Thus, for example, where the label is a radioactive label, means for detection include a scintillation counter or photographic film as in autoradiography. Where the label is a fluorescent label, it may be detected by exciting the fluorochrome with the appropriate wavelength of light and detecting the resulting fluorescence. The fluorescence may be detected visually, by means of photographic film, by the use of electronic detectors such as charge coupled devices (CCDs) or photomultipliers and the like. Similarly, enzymatic labels may be detected by providing the appropriate substrates for the enzyme and detecting the resulting reaction product. Finally simple colorimetric labels may be detected simply by observing the color associated with the label. Thus, in various dipstick assays, conjugated gold often appears pink, while various conjugated beads appear the color of the bead.

[0201] Some assay formats do not require the use of labeled components. For instance, agglutination assays can be used to detect the presence of the target antibodies. In this case, antigen-coated particles are agglutinated by samples comprising the target antibodies. In this format, none of the components need be labeled and the presence of the target antibody is detected by simple visual inspection.

[0202] Pharmaceutical Compositions and Administration

[0203] Pharmaceutically acceptable carriers are determined in part by the particular composition being administered (e.g., nucleic acid, oligonucleotide, amino acid, protein, peptide, small organic molecule, lipid, carbohydrate, mono-, di- or polysaccharide, particle, or transduced cell), as well as by the particular method used to administer the composition. Accordingly, there are a wide variety of suitable formulations of pharmaceutical compositions of the present invention (see, e.g., *Remington's Pharmaceutical Sciences*, 17th ed., 1989). Administration can be in any convenient manner, e.g., by injection, oral administration, inhalation, transdermal application, or rectal administration.

[0204] Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the packaged nucleic acid suspended in diluents, such as water, saline or PEG 400; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin; (c) suspensions in an appropriate liquid; and (d) suitable emulsions. Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium phosphates, corn starch, potato starch, microcrystalline cellulose, gelatin, colloidal silicon dioxide, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible carriers. Lozenge forms can comprise the active ingredient in a flavor, e.g., sucrose, as well as pastilles comprising the

active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.

[0205] The compound of choice, alone or in combination with other suitable components, can be made into aerosol formulations (i.e., they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.

[0206] Formulations suitable for parenteral administration, such as, for example, by intraarticular (in the joints), intravenous, intramuscular, intradermal, intraperitoneal, and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain anti-oxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or intrathecally. Parenteral administration and intravenous administration are the preferred methods of administration. The formulations of commands can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials.

[0207] Injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described. Cells transduced by nucleic acids for ex vivo therapy can also be administered intravenously or parenterally as described above.

[0208] The dose administered to a patient, in the context of the present invention should be sufficient to effect a beneficial therapeutic response in the patient over time. The dose will be determined by the efficacy of the particular vector employed and the condition of the patient, as well as the body weight or surface area of the patient to be treated. The size of the dose also will be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular vector, or transduced cell type in a particular patient.

[0209] In determining the effective amount of the vector to be administered in the treatment or prophylaxis of conditions owing to diminished or aberrant expression of a T1R3-comprising taste receptor, the physician evaluates circulating plasma levels of the vector, vector toxicities, progression of the disease, and the production of anti-vector antibodies. In general, the dose equivalent of a naked nucleic acid from a vector is from about 1 μ g to 100 μ g for a typical 70 kilogram patient, and doses of vectors which include a retroviral particle are calculated to yield an equivalent amount of therapeutic nucleic acid.

[0210] For administration, compounds and transduced cells of the present invention can be administered at a rate determined by the LD-50 of the inhibitor, vector, or transduced cell type, and the side-effects of the inhibitor, vector or cell type at various concentrations, as applied to the mass and overall health of the patient. Administration can be accomplished via single or divided doses.

[0211] Cellular Transfection and Gene Therapy

[0212] The present invention provides the nucleic acids of T1R3-comprising taste receptors for the transfection of cells in vitro and in vivo. These nucleic acids can be inserted into any of a number of well-known vectors for the transfection of target cells and organisms as described below. The nucleic acids are transfected into cells, ex vivo or in vivo, through the interaction of the vector and the target cell. The nucleic acid, under the control of a promoter, then expresses a T1R3-comprising taste receptor of the present invention, by co-expressing two members of the T1R family, thereby mitigating the effects of absent, partial inactivation, or abnormal expression of a T1R3-comprising taste receptor. The compositions are administered to a patient in an amount sufficient to elicit a therapeutic response in the patient. An amount adequate to accomplish this is defined as "therapeutically effective dose or amount."

[0213] Such gene therapy procedures have been used to correct acquired and inherited genetic defects and other diseases in a number of contexts. The ability to express artificial genes in humans facilitates the prevention and/or cure of many important human diseases, including many diseases which are not amenable to treatment by other therapies (for a review of gene therapy procedures, see Anderson, *Science* 256:808-813 (1992); Nabel & Felgner, TIBTECH 11:211-217 (1993); Mitani & Caskey, TIBTECH 11:162-166 (1993); Mulligan, *Science* 926-932 (1993); Dillon, TIBTECH 11:167-175 (1993); Miller, *Nature* 357:455-460 (1992); Van Brunt, *Biotechnology* 6(10):1149-1154 (1998); Vigne, *Restorative Neurology and Neuroscience* 8:35-36 (1995); Kremer & Perricaudet, *British Medical Bulletin* 51(1):31-44 (1995); Haddada et al., in *Current Topics in Microbiology and Immunology* (Doerfler & Böhm eds., 1995); and Yu et al., *Gene Therapy* 1: 13-26 (1994)).

References

[0214] Adler, E., Hoon, M. A., Mueller, K. L., Chandrashekhar, J., Ryba, N. J. P., and Zuker, C. S. (2000). A novel family of mammalian taste receptors. *Cell* 100, 693-702.

[0215] Bachmanov, A. A., Reed, D. R., Ninomiya, Y., Inoue, M., Tordoff, M. G., Price, R. A., and Beauchamp, G. K. (1997). Sucrose consumption in mice: major influence of two genetic loci affecting peripheral sensory responses. *Mamm. Genome* 8, 545-548.

[0216] Baker, E. K., Colley, N. J., and Zuker, C. S. (1994). The cyclophilin homolog NinaA functions as a chaperone, forming a stable complex in vivo with its protein target rhodopsin. *EMBO J.* 13, 4886-4895.

[0217] Boughter Jr., J. D., Pumplin, D. W., Yu, C., Christy, R. C., and Smith, D. V. (1997). Differential expression of alpha-gustducin in taste bud populations of the rat and hamster. *J. Neurosci.* 17, 2852-2858.

[0218] Brown, E. M., Gamba, G., Riccardi, D., Lombardi, M., Butters, R., Kifor, O., Sun, A., Hediger, M. A., Lytton, J., and Hebert, S. C. (1993). Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. *Nature* 366, 575-580.

[0219] Capeless, C. G., and Whitney, G. (1995). The genetic basis of preference for sweet substances among inbred strains of mice: preference ratio phenotypes and the alleles of the Sac and DNA loci. *Chem. Senses* 20, 291-298.

[0220] Chandrashekhar, J., Mueller, K. L., Hoon, M. A., Adler, E., Feng, L., Guo, W., Zuker, C. S., and Ryba, N. J. P. (2000). T2Rs function as bitter taste receptors. *Cell* 100, 703-11.

[0221] Danilova, V., Hellekant, G., Tinti, J.-M., and Nofre, C. (1998). Gustatory Responses of the Hamster *Mesocricetus auratus* to Various Compounds Considered Sweet by Humans. *J. Neurophysiol.* 80, 2102-2112.

[0222] Dwyer, N. D., Troemel, E. R., Sengupta, P., and Bargmann, C. I. (1998). Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. *Cell* 93, 455-466.

[0223] Fuller, J. L. (1974). Single-locus control of saccharin preference in mice. *J. Hered.* 65, 33-36.

[0224] Herrada, G., and Dulac, C. (1997). A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. *Cell* 90, 763-773.

[0225] Hoon, M. A., Adler, E., Lindemeier, J., Battey, J. F., Ryba, N. J. P., and Zuker, C. S. (1999). Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. *Cell* 96, 541-551.

[0226] Kaupmann, K., Huggel, K., Heid, J., Flor, P. J., Bischoff, S., Mickel, S. J., McMaster, G., Angst, C., Bittiger, H., Froestl, W., and Bettler, B. (1997). Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. *Nature* 386, 239-246.

[0227] Kitagawa, M., Kusakabe, Y., Miura, H., Ninomiya, Y., and Hino, A. (2001). Molecular genetic identification of a candidate receptor gene for sweet taste. *Biochem. Biophys. Res. Commun.* 283, 236-242.

[0228] Krautwurst, D., Yau, K. W., and Reed, R. R. (1998). Identification of ligands for olfactory receptors by functional expression of a receptor library. *Cell* 95, 917-926.

[0229] Lefkowitz, R. J., Inglese, J., Koch, W. J., Pitcher, J., Attramadal, H., and Caron, M. G. (1992). G-protein-coupled receptors: regulatory role of receptor kinases and arrestin proteins. *Cold Spring Harb. Symp. Quant. Biol.* 57, 127-133.

[0230] Li, X., Inoue, M., Reed, D. R., Huque, T., Puchalski, R. B., Tordoff, M. G., Ninomiya, Y., Beauchamp, G. K., and Bachmanov, A. A. (2001). High-resolution genetic mapping of the saccharin preference locus (Sac) and the putative sweet taste receptor (T1R1) gene (Gpr70) to mouse distal Chromosome 4. *Mamm. Genome* 12, 13-16.

[0231] Lindemann, B. (1996). Taste reception. *Physiol. Rev.* 76, 718-766.

[0232] Lush, I. E. (1989). The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose. *Genet. Res.* 53, 95-99.

[0233] Matsunami, H., and Buck, L. B. (1997). A multi-gene family encoding a diverse array of putative pheromone receptors in mammals. *Cell* 90, 775-784.

[0234] Matsunami, H., Montmayeur, J. P., and Buck, L. B. (2000). A family of candidate taste receptors in human and mouse. *Nature* 404, 601-604.

[0235] Max, M., Shanker, Y. G., Huang, L., Rong, M., Liu, Z., Campagne, F., Weinstein, H., Damak, S., and Margol-

skee, R. F. (2001). Tas1r3, encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac. *Nat. Genet.* 28, 58-63.

[0236] McBurney, D. H., and Gent, J. F. (1979). On the nature of taste qualities. *Psychol. Bull.* 86, 151-167.

[0237] Mistretta, C. M., and Hill, D. L. (1995). Development of the taste system. Basic neurobiology. In *Handbook of olfaction and gustation*, R. L. Doty, ed. (New York: Marcel Dekker), pp. 635-668.

[0238] Mody, S. M., Ho, M. K., Joshi, S. A., and Wong, Y. H. (2000). Incorporation of Galpha(z)-specific sequence at the carboxyl terminus increases the promiscuity of galpha(16) toward G(i)-coupled receptors. *Mol. Pharmacol.* 57, 13-23.

[0239] Montmayeur, J. P., Liberles, S. D., Matsunami, H., and Buck, L. B. (2001). A candidate taste receptor gene near a sweet taste locus. *Nat. Neurosci.* 4, 492-498.

[0240] Nagarajan, S., Kellogg, M. S., DuBois, G. E., and Hellekant, G. (1996). Understanding the mechanism of sweet taste: synthesis of ultrapotent guanidinoacetic acid photoaffinity labeling reagents. *J. Med. Chem.* 39, 4167-4172.

[0241] Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. *Science* 258, 597-603.

[0242] Ninomiya, Y., Inoue, M., Imoto, T., and Nakashima, K. (1997). Lack of gurnarin sensitivity of sweet taste receptors innervated by the glossopharyngeal nerve in C57BL mice. *Am. J. Physiol.* 272, R1002-R1006.

[0243] Ninomiya, Y., Mizukoshi, T., Higashi, T., Katsukawa, H., and Funakoshi, M. (1984). Gustatory neural responses in three different strains of mice. *Brain Res.* 302, 305-314.

[0244] Offermanns, S., and Simon, M. I. (1995). G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. *J. Biol. Chem.* 270, 15175-80.

[0245] Ryba, N. J. P., and Tirindelli, R. (1997). A new multigene family of putative pheromone receptors. *Neuron* 19, 371-379.

[0246] Sainz, E., Korley, J. N., Battey, J. F., and Sullivan, S. L. (2001). Identification of a novel member of the T1R family of putative taste receptors. *J. Neurochem.* 77, 896-903.

[0247] Salahpour, A., Angers, S., and Bouvier, M. (2000). Functional significance of oligomerization of G-protein-coupled receptors. *Trends Endocrinol. Metab.* 11, 163-168.

[0248] Schiffman, S. S., Cahn, H., and Lindley, M. G. (1981). Multiple receptor sites mediate sweetness: evidence from cross adaptation. *Pharmacol. Biochem. Behav.* 15, 377-388.

[0249] Scott, K., Brady, R., Jr., Cravchik, A., Morozov, P., Rzhetsky, A., Zuker, C., and Axel, R. (2001). A chemosensory gene family encoding candidate gustatory and olfactory receptors in *Drosophila*. *Cell* 104, 661-673.

[0250] Smith, D. V., and Frank, M. E. (1993). Sensory coding by peripheral taste fibers. In *Mechanisms of Taste Transduction*, S. A. Simon and S. D. Roper, eds. (Boca Raton: CRC Press), pp. 295-338.

[0251] Troemel, E. R., Chou, J. H., Dwyer, N. D., Colbert, H. A., and Bargmann, C. I. (1995). Divergent seven transmembrane receptors are candidate chemosensory receptors in *C. elegans*. *Cell* 83, 207-218.

[0252] Tsien, R. Y., Rink, T. J., and Poenie, M. (1985). Measurement of cytosolic free Ca²⁺ in individual small cells using fluorescence microscopy with dual excitation wavelengths. *Cell Calcium* 6, 145-157.

EXAMPLES

[0253] The following examples are offered to illustrate, but not to limit the claimed invention.

Example 1

[0254] Results

[0255] Generation of T1R1, T1R2 and T1R3 KO Mice

[0256] Expression of T1R receptors defines three largely non-overlapping populations of taste cells in the tongue and palate: cells co-expressing T1R1 and T1R3 (T1R1+3), cells co-expressing T1R2 and T1R3 (T1R2+3), and cells expressing T1R3 alone (Nelson, G. et al., *Cell*, 106, 381-390 (2001)). Heterologous expression studies of T1Rs in HEK cells demonstrated that T1R1 and T1R3 combine to form a broadly tuned L-amino acid receptor, while co-expression of T1R2 and T1R3 generates a sweet taste receptor that responds to all classes of sweet-tasting compounds (Nelson, G. et al., *Cell*, 106, 381-390 (2001); Nelson, G. et al., *Nature*, 416, 199-202 (2002); Li, X. et al., *Proc Natl Acad Sci USA*, 99, 4692-4696 (2002)). If T1R3 functions in vivo as a common component of the sweet and amino acid taste receptors, then a knockout of this GPCR should generate mice devoid of sweet and amino acid taste reception. In contrast, knockout of T1R1 or T1R2 might be expected to selectively affect a single taste modality.

[0257] To define the role of T1Rs in vivo, we generated knockout mice that lack each of the T1Rs by deleting exons encoding domains essential for receptor function. **FIG. 1** illustrates the KO strategies and shows *in situ* hybridization experiments demonstrating a complete lack of specific T1R staining in the corresponding homozygous KO animals. In order to ensure that loss of any one T1R did not affect the viability or integrity of taste cells, we also compared the expression of other T1Rs, T2Rs, PLC_B2 (Rossler, P. et al., *Eur J Cell Biol.* 77, 253-261 (1998); Zhang, Y. et al., *Cell*, 112, 293-301 (2003)) and TRPM5 (Perez, C. A. et al., *Nat Neurosci.* 5, 1169-1176 (2002); Zhang, Y. et al., *Cell*, 112, 293-301 (2003)) in control and KO animals. No significant differences were observed in the number or distribution of T1Rs, T2R, PLC_B2 and TRPM5-positive cells between wild type and KO taste tissue (**FIG. 1** and data not shown).

[0258] Two complementary strategies were used to assay the taste responses of the genetically modified mice. First, we recorded tastant-induced action potentials from one of the major nerves innervating taste receptor cells of the tongue (chorda tympani). This physiological assay monitors the activity of the taste system at the periphery, and provides a measure of taste receptor cell function. Second, we examined taste behavior by measuring taste-choices in standard

long-term two-bottle intake preference assays, or by direct counting of immediate licking responses in a multi-channel gustometer (Glendinning, J. I. et al., *Chem Senses*, 27, 461-474 (2002); Zhang, Y. et al., *Cell*, 112, 293-301 (2003); see Experimental Procedures). This second method relies on very short exposures to tastants (5 s events over a total of 30 min versus 48 hrs for two-bottle preference assays), and therefore has the great advantage of minimizing the impact of other sensory inputs, and post-ingestive and learning effects from the assay.

[0259] **FIG. 2** shows that knockouts of T1Rs have no significant effect either on physiological or behavioral responses to citric acid, sodium chloride, and a variety of bitter tastants. These results demonstrate that bitter, salty and sour taste reception and perception operate through pathways independent of T1R receptors, and further substantiate a model of coding at the periphery in which individual modalities operate independently of each other.

[0260] T1R1+3 is the Umami Receptor

[0261] Previously, Chaudhari et al described a truncated variant of the metabotropic glutamate receptor-4 (mGluR4t) and suggested that it functions as the umami taste receptor (Chaudhari, N. et al., *Nat Neurosci*, 3, 113-119 (2000)). We find this proposal unsatisfactory for many reasons. (1) The mGluR4t variant is missing the mGluR4 signal sequence needed for surface targeting. (2) This putative receptor also lacks large fractions of the domains essential for glutamate recognition as revealed by the crystal structure of the glutamate binding domain of mGluR (Kunishima, N., et al., *Nature*, 407, 971-977 (2000)). (3) mGluR4t umami signaling has been proposed to operate via a cAMP pathway (Abaffy, T. et al., *Am J Physiol Cell Physiol*, 284, C1420-1428 (2003); Chaudhari, N. et al., *Nat Neurosci*, 3, 113-119 (2000)). However, amino acid/umami taste is a PLC β 2/TRPM5-dependent process (Zhang, Y. et al., *Cell*, 112, 293-301 (2003)). (4) Umami taste, but not mGluR4 activity, is strongly affected by the umami enhancers IMP and GMP. (5) Finally, mGluR4 KO animals retain responses to umami stimuli (Chaudhari, N., and Roper, S. D., *Ann NY Acad Sci*, 855, 398-406 (1998)). In contrast, recent evidence suggest that the T1R1+3 amino acid receptor may function as the mammalian umami (glutamate) taste sensor: First, the human and rodent T1R1+3 receptors display selectivity and sensitivity differences that mimic amino acid taste differences between rodents and humans (Nelson, G. et al., *Nature*, 416, 199-202 (2002); Yoshii et al., 1986). Second, T1R1+3 activity is reliably enhanced by IMP and GMP, the two best known potentiators of umami taste in vivo (Nelson, G. et al., *Nature*, 416, 199-202 (2002); Li, X. et al., *Proc Natl Acad Sci USA*, 99, 4692-4696 (2002)). Thirdly, T1R1+3 is activated by psychophysically relevant concentrations of the umami agonists L-Asp and L-AP4 (Nelson, G. et al., *Nature*, 416, 199-202 (2002); Li, X. et al., *Proc Natl Acad Sci USA*, 99, 4692-4696 (2002)). In order to rigorously assess the role of T1R1+3 in umami taste, we examined T1R1 and T1R3 KO animals (see **FIG. 1**).

[0262] Because of its Na⁺ content, monosodium glutamate (MSG) evokes both salty and umami taste. We therefore assayed umami responses using several strategies that allowed us to isolate salt taste from that of glutamate in behavioral and electrophysiological studies. These included testing MSG in the presence of the sodium channel blocker

amiloride, using MPG, the potassium salt of glutamate, and testing the umami agonists AP4 and aspartic acid, all in the presence or absence of the umami enhancer IMP. **FIG. 3** shows that when salt effects are minimized, T1R3 KO mice have a dramatic loss of behavioral attraction—and a profound corresponding deficit in physiological responses to all umami tastants—including glutamate, aspartate, glutamate plus IMP, and IMP alone. Very recently, Damak et al independently generated T1R3 KO animals but concluded that multiple umami receptors must exist as significant MSG responses remained in their studies of KO mice (Damak, S. et al., *Science*, 301, 850-853 (2003)). Notably, the MSG responses of the KO animals were strictly independent of IMP, a contradiction given that IMP enhancement is the hallmark of the umami modality. Since salt effects were not accounted for, we suspect that much of their remaining responses reflect Na⁺ content in MSG rather than umami taste (compare responses to MSG+IMP versus MPG+IMP or MSG+IMP+amiloride in **FIG. 3e-f**).

[0263] If T1R1 combines with T1R3 (T1R1+3) to generate the mammalian umami receptor, then a knockout of T1R1 should also eliminate all umami responses. **FIG. 3** demonstrates that this is absolutely the case. In contrast, these very same tastants elicit normal, robust responses in control and in T1R2 KO animals. Together, these results prove that T1R1+3 is the mammalian umami receptor.

[0264] Previously, we showed that in addition to typical umami tastants, the mouse T1R1+3 receptor is also activated by other L-amino amino acids, and in the presence of IMP functions as a broadly tuned L-amino acid sensor (Nelson, G. et al., *Nature*, 416, 199-202 (2002)). Therefore, we tested responses of T1R1 and T1R3 KO animals to L-amino acids in the presence or absence of IMP. Indeed, responses to amino acid tastants are severely defective in T1R1 and T1R3, but not T1R2 KO strains (**FIG. 3**), firmly establishing the T1R1+3 heteromeric GPCR complex as the taste receptor for a wide range of L-amino acids and IMP. Interestingly, when we assayed exceedingly high concentrations of L-amino acids that taste sweet to humans (e.g. >300 mM Ala, Ser, and Thr), T1R1 KO animals, but not T1R3 KO mice retained a small residual attraction (see panel d in **FIG. 3**); these trace behavioral responses likely reflect the activation of the T1R2+3 sweet taste receptor (Nelson, G. et al., *Cell*, 106, 381-390 (2001); see below).

[0265] T1R2+3 and T1R3 are Required for Sweet Reception and Perception

[0266] T1R2+3 functions in cell based assays as a heteromeric receptor for diverse chemical classes of sweet compounds including natural sugars, artificial sweeteners, D-amino acids and sweet-tasting proteins (Nelson, G. et al., *Cell*, 106, 381-390 (2001); Li, X. et al., *Proc Natl Acad Sci USA*, 99, 4692-4696 (2002)). However, a number of studies have suggested that animals may express distinct types of sweet receptors (Schiffman, S. S. et al., *Pharmacol Biochem Behav*, 15, 377-388 (1981); Ninomiya, Y. et al., *J Neurophysiol*, 81, 3087-3091 (1999)). To define the role of T1R2+3 in vivo, we examined sweet responses of knockout mice that lack functional T1R2 and T1R3 proteins. **FIGS. 4** and **5** demonstrate that responses to all classes of sweet tastants are dramatically impaired in T1R2 and T1R3 knockout strains. We tested a broad panel of sugars, artificial sweeteners and D-amino acids, and in all cases responses

were severely defective: behavioral attraction is nearly abolished and nerve responses are greatly diminished. These results confirm T1R2+3 as the principal sweet taste sensor in vivo.

[0267] Notably, very high concentrations (>300 mM) of natural sugars, but not of artificial sweeteners or D-amino acids, elicited modest but detectable attractive responses in both T1R2 and T1R3 knockout strains. Thus, either there are additional sweet taste receptors (i.e. T1R-independent pathways), or T1R2 and T1R3 may also function on their own as low affinity receptors for natural sugars in the absence of their heteromeric partners. If the remaining responses are in fact due to T1R2 or T1R3, then a double knockout of these GPCRs should eliminate all sweet responses. Since T1R2 and T1R3 loci are linked at the distal end of chromosome 4 (Nelson, G. et al., *Cell*, 106, 381-390 (2001)), we first generated recombinant T1R2 KO, T1R3 KO mice and then tested them physiologically and behaviorally. **FIGS. 4 and 5** (red traces) show that T1R2, T1R3 double KO mice have lost all responses to high concentration of sugars. Together, these results illustrate the in vivo significance of the combinatorial assembly of T1Rs, and demonstrate that all sweet taste reception operates via the T1R2 and T1R3 GPCRs.

[0268] Do T1R2 or T1R3 homodimeric receptors play a significant role in sweet sensing in wild type mice? T1R2 is always expressed in cells containing T1R3 (T1R2+3 cells; Nelson, G. et al., *Cell*, 106, 381-390 (2001)). Therefore, even if some T1R2 were not associated with T1R3 in these cells, the much higher affinity of the T1R2+3 heteromeric receptor for sweet tastants would likely dominate the cellular response. In contrast, we previously reported that T1R3 is also found in a significant fraction of cells of the tongue and palate epithelium independent of T1R1 and T1R2 (T1R3 alone cells; Nelson, G. et al., *Cell*, 106, 381-390 (2001)). This class of cells may provide animals with additional means of detecting and responding to high concentrations of sugars. To demonstrate that T1R3 alone can function as a low affinity receptor for natural sugars, we generated HEK cells stably expressing T1R3 and an optimized G protein chimera engineered to couple to T1Rs (see Experimental Procedures). **FIG. 6** shows that T1R3 alone in fact responds to very high concentrations of natural sugars, but not to lower concentrations (<300 mM), or to artificial sweeteners. These results confirm T1R3 as a low affinity sugar receptor, and support the postulate that T1R3 alone cells function in vivo as additional sweet sensors (Nelson, G. et al., *Cell*, 106, 381-390 (2001)). This partial cellular segregation of sensing natural and artificial sweeteners may help explain why artificial sweeteners never attain the level of sweetness afforded by high concentrations of natural sugars (i.e. activation of T1R2+3 cells versus T1R2+3 and T1R3 alone cells).

[0269] T1R2 Delimits Species-Specific Sweet Taste Preferences

[0270] Humans can taste a number of natural and artificial sweeteners that rodents cannot. For example, monellin, thaumatin, aspartame and neohesperidin dihydrochalcone taste sweet to humans at sub-millimolar concentrations, whereas rodents show no preference even at 100 times higher concentrations (Danilova, V. et al., *J Neurophysiol*, 80, 2102-2112 (1998)). Previously, we reported that rodent and human T1Rs are more than 30% dissimilar in their

amino acid sequences, and hypothesized that such differences underlie the species-specific selectivity in sweet taste detection (Nelson, G. et al., *Cell*, 106, 381-390 (2001); Nelson, G. et al., *Nature*, 416, 199-202 (2002)). Because T1R2 participates exclusively in sweet taste detection while T1R3 is involved in both sweet and amino acid recognition, we reasoned that T1R2 would be a particularly critical determinant of sweet taste selectivity in vivo. Therefore, we predicted that introducing the human T1R2 gene in T1R2 KO mice should both rescue and “humanize” sweet responses.

[0271] We generated mice that were homozygous for the T1R2 KO allele, but instead expressed a human T1R2 transgene in the native “T1R2-cells”. A 12 kb genomic clone containing the T1R2 regulatory sequences was fused to a hT1R2 full length cDNA and introduced into T1R2 KO mice. Multiple independent lines were assayed for their selectivity and sensitivity to sweet tastants. To examine expression of hT1R2, we performed two-color fluorescent in situ hybridization experiments in transgenic animals carrying the wild type mT1R2 allele. **FIG. 7** (panel a-d) demonstrate that human T1R2 is selectively expressed in T1R2-expressing cells, and effectively restores sweet taste function. More importantly, the human transgene now confers these mice with the ability to detect and respond to several compounds that taste sweet to humans, but are not normally attractive to rodents; these include aspartame, glycyrrhizic acid and the sweet proteins thaumatin and monellin. Interestingly, the humanized T1R2 mice still do not respond to the intensely sweet compound neohesperidin dihydrochalcone, nor do HEK cells transfected with the human T1R2 and mouse T1R3 GPCRs. However, when cells are transfected with human T1R2 and human T1R3 they robustly respond to neohesperidin dihydrochalcone. Taken together, these experiments validate T1Rs as key determinants of differences in sweet taste selectivity and specificity between rodents and humans, and further substantiate T1R2+3, and T1R2-expressing cells, as a principal mediator of sweet taste in vivo. Finally, we propose that polymorphisms in both T1R2 and T1R3 are important determinants of human individual sweet taste preferences.

[0272] T1R2-Expressing Cells Encode Behavioral Attraction In Vivo

[0273] Activation of taste receptors trigger distinct behavioral responses in animals. For example, excitation of the T1R2+3 receptor stimulates behavioral attraction to sugars and sweet-tasting compounds in mice. Is this response a property of the receptors or the cells in which they are expressed? One way to answer this question would be to express a novel receptor unrelated to the taste system in the T1R2+3 cells and examine whether its selective stimulation elicits attractive responses (Troemel, E. R. et al., *Cell* 91, 161-169 (1997)).

[0274] Our approach was to target expression of a GPCR that could couple to the endogenous signaling pathways in T1R2+3 cells, but could only be activated by a nonnatural ligand. In order to examine taste responses in the very same animals before and after receptor expression we utilized an inducible system. To accomplish this, we used transgenic mice in which a modified k-opioid receptor activated solely by a synthetic ligand (RASSL; Redfern, C. H. et al., *Nat Biotechnol*, 17, 165-169 (1999)) was targeted to the T1R2-

expressing cells under the control of the Tet-on inducible system (see Experimental Procedures).

[0275] **FIG. 7e** shows that un-induced animals, or wild type controls treated with doxycycline, are completely insensitive to the κ -opioid agonist spiradoline. Remarkably, induction of RASSL expression in the T1R2-cells generates animals that are now strongly attracted to nanomolar concentrations of spiradoline (**FIG. 7**, red trace). Thus, we conclude that activation of T1R2-expressing cells, rather than the receptors they express, determines behavioral attraction in mice. Furthermore, these results unequivocally show that activating a single cell type is sufficient to trigger specific taste responses; therefore a model requiring a combinatorial pattern of activity, or temporal coding, is not needed to account for attraction mediated by T1R2-expressing cells. By extension we suggest that activation of these taste signaling pathways in human T1R2+3 cells, regardless of the nature of the receptor, would evoke sweet taste.

[0276] Multiple receptors have been proposed to mediate sweet and umami taste in mammals. Notably, even within each of these two modalities several GPCRs, ion channels, and models invoking intracellular targets directly activated by cell-permeable tastants have been postulated (Kinnamon, S. C. *Neuron*, 25, 507-510 (2000); Margolskee, R. F., *J Biol Chem*, 277, 1-4 (2002)). We have used a combination of cell-based assays, genetic, physiological and behavioral approaches to prove that the receptors for sweet and umami taste in mammals are the T1Rs: umami taste is mediated by the T1R1+3 heteromeric GPCR, and sweet by the two T1R-based receptors, T1R2 and T1R3 (T1R2+3, and most likely, a homodimer of T1R3). Therefore, sweet and amino acid taste (umami)-two chemosensory inputs that trigger behavioral attraction, share a common receptor repertoire and evolutionary origin.

[0277] The human T1R1+3 receptor is activated by glutamate and aspartate far more effectively than by other amino acids (Li, X. et al., *Proc Natl Acad Sci USA*, 99, 4692-4696 (2002)). In contrast, the mouse T1R1+3 receptor recognizes a much broader range of L-amino acids, both in cell based assays (Nelson, G. et al., *Nature*, 416, 199-202 (2002)) and in vivo (this paper). If the evolutionary role of the T1R1+3 receptor was to mediate attractive responses to protein-rich foods, one may question whether the tuning of receptor selectivity in primates to just two amino acids substantially altered the ability to detect diets rich these nutrients. Since amino acids are usually found as complex mixtures, detecting any one should generally be adequate, and thus this "narrowing" of tastant selectivity should not have had a significant dietary impact. Given that the same cells and receptors recognize glutamate, other amino acids and IMP, we suggest that in rodents the umami taste modality must be generalized to include most L-amino acids and the very concept of a distinct glutamate taste in rodents (Chaudhari, N. et al., *Nat Neurosci*, 3, 113-119 (2000); Lin, W. et al., *J Neurophysiol*, 89, 1434-1439 (2003)) needs to be re-evaluated.

[0278] A spoonful of sugar or a few tablets of artificial sweetener? Our day to day experiences tell us that natural and artificial sweeteners do not taste the same. In this manuscript we showed that T1R2 and T1R3 are responsible for all sweet sensing. How do they account for the perceived taste differences between sweet tastants? Many sweeteners

are likely to activate receptors for other taste modalities, like T2R bitter sensing cells accounting for the bitter aftertaste of saccharin (data not shown). Therefore, the "taste" of even a single sweet molecular species may reflect the combined activity of cells tuned to different taste modalities, and not just the activity of sweet sensing cells. We have also shown that at higher, but still physiologically relevant concentrations of sugars (>300 mM), natural and artificial sweeteners activate partially overlapping, yet distinct sweet receptor types (T1R2+3 and T1R3 alone).

[0279] We have shown that T1Rs are the mediators of the two principal attractive taste modalities, and demonstrated that mice expressing a RASSL opioid receptor became powerfully attracted to spiradoline, a normally tasteless and nutritionally irrelevant compound, proving that to taste is to believe. The discovery and functional characterization of the cells and receptors for bitter, sweet, and umami taste now provide a compelling view of how taste is encoded at the periphery: dedicated taste receptor cells mediate attractive and aversive behaviors (see, e.g., Zhang, Y. et al., *Cell*, 112, 293-301 (2003)).

[0280] Experimental Procedures

[0281] Gene Targeting of T1R1, T1R2 and T1R3

[0282] The strategy used to create T1R knockout animals is shown in **FIG. 1**. For T1R1, exon 6 encoding the predicted seven transmembrane domain of the receptor was replaced by the PGK-neo^r cassette. Homologous recombination in R1 ES cells was detected by diagnostic Southern hybridization with probes outside the targeting construct. Two targeted ES clones were injected into C57BL/6 blastocysts. Chimeric mice were bred with C57BL/6 mice and progeny backcrossed to C57BL/6 mice for two generations prior to establishing a homozygous knockout colony.

[0283] For T1R2, a similar approach deleted exons 5 and 6 (see **FIG. 1**). Chimeric animals were bred with C57BL/6 mice and progeny backcrossed to C57BL/6 mice for four generations. The T1R3 taster(C57) and non-taster (129) alleles (Nelson, G. et al., *Cell*, 106, 381-390 (2001)) were identified based on an EcoRI polymorphism ~12 kb upstream of the starting ATG of T1R3. All of the T1R2 knockout animals used in this study carried a taster allele of T1R3. However, studies with T1R2 KO mice homozygous for the non-taster T1R3 allele produced qualitatively similar results (data not shown). To generate T1R3 KO knockout animals, we replaced exons 1 to 5 encoding the N-terminal extracellular domain with the PGK-neo^r cassette (see **FIG. 1**). Chimeric mice were bred with C57BL/6 mice and progeny backcrossed to C57BL/6 mice for two generations.

[0284] T1R knockouts have normal viability, body weight, overall anatomy and general behavior. Similarly, taste receptor cells appear normal morphologically and numerically in all knockout backgrounds.

[0285] In Situ Hybridization

[0286] Fresh frozen sections (16 μ m/section) were attached to silanized slides and prepared for in situ hybridization or immunohistochemistry as previously described (Hoon, M. A. et al., *Cell*, 96, 541-551 (1999)). Single label in situ hybridization was carried out using digoxigenin labeled probes; T1R1 and T1R2 probes were to the predicted transmembrane domains, while T1R3 and RASSL (Redfem,

C. H. et al., *Nat Biotechnol*, 17, 165-169 (1999)) probes utilized the full coding sequences. Double-label fluorescent detection used fluorescein (full-length hT1R2) and digoxigenin (full-length mT1R2) probes at high stringency (hybridization, 5×SSC, 50% formamide, 65-72° C.; washing, 0.2×SSC, 72° C.). Hybridization was detected with distinct fluorescent substrates (Adler, E. et al., *Cel, l* 100, 693-702 (2000)) and specificity of labeling was checked using T1R2-knockout and non transgenic controls.

[0287] Generation of Transgenic Mice Expressing Human T1R2 and RASSL

[0288] An approx. 12 kb genomic fragment upstream of mouse T1R2 was fused to a human T R2 cDNA and to a reverse-tetracycline dependent transactivator (rtTA) construct (Gossen, M. et al., *Curr Opin Biotechnol*, 5, 516-520 (1994)). Transgenic lines were produced by pronuclear injection of zygotes from FVB/N mice. Three independent human T1R2 transgenic lines displayed behavioral attraction to aspartame (10 mM). One line was crossed into the T1R2 knockout background, and assayed for taste responses and transgene expression. No expression outside T1R2-cells was detected. T1R2-rtTA transgenic lines were crossed with tetO-Ro1/tetO-lacZ transgenic animals (Redfern, C. H. et al., *Nat Biotechnol*, 17, 165-169 (1999)). Doubleheterozygous progeny were induced by doxycycline treatment (6 gm/kg) (Bio-Serv) for 3 days (Gogos, J. A. et al., *Cel, l* 103, 609-620 (2000)) and examined for β -galactosidase activity (Zack, D. J. et al., *Neuron* 6, 187-199 (1991)) and RASSL expression in the tongue and palate. A line displaying appropriate β -galactosidase staining and RASSL expression pattern was selected for behavioral assays.

[0289] Behavioral Assays

[0290] Taste behavior was assayed using a short term assay that directly measures taste preferences by counting immediate licking responses in a multi-channel gustometer (Davis MS 160-Mouse gustometer; DiLog Instruments, Tallahassee, Fla.). Mice were trained and tested as described previously (Zhang, Y. et al., *Cell*, 112, 293-301 (2003)). Individual mice were placed in the gustometer for 30 minutes, and stimuli were presented in random order for 5s trials that were initiated by the mouse licking the stimulus spout. For sodium saccharin, glutamate and aspartate, 100 μ M amiloride was added to all solutions (including the control) to minimize effects of salt taste. Data points represent the mean rate that mice licked a tastant relative to their sampling of an appropriate control tastant (ratio defined as lick rate relative to control); lick suppression is defined as 1 minus the lick rate relative to control. In most cases the control tastant was water but for amino acids +1 mM IMP, 200 mM MSG and 10 mM IMP the controls were 1 mM IMP, 200 mM sodium gluconate and 10 mM CMP, respectively.

[0291] Standard two-bottle preference assays were carried out as described previously (Nelson, G. et al., *Cell*, 106, 381-390 (2001)). For mice carrying T1R2-rtTA and tetO-Ro1/tetO-lacZ transgenes, expression was induced by doxycycline treatment 3 days prior to, and during the behavioral testing. Controls included testing the same mice without induction as well as mice carrying just the T1R2-rtTA transgene treated with doxycycline. All three groups displayed normal responses to sucrose.

[0292] We noted that in 2-bottle assays T1R-KO animals appear to "learn" to identify solutions containing very high

concentrations of natural sugars (>500 mM); successive exposure resulted in decreased detection threshold and increased preference ratios. Because mice are repeatedly exposed to test compounds for 48 hrs in standard two-bottle assays, they may use other sensory inputs like texture or smell to distinguish tastant from water. If not properly controlled, this could be easily misunderstood as behavioral attraction via taste pathways. To avoid this problem, we used either short term immediate lick response assays (see above) or two-bottle assays with naive knockout mice (i.e. never exposed to such tastants during either training or testing).

[0293] Nerve Recordings

[0294] Lingual stimulation and recording procedures were performed as previously described (Dahl, M. et al., *Brain Res*, 756, 22-34 (1997); Nelson, G. et al., *Nature*, 416, 199-202 (2002)). Neural signals were amplified (5,000 \times) with a Grass P511 AC amplifier (Astro-Med), digitized with a Digidata 1200B A/D converter (Axon Instruments), and integrated (r.m.s. voltage) with a time constant of 0.5 s. Taste stimuli were presented at a constant flow rate of 4 ml min $^{-1}$ for 20 s intervals interspersed by 2 min rinses with artificial saliva (Danilova, V., and Hellekant, G., *BMC Neurosci*, 4, 5, (2003)) between presentations. All data analyses used the integrated response over a 25 s period immediately after the application of the stimulus. Each experimental series consisted of the application of 6 tastants bracketed by presentations of 0.1 M citric acid to ensure the stability of the recording. The mean response to 0.1 M citric acid was used to normalize responses to each experimental series.

[0295] Tastants used for nerve recordings (maximal concentrations) were: sucrose, glucose, maltose (600 mM); sodium saccharin (40 mM); AceK (60 mM); Citric Acid (100 mM); NaCl (100 mM); NH₄Cl (100 mM); 6-n-propyl thiouracil (10 mM); quinine (10 mM); cycloheximide (1 mM); L-Ser, L-Ala, (30 mM with 0.5 mM IMP added) MSG and MPG (300 mM with or without 0.5 mM IMP); D-Ala, D-Phe, and D-Trp (100 mM). Amiloride (50 uM) was added to reduce sodium responses as indicated in the figure legends.

[0296] Heterologous Expression of T1Rs and Calcium Imaging

[0297] Modified HEK-293 cells (PEAK^{rapid} cells; Edge BioSystems, MD) were grown, transfected with T1Rs and promiscuous G-proteins and assayed for functional responses to tastants by Ca-imaging essentially as described previously (Nelson, G. et al., *Cell*, 106, 381-390 (2001)). Minor differences in FURA-2 loading and Ca-imaging included using 199(H) Medium (Biosource) containing 0.1% BSA, 100 μ M EGTA and 200 μ M CaCl₂ as assay buffer as well as reducing the time allowed for FURA-AM ester cleavage to 10 minutes. The imaging system was an Olympus IX50 microscope equipped with a 10 \times /0.5 N.A. fluor objective (Zeiss), the TILL imaging system (TILL Photonics GmbH), and a cooled CCD camera. Acquisition and analysis of fluorescence images used TILL-Vision software.

[0298] To optimize coupling of T1R-responses to changes in [Ca²⁺]_i, C-terminal residues of human G α 16 (Offermanns, S., and Simon, M. I., *J Biol Chem*, 270, 15175-15180 (1995)) were replaced with the corresponding residues from G ζ (Mody, S. M. et al., *Mol Pharmacol*, 57, 13-23 (2000)),

gustducin (McLaughlin, S. K. et al., *Nature*, 357, 563-569 (1992)) or Gαi2. A chimera containing the C-terminal 25 residues of gustducin (G_{gust-25}) proved particularly effective at mediating responses of mouse T1R2+3 and T1R1+3 in transient transfection assays, and was used for further studies. Cell lines stably expressing T1R3 and G_{gust-25} were established using puromycin and Zeocin (Invitrogen) selection. Three independent lines expressing T1R3 and G_{gust-25} were used to examine the specificity and dose response of the T1R3 receptor. Sucrose and maltose (>300 mM) elicited dose dependent responses that were T1R3 and G_{gust-25} dependent, but attempts to use high concentrations of sev-

eral other sugars (glucose, fructose, trehalose and galactose) proved impractical because they induced significant receptor independent rises in [Ca²⁺]_i.

[0299] It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

SEQUENCE LISTING

```

<160> NUMBER OF SEQ ID NOS: 32

<210> SEQ ID NO 1
<211> LENGTH: 840
<212> TYPE: PRT
<213> ORGANISM: Rattus sp.
<220> FEATURE:
<223> OTHER INFORMATION: rat T1R1 G-protein coupled receptor sweet taste
receptor

<400> SEQUENCE: 1

Met Leu Phe Trp Ala Ala His Leu Leu Leu Ser Leu Gln Leu Val Tyr
 1           5           10          15

Cys Trp Ala Phe Ser Cys Gln Arg Thr Glu Ser Ser Pro Gly Phe Ser
20          25           30

Leu Pro Gly Asp Phe Leu Leu Ala Gly Leu Phe Ser Leu His Gly Asp
35          40           45

Cys Leu Gln Val Arg His Arg Pro Leu Val Thr Ser Cys Asp Arg Pro
50          55           60

Asp Ser Phe Asn Gly His Gly Tyr His Leu Phe Gln Ala Met Arg Phe
65          70           75           80

Thr Val Glu Glu Ile Asn Asn Ser Ser Ala Leu Leu Pro Asn Ile Thr
85           90           95

Leu Gly Tyr Glu Leu Tyr Asp Val Cys Ser Glu Ser Ala Asn Val Tyr
100          105          110

Ala Thr Leu Arg Val Leu Ala Leu Gln Gly Pro Arg His Ile Glu Ile
115          120          125

Gln Lys Asp Leu Arg Asn His Ser Ser Lys Val Val Ala Phe Ile Gly
130          135          140

Pro Asp Asn Thr Asp His Ala Val Thr Thr Ala Ala Leu Leu Gly Pro
145          150          155          160

Phe Leu Met Pro Leu Val Ser Tyr Glu Ala Ser Ser Val Val Leu Ser
165          170          175

Ala Lys Arg Lys Phe Pro Ser Phe Leu Arg Thr Val Pro Ser Asp Arg
180          185          190

His Gln Val Glu Val Met Val Gln Leu Leu Gln Ser Phe Gly Trp Val
195          200          205

Trp Ile Ser Leu Ile Gly Ser Tyr Gly Asp Tyr Gly Gln Leu Gly Val
210          215          220

Gln Ala Leu Glu Glu Leu Ala Val Pro Arg Gly Ile Cys Val Ala Phe
225          230          235          240

```

-continued

Lys Asp Ile Val Pro Phe Ser Ala Arg Val Gly Asp Pro Arg Met Gln
 245 250 255
 Ser Met Met Gln His Leu Ala Gln Ala Arg Thr Thr Val Val Val Val
 260 265 270
 Phe Ser Asn Arg His Leu Ala Arg Val Phe Phe Arg Ser Val Val Leu
 275 280 285
 Ala Asn Leu Thr Gly Lys Val Trp Val Ala Ser Glu Asp Trp Ala Ile
 290 295 300
 Ser Thr Tyr Ile Thr Ser Val Thr Gly Ile Gln Gly Ile Gly Thr Val
 305 310 315 320
 Leu Gly Val Ala Val Gln Gln Arg Gln Val Pro Gly Leu Lys Glu Phe
 325 330 335
 Glu Glu Ser Tyr Val Arg Ala Val Thr Ala Ala Pro Ser Ala Cys Pro
 340 345 350
 Glu Gly Ser Trp Cys Ser Thr Asn Gln Leu Cys Arg Glu Cys His Thr
 355 360 365
 Phe Thr Thr Arg Asn Met Pro Thr Leu Gly Ala Phe Ser Met Ser Ala
 370 375 380
 Ala Tyr Arg Val Tyr Glu Ala Val Tyr Ala Val Ala His Gly Leu His
 385 390 395 400
 Gln Leu Leu Gly Cys Thr Ser Glu Ile Cys Ser Arg Gly Pro Val Tyr
 405 410 415
 Pro Trp Gln Leu Leu Gln Gln Ile Tyr Lys Val Asn Phe Leu Leu His
 420 425 430
 Glu Asn Thr Val Ala Phe Asp Asp Asn Gly Asp Thr Leu Gly Tyr Tyr
 435 440 445
 Asp Ile Ile Ala Trp Asp Trp Asn Gly Pro Glu Trp Thr Phe Glu Ile
 450 455 460
 Ile Gly Ser Ala Ser Leu Ser Pro Val His Leu Asp Ile Asn Lys Thr
 465 470 475 480
 Lys Ile Gln Trp His Gly Lys Asn Asn Gln Val Pro Val Ser Val Cys
 485 490 495
 Thr Thr Asp Cys Leu Ala Gly His His Arg Val Val Val Gly Ser His
 500 505 510
 His Cys Cys Phe Glu Cys Val Pro Cys Glu Ala Gly Thr Phe Leu Asn
 515 520 525
 Met Ser Glu Leu His Ile Cys Gln Pro Cys Gly Thr Glu Glu Trp Ala
 530 535 540
 Pro Lys Glu Ser Thr Thr Cys Phe Pro Arg Thr Val Glu Phe Leu Ala
 545 550 555 560
 Trp His Glu Pro Ile Ser Leu Val Leu Ile Ala Ala Asn Thr Leu Leu
 565 570 575
 Leu Leu Leu Val Gly Thr Ala Gly Leu Phe Ala Trp His Phe His
 580 585 590
 Thr Pro Val Val Arg Ser Ala Gly Gly Arg Leu Cys Phe Leu Met Leu
 595 600 605
 Gly Ser Leu Val Ala Gly Ser Cys Ser Phe Tyr Ser Phe Phe Gly Glu
 610 615 620
 Pro Thr Val Pro Ala Cys Leu Leu Arg Gln Pro Leu Phe Ser Leu Gly
 625 630 635 640
 Phe Ala Ile Phe Leu Ser Cys Leu Thr Ile Arg Ser Phe Gln Leu Val

-continued

645	650	655
Ile Ile Phe Lys Phe Ser Thr Lys Val Pro Thr Phe Tyr Arg Thr Trp 660 665 670		
Ala Gln Asn His Gly Ala Gly Leu Phe Val Ile Val Ser Ser Thr Val 675 680 685		
His Leu Leu Ile Cys Leu Thr Trp Leu Val Met Trp Thr Pro Arg Pro 690 695 700		
Thr Arg Glu Tyr Gln Arg Phe Pro His Leu Val Ile Leu Glu Cys Thr 705 710 715 720		
Glu Val Asn Ser Val Gly Phe Leu Leu Ala Phe Thr His Asn Ile Leu 725 730 735		
Leu Ser Ile Ser Thr Phe Val Cys Ser Tyr Leu Gly Lys Glu Leu Pro 740 745 750		
Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu Leu Asn 755 760 765		
Phe Val Ser Trp Ile Ala Phe Phe Thr Met Ala Ser Ile Tyr Gln Gly 770 775 780		
Ser Tyr Leu Pro Ala Val Asn Val Leu Ala Gly Leu Thr Thr Leu Ser 785 790 795 800		
Gly Gly Phe Ser Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile Leu Cys 805 810 815		
Arg Pro Glu Leu Asn Asn Thr Glu His Phe Gln Ala Ser Ile Gln Asp 820 825 830		
Tyr Thr Arg Arg Cys Gly Thr Thr 835 840		

<210> SEQ ID NO 2
 <211> LENGTH: 842
 <212> TYPE: PRT
 <213> ORGANISM: Mus sp.
 <220> FEATURE:
 <223> OTHER INFORMATION: mouse T1R1 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 2

Met Leu Phe Trp Ala Ala His Leu Leu Leu Ser Leu Gln Leu Ala Val 1 5 10 15		
Ala Tyr Cys Trp Ala Phe Ser Cys Gln Arg Thr Glu Ser Ser Pro Gly 20 25 30		
Phe Ser Leu Pro Gly Asp Phe Leu Leu Ala Gly Leu Phe Ser Leu His 35 40 45		
Ala Asp Cys Leu Gln Val Arg His Arg Pro Leu Val Thr Ser Cys Asp 50 55 60		
Arg Ser Asp Ser Phe Asn Gly His Gly Tyr His Leu Phe Gln Ala Met 65 70 75 80		
Arg Phe Thr Val Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn 85 90 95		
Ile Thr Leu Gly Tyr Glu Leu Tyr Asp Val Cys Ser Glu Ser Ser Asn 100 105 110		
Val Tyr Ala Thr Leu Arg Val Pro Ala Gln Gln Gly Thr Gly His Leu 115 120 125		
Glu Met Gln Arg Asp Leu Arg Asn His Ser Ser Lys Val Val Ala Leu 130 135 140		

-continued

Ile Gly Pro Asp Asn Thr Asp His Ala Val Thr Thr Ala Ala Leu Leu
 145 150 155 160

Ser Pro Phe Leu Met Pro Leu Val Ser Tyr Glu Ala Ser Ser Val Ile
 165 170 175

Leu Ser Gly Lys Arg Lys Phe Pro Ser Phe Leu Arg Thr Ile Pro Ser
 180 185 190

Asp Lys Tyr Gln Val Glu Val Ile Val Arg Leu Leu Gln Ser Phe Gly
 195 200 205

Trp Val Trp Ile Ser Leu Val Gly Ser Tyr Gly Asp Tyr Gly Gln Leu
 210 215 220

Gly Val Gln Ala Leu Glu Glu Leu Ala Thr Pro Arg Gly Ile Cys Val
 225 230 235 240

Ala Phe Lys Asp Val Val Pro Leu Ser Ala Gln Ala Gly Asp Pro Arg
 245 250 255

Met Gln Arg Met Met Leu Arg Leu Ala Arg Ala Arg Thr Thr Val Val
 260 265 270

Val Val Phe Ser Asn Arg His Leu Ala Gly Val Phe Phe Arg Ser Val
 275 280 285

Val Leu Ala Asn Leu Thr Gly Lys Val Trp Ile Ala Ser Glu Asp Trp
 290 295 300

Ala Ile Ser Thr Tyr Ile Thr Asn Val Pro Gly Ile Gln Gly Ile Gly
 305 310 315 320

Thr Val Leu Gly Val Ala Ile Gln Gln Arg Gln Val Pro Gly Leu Lys
 325 330 335

Glu Phe Glu Glu Ser Tyr Val Gln Ala Val Met Gly Ala Pro Arg Thr
 340 345 350

Cys Pro Glu Gly Ser Trp Cys Gly Thr Asn Gln Leu Cys Arg Glu Cys
 355 360 365

His Ala Phe Thr Thr Trp Asn Met Pro Glu Leu Gly Ala Phe Ser Met
 370 375 380

Ser Ala Ala Tyr Asn Val Tyr Glu Ala Val Tyr Ala Val Ala His Gly
 385 390 395 400

Leu His Gln Leu Gly Cys Thr Ser Gly Thr Cys Ala Arg Gly Pro
 405 410 415

Val Tyr Pro Trp Gln Leu Leu Gln Gln Ile Tyr Lys Val Asn Phe Leu
 420 425 430

Leu His Lys Lys Thr Val Ala Phe Asp Asp Lys Gly Asp Pro Leu Gly
 435 440 445

Tyr Tyr Asp Ile Ile Ala Trp Asp Trp Asn Gly Pro Glu Trp Thr Phe
 450 455 460

Glu Val Ile Gly Ser Ala Ser Leu Ser Pro Val His Leu Asp Ile Asn
 465 470 475 480

Lys Thr Lys Ile Gln Trp His Gly Lys Asn Asn Gln Val Pro Val Ser
 485 490 495

Val Cys Thr Arg Asp Cys Leu Glu Gly His His Arg Leu Val Met Gly
 500 505 510

Ser His His Cys Cys Phe Glu Cys Met Pro Cys Glu Ala Gly Thr Phe
 515 520 525

Leu Asn Thr Ser Glu Leu His Thr Cys Gln Pro Cys Gly Thr Glu Glu
 530 535 540

Trp Ala Pro Glu Gly Ser Ser Ala Cys Phe Ser Arg Thr Val Glu Phe

-continued

545	550	555	560												
Leu	Gly	Trp	His	Glu	Pro	Ile	Ser	Leu	Val	Leu	Leu	Ala	Ala	Asn	Thr
				565				570				575			
Leu	Leu	Leu	Leu	Leu	Ile	Gly	Thr	Ala	Gly	Leu	Phe	Ala	Trp	Arg	
				580			585			590					
Leu	His	Thr	Pro	Val	Val	Arg	Ser	Ala	Gly	Gly	Arg	Leu	Cys	Phe	Leu
	595			600				605							
Met	Leu	Gly	Ser	Leu	Val	Ala	Gly	Ser	Cys	Ser	Leu	Tyr	Ser	Phe	Phe
610				615			620								
Gly	Lys	Pro	Thr	Val	Pro	Ala	Cys	Leu	Leu	Arg	Gln	Pro	Leu	Phe	Ser
625				630			635			640					
Leu	Gly	Phe	Ala	Ile	Phe	Leu	Ser	Cys	Leu	Thr	Ile	Arg	Ser	Phe	Gln
	645			650			655								
Leu	Val	Ile	Ile	Phe	Lys	Phe	Ser	Thr	Lys	Val	Pro	Thr	Phe	Tyr	His
	660			665			670								
Thr	Trp	Ala	Gln	Asn	His	Gly	Ala	Gly	Ile	Phe	Val	Ile	Val	Ser	Ser
	675			680			685								
Thr	Val	His	Leu	Phe	Leu	Cys	Leu	Thr	Trp	Leu	Ala	Met	Trp	Thr	Pro
690			695			700									
Arg	Pro	Thr	Arg	Glu	Tyr	Gln	Arg	Phe	Pro	His	Leu	Val	Ile	Leu	Glu
705			710			715			720						
Cys	Thr	Glu	Val	Asn	Ser	Val	Gly	Phe	Leu	Val	Ala	Phe	Ala	His	Asn
	725			730			735								
Ile	Leu	Leu	Ser	Ile	Ser	Thr	Phe	Val	Cys	Ser	Tyr	Leu	Gly	Lys	Glu
	740			745			750								
Leu	Pro	Glu	Asn	Tyr	Asn	Glu	Ala	Lys	Cys	Val	Thr	Phe	Ser	Leu	Leu
	755			760			765								
Leu	His	Phe	Val	Ser	Trp	Ile	Ala	Phe	Phe	Thr	Met	Ser	Ser	Ile	Tyr
	770			775			780								
Gln	Gly	Ser	Tyr	Leu	Pro	Ala	Val	Asn	Val	Leu	Ala	Gly	Leu	Ala	Thr
785			790			795			800						
Leu	Ser	Gly	Gly	Phe	Ser	Gly	Tyr	Phe	Leu	Pro	Lys	Cys	Tyr	Val	Ile
	805			810			815								
Leu	Cys	Arg	Pro	Glu	Leu	Asn	Asn	Thr	Glu	His	Phe	Gln	Ala	Ser	Ile
	820			825			830								
Gln	Asp	Tyr	Thr	Arg	Arg	Cys	Gly	Thr	Thr						
	835			840											

<210> SEQ ID NO 3
<211> LENGTH: 840
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<223> OTHER INFORMATION: human T1R1 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 3

Met Leu Leu Cys Thr Ala Arg Leu Val Gly Leu Gln Leu Leu Ile Ser
1 5 10 15

Cys Cys Trp Ala Phe Ala Cys His Ser Thr Glu Ser Ser Pro Asp Phe
20 25 30

Thr Leu Pro Gly Asp Tyr Leu Leu Ala Gly Leu Phe Pro Leu His Ser
35 40 45

-continued

Gly Cys Leu Gln Val Arg His Arg Pro Glu Val Thr Leu Cys Asp Arg
 50 55 60

Ser Cys Ser Phe Asn Glu His Gly Tyr His Leu Phe Gln Ala Met Arg
 65 70 75 80

Leu Gly Val Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn Ile
 85 90 95

Thr Leu Gly Tyr Gln Leu Tyr Asp Val Cys Ser Asp Ser Ala Asn Val
 100 105 110

Tyr Ala Thr Leu Arg Val Leu Ser Leu Pro Gly Gln His His Ile Glu
 115 120 125

Leu Gln Gly Asp Leu Leu His Tyr Ser Pro Thr Val Leu Ala Val Ile
 130 135 140

Gly Pro Asp Ser Thr Asn Arg Ala Ala Thr Thr Ala Ala Leu Leu Ser
 145 150 155 160

Pro Phe Leu Val His Ile Ser Tyr Ala Ala Ser Ser Glu Thr Leu Ser
 165 170 175

Val Lys Arg Gln Tyr Pro Ser Phe Leu Arg Thr Ile Pro Asn Asp Lys
 180 185 190

Tyr Gln Val Glu Thr Met Val Leu Leu Gln Lys Phe Gly Trp Thr
 195 200 205

Trp Ile Ser Leu Val Gly Ser Ser Asp Asp Tyr Gly Gln Leu Gly Val
 210 215 220

Gln Ala Leu Glu Asn Gln Ala Leu Val Arg Gly Ile Cys Ile Ala Phe
 225 230 235 240

Lys Asp Ile Met Pro Phe Ser Ala Gln Val Gly Asp Glu Arg Met Gln
 245 250 255

Cys Leu Met Arg His Leu Ala Gln Ala Gly Ala Thr Val Val Val Val
 260 265 270

Phe Ser Ser Arg Gln Leu Ala Arg Val Phe Phe Glu Ser Val Val Leu
 275 280 285

Thr Asn Leu Thr Gly Lys Val Trp Val Ala Ser Glu Ala Trp Ala Leu
 290 295 300

Ser Arg His Ile Thr Gly Val Pro Gly Ile Gln Arg Ile Gly Met Val
 305 310 315 320

Leu Gly Val Ala Ile Gln Lys Arg Ala Val Pro Gly Leu Lys Ala Phe
 325 330 335

Glu Glu Ala Tyr Ala Arg Ala Asp Lys Glu Ala Pro Arg Pro Cys His
 340 345 350

Lys Gly Ser Trp Cys Ser Ser Asn Gln Leu Cys Arg Glu Cys Gln Ala
 355 360 365

Phe Met Ala His Thr Met Pro Lys Leu Lys Ala Phe Ser Met Ser Ser
 370 375 380

Ala Tyr Asn Ala Tyr Arg Ala Val Tyr Ala Val Ala His Gly Leu His
 385 390 395 400

Gln Leu Leu Gly Cys Ala Ser Glu Leu Cys Ser Arg Gly Arg Val Tyr
 405 410 415

Pro Trp Gln Leu Leu Glu Gln Ile His Lys Val His Phe Leu Leu His
 420 425 430

Lys Asp Thr Val Ala Phe Asn Asp Asn Arg Asp Pro Leu Ser Ser Tyr
 435 440 445

Asn Ile Ile Ala Trp Asp Trp Asn Gly Pro Lys Trp Thr Phe Thr Val

-continued

450	455	460
Leu Gly Ser Ser Thr Trp Ser Pro Val Gln Leu Asn Ile Asn Glu Thr		
465	470	475
480		
Lys Ile Gln Trp His Gly Lys Asn His Gln Val Pro Lys Ser Val Cys		
485	490	495
Ser Ser Asp Cys Leu Glu Gly His Gln Arg Val Val Thr Gly Phe His		
500	505	510
His Cys Cys Phe Glu Cys Val Pro Cys Gly Ala Gly Thr Phe Leu Asn		
515	520	525
Lys Ser Glu Leu Tyr Arg Cys Gln Pro Cys Gly Thr Glu Glu Trp Ala		
530	535	540
Pro Glu Gly Ser Gln Thr Cys Phe Pro Arg Thr Val Val Phe Leu Ala		
545	550	555
560		
Leu Arg Glu His Thr Ser Trp Val Leu Leu Ala Ala Asn Thr Leu Leu		
565	570	575
Leu Leu Leu Leu Gly Thr Ala Gly Leu Phe Ala Trp His Leu Asp		
580	585	590
Thr Pro Val Val Arg Ser Ala Gly Gly Arg Leu Cys Phe Leu Met Leu		
595	600	605
Gly Ser Leu Ala Ala Gly Ser Gly Ser Leu Tyr Gly Phe Phe Gly Glu		
610	615	620
Pro Thr Arg Pro Ala Cys Leu Leu Arg Gln Ala Leu Phe Ala Leu Gly		
625	630	635
640		
Phe Thr Ile Phe Leu Ser Cys Leu Thr Val Arg Ser Phe Gln Leu Ile		
645	650	655
Ile Ile Phe Lys Phe Ser Thr Lys Val Pro Thr Phe Tyr His Ala Trp		
660	665	670
Val Gln Asn His Gly Ala Gly Leu Phe Val Met Ile Ser Ser Ala Ala		
675	680	685
Gln Leu Leu Ile Cys Leu Thr Trp Leu Val Val Trp Thr Pro Leu Pro		
690	695	700
Ala Arg Glu Tyr Gln Arg Phe Pro His Leu Val Met Leu Glu Cys Thr		
705	710	715
720		
Glu Thr Asn Ser Leu Gly Phe Ile Leu Ala Phe Leu Tyr Asn Gly Leu		
725	730	735
Leu Ser Ile Ser Ala Phe Ala Cys Ser Tyr Leu Gly Lys Asp Leu Pro		
740	745	750
Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu Phe Asn		
755	760	765
Phe Val Ser Trp Ile Ala Phe Phe Thr Thr Ala Ser Val Tyr Asp Gly		
770	775	780
Lys Tyr Leu Pro Ala Ala Asn Met Met Ala Gly Leu Ser Ser Leu Ser		
785	790	795
800		
Ser Gly Phe Gly Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile Leu Cys		
805	810	815
Arg Pro Asp Leu Asn Ser Thr Glu His Phe Gln Ala Ser Ile Gln Asp		
820	825	830
Tyr Thr Arg Arg Cys Gly Ser Thr		
835	840	

-continued

```

<211> LENGTH: 2771
<212> TYPE: DNA
<213> ORGANISM: Rattus sp.
<220> FEATURE:
<223> OTHER INFORMATION: rat TIR1 G-protein coupled receptor sweet taste
receptor

<400> SEQUENCE: 4

attcacatca gagctgtgct cagccatgct gggcagaggg acgacggctg gccagcatgc      60
tcttctggc tgctcacctg ctgctcagcc tgcagtttgt ctactgtctgg gctttcagct      120
gccaaaggac agagtcctct ccaggcttca gccttcctgg ggacttcctc cttgcaggctc      180
tgttctccct ccatggtgcac tgcgtcaggc tgagacacag acctctggtg acaagttgtg      240
acaggcccga cagcttcaac ggcctatggct accaccttcc ccaagccatg cggttcaactg      300
ttgaggagat aaacaactcc tggccctgc ttcccaacat caccctgggg tatgagctgt      360
acgacgtgtg ctcagaatct gccaatgtgt atgccaccct gagggtgtt gcccgtcaag      420
ggcccccggca catagagata cagaaagacc ttgcacacca ctccctcaag gtgggtggct      480
tcatcggcc tgacaacact gaccacgtg tcactaccgc tgccttgctg ggtcctttcc      540
tgatgcccctt ggtcagctat gaggcaagca gcgtggtaact cagtgcacag cgcaagttcc      600
cgtatccct tcgtaccgtc cccagtgacc ggcaccagggt ggagggtcatg gtgcagctgc      660
tgcagagttt tgggtgggtg tggatctcgcc tcattggcag ctacgggtat tacgggcagc      720
tgggtgtgca ggccgtggag gagctggcccg tgccccgggg catctgcgtc gccttcaagg      780
acatcgtgcc tttctctgcc cgggtgggtg acccgaggat gcagagcatg atgcagcatc      840
tggctcaggc caggaccacc gtgggtgtgg tcttctctaa cggcacctg gctagagtgt      900
tcttcaggc cgtgggtgtg gccaacctgtc ctggcaaaat gtgggtcgcc tcagaagact      960
ggcccatctc cactacatc accagcgtga ctgggatcca aggcatggg acgggtgtcg      1020
gtgtggccgtt ccagcagaga caagtccctg ggctgaagga gtttgaggag tcttatgtca      1080
gggctgtaac agctgctccc agcgcttgc cggaggggtc ctgggtcagc actaaccagc      1140
tgtgcccggga gtgccacacg ttacgactc gtaacatgcc cacgttggc gccttctcca      1200
tgagtggccgc ctacagatgt tatgaggctg tgcgtgtgtt ggcccacggc ctccaccagc      1260
tcctggatgt tacttcttagt atctgttccca gaggcccagt ctaccctgg cagcttcttc      1320
agcagatcta caaggtgaat ttcttctac atgagaatac tgcgtgtt gatgacaacg      1380
gggacactct aggttactac gacatcatcg cttggactg gaatggaccc gaatggaccc      1440
ttgagatcat tggctctgcc tcactgtctc cagttcatct ggacataaat aagacaaaaaa      1500
tccagtggca cgggaagaac aatcaggatgc ctgtgtcaat gtgtaccacg gactgtctgg      1560
cagggcacca cagggtgggtt gtgggttccc accactgctg ctttgagtgt gtgcctgcg      1620
aagctggac ctcttcac atgaggatgc ttcacatctg ccagcctgtt ggaacagaag      1680
aatgggcacc caaggagac actacttgct tcccacgcac ggtggaggatc ttggcttggc      1740
atgaacccat ctcttgggtt ctaatagatcg ctaacacgtt attgtgtctg ctgtgtgtt      1800
ggactgtgttgg cctgtttgcc tggcattttc acacacgtt gatgaggatca gctgggggtt      1860
ggctgtgttgg cctcatgtc ggtttccctgg tggccggaaat ttgcagtttc tatagtttct      1920
tcggggagcc cacgggtgccc ggcgtgttgc tgcgtcagcc cctctttctt ctgggtttt      1980
ccatcttcctt ctcctgcctg acaatccgct ctttccaact ggtcatcatc ttcaagttt      2040

```

-continued

ctaccaaggt	gcccacattc	taccgtacct	gggcccaaaa	ccatggtgca	ggtctattcg	2100
tcattgtcag	ctccacggtc	catttgctca	tctgtctcac	atggcttcta	atgtggaccc	2160
cacgacccac	cagggaaatac	cagcgcttcc	cccacatctgg	gattctcgag	tgcacagagg	2220
tcaactctgt	aggcttcctg	ttggcttca	cccacaacat	tctcctctcc	atcagttacct	2280
tcgtctgcag	ctacactgggt	aaggaaactgc	cagagaacta	taatgaagcc	aaatgtgtca	2340
ccttcagcct	gctcctcaac	ttcgtatcct	ggatcgccctt	cttcaccatg	gccagcattt	2400
accaggcag	ctacactgcct	gcggtcaatg	tgctggcagg	gctgaccaca	ctgagcggcg	2460
gcttcagcgg	ttacttcctc	cccaagtgt	atgtgattct	ctgcccgtcca	gaactcaaca	2520
atacagaaca	ctttcaggcc	tccatccagg	actacacgag	gcgctgcggc	actacctgat	2580
ccactggaaa	ggtgcagacg	ggaaggaagc	ctctcttctt	gtgctgaagg	tggcgggtcc	2640
agtggggccg	agagcttgag	gtgtctggga	gagctccggc	acagcttacg	atgtataagc	2700
acgcggaaaga	atccagtgc	ataaaagacgg	gaagtgtgaa	aaaaaaaaaa	aaaaaaaaaa	2760
aaaaaaaaaa	a					2771

<210> SEQ_ID NO 5
 <211> LENGTH: 2579
 <212> TYPE: DNA
 <213> ORGANISM: Mus sp.
 <220> FEATURE:
 <223> OTHER INFORMATION: mouse T1R1 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 5

tttggccagc	atgttttct	gggcagtc	cctgctgctc	agcctgcagc	tggccgttgc	60
ttactgctgg	gctttcagct	gccaaaggac	agaatcctct	ccaggttca	gcctccctgg	120
ggacttcctc	ctggcaggcc	tgttctccct	ccatgctgac	tgtctgcagg	tgagacacag	180
acctctggtg	acaagtttg	acaggctgac	cagcttcaac	ggccatggct	atcacctctt	240
ccaagccatg	cggttcaccc	ttgaggagat	aaacaactcc	acagctgtgc	ttcccaacat	300
caccctgggg	tatgaactgt	atgacgtgt	ctcagagtct	tccaatgtct	atgccaccct	360
gagggtgccc	gcccagcaag	ggacaggcca	cctagagatg	cagagagatc	ttcgcaacca	420
ctccctccaag	gtgggtggcac	tcattggcc	tgataaact	gaccacgtgc	tcaccactgc	480
tgccctgctg	agcccttttc	tgatgcccct	ggtcagctat	gaggcgagca	gcgtgatcct	540
cagtggaaag	cgcaagttcc	cgtccttctt	gcgcaccatc	cccagcgata	agtaccaggt	600
ggaagtctata	gtgcggctgc	tgcagagctt	cggctgggtc	tggatctcgc	tcgttggcag	660
ctatggtgac	tacgggcgc	tggcgctaca	ggcgctggag	gagctggcca	ctccacgggg	720
catctgcgtc	gccttcagg	acgtggtgcc	tctctccggc	caggcgggtg	acccaaggat	780
gcagcgcatt	atgctgcgtc	tggctcgagc	caggaccacc	gtggctgtgg	tcttctctaa	840
ccggcacctg	gctggagtgt	tcttcaggctc	tgtggtgctg	gccaaacctga	ctggcaaaat	900
gtggatcgcc	tccgaagact	ggccatctc	cacgtacatc	accatgtgc	ccggatcc	960
gggcattggg	acggtgctgg	gggtggccat	ccagcagaga	caagtccctg	gcctgaagga	1020
gtttgaagag	tcctatgtcc	aggcagtgtat	gggtgctccc	agaacttgcc	cagagggtc	1080
ctggtgccgc	actaaccaggc	tgtgcaggga	gtgtcacgt	ttcacgacat	ggaacatgcc	1140

-continued

cgagcttgg a gccttctcca tgagcgtgc ctacaatgtg tatgaggctg t gatgtctgt 1200
ggcccaeggc ctccaccagc tcctggatg tacctctggg acctgtgcca gaggcccagt 1260
ctaccctgg cagttcttc agcagatcta caaggtaaat ttcccttctac ataagaagac 1320
tgttagcattc gatgacaagg gggaccctt aggttattat gacatcatcg cctggactg 1380
gaatggacact gaatggacact ttgaggtcat tggttctgcc tcactgtctc cagttcatct 1440
agacataaat aagacaaaaa tccagtggca cggaaagaaac aatcaggtgc ctgtgtcagt 1500
gtgtaccagg gactgtctcg aagggccacca caggttggc atgggttccc accactgctg 1560
cttcgagtgc atgcctgtg aagctggac atttctcaac acgagtgagc ttcacacctg 1620
ccagccttgc ggaacagaag aatgggcccc tgaggggagc tcagcctgct tctcacgcac 1680
cgtggagttc ttgggttggc atgaacccat ctctttggc attagcag ctaacacgct 1740
attgctgctg ctgctgatgg gactgtctgg cctgtttgcc tggcgtcttc acacgcctgt 1800
tgtgaggta gctgggggta ggactgtgtt cctcatgtg ggttccttgg tagctggag 1860
ttgcagcctc tacagcttct tcggaaagcc cacgggtccc gcgtgttgc tgcgtcagcc 1920
cctctttctt ctcgggttgc ccattttctt ctctgtctg acaatccgt ccttccaact 1980
ggtcatcatc ttcaagttt ctaccaaggt acccacatcc taccacactt gggccaaaaa 2040
ccatgggtccc ggaatattcg tcattgtcag ctccacggc catttttcc tctgtctcac 2100
gtggcttgc a tggaccc cacggccac cagggagttac cagcgttcc cccatctgg 2160
gattcttgc a tgcacaggc tcaactctgt gggcttccgt gtggcttgc cacacaacat 2220
cttcctctcc atcagcacct ttgtctgcag ctacctgggt aaggaactgc cggagaacta 2280
taacgaagcc a aatgtgtca ctttcaggct gtcctccac ttctgtatccct ggatcgctt 2340
cttcaccatc tccagcattt accagggcag ctacctaccc ggggtcaatg tgctggcagg 2400
gtggccact ctgagtgccg gtttcaggcc ctatccctt cttaaatgtc acgtgattct 2460
ctgcccgtcca gaactcaaca acacagaaca ctttcaggcc tccatccagg actacacgag 2520
gcgtgtccggc actacctgag gcgctgccc actacctgag gcgctgccc actacacgag 2579

```
<210> SEQ ID NO 6
<211> LENGTH: 2333
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<223> OTHER INFORMATION: human T1R1 G-protein coupled receptor sweet
      taste receptor
```

<400> SEQUENCE: 6

```
aggcttctgtt gcttcaatga gcatggctac caccctttcc aggctatgcg gcttggggtt 60
gaggagataa acaactccac ggccctgtcg cccaaacatca ccctggggta ccagctgtat 120
gatgtgtgtt ctgactctgc caatgtgtat gccacgtga gagtgctc cctgcagggg 180
caacaccaca tagagctcca aggagacatt ctccactatt cccctacggt gctggcagtg 240
atgggcctg acagcaccaa ccgtgctgcc accacagccg ccctgtgag cccttcctg 300
gtgcataatta gctatgcggc cagcagcggag acgctcagcg tgaaggcggca gtatccctct 360
ttctctggca ccatccccaa tgacaagtac caggtggaga ccatgggtct gctgtgcag 420
aagttcggtt ggacctggat ctctctgggtt ggcagcagtg acgactatgg gcagcttaggg 480
gtgcaggcac tggagaacca ggccctggtc agggggcatct gcattgtttt caaggacatc 540
```

-continued

atgccccttct	ctgcccaggt	gggcgatgag	aggatgcagt	gcctcatgcg	ccacccggcc	600
caggccgggg	ccaccgtcgt	ggttgggg	tccagccggc	agttggccag	ggtgggg	660
gagtccgtgg	tgctgaccaa	cctgactggc	aagggtgtgg	tcgcctcaga	agcctgggccc	720
ctctccagggc	acatcaactgg	ggtgccgggg	atccagcgca	ttgggatgg	gctggggcgtg	780
gccatccaga	agagggctgt	ccctggcctg	aaggcggttg	aagaagccta	tgccggggca	840
gacaaggagg	ccccccttagcc	ttgcacaagg	gctcctgggt	cagcagaat	cagctctgca	900
gagaatgcca	agctttcatg	gcacacacga	tgcccaagct	caaagccttc	tccatgagtt	960
ctgcctacaa	cgcataaccgg	gctgtgtatg	cggtggccca	tggcctccac	cagctctgg	1020
gctgtgcctc	tgagctctgt	tccagggggcc	gagtctaccc	ctggcagctt	ttggagcaga	1080
tccacaaggt	gcatttcctt	ctacacaagg	acactgtggc	gtttaatgac	aacagagatc	1140
ccctcagtag	ctataacata	attgcctggg	actggaatgg	acccaaatgg	acccatcacgg	1200
tcctcgggttc	ctccacatgg	tctccagttc	agctaaacat	aatagagacc	aaaatccagt	1260
ggcacggaaa	gaaccaccaag	gtgcctaagt	ctgtgtgttc	cagcactgt	cttgaagggc	1320
accagcggagt	ggttacgggt	ttccatcaact	gtgccttga	gtgtgtgccc	tgtggggctg	1380
ggaccttcct	caacaagagc	gagctctaca	gtgccagcc	ttgtggaaca	gaagagtg	1440
cacccatgggg	aagccagacc	tgcttcccg	gcactgtgtt	gtttttggct	ttgcgtgagc	1500
acaccccttg	ggtgtgtgt	gcagctaaca	cgctgtgt	gtgcgtgt	cttgggactg	1560
ctggcctgtt	tgccctggcac	ctagacaccc	ctgtgtgt	gtcagcagg	ggccgcctgt	1620
gctttcttat	gctgggctcc	ctggcagcag	gtagtggcag	cctctatggc	ttctttgggg	1680
aaccacacaag	gcctgcgtgc	ttgctacgc	aggcccttt	tgcccttgg	ttcaccatct	1740
tcctgtccgt	cctgacagtt	cgctcattcc	aactaatcat	catcttcaag	ttttccacca	1800
aggtaacctac	attctaccac	gcctgggtcc	aaaaccacgg	tgctggctg	tttggatga	1860
tcagctcagc	ggcccaagctg	cttatctgtc	taacttggct	ggtgggtgt	accccactgc	1920
ctgttaggga	ataccagegc	ttccccatc	tggtgtatgt	tgagtgcaca	gagaccaact	1980
ccctggcctt	catactggcc	ttcctctaca	atggcctcct	ctccatcagt	gcctttgcct	2040
gcagctaccc	gggttaaggac	ttgccagaga	actacaacga	ggccaaatgt	gtcacccatca	2100
gcctgctctt	caacttcgtg	tcctggatcg	ccttcttac	cacggccagc	gtctacgacg	2160
gcaagtaccc	gcctgcggcc	aacatgtatgg	ctgggtgt	cagcgtgt	agcgggttcg	2220
gtgggtat	tctgcctaag	tgctacgtg	tcctctgccc	cccagacctc	aacagcacag	2280
agcacttcca	ggcctccatt	caggactaca	cgaggcgctg	cggctccacc	tga	2333

<210> SEQ ID NO 7
 <211> LENGTH: 843
 <212> TYPE: PRT
 <213> ORGANISM: Rattus sp.
 <220> FEATURE:
 <223> OTHER INFORMATION: rat T1R2 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 7

Met	Gly	Pro	Gln	Ala	Arg	Thr	Leu	Cys	Leu	Leu	Ser	Leu	Leu	Leu	His
1															15

Val Leu Pro Lys Pro Gly Lys Leu Val Glu Asn Ser Asp Phe His Leu

-continued

20	25	30
Ala Gly Asp Tyr Leu Leu Gly Gly Leu Phe Thr Leu His Ala Asn Val		
35	40	45
Lys Ser Ile Ser His Leu Ser Tyr Leu Gln Val Pro Lys Cys Asn Glu		
50	55	60
Phe Thr Met Lys Val Leu Gly Tyr Asn Leu Met Gln Ala Met Arg Phe		
65	70	75
Ala Val Glu Glu Ile Asn Asn Cys Ser Ser Leu Leu Pro Gly Val Leu		
85	90	95
Leu Gly Tyr Glu Met Val Asp Val Cys Tyr Leu Ser Asn Asn Ile His		
100	105	110
Pro Gly Leu Tyr Phe Leu Ala Gln Asp Asp Asp Leu Leu Pro Ile Leu		
115	120	125
Lys Asp Tyr Ser Gln Tyr Met Pro His Val Val Ala Val Ile Gly Pro		
130	135	140
Asp Asn Ser Glu Ser Ala Ile Thr Val Ser Asn Ile Leu Ser His Phe		
145	150	155
Leu Ile Pro Gln Ile Thr Tyr Ser Ala Ile Ser Asp Lys Leu Arg Asp		
165	170	175
Lys Arg His Phe Pro Ser Met Leu Arg Thr Val Pro Ser Ala Thr His		
180	185	190
His Ile Glu Ala Met Val Gln Leu Met Val His Phe Gln Trp Asn Trp		
195	200	205
Ile Val Val Leu Val Ser Asp Asp Tyr Gly Arg Glu Asn Ser His		
210	215	220
Leu Leu Ser Gln Arg Leu Thr Lys Thr Ser Asp Ile Cys Ile Ala Phe		
225	230	235
Gln Glu Val Leu Pro Ile Pro Glu Ser Ser Gln Val Met Arg Ser Glu		
245	250	255
Glu Gln Arg Gln Leu Asp Asn Ile Leu Asp Lys Leu Arg Arg Thr Ser		
260	265	270
Ala Arg Val Val Val Phe Ser Pro Glu Leu Ser Leu Tyr Ser Phe		
275	280	285
Phe His Glu Val Leu Arg Trp Asn Phe Thr Gly Phe Val Trp Ile Ala		
290	295	300
Ser Glu Ser Trp Ala Ile Asp Pro Val Leu His Asn Leu Thr Glu Leu		
305	310	315
Arg His Thr Gly Thr Phe Leu Gly Val Thr Ile Gln Arg Val Ser Ile		
325	330	335
Pro Gly Phe Ser Gln Phe Arg Val Arg Arg Asp Lys Pro Gly Tyr Pro		
340	345	350
Val Pro Asn Thr Thr Asn Leu Arg Thr Thr Cys Asn Gln Asp Cys Asp		
355	360	365
Ala Cys Leu Asn Thr Thr Lys Ser Phe Asn Asn Ile Leu Ile Leu Ser		
370	375	380
Gly Glu Arg Val Val Tyr Ser Val Tyr Ser Ala Val Tyr Ala Val Ala		
385	390	395
His Ala Leu His Arg Leu Leu Gly Cys Asn Arg Val Arg Cys Thr Lys		
405	410	415
Gln Lys Val Tyr Pro Trp Gln Leu Leu Arg Glu Ile Trp His Val Asn		
420	425	430

-continued

Phe Thr Leu Leu Gly Asn Arg Leu Phe Phe Asp Gln Gln Gly Asp Met
 435 440 445
 Pro Met Leu Leu Asp Ile Ile Gln Trp Gln Trp Asp Leu Ser Gln Asn
 450 455 460
 Pro Phe Gln Ser Ile Ala Ser Tyr Ser Pro Thr Ser Lys Arg Leu Thr
 465 470 475 480
 Tyr Ile Asn Asn Val Ser Trp Tyr Thr Pro Asn Asn Thr Val Pro Val
 485 490 495
 Ser Met Cys Ser Lys Ser Cys Gln Pro Gly Gln Met Lys Lys Ser Val
 500 505 510
 Gly Leu His Pro Cys Cys Phe Glu Cys Leu Asp Cys Met Pro Gly Thr
 515 520 525
 Tyr Leu Asn Arg Ser Ala Asp Glu Phe Asn Cys Leu Ser Cys Pro Gly
 530 535 540
 Ser Met Trp Ser Tyr Lys Asn Asp Ile Thr Cys Phe Gln Arg Arg Pro
 545 550 555 560
 Thr Phe Leu Glu Trp His Glu Val Pro Thr Ile Val Val Ala Ile Leu
 565 570 575
 Ala Ala Leu Gly Phe Phe Ser Thr Leu Ala Ile Leu Phe Ile Phe Trp
 580 585 590
 Arg His Phe Gln Thr Pro Met Val Arg Ser Ala Gly Gly Pro Met Cys
 595 600 605
 Phe Leu Met Leu Val Pro Leu Leu Ala Phe Gly Met Val Pro Val
 610 615 620
 Tyr Val Gly Pro Pro Thr Val Phe Ser Cys Phe Cys Arg Gln Ala Phe
 625 630 635 640
 Phe Thr Val Cys Phe Ser Ile Cys Leu Ser Cys Ile Thr Val Arg Ser
 645 650 655
 Phe Gln Ile Val Cys Val Phe Lys Met Ala Arg Arg Leu Pro Ser Ala
 660 665 670
 Tyr Ser Phe Trp Met Arg Tyr His Gly Pro Tyr Val Phe Val Ala Phe
 675 680 685
 Ile Thr Ala Ile Lys Val Ala Leu Val Val Gly Asn Met Leu Ala Thr
 690 695 700
 Thr Ile Asn Pro Ile Gly Arg Thr Asp Pro Asp Asp Pro Asn Ile Met
 705 710 715 720
 Ile Leu Ser Cys His Pro Asn Tyr Arg Asn Gly Leu Leu Phe Asn Thr
 725 730 735
 Ser Met Asp Leu Leu Leu Ser Val Leu Gly Phe Ser Phe Ala Tyr Met
 740 745 750
 Gly Lys Glu Leu Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu
 755 760 765
 Ser Met Thr Phe Ser Phe Thr Ser Ser Ile Ser Leu Cys Thr Phe Met
 770 775 780
 Ser Val His Asp Gly Val Leu Val Thr Ile Met Asp Leu Leu Val Thr
 785 790 795 800
 Val Leu Asn Phe Leu Ala Ile Gly Leu Gly Tyr Phe Gly Pro Lys Cys
 805 810 815
 Tyr Met Ile Leu Phe Tyr Pro Glu Arg Asn Thr Ser Ala Tyr Phe Asn
 820 825 830

-continued

Ser Met Ile Gln Gly Tyr Thr Met Arg Lys Ser
835 840

<210> SEQ ID NO 8
<211> LENGTH: 843
<212> TYPE: PRT
<213> ORGANISM: Mus sp.
<220> FEATURE:
<223> OTHER INFORMATION: mouse T1R2 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 8

Met Gly Pro Gln Ala Arg Thr Leu His Leu Leu Phe Leu Leu His
1 5 10 15

Ala Leu Pro Lys Pro Val Met Leu Val Gly Asn Ser Asp Phe His Leu
20 25 30

Ala Gly Asp Tyr Leu Leu Gly Gly Leu Phe Thr Leu His Ala Asn Val
35 40 45

Lys Ser Val Ser His Leu Ser Tyr Leu Gln Val Pro Lys Cys Asn Glu
50 55 60

Tyr Asn Met Lys Val Leu Gly Tyr Asn Leu Met Gln Ala Met Arg Phe
65 70 75 80

Ala Val Glu Glu Ile Asn Asn Cys Ser Ser Leu Leu Pro Gly Val Leu
85 90 95

Leu Gly Tyr Glu Met Val Asp Val Cys Tyr Leu Ser Asn Ile Gln
100 105 110

Pro Gly Leu Tyr Phe Leu Ser Gln Ile Asp Asp Phe Leu Pro Ile Leu
115 120 125

Lys Asp Tyr Ser Gln Tyr Arg Pro Gln Val Val Ala Val Ile Gly Pro
130 135 140

Asp Asn Ser Glu Ser Ala Ile Thr Val Ser Asn Ile Leu Ser Tyr Phe
145 150 155 160

Leu Val Pro Gln Val Thr Tyr Ser Ala Ile Thr Asp Lys Leu Gln Asp
165 170 175

Lys Arg Arg Phe Pro Ala Met Leu Arg Thr Val Pro Ser Ala Thr His
180 185 190

His Ile Glu Ala Met Val Gln Leu Met Val His Phe Gln Trp Asn Trp
195 200 205

Ile Val Val Leu Val Ser Asp Asp Tyr Gly Arg Glu Asn Ser His
210 215 220

Leu Leu Ser Gln Arg Leu Thr Asn Thr Gly Asp Ile Cys Ile Ala Phe
225 230 235 240

Gln Glu Val Leu Pro Val Pro Glu Pro Asn Gln Ala Val Arg Pro Glu
245 250 255

Glu Gln Asp Gln Leu Asp Asn Ile Leu Asp Lys Leu Arg Arg Thr Ser
260 265 270

Ala Arg Val Val Val Ile Phe Ser Pro Glu Leu Ser Leu His Asn Phe
275 280 285

Phe Arg Glu Val Leu Arg Trp Asn Phe Thr Gly Phe Val Trp Ile Ala
290 295 300

Ser Glu Ser Trp Ala Ile Asp Pro Val Leu His Asn Leu Thr Glu Leu
305 310 315 320

Arg His Thr Gly Thr Phe Leu Gly Val Thr Ile Gln Arg Val Ser Ile
325 330 335

-continued

Pro Gly Phe Ser Gln Phe Arg Val Arg His Asp Lys Pro Gly Tyr Arg
 340 345 350
 Met Pro Asn Glu Thr Ser Leu Arg Thr Thr Cys Asn Gln Asp Cys Asp
 355 360 365
 Ala Cys Met Asn Ile Thr Glu Ser Phe Asn Asn Val Leu Met Leu Ser
 370 375 380
 Gly Glu Arg Val Val Tyr Ser Val Tyr Ser Ala Val Tyr Ala Val Ala
 385 390 395 400
 His Thr Leu His Arg Leu Leu His Cys Asn Gln Val Arg Cys Thr Lys
 405 410 415
 Gln Ile Val Tyr Pro Trp Gln Leu Leu Arg Glu Ile Trp His Val Asn
 420 425 430
 Phe Thr Leu Leu Gly Asn Gln Leu Phe Phe Asp Glu Gln Gly Asp Met
 435 440 445
 Pro Met Leu Leu Asp Ile Ile Gln Trp Gln Trp Gly Leu Ser Gln Asn
 450 455 460
 Pro Phe Gln Ser Ile Ala Ser Tyr Ser Pro Thr Glu Thr Arg Leu Thr
 465 470 475 480
 Tyr Ile Ser Asn Val Ser Trp Tyr Thr Pro Asn Asn Thr Val Pro Ile
 485 490 495
 Ser Met Cys Ser Lys Ser Cys Gln Pro Gly Gln Met Lys Lys Pro Ile
 500 505 510
 Gly Leu His Pro Cys Cys Phe Glu Cys Val Asp Cys Pro Pro Asp Thr
 515 520 525
 Tyr Leu Asn Arg Ser Val Asp Glu Phe Asn Cys Leu Ser Cys Pro Gly
 530 535 540
 Ser Met Trp Ser Tyr Lys Asn Asn Ile Ala Cys Phe Lys Arg Arg Leu
 545 550 555 560
 Ala Phe Leu Glu Trp His Glu Val Pro Thr Ile Val Val Thr Ile Leu
 565 570 575
 Ala Ala Leu Gly Phe Ile Ser Thr Leu Ala Ile Leu Leu Ile Phe Trp
 580 585 590
 Arg His Phe Gln Thr Pro Met Val Arg Ser Ala Gly Gly Pro Met Cys
 595 600 605
 Phe Leu Met Leu Val Pro Leu Leu Leu Ala Phe Gly Met Val Pro Val
 610 615 620
 Tyr Val Gly Pro Pro Thr Val Phe Ser Cys Phe Cys Arg Gln Ala Phe
 625 630 635 640
 Phe Thr Val Cys Phe Ser Val Cys Leu Ser Cys Ile Thr Val Arg Ser
 645 650 655
 Phe Gln Ile Val Cys Val Phe Lys Met Ala Arg Arg Leu Pro Ser Ala
 660 665 670
 Tyr Gly Phe Trp Met Arg Tyr His Gly Pro Tyr Val Phe Val Ala Phe
 675 680 685
 Ile Thr Ala Val Lys Val Ala Leu Val Ala Gly Asn Met Leu Ala Thr
 690 695 700
 Thr Ile Asn Pro Ile Gly Arg Thr Asp Pro Asp Asp Pro Asn Ile Ile
 705 710 715 720
 Ile Leu Ser Cys His Pro Asn Tyr Arg Asn Gly Leu Leu Phe Asn Thr
 725 730 735

-continued

Ser Met Asp Leu Leu Leu Ser Val Leu Gly Phe Ser Phe Ala Tyr Val
 740 745 750

Gly Lys Glu Leu Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu
 755 760 765

Ser Met Thr Phe Ser Phe Thr Ser Ser Ile Ser Leu Cys Thr Phe Met
 770 775 780

Ser Val His Asp Gly Val Leu Val Thr Ile Met Asp Leu Leu Val Thr
 785 790 795 800

Val Leu Asn Phe Leu Ala Ile Gly Leu Gly Tyr Phe Gly Pro Lys Cys
 805 810 815

Tyr Met Ile Leu Phe Tyr Pro Glu Arg Asn Thr Ser Ala Tyr Phe Asn
 820 825 830

Ser Met Ile Gln Gly Tyr Thr Met Arg Lys Ser
 835 840

<210> SEQ_ID NO 9

<211> LENGTH: 838

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<220> FEATURE:

<223> OTHER INFORMATION: human T1R2 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 9

Met Gly Pro Arg Ala Lys Thr Ile Cys Ser Leu Phe Phe Leu Leu Trp
 1 5 10 15

Val Leu Ala Glu Pro Ala Glu Asn Ser Asp Phe Tyr Leu Pro Gly Asp
 20 25 30

Tyr Leu Leu Gly Gly Leu Phe Ser Leu His Ala Asn Met Lys Gly Ile
 35 40 45

Val His Leu Asn Phe Leu Gln Val Pro Met Cys Lys Glu Tyr Glu Val
 50 55 60

Lys Val Ile Gly Tyr Asn Leu Met Gln Ala Met Arg Phe Ala Val Glu
 65 70 75 80

Glu Ile Asn Asn Asp Ser Ser Leu Leu Pro Gly Val Leu Leu Gly Tyr
 85 90 95

Glu Ile Val Asp Val Cys Tyr Ile Ser Asn Asn Val Gln Pro Val Leu
 100 105 110

Tyr Phe Leu Ala His Glu Asp Asn Leu Leu Pro Ile Gln Glu Asp Tyr
 115 120 125

Ser Asn Tyr Ile Ser Arg Val Val Ala Val Ile Gly Pro Asp Asn Ser
 130 135 140

Glu Ser Val Met Thr Val Ala Asn Phe Leu Ser Leu Phe Leu Leu Pro
 145 150 155 160

Gln Ile Thr Tyr Ser Ala Ile Ser Asp Glu Leu Arg Asp Lys Val Arg
 165 170 175

Phe Pro Ala Leu Leu Arg Thr Thr Pro Ser Ala Asp His His Val Glu
 180 185 190

Ala Met Val Gln Leu Met Leu His Phe Arg Trp Asn Trp Ile Ile Val
 195 200 205

Leu Val Ser Ser Asp Thr Tyr Gly Arg Asp Asn Gly Gln Leu Leu Gly
 210 215 220

Glu Arg Val Ala Arg Arg Asp Ile Cys Ile Ala Phe Gln Glu Thr Leu
 225 230 235 240

-continued

Pro Thr Leu Gln Pro Asn Gln Asn Met Thr Ser Glu Glu Arg Gln Arg
 245 250 255
 Leu Val Thr Ile Val Asp Lys Leu Gln Gln Ser Thr Ala Arg Val Val
 260 265 270
 Val Val Phe Ser Pro Asp Leu Thr Leu Tyr His Phe Phe Asn Glu Val
 275 280 285
 Leu Arg Gln Asn Phe Thr Gly Ala Val Trp Ile Ala Ser Glu Ser Trp
 290 295 300
 Ala Ile Asp Pro Val Leu His Asn Leu Thr Glu Leu Gly His Leu Gly
 305 310 315 320
 Thr Phe Leu Gly Ile Thr Ile Gln Ser Val Pro Ile Pro Gly Phe Ser
 325 330 335
 Glu Phe Arg Glu Trp Gly Pro Gln Ala Gly Pro Pro Pro Leu Ser Arg
 340 345 350
 Thr Ser Gln Ser Tyr Thr Cys Asn Gln Glu Cys Asp Asn Cys Leu Asn
 355 360 365
 Ala Thr Leu Ser Phe Asn Thr Ile Leu Arg Leu Ser Gly Glu Arg Val
 370 375 380
 Val Tyr Ser Val Tyr Ser Ala Val Tyr Ala Val Ala His Ala Leu His
 385 390 395 400
 Ser Leu Leu Gly Cys Asp Lys Ser Thr Cys Thr Lys Arg Val Val Tyr
 405 410 415
 Pro Trp Gln Leu Leu Glu Glu Ile Trp Lys Val Asn Phe Thr Leu Leu
 420 425 430
 Asp His Gln Ile Phe Phe Asp Pro Gln Gly Asp Val Ala Leu His Leu
 435 440 445
 Glu Ile Val Gln Trp Gln Trp Asp Arg Ser Gln Asn Pro Phe Gln Ser
 450 455 460
 Val Ala Ser Tyr Tyr Pro Leu Gln Arg Gln Leu Lys Asn Ile Gln Asp
 465 470 475 480
 Ile Ser Trp His Thr Val Asn Asn Thr Ile Pro Met Ser Met Cys Ser
 485 490 495
 Lys Arg Cys Gln Ser Gly Gln Lys Lys Pro Val Gly Ile His Val
 500 505 510
 Cys Cys Phe Glu Cys Ile Asp Cys Leu Pro Gly Thr Phe Leu Asn His
 515 520 525
 Thr Glu Asp Glu Tyr Glu Cys Gln Ala Cys Pro Asn Asn Glu Trp Ser
 530 535 540
 Tyr Gln Ser Glu Thr Ser Cys Phe Lys Arg Gln Leu Val Phe Leu Glu
 545 550 555 560
 Trp His Glu Ala Pro Thr Ile Ala Val Ala Leu Leu Ala Ala Leu Gly
 565 570 575
 Phe Leu Ser Thr Leu Ala Ile Leu Val Ile Phe Trp Arg His Phe Gln
 580 585 590
 Thr Pro Ile Val Arg Ser Ala Gly Gly Pro Met Cys Phe Leu Met Leu
 595 600 605
 Thr Leu Leu Leu Val Ala Tyr Met Val Val Pro Val Tyr Val Gly Pro
 610 615 620
 Pro Lys Val Ser Thr Cys Leu Cys Arg Gln Ala Leu Phe Pro Leu Cys
 625 630 635 640

-continued

Phe Thr Ile Cys Ile Ser Cys Ile Ala Val Arg Ser Phe Gln Ile Val
 645 650 655
 Cys Ala Phe Lys Met Ala Ser Arg Phe Pro Arg Ala Tyr Ser Tyr Trp
 660 665 670
 Val Arg Tyr Gln Gly Pro Tyr Val Ser Met Ala Phe Ile Thr Val Leu
 675 680 685
 Lys Met Val Ile Val Val Ile Gly Met Leu Ala Arg Pro Gln Ser His
 690 695 700
 Pro Arg Thr Asp Pro Asp Asp Pro Lys Ile Thr Ile Val Ser Cys Asn
 705 710 715 720
 Pro Asn Tyr Arg Asn Ser Leu Leu Phe Asn Thr Ser Leu Asp Leu Leu
 725 730 735
 Leu Ser Val Val Gly Phe Ser Phe Ala Tyr Met Gly Lys Glu Leu Pro
 740 745 750
 Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu Ser Met Thr Phe Tyr
 755 760 765
 Phe Thr Ser Ser Val Ser Leu Cys Thr Phe Met Ser Ala Tyr Ser Gly
 770 775 780
 Val Leu Val Thr Ile Val Asp Leu Leu Val Thr Val Leu Asn Leu Leu
 785 790 795 800
 Ala Ile Ser Leu Gly Tyr Phe Gly Pro Lys Cys Tyr Met Ile Leu Phe
 805 810 815
 Tyr Pro Glu Arg Asn Thr Pro Ala Tyr Phe Asn Ser Met Ile Gln Gly
 820 825 830
 Tyr Thr Met Arg Arg Asp
 835

<210> SEQ ID NO 10
 <211> LENGTH: 2993
 <212> TYPE: DNA
 <213> ORGANISM: Rattus sp.
 <220> FEATURE:
 <223> OTHER INFORMATION: rat T1R2 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 10

```

cacttgctg tcatgggtcc ccaggcaagg acactctgct tgctgtctct cctgctgcat      60
gttctgccta agccaggcaa gctggtagag aactctgact tccacctggc cggggactac      120
ctcctgggtg gcctctttac cctccatgcc aacgtgaaga gcatctccca cctcagctac      180
ctgcaggtgc ccaagtgcaa tgagttcacc atgaagggtg tgggctacaa cctcatgcag      240
gccatgcgtt tcgctgtgga ggagatcaac aactgttagct ccctgctacc cggcgtgctg      300
ctcggctacg agatgggtga tgcgtgttac ctctccaaaca atatccaccc tgggctctac      360
ttcctggcac aggacgacga cctcctgccc atcctcaaag actacagcca gtacatgccc      420
cacgtgggtgg ctgtcattgg ccccgacaac tctgagtcgg ccattaccgt gtccaaacatt      480
ctctctcatt tcctcatccc acagatcaca tacagcgcca tctccgacaa gctgcgggac      540
aagcggcaact tcccttagcat gctacgcaca gtgcccagcg ccacccacca catcgaggcc      600
atgggtgcagc tgatggttca cttccaatgg aactggattg tggtgctggt gagcgcacac      660
gattacggcc gcgagaacag ccacctgttg agccagcgctc tgaccaaaac gagcgcacatc      720
tgcattgcct tccaggaggt tctgcccata cctgagtcga gccaggtcat gaggtccgag      780
  
```

-continued

gagcagagac aactggacaa catcctggac aagctgcggc ggacctcgcc gcgcgtcgta 840
gtggtgttct cgcccgagct gagcctgtat agcttcttcc acgagggtgct ccgctggaaac 900
ttcacgggtt ttgtgtggat cgcctctgag tcctgggcta tcgaccaggat tctgcataaac 960
ctcacggagc tgcgccacac gggtaactttt ctgggcgtca ccatccagag ggtgtccatc 1020
cctggcttca gtcagttccg agtgcgcgt gacaagccag ggtatcccgt gcctaacaac 1080
accaacatgc ggacgcacctg caaccaggac tgcgtgcct gcttgaacac caccaagtcc 1140
ttcaacaaca tccttataact ttcggggag cgcgtggct acagcgtgta ctcggcagtt 1200
tacgcgggttccatgccttccacagactcctcggtatcaccgggtccgtacccatccag 1260
caaaagggtct acccggtggca gctactcagg gagatctggc acgtcaactt cacgtccctg 1320
ggtaaccggc tcttctttga ccaacaaggg gacatggcga tgctcttggaa catcatccag 1380
tggcagtggttccatgccttccaaagcatcg cctccatttc tcccaccagg 1440
aagaggctaa cctacattaa caatgtgtcc tggtacaccc ccaacaacac ggtccctgtc 1500
tccatgtgttccatgccttccaaatgaaaa agtctgtggg cctccaccct 1560
tggcgttccatgccttccatgccttccaaatgaaaa agtctgtggg cctccaccct 1620
ttaactgtc tgcgttccatgccttccatgccttccaaatgaaaa agaacgacat cacttgcttc 1680
cagggggggc ctacccatcg ggttccatgccttccaaatgaaaa ccacatcggttccatgccttcc 1740
gtgtccctgg gtttccatgccttccatgccttccaaatgaaaa ccacatcggttccatgccttcc 1800
acacccatgg tgcgttccatgccttccatgccttccaaatgaaaa agtctgtggg cccctgtc 1860
ctggcgttccatgccttccatgccttccaaatgaaaa agtctgtggg cccctgtc 1920
cgacaggcttccatgccttccatgccttccaaatgaaaa agaacgacat cacttgcttc 1980
ttccagatcg tgcgttccatgccttccaaatgaaaa agacgcctgc caagtgccta cagttttgg 2040
atgcgttacc acggggcccta tgcgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2100
gtggggggc acatgtgtcc caccaccatc aaccccatgg gccggaccga cccggatgac 2160
ccaaacatca tgcgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2220
agcatggact tgcgttccatgccttccaaatgaaaa agacgcctgc caagtgccta cagttttgg 2280
ccacccaact acaacgaagc caagttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2340
tccatctccc tgcgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2400
ctccctggta tgcgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2460
tacatgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2520
ggctacacca tgcgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2580
acgttaatgg tgcgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2640
taaaatacccttgcgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2700
caccacatca tgcgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2760
tgcgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2820
gtggctgttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2880
gggcttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2940
aaacttccatgccttccaaatgaaaa agtctgtggg cccctgtc 2993

-continued

<211> LENGTH: 2532
<212> TYPE: DNA
<213> ORGANISM: Mus sp.
<220> FEATURE:
<223> OTHER INFORMATION: mouse T1R2 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 11

atgggacccc	aggcgaggac	actccatttgc	ctgtttctcc	tgctgcata	tctgcataag	60	
ccagtcatgc	tggtagggaa	ctccgacttt	cacctggctg	gggactaccc	cctgggtggc	120	
ctctttaccc	tccatgcca	cgtaaagagt	gtctctcacc	tca	gacttaccc	gcaggtgccc	180
aagtgcata	atgacaaat	gaagggtttg	ggctaca	tcatgcaggc	catgcgattc	240	
gccgtggagg	aaatcaacaa	ctgtagctct	ttgctgccc	gcgtgcgtct	cggctacgag	300	
atgggtggat	tctgttaccc	ctccaacaat	atccagcc	ggcttactt	cctgtcacag	360	
atagatgact	tcctgccc	atc	acagcc	acaggccca	agtgggtggc	420	
gttattggcc	cagacaactc	tgagtctg	atcaccgtgt	ccaacattt	ctc	tacttc	480
ctcgtgccac	aggta	ccata	tagcgc	accgaca	tgcaagaca	gcggcgcttc	540
cctgcatgc	tg	cgca	actgt	cc	tcgaggcc	gtgcactg	600
atggttca	tcc	ca	gtgg	atcg	gtgtgtt	gacgatgacg	660
gagaacagcc	ac	ctgt	gat	ccgt	acc	atgc	720
caggagg	ttc	tgccc	gtacc	agaacca	cagg	ctgtg	780
ctggacaaca	tc	ctgg	gacaa	g	tcg	ggcg	840
ccggagctga	gc	ctgc	acaa	ctt	ccgt	gat	900
gtgtggattt	c	c	c	c	c	ttc	960
cgccacacgg	gc	actt	tc	gg	gtc	acc	1020
cagttccgag	tg	cc	catg	aa	atc	gc	1080
actac	ctgt	ta	ccagg	actg	cgac	gc	1140
ctcat	gtt	tt	cccc	gat	cc	ttgg	1200
cacacc	cttcc	ac	act	cc	act	ccat	1260
ccat	ggc	ac	act	cc	act	cc	1320
ttcttc	gac	aa	ac	cc	cc	ttgg	1380
ctgagccaga	acc	cc	at	ccat	cc	ttgg	1440
tacattagca	at	gt	gt	cc	act	ccat	1500
aagagttgcc	age	ct	gg	cc	at	ccat	1560
tgtgtggact	gt	cc	gg	cc	at	ccat	1620
ttctgcccgg	gtt	cc	at	gt	cc	ttgg	1680
gc	tt	cc	ct	gg	at	ccat	1740
ttcat	cat	gt	gt	cc	at	ccat	1800
cg	tc	gg	cc	gg	at	ccat	1860
atgg	ttcc	gg	cc	cc	at	ccat	1920
ttcac	ccgtt	gg	cc	cc	at	ccat	1980
tgcgttca	agat	gg	cc	cc	ac	ccat	2040

-continued

```

gggcctacg tttcgtggc cttcatcagc gccgtcaagg tggccctggt ggccggcaac 2100
atgctggcca ccaccatcaa ccccattggc cggaccgacc ccgatgaccc caatatcata 2160
atccctccct gccaccctaa ctaccgcaac gggctactct tcaacaccag catggacttg 2220
ctgctgtccg tgctgggtt cagttcgcg tacgtggca aggaactgcc caccaactac 2280
aacgaagcca agttcatcac cctcagcatg accttctct tcacccctc catccctc 2340
tgcacgttca tgtctgtcca ccatggcgtg ctggcacca tcatggatct cctggtact 2400
gtgctcaact ttctggccat cggcttgggg tactttggcc ccaaatgtta catgatcctt 2460
ttctaccggc agcgaacac ttcaatagca tgattcaggc ctacacgatg 2520
aggaagagct ag 2532

```

```

<210> SEQ ID NO 12
<211> LENGTH: 2010
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<220> FEATURE:
<223> OTHER INFORMATION: human T1R2 G-protein coupled receptor sweet
taste receptor

```

```

<400> SEQUENCE: 12
atcacctaca ggcgcacatcg cgatgagctg cgagacaagg tgcgttcccc ggctttgctg 60
cgtaccacac ccagcgccga ccaccacgtc gaggccatgg tgcagctgat gctgcacttc 120
cgctgaaact ggtatcattgt gctggtgagc agcgacacact atggccgcga caatggccag 180
ctgcttggcg agcgcgtggc cccgcgcgac atctgcacatcg cttccagga gacgctgccc 240
acactgcacg ccaaccagaa catgacgtca gaggagcgcg acgcgcgtt gaccattgtg 300
gacaagctgc agcagagcac agcgcgcgtc gtggcgtgt tctcgcccg aaccatctt 360
taccacttct tcaatgaggt gctgcgcacg aacttcacgg ggcgcgtgt gatgcctcc 420
gagtcctggg ccatcgaccc ggtcctgcac aacctcactgg agctggccca cttggcacc 480
ttcctggca tcaccatcca gagcgtgccc atcccggct tcaatgtt ccgcgagtgg 540
ggcccacagg ctggggccgc acccctcagc aggaccagcc agagctatac ctgcaaccag 600
gagtgcgaca actgcctgaa cgcacatcg tcctcaaca ccattctcag gctctctgg 660
gagcgtgtcg tctacagcgt gtactctgcg gtctatgtg tggccatgc cctgcacagc 720
ctcctcggt gtgacaaaag cacctgcacc aagagggtgg tctaccctcg gcagctgtt 780
gaggagatct ggaaggtcaa cttcactctc ctggaccacc aaatcttctt cgaccgcac 840
ggggacgtgg ctctgcactt ggagattgtc cagttggcaat gggaccggag ccagaatccc 900
ttccagagcg tcgcctccata ctaccctcg cagcgcacgc tgaagaacat caagacatct 960
ctgcacaccg tcaacaacac gatccctatg tccatgtttt ccaagaggtg ccagtcagg 1020
aaaaagaaga agcctgtggg catccacgtc tgctgcttcg agtgcacatcg ctgccttccc 1080
ggcaccttcc tcaaccacac tgaatgcccgg aataacgagt ggtcctacca gagtgagacc 1140
tcctgcttca agcggcagct ggtcttcctg gaatggcatg aggcaccacat cttcgctgtg 1200
gccctgctgg ccgcctggg ctccctcagc accctggccca tcctgggtat attctggagg 1260
cacttccaga cacccatagt tcgctcggtt gggggccca tttgttccctt gatgtgtaca 1320
ctgctgctgg tggcatacat ggtggtcccg gttgtacgtgg ggccgcacca ggtctccacc 1380

```

-continued

tgccctctgcc	gccaggccct	ctttccccctc	tgcttcacaa	tttgcacatctc	ctgtatcgcc	1440
gtgcgttctt	tccagatcg	ctgcgccttc	aagatggcca	gccgccttccc	acgcgcctac	1500
agctactgg	tccgcctacca	ggggccctac	gtctctatgg	catttatcac	ggtaactcaaa	1560
atggtcattg	tggtaattgg	catgctggca	cggcctcagt	cccacccccc	tactgacccc	1620
gatgacccca	agatcacaat	tgtctcctgt	aaccccaact	accgcaacag	cctgctgttc	1680
aacaccagcc	tggacctgct	gctctcagt	gtggggttca	gcttcgccta	catgggcaaa	1740
gagctgccc	ccaaactacaa	cgaggccaag	ttcatcaccc	tcagcatgac	cttctatttc	1800
acctcatccg	tctccctctg	cacccatcg	tctgcctaca	gcgggggtgc	ggtcaccatc	1860
gtggacctct	tggtaactgt	gctcaacctc	ctggccatca	gcctgggcta	cttcggcccc	1920
aagtgtaca	tgtacccctt	ctacccggag	cgcaacacgc	ccgcctactt	caacagcatg	1980
atccagggt	acaccatgag	gagggactag				2010

<210> SEQ ID NO 13
 <211> LENGTH: 3200
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <220> FEATURE:
 <223> OTHER INFORMATION: human T1R3 G-protein coupled receptor sweet taste receptor genomic sequence

<400> SEQUENCE: 13

gctcaactcca	tgtgaggccc	cagtcggggc	agccacactgc	cgtgcctgtt	ggaagttgcc	60
tctgccatgc	tggggccctgc	tgtcctggcc	ctcagccctc	gggcctatcc	gcaccctggg	120
acggggggccc	cattgtgcct	gtcacagcaa	cttaggatga	agggggacta	cgtgcctggg	180
gggcgtgttcc	ccctgggca	ggccgaggag	gtggccctcc	gcagccggac	acgccccaggc	240
agccctgtgt	gcaccaggt	caagagggtgg	acggcctggg	tcggggtcag	ggtgaccagg	300
tctgggggtgc	tcttgagctg	ggggccggat	ggccatctgc	gggttctgtt	ggccccaggt	360
tctcctcaaa	cggcctgctc	tgggcactgg	ccatgaaaat	ggccgtggag	gagatcaaca	420
acaagtccga	tctgctgccc	gggctgccc	tgggctacga	cctctttgt	acgtgtcg	480
agcctgttgt	ggccatgaag	cccagcctca	tgttccctggc	caaggeaggc	agcccgacaca	540
tcggccctca	ctgcaactac	acgcagttacc	agccccgtgt	gctggctgtc	atcggggcccc	600
actcgtcaga	gctcgccatg	gtcaccggca	agttcttcag	cttcttcctc	atgccccagg	660
tggcgcccc	caccatcacc	caccccccacc	cagccctgcc	cgtgggggcc	cctgtgtcag	720
gagatgcctc	ttggcccttg	caggtcagct	acgggtctag	catggagctg	ctgagcgccc	780
gggagacctt	ccccccttc	ttccgcaccc	tgcccagcga	ccgtgtcag	ctgacggccg	840
cccgccggact	gctgcaggag	ttcggctgga	actgggtggc	cgccctgggc	agcgacgacg	900
agtacggccg	gcaggccctg	agcatcttc	cgccctggc	cgcggcagc	ggcatctgca	960
tcgcgcacga	gggcctgggt	ccgctgcccc	gtgcccgtatga	ctcgccgtcg	gggaaggtgc	1020
aggacgttct	gcaccaggtg	aaccagacg	gcgtgcaggt	ggtgctgtct	tgcgcctccg	1080
tgcacgcccgc	ccacgccc	ttcaactaca	gcatcagcag	caggctctcg	cccaaggtgt	1140
gggtggccag	cgaggccctgg	ctgacccctcg	acctggtcat	ggggctgccc	ggcatggccc	1200
agatgggcac	ggtgcttgcc	ttccctccaga	gggggtgccc	gctgcacgag	ttccccccagt	1260
acgtgaagac	gcacccctggcc	ctggccaccc	acccggccctt	ctgctctgccc	ctggggcaga	1320

-continued

gggagcaggg	tctggaggag	gacgtggtgg	gccagcgctg	cccgca	gactgc	atca	1380			
cgctgcagaa	cgtgagcgca	gggctaaatc	accaccagac	gttctctgtc	tacgc	agctgt	1440			
tgtatagcgt	ggcccaggcc	ctgcacaaca	ctcttc	caacgc	ctca	ggctgccc	1500			
cgcaggaccc	cgtgaagccc	tggcagggtga	gcccgggaga	tgggggtgt	ctgt	ccctct	1560			
catgtgccca	ggccaccagg	cacggccacc	acgc	cctgagc	tggagg	tgcc	ggctca	1620		
gccccgtccc	ccgccccgag	ctcctggaga	acatgt	acaa	cctgac	cc	cgtggc	1680		
ggctgccgct	gcgggttc	gac	acgc	ggaa	acgtgg	gacat	ggagtac	1740		
gggtgtggca	gggctc	atgtc	ccca	ccagg	gtccc	ac	ggcag	ctca	1800	
ggacagagcg	cctgaagatc	cgctggcaca	cgtc	tgcaca	ccagg	tgagg	tgagg	1860		
tgtgccagcc	gtgcccgtgg	tagccccgc	ggcagg	ggcgc	agcct	gggg	tgggg	1920		
tccagtctcc	cgtgggc	atgc	cccagg	ccag	cccagg	cc	gtgc	gcagaa	1980	
gccccgtgtcc	cggtgctc	gc	ggc	actgt	ccccc	agg	gtgc	ccccc	2040	
ccactcctgc	tgctac	gtgt	ggact	cgagg	ccggc	agct	accggc	aaa	2100	
tgagccgcct	tcccggc	agg	cggggg	aa	ccgc	agg	gggt	cc	2160	
tgactctgag	accagagccc	acagg	gtaca	agac	gaacac	ccag	gc	ccct	2220	
cacagacgac	atgc	ccct	gtgg	cc	aggat	gag	tgg	cccc	2280	
acgtgttcc	cgc	cc	ggc	atgg	gggc	gag	ccgg	ctg	2340	
gctcctgtc	ctg	agg	ctgg	cc	ctgt	ggct	gtt	cg	2400	
ccatcgggac	agccc	actgg	ttcagg	cc	ggc	ctgt	ttgg	ctgg	2460	
gtgcctggc	ctgg	ctgc	tcag	gtcc	ct	gtt	ccct	ggca	2520	
atgcctggcc	cagc	aggcc	tgt	cccac	cc	gtc	gc	ctgt	2580	
cctgcaggcg	gcc	gagat	ct	gtgg	cc	ta	ctg	ggc	2640	
gagtggctgc	ctg	gggg	cctg	gtgg	gg	ctg	ggcc	ta	2700	
gtcgcactg	tgc	ac	cc	ttcgg	cc	gg	actgg	ca	2760	
catgctgccc	acgg	gagge	tgg	gcact	cc	gag	ctgg	cc	2820	
agcgcacgcc	acca	atgca	cg	tggc	cc	tct	gtgt	cc	2880	
gagccagccg	ggc	tgc	taca	acc	gtgccc	ttt	gccc	atgc	2940	
catcacctgg	gtc	cc	tttgc	cc	gttgc	atgc	tttgc	cc	3000	
cgtgcagatg	ggc	cc	ctcc	cc	gttgc	atc	ctgg	cc	3060	
cagggttac	ctg	tc	atgc	ggc	aggc	gtca	cc	cgat	3120	
ggccctggg	gat	gccc	aa	gc	aga	at	gg	aaat	cg	3180
gtgacccaac	cct	gt	at	tc	at	tc	cc	at	gt	3200

<210> SEQ ID NO 14
 <211> LENGTH: 2559
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <220> FEATURE:
 <223> OTHER INFORMATION: human T1R3 G-protein coupled receptor sweet taste receptor CDS

<400> SEQUENCE: 14

-continued

atgctggcc ctgctgtctt gggcctcagc ctctgggctc tcctgcaccc tggacgggg	60
gccccattgt gcctgtcaca gcaacttagg atgaaggggg actacgtgt gggggggctg	120
ttccccctgg gcgaggccga ggaggctggc ctccgcagcc ggacacggcc cagcagccct	180
gtgtgcacca gggttccctc aaacggcctg ctctggcac tggccatgaa aatggccgtg	240
gaggagatca acaacaagtc ggatctgtc cccgggctgc gcctggcta cgacctttt	300
gatacgtgtc cgaggcctgt ggtggccatg aagcccagcc tcatgttctt ggcacaggca	360
ggcagcccg acatcgccgc ctactgcaac tacacgcagt accagccccg tgtgtggct	420
gtcatcgggc cccactcgtc agagctcgcc atggtcaccc gcaagtttctt cagcttcttc	480
ctcatgcccc aggtcageta cggtgcttagc atggagctgc tgagcgcggc ggagaccttc	540
ccctccttct tccgcacccgt gcccagegac cgtgtgcagc tgacggccgc cgccggagctg	600
ctgcaggagt tcggctggaa ctgggtggcc gcccctggca ggcacgcacgatgcgttggc	660
cagggcctga gcatcttctc ggcccctggcc ggggcacgcg gcatctgcacgcgcacgag	720
ggcctgggtgc cgctgccccg tgccgatgac tgcgggttgg ggaagggtgca ggacgttctg	780
caccaggtga accagagcag cgtgcagggt gtgtgtgtgtc tgcctccgt gcacgcgcgc	840
cacgcctctc tcaactacag catcagcagc aggctctcgc ccaagggtgtg ggtggccagc	900
gaggcctggc tgacctctga cctggcgtatg gggctgccccg gcatggccca gatgggcacg	960
gtgcttggct tccctccagag gggtgcggcag ctgcacgagt tcccccaatgcgttgcgttgc	1020
cacctggccc tggccaccga cccggccttc tgctctgccc tggcgcagag ggagcagggt	1080
ctggaggagg acgtgggtggg ccagcgtgc cccgactgtg actgcacac gctgcagaac	1140
gtgagcgcag ggctaaatca ccaccagacg ttctctgtct acgcagctgt gtatacgctg	1200
gcccaggccc tgcacaacac tttcactgtc aacgcctcag gctgccccgc gcaggacccc	1260
gtgaaggccct ggcagctctt ggagaacatg tacaacctga cttccacgt gggcgggctg	1320
ccgctgcggc tgcacagcag cggaaacgtg gacatggagt acgcacgttgc gctgtgggt	1380
tggcagggtc cagtggccag gctccacgc gtggcagggt tcaacggcag cctcaggaca	1440
gagcgcctga agatccgcgt gcacacgtc gacaaccaga agccgcgtgc ccgggtgtcg	1500
cgccagtgcc aggagggcca ggtgcgcggc gtcaaggggt tccactccgt ctgtacgac	1560
tgtgtggact gcgaggcggg cagctaccgg caaaacccag acgacatcgc ctgcacccctt	1620
tgtggccagg atgagtggtc cccggagcga agcacacgt gcttccggc cagggtctgg	1680
tccctggcat gggggcagcc ggctgtgtct ctgtgtctcc tgcgtgttgc gctggcgtctg	1740
ggccttgc tggctgtttt gggctgttc ttccacccatc gggacagccc actgggtcag	1800
gcctcgccgg gggccctggc ctgtttggc ctgggtgtcc tggccctggt ctgcctcagc	1860
gtccctctgt tccctggcca gcccagccct gcccgtatgc tggccctggca gccccttgc	1920
caccccccgc tcaacgggtc cctgagcaca ctccctcgtc aggccggccga gatccctgt	1980
gagtcagaac tgcctcttagt ctggcagac cggctgagtg gctgcctgcg gggccctgg	2040
gcctggctgg tgggtgtgtc ggcctgtgtc gtggaggtcg cactgtgcac ctgggtacctg	2100
gtggcccttc cggccggaggt ggtgacggac tggcacatgc tggccacggc ggcgtgggt	2160
cactgcccga cacgctccgt ggtcagtttcc ggcctagcgc acgcacccaa tgccacgctg	2220
gccttctat gcttctggg cactttctgt gtgcggagcc agccgggctg ctacaaccgt	2280

-continued

ggccgtggcc	tcaccttgc	catgctggcc	tacttcatca	cctgggtctc	ctttgtgccc	2340
ctccctggca	atgtgcaggt	ggtcctcagg	ccgcggcgtgc	agatgggcgc	cctcctgctc	2400
tgtgtccctgg	gcatccctggc	tgccttccac	ctgcccaggt	gttacctgct	catgcggcag	2460
ccaggggctca	acaccccccga	gttcttcctg	ggagggggcc	ctggggatgc	ccaaggccag	2520
aatgacggga	acacagggaaa	tcaggggaaa	catgagtga			2559

<210> SEQ_ID NO 15
 <211> LENGTH: 852
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens
 <220> FEATURE:
 <223> OTHER INFORMATION: human T1R3 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 15

Met	Leu	Gly	Pro	Ala	Val	Leu	Gly	Leu	Ser	Leu	Trp	Ala	Leu	Leu	His
1						5			10				15		
Pro	Gly	Thr	Gly	Ala	Pro	Leu	Cys	Leu	Ser	Gln	Gln	Leu	Arg	Met	Lys
						20			25			30			
Gly	Asp	Tyr	Val	Leu	Gly	Gly	Leu	Phe	Pro	Leu	Gly	Glu	Ala	Glu	Glu
						35			40			45			
Ala	Gly	Leu	Arg	Ser	Arg	Thr	Arg	Pro	Ser	Ser	Pro	Val	Cys	Thr	Arg
						50			55			60			
Phe	Ser	Ser	Asn	Gly	Leu	Leu	Trp	Ala	Leu	Ala	Met	Lys	Met	Ala	Val
						65			70			75			80
Glu	Glu	Ile	Asn	Asn	Lys	Ser	Asp	Leu	Leu	Pro	Gly	Leu	Arg	Leu	Gly
						85			90			95			
Tyr	Asp	Leu	Phe	Asp	Thr	Cys	Ser	Glu	Pro	Val	Val	Ala	Met	Lys	Pro
						100			105			110			
Ser	Leu	Met	Phe	Leu	Ala	Lys	Ala	Gly	Ser	Arg	Asp	Ile	Ala	Ala	Tyr
						115			120			125			
Cys	Asn	Tyr	Thr	Gln	Tyr	Gln	Pro	Arg	Val	Leu	Ala	Val	Ile	Gly	Pro
						130			135			140			
His	Ser	Ser	Glu	Leu	Ala	Met	Val	Thr	Gly	Lys	Phe	Ser	Phe	Phe	
						145			150			155			160
Leu	Met	Pro	Gln	Val	Ser	Tyr	Gly	Ala	Ser	Met	Glu	Leu	Leu	Ser	Ala
						165			170			175			
Arg	Glu	Thr	Phe	Pro	Ser	Phe	Phe	Arg	Thr	Val	Pro	Ser	Asp	Arg	Val
						180			185			190			
Gln	Leu	Thr	Ala	Ala	Ala	Glu	Leu	Leu	Gln	Glu	Phe	Gly	Trp	Asn	Trp
						195			200			205			
Val	Ala	Ala	Leu	Gly	Ser	Asp	Asp	Glu	Tyr	Gly	Arg	Gln	Gly	Leu	Ser
						210			215			220			
Ile	Phe	Ser	Ala	Leu	Ala	Ala	Arg	Gly	Ile	Cys	Ile	Ala	His	Glu	
						225			230			235			240
Gly	Leu	Val	Pro	Leu	Pro	Arg	Ala	Asp	Asp	Ser	Arg	Leu	Gly	Lys	Val
						245			250			255			
Gln	Asp	Val	Leu	His	Gln	Val	Asn	Gln	Ser	Ser	Val	Gln	Val	Val	Leu
						260			265			270			
Leu	Phe	Ala	Ser	Val	His	Ala	Ala	His	Ala	Leu	Phe	Asn	Tyr	Ser	Ile
						275			280			285			
Ser	Ser	Arg	Leu	Ser	Pro	Lys	Val	Trp	Val	Ala	Ser	Glu	Ala	Trp	Leu

-continued

290	295	300
Thr Ser Asp Leu Val Met Gly Leu Pro Gly Met Ala Gln Met Gly Thr		
305	310	315
320		
Val Leu Gly Phe Leu Gln Arg Gly Ala Gln Leu His Glu Phe Pro Gln		
325	330	335
Tyr Val Lys Thr His Leu Ala Leu Ala Thr Asp Pro Ala Phe Cys Ser		
340	345	350
Ala Leu Gly Glu Arg Glu Gln Gly Leu Glu Glu Asp Val Val Gly Gln		
355	360	365
Arg Cys Pro Gln Cys Asp Cys Ile Thr Leu Gln Asn Val Ser Ala Gly		
370	375	380
Leu Asn His His Gln Thr Phe Ser Val Tyr Ala Ala Val Tyr Ser Val		
385	390	395
400		
Ala Gln Ala Leu His Asn Thr Leu Gln Cys Asn Ala Ser Gly Cys Pro		
405	410	415
Ala Gln Asp Pro Val Lys Pro Trp Gln Leu Leu Glu Asn Met Tyr Asn		
420	425	430
Leu Thr Phe His Val Gly Gly Leu Pro Leu Arg Phe Asp Ser Ser Gly		
435	440	445
Asn Val Asp Met Glu Tyr Asp Leu Lys Leu Trp Val Trp Gln Gly Ser		
450	455	460
Val Pro Arg Leu His Asp Val Gly Arg Phe Asn Gly Ser Leu Arg Thr		
465	470	475
480		
Glu Arg Leu Lys Ile Arg Trp His Thr Ser Asp Asn Gln Lys Pro Val		
485	490	495
Ser Arg Cys Ser Arg Gln Cys Gln Glu Gly Gln Val Arg Arg Val Lys		
500	505	510
Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp Cys Glu Ala Gly Ser		
515	520	525
Tyr Arg Gln Asn Pro Asp Asp Ile Ala Cys Thr Phe Cys Gly Gln Asp		
530	535	540
Glu Trp Ser Pro Glu Arg Ser Thr Arg Cys Phe Arg Arg Arg Ser Arg		
545	550	555
560		
Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Leu Leu Leu Leu Leu		
565	570	575
Ser Leu Ala Leu Gly Leu Val Leu Ala Ala Leu Gly Leu Phe Val His		
580	585	590
His Arg Asp Ser Pro Leu Val Gln Ala Ser Gly Gly Pro Leu Ala Cys		
595	600	605
Phe Gly Leu Val Cys Leu Gly Leu Val Cys Leu Ser Val Leu Leu Phe		
610	615	620
Pro Gly Gln Pro Ser Pro Ala Arg Cys Leu Ala Gln Gln Pro Leu Ser		
625	630	635
640		
His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu Phe Leu Gln Ala Ala		
645	650	655
Glu Ile Phe Val Glu Ser Glu Leu Pro Leu Ser Trp Ala Asp Arg Leu		
660	665	670
Ser Gly Cys Leu Arg Gly Pro Trp Ala Trp Leu Val Val Leu Leu Ala		
675	680	685
Met Leu Val Glu Val Ala Leu Cys Thr Trp Tyr Leu Val Ala Phe Pro		
690	695	700

-continued

Pro Glu Val Val Thr Asp Trp His Met Leu Pro Thr Glu Ala Leu Val
 705 710 715 720

His Cys Arg Thr Arg Ser Trp Val Ser Phe Gly Leu Ala His Ala Thr
 725 730 735

Asn Ala Thr Leu Ala Phe Leu Cys Phe Leu Gly Thr Phe Leu Val Arg
 740 745 750

Ser Gln Pro Gly Cys Tyr Asn Arg Ala Arg Gly Leu Thr Phe Ala Met
 755 760 765

Leu Ala Tyr Phe Ile Thr Trp Val Ser Phe Val Pro Leu Leu Ala Asn
 770 775 780

Val Gln Val Val Leu Arg Pro Ala Val Gln Met Gly Ala Leu Leu Leu
 785 790 795 800

Cys Val Leu Gly Ile Leu Ala Ala Phe His Leu Pro Arg Cys Tyr Leu
 805 810 815

Leu Met Arg Gln Pro Gly Leu Asn Thr Pro Glu Phe Phe Leu Gly Gly
 820 825 830

Gly Pro Gly Asp Ala Gln Gly Gln Asn Asp Gly Asn Thr Gly Asn Gln
 835 840 845

Gly Lys His Glu
 850

<210> SEQ_ID NO 16
 <211> LENGTH: 3240
 <212> TYPE: DNA
 <213> ORGANISM: Mus sp.
 <220> FEATURE:
 <223> OTHER INFORMATION: mouse Sac non taster 129 T1R3 G-protein
 coupled receptor sweet taste receptor genomic sequence

<400> SEQUENCE: 16

acatctgtgg ctccaaacccc acacacccat ctattgttag tgctggagac ttctacctac	60
catgccagct ttggctatca tgggtctca gctggctgct ttcctggagc ttggatggg	120
ggcctcttg tgcgtgtcac agcaattcaa ggcacaaggg gactacatac tggcgggct	180
atttcccttg ggctcgaccg aggaggccac tctcaaccag agagcacaac ccaacagcac	240
cctgtgtaac aggtatggag gctagtagct ggggtgggag tgaaccgaag cttggcagct	300
ttggctccgt ggtactacca atctggggaa ggggtgggta tcagtttcca tgcgtgtca	360
ggttctcacc cctcggtttg ttcctggcca tggctatgaa gatggctgtg gaggagatca	420
acaatggatc tgccttgctc cctgggtgc ggctggctta tgaccttattt gacacatgt	480
ccgagccagt ggtcaccatg aaatccagtc tcatgttccct ggccaagggtg ggcagtcaaa	540
gcattgtgtc ctactgcaac tacacacagt accaaccccg tgcgtgtgc gtcatggcc	600
cccactcatc agagcttgcc ctcattacag gcaagttttt cagtttccct ctcacatggcc	660
aggtagcccc acttccttg tgcgtgtcaac cgattgcacc cattgagctc tcacatcaga	720
aagtgcattt tgcgtgtcaac aggtcagctt tagcgtccagc atggatggc taagtgaccg	780
ggaaacgttt ccatccttct tccgcacagt gcccagggtgac cgggtgcagc tgcaggcagt	840
tgcgtgtcaact tgcgtgtcaac cttgggtggcc gccttagggta gtgtatgtca	900
ctatggccgg gaagggtctga gcatctttt tagtctggcc aatgcacccag gatctgcatt	960
cgcacatgag ggccctggcacaacatgactactgtggccaaacagttggc gcaagggtgt	1020

-continued

ggatgtgcta cgccaagtga accaaagtaa agtacaagtg gtggtgctgt ttgcctctgc	1080
ccgtgctgtc tactcccttt ttagttacag catccatcat ggcctctcac ccaaggatag	1140
ggtggccagt gagtcttggc tgacatctga cctggctatg acacttccca atattgccc	1200
tgtgggact gtgcttgggt ttttgcagcg ggggcccta ctgcctgaat tttccattt	1260
tgtggagact caccttgcgc tggccgctga cccagcatc tgtgcctcac tgaatgcgga	1320
gttggatctg gaggaacatg ttaggggca acgctgtcca cagtgtacg acatcatgct	1380
gcagaaccta tcatctggc tggcagaa cctatcagct gggcaattgc accaccaat	1440
atttgcaacc tatcagctg ttttgcagact ggctcaagcc cttcacaaca ccctacagt	1500
caatgtctca cattgccacg tatcagaaca ttttctacc tggcaggtaa gggtagggtt	1560
ttttgctggg ttttgcctgc tcctgcagga acactgaacc aggcagagcc aaatcatgtt	1620
gtgactggag aggccttacc ctgactccac tccacagctc ctggagaaca tgtacaat	1680
gagttccat gctcgagact tgacactaca gtttgcgtct gaagggaaatg tagacatgga	1740
atatgacctg aagatgtggg ttttgcagag ccctacacct gtattacata ctgtggcac	1800
cttcaacggc acccttcagc tgcagcagtc taaaatgtac tggccaggca accaggtaa	1860
gacaagacag gcaaaaagga tggtggtag aagcttgcgtc gtctggcc agtgcgtcc	1920
aaggggaggg ctaacccaag gtcacatgtc caggtgccag tctccctgt ttcccggcag	1980
tgcaaagatg gccaggttcg ccgagtaaag ggcttcatt cctgcgtcta tgactgcgt	2040
gactgcaagg cggcagacta ccggaagcat ccaggtgaac cgtctccct agacagtct	2100
cacagccggg ctagggggca gaagcattca agtctggcaa gcccctccc gcggggctaa	2160
tgtggagaca gttactgtgg gggctggctg gggaggtcg tctccatca gcagacccca	2220
cattactttt cttcccttca tcactacaga tgacttcacc ttttgcgtt gtaaccagga	2280
ccagtggtcc ccagagaaaa gcacagcctg cttacctcgc agggccaaat ttctggctt	2340
gggggagcca gttgtgtgt cactcctcct gctgcatttc ctgggtgtgg gtctagcact	2400
ggctgcgtctg gggctctctg tccaccactg ggacagccct cttgtccagg cctcaggcgg	2460
ctcacagttc tgctttggcc tgatctgcct aggcctcttc tgcctcgtt ttccatgtt	2520
cccaggacgg ccaagctctg ccagctgcct tgcacaacaa ccaatggctc acctccctct	2580
cacaggctgc ctgagcacac tttccctgca agcagctgag acctttgtgg agtctgagct	2640
gccactgagc tgggcaaaact ggctatgcag ctaccctcgg ggactctggg cctggctagt	2700
gttactgttg gccacttttg tggaggcagc actatgtgcc tggatttga ccgtttccc	2760
accagagggtg gtgacagact ggtcagtgt gcccacagag gtactggagc actgccacgt	2820
gcgttccctgg gtcagcctgg gttgggtgca catcaccaat gcaatgttag tttccctctg	2880
ctttctggc actttccctgg tacagagcca gctggccgc tacaaccgtg cccgtggct	2940
cacccctcgcc atgctagtt atttcatcac ctgggtctt tttgtcccc tccctggccaa	3000
tgtgcagggtg gcctaccaggc cagctgtgca gatgggtgct atcctagtt gtgccttggg	3060
catccctggc accttccacc tgcccaagtg ctatgtgctt ctttggctgc caaagctcaa	3120
cacccaggag ttcttcctgg gaaggaatgc caagaaagca gcagatgaga acagtggcgg	3180
tggtgaggca gctcaggaaac acaatgaatg accactgacc cgtgacccttc cctttaggga	3240

-continued

```

<211> LENGTH: 2577
<212> TYPE: DNA
<213> ORGANISM: Mus sp.
<220> FEATURE:
<223> OTHER INFORMATION: mouse Sac non taster 129 T1R3 G-protein coupled
receptor sweet taste receptor CDS

<400> SEQUENCE: 17

atgccagctt tggctatcat gggctcagc ctggctgctt tcctggagct tggatgggg 60
gcctttgt gtctgtcaca gcaattcaag gcacaagggg actacatact gggcgggcta 120
tttccctgg gctcgaccga ggaggccact ctcaccaga gagcacaacc caacagcacc 180
ctgtgtaaaca ggttctcacc ctcgggttg ttcctggca tggctatgaa gatggctgtg 240
gaggagatca acaatggatc tgccttgctc cctgggtgc ggctgggcta tgacctattt 300
gacacatgtc ccgagccagt ggtcaccatg aaatccagtc tcatgttctt ggccaagggtg 360
ggcagtcaaa gcattgctgc ctactgcaac tacacacagt accaaccgg tgcgtggct 420
gtcatcgccccc cccactcatac agagcttgcc ctcattacag gcaagtttctt cagcttctt 480
ctcatgccac aggtcagcta tagcgccagc atggatggc taagtgaccg ggaaaacttt 540
ccatccttcttccgcacagt gcccagtgc cgggtgcagc tgcaggcagt tgcgtactctg 600
ttgcagaact tcaagctggaa ctgggtggcc gccttaggaa gtgatgtatgatgatggccgg 660
gaaggctctga gcatcttttc tagtctggcc aatgcacgag gtatctgcat cgcacatgag 720
ggcctggtgc cacaacatga cactagtggc caacagttgg gcaaggtgct ggatgtgcta 780
cgccaagtga accaaagtaa agtacaatgt gtggtgctgt ttgcctctgc ccgtgtgtc 840
tactccctttt ttagttacag catccatcat ggcctctcac ccaaggatgt ggtggccagt 900
gagtcttggc tgacatctga cctggctatg acacttccca atattggccg tgcggggact 960
gtgcttgggt ttttgcagcg ggggtccctca ctgcctgaat tttccattat tgcggggact 1020
caccttggccc tggccgctga cccagcattc tgcctctcac tgaatgcca gttggatctg 1080
gaggaacatg tgcgtggcc acgctgtcca cagtgacg acatcatgt gcagaaccta 1140
tcatctggc tggcagaa cctatcagct gggcaattgc accaccaat atttgcacc 1200
tatgcagctg tgcgtgtgtt ggctcaagcc cttcacaaca ccctacagt caatgtctca 1260
cattggccacg tattcagaaca tgcgttccacc tggcagctcc tggagaacat gtacaatatg 1320
agtttccatg ctcgagactt gacactacag tttgatgtc aaggaaatgt agacatggaa 1380
tatgcacatg agatgtgggt gtggcagacg cctacacatgt tattacatac tgcggggacc 1440
tcacacggca cccttcagct gcagcagtc aatgtact ggcaggca ccagggtcc 1500
gtctccctgt gttcccgccca gtgcacatgtt ggcagggttc gccgatggaa gggcttcat 1560
tcctgctgtatgactgtgtgtt ggactgtcaag gcccggcagct accggaaagca tccagatgac 1620
ttcacctgtatgc ctcacatgtaa ccaggaccag tggccatccatg agaaaacac agcctgttta 1680
cctcgcaggc ccaaggatgtt ggccttgggg gaggccatgtg tgcgttact ctcctgtctg 1740
ctttgcctgg tgcgtgggtctt agactgtggctt gctctggggc tctctgtccca ccactggac 1800
agcccttgc tccaggccctc aggccggctca cagttctgtt ttggccatgt ctgccttaggc 1860
ctcttcgtcc tcaatgttccca ggcggccaa gctctgcacg ctgccttgca 1920
caacaaccaa tggctcacctt ccctctcaca ggcgtccatg gcacactt cctgcacatg 1980
gctgagaccc tttgtggagtc tgagctgcca ctgagctggg caaaactggct atgcagctac 2040

```

-continued

```

cttcggggac tctgggcctg gctagtggta ctgttggcca cttttgtgga ggcagcacta 2100
tgtgcctggt atttgaccgc tttcccacca gaggtggtga cagactggtc agtgctgcc 2160
acagaggtac tggagcactg ccacgtgcgt tcctgggtca gcctgggctt ggtgcacatc 2220
accaatcaa tggtagcttt cctctgctt ctgggcactt tcctggtaca gagccagcct 2280
ggccgctaca accgtgcccgg tggtctcacc ttgcgcattgc tagtttattt catcacctgg 2340
gtctcttttg tgcccttcctt ggccaatgtg caggtggcctt accagccagc tggcagatg 2400
ggtgctatcc tagtctgtgc cctgggcattc ctggtcaccc tccacctgccc caagtgttat 2460
gtgcttcctt ggctgccaaa gctcaacacc caggagttct tcctggaaag gaatgccaag 2520
aaagcagcag atgagaacag tggcggtggt gaggcagctc aggaacacaa tgaatga 2577

```

```

<210> SEQ ID NO 18
<211> LENGTH: 858
<212> TYPE: PRT
<213> ORGANISM: Mus sp.
<220> FEATURE:
<223> OTHER INFORMATION: mouse Sac non taster 129 T1R3 G-protein coupled
      receptor sweet taste receptor

```

```
<400> SEQUENCE: 18
```

```

Met Pro Ala Leu Ala Ile Met Gly Leu Ser Leu Ala Ala Phe Leu Glu
 1           5           10          15

```

```

Leu Gly Met Gly Ala Ser Leu Cys Leu Ser Gln Gln Phe Lys Ala Gln
 20          25          30

```

```

Gly Asp Tyr Ile Leu Gly Gly Leu Phe Pro Leu Gly Ser Thr Glu Glu
 35          40          45

```

```

Ala Thr Leu Asn Gln Arg Ala Gln Pro Asn Ser Thr Leu Cys Asn Arg
 50          55          60

```

```

Phe Ser Pro Leu Gly Leu Phe Leu Ala Met Ala Met Lys Met Ala Val
 65          70          75          80

```

```

Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu Arg Leu Gly
 85          90          95

```

```

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Thr Met Lys Ser
100          105         110

```

```

Ser Leu Met Phe Leu Ala Lys Val Gly Ser Gln Ser Ile Ala Ala Tyr
115          120         125

```

```

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro
130          135         140

```

```

His Ser Ser Glu Leu Ala Leu Ile Thr Gly Lys Phe Phe Ser Phe Phe
145          150         155         160

```

```

Leu Met Pro Gln Val Ser Tyr Ser Ala Ser Met Asp Arg Leu Ser Asp
165          170         175

```

```

Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val
180          185         190

```

```

Gln Leu Gln Ala Val Val Thr Leu Leu Gln Asn Phe Ser Trp Asn Trp
195          200         205

```

```

Val Ala Ala Leu Gly Ser Asp Asp Asp Tyr Gly Arg Glu Gly Leu Ser
210          215         220

```

```

Ile Phe Ser Ser Leu Ala Asn Ala Arg Gly Ile Cys Ile Ala His Glu
225          230         235         240

```

```

Gly Leu Val Pro Gln His Asp Thr Ser Gly Gln Gln Leu Gly Lys Val

```

-continued

245	250	255	
Leu Asp Val Leu Arg Gln Val Asn Gln Ser Lys Val Gln Val Val Val			
260	265	270	
Leu Phe Ala Ser Ala Arg Ala Val Tyr Ser Leu Phe Ser Tyr Ser Ile			
275	280	285	
His His Gly Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ser Trp Leu			
290	295	300	
Thr Ser Asp Leu Val Met Thr Leu Pro Asn Ile Ala Arg Val Gly Thr			
305	310	315	320
Val Leu Gly Phe Leu Gln Arg Gly Ala Leu Leu Pro Glu Phe Ser His			
325	330	335	
Tyr Val Glu Thr His Leu Ala Leu Ala Asp Pro Ala Phe Cys Ala			
340	345	350	
Ser Leu Asn Ala Glu Leu Asp Leu Glu Glu His Val Met Gly Gln Arg			
355	360	365	
Cys Pro Gln Cys Asp Asp Ile Met Leu Gln Asn Leu Ser Ser Gly Leu			
370	375	380	
Leu Gln Asn Leu Ser Ala Gly Gln Leu His His Gln Ile Phe Ala Thr			
385	390	395	400
Tyr Ala Ala Val Tyr Ser Val Ala Gln Ala Leu His Asn Thr Leu Gln			
405	410	415	
Cys Asn Val Ser His Cys His Val Ser Glu His Val Leu Pro Trp Gln			
420	425	430	
Leu Leu Glu Asn Met Tyr Asn Met Ser Phe His Ala Arg Asp Leu Thr			
435	440	445	
Leu Gln Phe Asp Ala Glu Gly Asn Val Asp Met Glu Tyr Asp Leu Lys			
450	455	460	
Met Trp Val Trp Gln Ser Pro Thr Pro Val Leu His Thr Val Gly Thr			
465	470	475	480
Phe Asn Gly Thr Leu Gln Leu Gln Gln Ser Lys Met Tyr Trp Pro Gly			
485	490	495	
Asn Gln Val Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Asp Gly Gln			
500	505	510	
Val Arg Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp			
515	520	525	
Cys Lys Ala Gly Ser Tyr Arg Lys His Pro Asp Asp Phe Thr Cys Thr			
530	535	540	
Pro Cys Asn Gln Asp Gln Trp Ser Pro Glu Lys Ser Thr Ala Cys Leu			
545	550	555	560
Pro Arg Arg Pro Lys Phe Leu Ala Trp Gly Glu Pro Val Val Leu Ser			
565	570	575	
Leu Leu Leu Leu Cys Leu Val Leu Gly Leu Ala Leu Ala Leu			
580	585	590	
Gly Leu Ser Val His His Trp Asp Ser Pro Leu Val Gln Ala Ser Gly			
595	600	605	
Gly Ser Gln Phe Cys Phe Gly Leu Ile Cys Leu Gly Leu Phe Cys Leu			
610	615	620	
Ser Val Leu Leu Phe Pro Gly Arg Pro Ser Ser Ala Ser Cys Leu Ala			
625	630	635	640
Gln Gln Pro Met Ala His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu			
645	650	655	

-continued

Phe Leu Gln Ala Ala Glu Thr Phe Val Glu Ser Glu Leu Pro Leu Ser
 660 665 670
 Trp Ala Asn Trp Leu Cys Ser Tyr Leu Arg Gly Leu Trp Ala Trp Leu
 675 680 685
 Val Val Leu Leu Ala Thr Phe Val Glu Ala Ala Leu Cys Ala Trp Tyr
 690 695 700
 Leu Thr Ala Phe Pro Pro Glu Val Val Thr Asp Trp Ser Val Leu Pro
 705 710 715 720
 Thr Glu Val Leu Glu His Cys His Val Arg Ser Trp Val Ser Leu Gly
 725 730 735
 Leu Val His Ile Thr Asn Ala Met Leu Ala Phe Leu Cys Phe Leu Gly
 740 745 750
 Thr Phe Leu Val Gln Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly
 755 760 765
 Leu Thr Phe Ala Met Leu Ala Tyr Phe Ile Thr Trp Val Ser Phe Val
 770 775 780
 Pro Leu Leu Ala Asn Val Gln Val Ala Tyr Gln Pro Ala Val Gln Met
 785 790 795 800
 Gly Ala Ile Leu Val Cys Ala Leu Gly Ile Leu Val Thr Phe His Leu
 805 810 815
 Pro Lys Cys Tyr Val Leu Leu Trp Leu Pro Lys Leu Asn Thr Gln Glu
 820 825 830
 Phe Phe Leu Gly Arg Asn Ala Lys Lys Ala Ala Asp Glu Asn Ser Gly
 835 840 845
 Gly Gly Glu Ala Ala Gln Glu His Asn Glu
 850 855

<210> SEQ ID NO 19
 <211> LENGTH: 2577
 <212> TYPE: DNA
 <213> ORGANISM: Mus sp.
 <220> FEATURE:
 <223> OTHER INFORMATION: mouse Sac taster SWR T1R3 G-protein coupled receptor sweet taste receptor CDS

<400> SEQUENCE: 19

atgccagctt tggcttatcat gggctcagc ctggctgctt tcctggagct tggatgggg 60
 gcctctttgt gtctgtcaca gcaattcaag gcacaagggg actacatact gggcggtcta 120
 tttccccctgg gctcaaccga ggaggccact ctcaccaga gaacacaacc caacagcatc 180
 ctgtgttaaca gtttctcacc ctcgggtttg ttccctggcca tggctatgaa gatggctgtg 240
 gaggagatca acaatggatc tgccttgctc cctgggctgc ggctggctca tgacctattt 300
 gacacatgtc ccgagccagt ggtcaccatg aaatccagtc tcatgttccct gccaagggtg 360
 ggcagtcaaa gcattgctgc ctactgcaac tacacacagt accaaccgg tggctggct 420
 gtcatcgccccc cccactcatc agagcttgc ctcattacag gcaagttctt cagcttctt 480
 ctcatgccac aggtcagcta taggccagc atggatcggc taagtggccgg ggaaacgttt 540
 ccattttctt tccgcacagt gcccagtgc cgggtgcagc tgcaggcagt tggactctg 600
 ttgcagaact tcaagctggaa ctgggtggcc gccttaggga gtgatgtatca ctatggccgg 660
 gaaggctctga gcatcttttca tagtctggcc aatgcacgag gtatctgcat cgccatcatgag 720
 ggcctggc cacaacatga cactagtggc caacagttgg gcaagggtgc ggatgtgcta 780

-continued

```

tgccaaagtga accaaagtaa agtacaagtg gtggtgctgt ttgcctctgc ccgtgtgtc 840
tactcccttt ttagttacag catccatcat ggcctctcac ccaaggatag ggtggccagt 900
gagtcttggc tgacatctga cctggtcatg acacttcca atattcccg tggggcact 960
gtgcttgggt ttttgcagcg ggggcctca ctgcctgaat tttccattt tggggact 1020
cacctgccc tggccgtga cccagcattc tgcctcac tgaatgcgga gttggatctg 1080
gaggaacatg tggatgggca acgctgtcca cagtgtgacg acatcatgt gcagaaccta 1140
tcatctggc tggatggcagaa cctatcagct gggcaattgc accaccaaatttgcacc 1200
tatgcagctg tggatgggtt ggctcaagcc cttcacaaaca ccctcagatg caatgtctca 1260
cattgcctatg tattcacaaca tggatggcacc tggcagctcc tggagaacat gtacaatatg 1320
agttccatg ctcgagactt gacactacag tttgatgtg aagggaaatgt agacatggaa 1380
tatgacctga agatgtgggt gtggcagagc cctacacctg tattacatac tggggacc 1440
ttcaacggca cccttcagct gcagcagtctt aaaaatgtact ggccaggca ccaggtgc 1500
gtctccctgtt gttcccgcca gtgcaaaatggccagggttc gcccaggtaaa gggctttcat 1560
tcctgcgtgt atgactgcgt ggactgcga gggggcagct accggaaagca tccagatgac 1620
ttcacctgtt ctccatgttccaa ccaggaccag tggatggccatg agaaaagcac agcctgtt 1680
cctcgcaggc ccaagtttctt ggcttggggg gagccagttt tgctgtcaact cttcctgtt 1740
ctttgcctgg tggatgggtt atgactggctt gctctggggc tctctgttcca ccactggac 1800
agcccttctt tccaggccctt aggccgttca cagtttgcgtt tggatggccatg ctgccttaggc 1860
ctcttcgttcc tcaatgttccaa ggacggccaa gctctgttcca ctgcctgtt 1920
caacaaccaa tggatggccatc ccttcgttcca ggctgttcca gcacactt cctgttcca 1980
gctgagaccc tggatgggtt tggatggccatc ctggatggccatg cttttgttcca gggccatgtt 2040
cttcggggac tggatggccatg gctgttcca ctggatggccatg cttttgttcca gggccatgtt 2100
tggatggccatg tggatggccatg cttttgttcca gggccatgtt tggatggccatg 2160
acagaggtac tggatggccatg cttttgttcca ctggatggccatg cttttgttcca gggccatgtt 2220
accaatgcacaa tggatggccatg cttttgttcca ctggatggccatg cttttgttcca gggccatgtt 2280
ggccgttcca accgttccatg tggatggccatg cttttgttcca ctggatggccatg cttttgttcca gggccatgtt 2340
gtctctttt tggatggccatg cttttgttcca ctggatggccatg cttttgttcca gggccatgtt 2400
gtgtgttccatg tggatggccatg cttttgttcca ctggatggccatg cttttgttcca gggccatgtt 2460
gtgtgttccatg tggatggccatg cttttgttcca ctggatggccatg cttttgttcca gggccatgtt 2520
aaagcagcag atgagaacag tggatggccatg cttttgttcca ctggatggccatg cttttgttcca gggccatgtt 2577

```

```

<210> SEQ ID NO 20
<211> LENGTH: 858
<212> TYPE: PRT
<213> ORGANISM: Mus sp.
<220> FEATURE:
<223> OTHER INFORMATION: mouse Sac taster SWR T1R3 G-protein coupled
      receptor sweet taste receptor

```

```
<400> SEQUENCE: 20
```

```

Met Pro Ala Leu Ala Ile Met Gly Leu Ser Leu Ala Ala Phe Leu Glu
1 5 10 15

```

```

Leu Gly Met Gly Ala Ser Leu Cys Leu Ser Gln Gln Phe Lys Ala Gln

```

-continued

20	25	30
Gly Asp Tyr Ile Leu Gly Gly Leu Phe Pro Leu Gly Ser Thr Glu Glu		
35	40	45
Ala Thr Leu Asn Gln Arg Thr Gln Pro Asn Ser Ile Leu Cys Asn Arg		
50	55	60
Phe Ser Pro Leu Gly Leu Phe Leu Ala Met Ala Met Lys Met Ala Val		
65	70	75
Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu Arg Leu Gly		
85	90	95
Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Thr Met Lys Ser		
100	105	110
Ser Leu Met Phe Leu Ala Lys Val Gly Ser Gln Ser Ile Ala Ala Tyr		
115	120	125
Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro		
130	135	140
His Ser Ser Glu Leu Ala Leu Ile Thr Gly Lys Phe Phe Ser Phe Phe		
145	150	155
Leu Met Pro Gln Val Ser Tyr Ser Ala Ser Met Asp Arg Leu Ser Asp		
165	170	175
Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val		
180	185	190
Gln Leu Gln Ala Val Val Thr Leu Leu Gln Asn Phe Ser Trp Asn Trp		
195	200	205
Val Ala Ala Leu Gly Ser Asp Asp Tyr Gly Arg Glu Gly Leu Ser		
210	215	220
Ile Phe Ser Ser Leu Ala Asn Ala Arg Gly Ile Cys Ile Ala His Glu		
225	230	235
Gly Leu Val Pro Gln His Asp Thr Ser Gly Gln Gln Leu Gly Lys Val		
245	250	255
Leu Asp Val Leu Cys Gln Val Asn Gln Ser Lys Val Gln Val Val Val		
260	265	270
Leu Phe Ala Ser Ala Arg Ala Val Tyr Ser Leu Phe Ser Tyr Ser Ile		
275	280	285
His His Gly Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ser Trp Leu		
290	295	300
Thr Ser Asp Leu Val Met Thr Leu Pro Asn Ile Ala Arg Val Gly Thr		
305	310	315
Val Leu Gly Phe Leu Gln Arg Gly Ala Leu Leu Pro Glu Phe Ser His		
325	330	335
Tyr Val Glu Thr His Leu Ala Leu Ala Asp Pro Ala Phe Cys Ala		
340	345	350
Ser Leu Asn Ala Glu Leu Asp Leu Glu Glu His Val Met Gly Gln Arg		
355	360	365
Cys Pro Gln Cys Asp Asp Ile Met Leu Gln Asn Leu Ser Ser Gly Leu		
370	375	380
Leu Gln Asn Leu Ser Ala Gly Gln Leu His His Gln Ile Phe Ala Thr		
385	390	395
Tyr Ala Ala Val Tyr Ser Val Ala Gln Ala Leu His Asn Thr Leu Gln		
405	410	415
Cys Asn Val Ser His Cys His Val Ser Glu His Val Leu Pro Trp Gln		
420	425	430

-continued

Leu Leu Glu Asn Met Tyr Asn Met Ser Phe His Ala Arg Asp Leu Thr
 435 440 445
 Leu Gln Phe Asp Ala Glu Gly Asn Val Asp Met Glu Tyr Asp Leu Lys
 450 455 460
 Met Trp Val Trp Gln Ser Pro Thr Pro Val Leu His Thr Val Gly Thr
 465 470 475 480
 Phe Asn Gly Thr Leu Gln Leu Gln Gln Ser Lys Met Tyr Trp Pro Gly
 485 490 495
 Asn Gln Val Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Asp Gly Gln
 500 505 510
 Val Arg Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp
 515 520 525
 Cys Lys Ala Gly Ser Tyr Arg Lys His Pro Asp Asp Phe Thr Cys Thr
 530 535 540
 Pro Cys Asn Gln Asp Gln Trp Ser Pro Glu Lys Ser Thr Ala Cys Leu
 545 550 555 560
 Pro Arg Arg Pro Lys Phe Leu Ala Trp Gly Glu Pro Val Val Leu Ser
 565 570 575
 Leu Leu Leu Leu Cys Leu Val Leu Gly Leu Ala Leu Ala Ala Leu
 580 585 590
 Gly Leu Ser Val His His Trp Asp Ser Pro Leu Val Gln Ala Ser Gly
 595 600 605
 Gly Ser Gln Phe Cys Phe Gly Leu Ile Cys Leu Gly Leu Phe Cys Leu
 610 615 620
 Ser Val Leu Leu Phe Pro Gly Arg Pro Ser Ser Ala Ser Cys Leu Ala
 625 630 635 640
 Gln Gln Pro Met Ala His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu
 645 650 655
 Phe Leu Gln Ala Ala Glu Thr Phe Val Glu Ser Glu Leu Pro Leu Ser
 660 665 670
 Trp Ala Asn Trp Leu Cys Ser Tyr Leu Arg Gly Leu Trp Ala Trp Leu
 675 680 685
 Val Val Leu Ser Ala Thr Phe Val Glu Ala Ala Leu Cys Ala Trp Tyr
 690 695 700
 Leu Thr Ala Phe Pro Pro Glu Val Val Thr Asp Trp Ser Val Leu Pro
 705 710 715 720
 Thr Glu Val Leu Glu His Cys His Val Arg Ser Trp Val Ser Leu Gly
 725 730 735
 Leu Val His Ile Thr Asn Ala Met Leu Ala Phe Leu Cys Phe Leu Gly
 740 745 750
 Thr Phe Leu Val Gln Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly
 755 760 765
 Leu Thr Phe Ala Met Leu Ala Tyr Phe Ile Thr Trp Val Ser Phe Val
 770 775 780
 Pro Leu Leu Ala Asn Val Gln Val Ala Tyr Gln Pro Ala Val Gln Met
 785 790 795 800
 Gly Ala Ile Leu Val Cys Ala Leu Gly Ile Leu Val Thr Phe His Leu
 805 810 815
 Pro Lys Cys Tyr Val Leu Leu Trp Leu Pro Lys Leu Asn Thr Gln Glu
 820 825 830

-continued

Phe Phe Leu Gly Arg Asn Ala Lys Lys Ala Ala Asp Glu Asn Ser Gly
835 840 845

Gly Gly Glu Ala Ala Gln Glu His Asn Glu
850 855

<210> SEQ ID NO 21
<211> LENGTH: 3200
<212> TYPE: DNA
<213> ORGANISM: Mus sp.
<220> FEATURE:
<223> OTHER INFORMATION: mouse Sac taster C57 T1R3 G-protein coupled receptor sweet taste receptor genomic sequence

<400> SEQUENCE: 21

cccacacacc	caccatttgt	tagtgctgga	gacttctacc	taccatgcc	gctttggcta	60
tcatgggtct	cagcctggct	gctttcctgg	agcttggat	gggggcctct	ttgtgtctgt	120
cacagcaatt	caaggcacaa	ggggactaca	tactgggcgg	gctatttccc	ctgggctcaa	180
ccgaggaggc	cactctcaac	cagagaacac	aacccaacag	catcccggtc	aacaggatag	240
gaggctagta	gctgggggtgg	gagtgaaccg	aagcttggca	gctttggctc	cgtggtacta	300
ccaatctggg	aagaggtgtt	gatcagtttc	catgtggcct	caggttctca	cccttgggtt	360
tgttcctggc	catggctatg	aagatggctg	tggaggagat	caacaatgga	tctgccttgc	420
tccctgggt	cgccgcgggc	tatgacat	ttgacacatg	ctccgagcca	gtggtaacca	480
tgaaatccag	tctcatgttc	ctggccaagg	tggcagtc	aagcattgct	gcctactgca	540
actacacaca	gtaccaaccc	cgtgtgtgg	ctgtcatcg	ccccactca	tcagagcttg	600
ccctcattac	aggcaagttc	ttcagcttct	tcctcatgcc	acagggtgagc	ccacttcctt	660
tgtgttctca	accgattgca	cccattgagc	tctcatatca	gaaagtgtct	cttgcattacc	720
acaggtcagc	tatagtgcca	gcatggatcg	gctaagtgtac	cgggaaacgt	ttccatccctt	780
cttccgcaca	gtgcccagt	accgggtgca	gctgcaggca	gttgcagtc	tgtgcagaa	840
cttcagctgg	aactgggtgg	ccgccttagg	gagtgtatgt	gactatggcc	ggaaaggct	900
gagcatctt	tctagtctgg	ccaatgcacg	aggtatctgc	atcgcacatg	agggcctgg	960
gccacaacat	gacactatgt	gccaacagt	ggcaagggt	ctggatgtac	tacgccaagt	1020
gaaccaaaat	aaagtacaag	tgggtgtct	gtttgcctct	gcccgtgtc	tctactccct	1080
tttttagttac	agcatccatc	atggcctctc	acccaaggta	tgggtggca	gtgagtcttgc	1140
gctgacatct	gacctggta	tgacacttcc	caatattgcc	cgtgtggca	ctgtgttgg	1200
gtttttgcag	cgggggtgccc	tactgcctga	attttccat	tatgtggaga	ctcaccttgc	1260
cctggccgct	gaccaggcat	tctgtgcctc	actgaatgcg	gagttggatc	tggaggaaaca	1320
tgtgtatgggg	caacgctgtc	cacgggtgt	cgacatcatg	ctgcagaacc	tatcatctgg	1380
gctgttgcag	aacctatcg	ctgggcaatt	gcaccaccaa	atatttgcac	cctatgcagc	1440
tgtgtacagt	gtggctcaag	cccttcacaa	caccctacag	tgcaatgtct	cacattgcc	1500
cgtatcagaa	catgttctac	cctggcagg	aagggttaggg	ttttttgtct	ggttttgcct	1560
gctcctgcag	gaacactgaa	ccaggcagag	ccaaatcttg	ttgtgactgg	agaggcctta	1620
ccctgactcc	actccacagc	tcctggagaa	catgtacaat	atgagttcc	atgctcgaga	1680
cttgacacta	cagtttgatg	ctgaaggaa	tgtagacatg	gaatatgacc	tgaagatgt	1740
ggtgtggcag	agccctacac	ctgtattaca	tactgtggc	accttcaacg	gcacccttca	1800

-continued

gtcgccggc	tctaaaatgt	actggccagg	caaccaggta	aggacaagac	aggcaaaaag	1860	
gtgggtgggt	agaagcttgt	cggtcttggg	ccagtgttag	ccaaggggag	gcctaaccct	1920	
aggctccatg	tacagggtgc	agtctccag	tgttcccgcc	agtgc当地	tggccaggtt	1980	
cgccgagtaa	agggcttca	ttcctgctgc	tatgactgcg	tggactgcaa	ggcgggcagc	2040	
taccggaa	atccagggtga	accgtctcc	ctagacagtc	tgcacagccg	ggctaggggg	2100	
cagaaggatt	caagtctggc	aagcgccctc	ccgcggggct	aatgtggaga	cagttactgt	2160	
gggggctggc	tggggaggc	ggtctccat	cagcagaccc	cacattactt	ttcttccttc	2220	
catca	actaca	gatgacttca	cctgtactcc	atgtaaccag	gaccagtgg	2280	
aagcacagcc	tgcttaccc	gcaggccaa	gtttctggct	tggggggagc	cagttgtgct	2340	
gtca	ctgtgtctt	gcctgggt	gggtctagca	ctggctgctc	tggggctctc	2400	
tgtccaccac	tgggacagcc	ctcttgcc	ggcctcagg	ggctcacagt	tctgtttgg	2460	
cctgtatgc	ctaggcctct	tctgcctca	tgccttctg	ttcccaggc	ggccaagctc	2520	
tgccagctgc	cttgccaa	aaccaatggc	tcacccct	ctcacaggct	gcctgagcac	2580	
actcttcctg	caagcagctg	agac	ttgtgtgt	ggagtcttag	ctgcccactga	2640	
ctggctatgc	agctaccc	ggggactctg	ggcctggct	gtggactgt	tggccacttt	2700	
tgtggaggca	gcactatgt	cctggat	ttt	gatgccttc	ccaccagg	tggtgacaga	2760
ctggctcagg	ctgcccacag	aggta	ctggga	gactgccc	gtgcgttcc	gggtcagcct	2820
gggcttgggt	cacatcacca	atgcaatgtt	agcttcc	tgc	tttctgg	gcacttcc	2880
ggta	cagc	ctggcc	gctacaac	tgc	ccgttgg	ctcac	2940
ttat	ttat	ccat	ac	tttgc	cttgc	ccatgt	3000
gccagctgt	cagatgggt	ctatc	ctgt	ccctg	ggc	atcc	3060
cctggccaa	tgctatgtc	ttcttggct	gcca	aaagctc	aa	acccagg	3120
ggaa	ggaa	gcca	aaag	cagc	agat	ga	3180
acacaatqaa	tgaccactqa						3200

```
<210> SEQ ID NO 22
<211> LENGTH: 2577
<212> TYPE: DNA
<213> ORGANISM: Mus sp.
<220> FEATURE:
<223> OTHER INFORMATION: mouse Sac taster C57 T1R3 G-protein coupled
    receptor sweet taste receptor CDS
```

<400> SEQUENCE: 22

atggcagctt tggctatcat gggctcagc ctggctgctt tcctggagct tgggatgggg 60
gcctctttgt gtctgtcaca gcaattcaag gcacaagggg actacatact gggcgggcta 120
tttccccctgg gctcaaccga ggaggccact ctcaccaga gaacacaacc caacacgatc 180
ccgtgcaaca ggttctcacc ccttggtttg ttccctggcca tggctatgaa gatggctgtg 240
gaggagatca acaatggatc tgccttgctc cctgggctgc ggctgggcta tgacctattt 300
gacacatgct ccgagccagt ggtcaccatg aaatccagtc tcatgttccct ggccaaggtg 360
ggcagtcaaa gcattgctgc ctactgcaac tacacacagt accaaccctcg tgtgctggct 420
gtcatcgcc cccactcatc agagcttgcc ctcattacag gcaaggttctt cagttcttc 480

-continued

ctcatgccac	aggtcagcta	tagtgcagc	atggatcgac	taagtgaccg	ggaaacgtt	540
ccatccttct	tccgcacagt	gcccagtgc	cgggtgcagc	tgcaggcagt	tgtgactctg	600
ttgcagaact	tcaagctggaa	ctgggtggcc	gccttaggga	gtgatgatga	ctatggccgg	660
gaaggtctga	gcatcttttc	tagtctggcc	aatgcacag	gtatctgc	cgcacatgag	720
ggcctggtgc	cacaacatga	cactagtggc	caacagttgg	gcaaggtgct	ggatgtacta	780
cgcctaagtga	accaaagtaa	agtacaagt	gtggtgctgt	ttgcctctgc	ccgtgtgtc	840
tactcccttt	ttagttacag	catccatcat	ggcctctcac	ccaaggatag	ggtggccagt	900
gagtcttggc	tgacatctga	cctggtcatg	acacttccca	atattggccg	tgtgggact	960
gtgcttgggt	ttttgcagcg	gggtgcctta	ctgcctgaat	tttccattat	tgtggagact	1020
cacccggccc	tggccgctga	cccagcattc	tgtgcctcac	tgaatgcgga	gttggatctg	1080
gaggaacatg	tgatggggca	acgctgtcca	cggtgtacg	acatcatgct	gcagaacacta	1140
tcatctgggc	tgttgcagaa	cctatcagct	ggcaattgc	accaccaaat	atttgcaacc	1200
tatgcagctg	tgtacagtgt	ggctcaagcc	cttcacaaca	ccctacagtg	caatgtctca	1260
cattgccacg	tatcagaaca	tgttctaccc	tggcagctcc	tggagaacat	gtacaatatg	1320
agtttccatg	ctcgagactt	gacactacag	tttgatgctg	aaggaaatgt	agacatggaa	1380
tatgacactga	agatgtgggt	gtggcagagc	cctacacctg	tattacatac	tgtggcacc	1440
ttcaacggca	cccttcagct	gcagcagtct	aaaatgtact	ggccaggcaa	ccaggtgcac	1500
gtctcccaagt	gttcccggca	gtgcaaagat	ggccagggtc	gccgagtaaa	gggcttcat	1560
tcctgctgt	atgactgcgt	ggactgcaag	gcgggcagct	accggaagca	tccagatgac	1620
ttcacactgta	ctccatgtaa	ccaggaccag	tggtccccag	agaaaagcac	agcctgctta	1680
cctcgccaggc	ccaagttct	ggcttggggg	gagccagttg	tgcgtcact	cctcctgctg	1740
ctttgcctgg	tgctgggtct	agcaactggct	gctctggggc	tctctgtcca	ccactgggac	1800
agccctcttg	tccaggccctc	aggtggctca	cagttctgt	ttggcctgat	ctgccttaggc	1860
ctttctgccc	tcagtgctct	tctgttccca	ggggggccaa	gctctgcag	ctgccttgca	1920
caacaaccaa	tggctcacct	ccctctcaca	ggctgcctga	gcacactt	cctgcaagca	1980
gctgagacct	ttgtggagtc	tgagctgcca	ctgagctggg	caaactggct	atgcagctac	2040
cttcggggac	tctgggcctg	gctagtggtt	ctgttggcca	cttttggta	ggcagcacta	2100
tgtgcctgg	atttgatcgc	tttcccacca	gaggtggta	cagactggc	agtgcgtccc	2160
acagaggtac	tggagccactg	ccacgtgcgt	tcctgggtca	gcctgggctt	ggtgcacatc	2220
accaatgcaa	tgttagcttt	cctctgtctt	ctggcactt	tcctggtaca	gagccagcct	2280
ggccgctaca	accgtgcccc	tggtctacc	tgcgcctgc	tagcttattt	catcacctgg	2340
gtctcttttg	tgcccttcct	ggcaatgtg	caggtggct	accagccagc	tgtgcagatg	2400
ggtgctatcc	tagtctgtgc	cctggccatc	ctggtcacct	tccacactgc	caagtgttat	2460
gtgcttcttt	ggctgccaaa	gctcaacacc	caggagttct	tcctggaaag	gaatgccaag	2520
aaagcagcag	atgagaacag	tggcggtgg	gaggcagctc	agggacacaa	tgaatga	2577

<210> SEQ_ID NO 23

<211> LENGTH: 858

<212> TYPE: PRT

<213> ORGANISM: Mus sp.

<220> FEATURE:

-continued

<223> OTHER INFORMATION: mouse Sac taster C57 T1R3 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 23

```

Met Pro Ala Leu Ala Ile Met Gly Leu Ser Leu Ala Ala Phe Leu Glu
 1           5          10          15

Leu Gly Met Gly Ala Ser Leu Cys Leu Ser Gln Gln Phe Lys Ala Gln
20          25          30

Gly Asp Tyr Ile Leu Gly Gly Leu Phe Pro Leu Gly Ser Thr Glu Glu
35          40          45

Ala Thr Leu Asn Gln Arg Thr Gln Pro Asn Ser Ile Pro Cys Asn Arg
50          55          60

Phe Ser Pro Leu Gly Leu Phe Leu Ala Met Ala Met Lys Met Ala Val
65          70          75          80

Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu Arg Leu Gly
85          90          95

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Thr Met Lys Ser
100         105         110

Ser Leu Met Phe Leu Ala Lys Val Gly Ser Gln Ser Ile Ala Ala Tyr
115         120         125

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro
130         135         140

His Ser Ser Glu Leu Ala Leu Ile Thr Gly Lys Phe Phe Ser Phe Phe
145         150         155         160

Leu Met Pro Gln Val Ser Tyr Ser Ala Ser Met Asp Arg Leu Ser Asp
165         170         175

Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val
180         185         190

Gln Leu Gln Ala Val Val Thr Leu Leu Gln Asn Phe Ser Trp Asn Trp
195         200         205

Val Ala Ala Leu Gly Ser Asp Asp Asp Tyr Gly Arg Glu Gly Leu Ser
210         215         220

Ile Phe Ser Ser Leu Ala Asn Ala Arg Gly Ile Cys Ile Ala His Glu
225         230         235         240

Gly Leu Val Pro Gln His Asp Thr Ser Gly Gln Gln Leu Gly Lys Val
245         250         255

Leu Asp Val Leu Arg Gln Val Asn Gln Ser Lys Val Gln Val Val Val
260         265         270

Leu Phe Ala Ser Ala Arg Ala Val Tyr Ser Leu Phe Ser Tyr Ser Ile
275         280         285

His His Gly Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ser Trp Leu
290         295         300

Thr Ser Asp Leu Val Met Thr Leu Pro Asn Ile Ala Arg Val Gly Thr
305         310         315         320

Val Leu Gly Phe Leu Gln Arg Gly Ala Leu Leu Pro Glu Phe Ser His
325         330         335

Tyr Val Glu Thr His Leu Ala Leu Ala Asp Pro Ala Phe Cys Ala
340         345         350

Ser Leu Asn Ala Glu Leu Asp Leu Glu Glu His Val Met Gly Gln Arg
355         360         365

Cys Pro Arg Cys Asp Asp Ile Met Leu Gln Asn Leu Ser Ser Gly Leu
370         375         380

```

-continued

Leu Gln Asn Leu Ser Ala Gly Gln Leu His His Gln Ile Phe Ala Thr
 385 390 395 400
 Tyr Ala Ala Val Tyr Ser Val Ala Gln Ala Leu His Asn Thr Leu Gln
 405 410 415
 Cys Asn Val Ser His Cys His Val Ser Glu His Val Leu Pro Trp Gln
 420 425 430
 Leu Leu Glu Asn Met Tyr Asn Met Ser Phe His Ala Arg Asp Leu Thr
 435 440 445
 Leu Gln Phe Asp Ala Glu Gly Asn Val Asp Met Glu Tyr Asp Leu Lys
 450 455 460
 Met Trp Val Trp Gln Ser Pro Thr Pro Val Leu His Thr Val Gly Thr
 465 470 475 480
 Phe Asn Gly Thr Leu Gln Gln Ser Lys Met Tyr Trp Pro Gly
 485 490 495
 Asn Gln Val Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Asp Gly Gln
 500 505 510
 Val Arg Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp
 515 520 525
 Cys Lys Ala Gly Ser Tyr Arg Lys His Pro Asp Asp Phe Thr Cys Thr
 530 535 540
 Pro Cys Asn Gln Asp Gln Trp Ser Pro Glu Lys Ser Thr Ala Cys Leu
 545 550 555 560
 Pro Arg Arg Pro Lys Phe Leu Ala Trp Gly Glu Pro Val Val Leu Ser
 565 570 575
 Leu Leu Leu Leu Cys Leu Val Leu Gly Leu Ala Leu Ala Leu
 580 585 590
 Gly Leu Ser Val His His Trp Asp Ser Pro Leu Val Gln Ala Ser Gly
 595 600 605
 Gly Ser Gln Phe Cys Phe Gly Leu Ile Cys Leu Gly Leu Phe Cys Leu
 610 615 620
 Ser Val Leu Leu Phe Pro Gly Arg Pro Ser Ser Ala Ser Cys Leu Ala
 625 630 635 640
 Gln Gln Pro Met Ala His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu
 645 650 655
 Phe Leu Gln Ala Ala Glu Thr Phe Val Glu Ser Glu Leu Pro Leu Ser
 660 665 670
 Trp Ala Asn Trp Leu Cys Ser Tyr Leu Arg Gly Leu Trp Ala Trp Leu
 675 680 685
 Val Val Leu Leu Ala Thr Phe Val Glu Ala Ala Leu Cys Ala Trp Tyr
 690 695 700
 Leu Ile Ala Phe Pro Pro Glu Val Val Thr Asp Trp Ser Val Leu Pro
 705 710 715 720
 Thr Glu Val Leu Glu His Cys His Val Arg Ser Trp Val Ser Leu Gly
 725 730 735
 Leu Val His Ile Thr Asn Ala Met Leu Ala Phe Leu Cys Phe Leu Gly
 740 745 750
 Thr Phe Leu Val Gln Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly
 755 760 765
 Leu Thr Phe Ala Met Leu Ala Tyr Phe Ile Thr Trp Val Ser Phe Val
 770 775 780

-continued

Pro Leu Leu Ala Asn Val Gln Val Ala Tyr Gln Pro Ala Val Gln Met
785 790 795 800

Gly Ala Ile Leu Val Cys Ala Leu Gly Ile Leu Val Thr Phe His Leu
805 810 815

Pro Lys Cys Tyr Val Leu Leu Trp Leu Pro Lys Leu Asn Thr Gln Glu
820 825 830

Phe Phe Leu Gly Arg Asn Ala Lys Lys Ala Ala Asp Glu Asn Ser Gly
835 840 845

Gly Gly Glu Ala Ala Gln Gly His Asn Glu
850 855

<210> SEQ ID NO 24

<211> LENGTH: 2577

<212> TYPE: DNA

<213> ORGANISM: Rattus sp.

<220> FEATURE:

<223> OTHER INFORMATION: rat T1R3 G-protein coupled receptor sweet taste receptor CDS

<400> SEQUENCE: 24

atgcgggtt	tggctatctt	gggcctcagt	ctggctgctt	tcctggact	tggatgggg	60
tcctctttgt	gtctgtcaca	gcaattcaag	gcacaagggg	actatataatt	gggtggacta	120
tttccccctgg	gcacaactga	ggaggccact	ctcaaccaga	gaacacagcc	caacggcatc	180
ctatgtacca	ggttctcgcc	ccttggtttg	ttcctggcca	tggctatgaa	gatggctgta	240
gaggagatca	acaatggatc	tgccttgctc	cctgggctgc	gactgggcta	tgacctgttt	300
gacacatgtc	cagagccagt	ggtcaccatg	aagcccgacc	tcatgttcat	ggccaagggt	360
ggaagtcaaa	gcattgctgc	ctactgcaac	tacacacagt	accaaccgg	tgtgctggct	420
gtcattggtc	cccaactcatc	agagcttgcc	ctcattacag	gcaagttctt	cagttcttc	480
ctcatgccac	aggtcagcta	tagtgcacgc	atggatcggc	taagtgaccg	ggaaacattt	540
ccatcccttct	tccgcacagt	gcccagtgc	cgggtgcagc	tgcaggccgt	tgtgacactg	600
ttgcagaatt	tcaagctggaa	ctgggtggct	gccttaggt	gtgatgtga	ctatggccgg	660
gaaggtctga	gcatcttttc	tggctggcc	aactcacag	gtatctgcat	tgcacacgag	720
ggcctggc	cacaacatga	cactagtggc	caacaattgg	gcaagggtgt	ggatgtgcta	780
cgcctaagtga	accaaagcaa	agtacaggtg	gtgggtctgt	ttgcatctgc	ccgtgtgtc	840
tactcccttt	ttagctacag	catccttcat	gacctctcac	ccaaggatgt	ggtggccagt	900
gagtcctggc	tgcacctctga	cctggtcatg	acacttccca	atattcccg	tgtgggact	960
gttcttgggt	ttctgcagcg	cgggtccctta	ctgcctgaat	tttcccattt	tgtggagact	1020
cgccttggcc	tagctgctga	cccaacattc	tgtgcctccc	tgaaagctga	gttggatctg	1080
gaggagcgcg	tgtatgggccc	acgctgttca	caatgtact	acatcatgt	acagaacactg	1140
tcatctggcc	tgtatgcagaa	cctatcagct	gggcagttgc	accaccaaat	atttgcaccc	1200
tatgcagctg	tgtacagtgt	ggctcaggcc	cttcacaaca	ccctgcagtg	caatgtctca	1260
cattggccaca	catcagagcc	tgttcaaccc	tggcagctcc	tggagaacat	gtacaatatg	1320
agtttccgt	ctcgagactt	gacactgcag	tttgatgcca	aaggaggtgt	agacatggaa	1380
tatgacctga	agatgtgggt	gtggcagagc	cctacacctg	tactacatac	tgttaggcacc	1440
ttcaacggca	cccttcagct	gcagcactcg	aaaatgtatt	ggccaggcaa	ccaggtgcca	1500

-continued

```

gtctcccaagt gctcccgca gtgcaaagat ggccaggtgc gcagagtaaa gggctttcat 1560
tcctgctgtc atgactgtgt ggactgcaag gcagggagct accggaagca tccagatgac 1620
ttcacctgta ctccatgtgg caaggatcag tggtccccag aaaaaagcac aacctgctta 1680
cctcgcaggc ccaagttct ggcttgggg gagccagctg tgctgtcaact tctcctgctg 1740
ctttgcctgg tgctgggcct gacactggct gcccctgggc tctttgtcca ctactggac 1800
agccctcttgc ttcaggcctc aggtgggtca ctgttctgct ttggcctgat ctgccttaggc 1860
ctcttctgccc tcagtgtcct tctgttccca ggacgaccac gctctgcag ctgccttgcc 1920
caacaaccaa tggctcacct ccctctcaca ggctgcctga gcacactt cctgcaagca 1980
gccgagatct ttgtggagtc tgagctgcca ctgagttggg caaactggct ctgcagctac 2040
cttcggggcc cctgggcttgc gctgggtta ctgctggca ctcttggta ggctgacta 2100
tgtgcctggt actttagatggc tttccctcca gaggtggta cagattggca ggtgctgccc 2160
acggaggtac tggaaactg cccatcgct tcctgggtca gcctgggctt ggtgcacatc 2220
accaatgcag tgtagcttt cctctgttgc ctggcacatt tcctggtaca gagccagcct 2280
gtgcgtata accgtgccc tggcctacc ttgcctacc tagcttattt catcatctgg 2340
gtctcttttgc tgcccttcct ggctaatgtg caggtggcctt accagccagc tgcagatc 2400
gtgtctatct tattctgtgc cctgggcatc ctggcacatt tcacctgccc caaatgtat 2460
gtacttctgt ggctgccaga gctcaacacc caggagttct tcctggaaag gagcccaag 2520
gaagcatcag atggaaatag tggtagtagt gaggcaactc gggcacacag tgaatga 2577

```

```

<210> SEQ ID NO 25
<211> LENGTH: 858
<212> TYPE: PRT
<213> ORGANISM: Rattus sp.
<220> FEATURE:
<223> OTHER INFORMATION: rat T1R3 G-protein coupled receptor sweet taste
receptor

```

```

<400> SEQUENCE: 25

```

```

Met Pro Gly Leu Ala Ile Leu Gly Leu Ser Leu Ala Ala Phe Leu Glu
 1           5           10          15

Leu Gly Met Gly Ser Ser Leu Cys Leu Ser Gln Gln Phe Lys Ala Gln
 20          25           30

Gly Asp Tyr Ile Leu Gly Gly Leu Phe Pro Leu Gly Thr Thr Glu Glu
 35          40           45

Ala Thr Leu Asn Gln Arg Thr Gln Pro Asn Gly Ile Leu Cys Thr Arg
 50          55           60

Phe Ser Pro Leu Gly Leu Phe Leu Ala Met Ala Met Lys Met Ala Val
 65          70           75           80

Glu Glu Ile Asn Asn Gly Ser Ala Leu Leu Pro Gly Leu Arg Leu Gly
 85          90           95

Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Thr Met Lys Pro
100         105          110

Ser Leu Met Phe Met Ala Lys Val Gly Ser Gln Ser Ile Ala Ala Tyr
115         120          125

Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro
130         135          140

His Ser Ser Glu Leu Ala Leu Ile Thr Gly Lys Phe Phe Ser Phe Phe
145         150          155          160

```

-continued

Leu Met Pro Gln Val Ser Tyr Ser Ala Ser Met Asp Arg Leu Ser Asp
 165 170 175
 Arg Glu Thr Phe Pro Ser Phe Phe Arg Thr Val Pro Ser Asp Arg Val
 180 185 190
 Gln Leu Gln Ala Val Val Thr Leu Leu Gln Asn Phe Ser Trp Asn Trp
 195 200 205
 Val Ala Ala Leu Gly Ser Asp Asp Asp Tyr Gly Arg Glu Gly Leu Ser
 210 215 220
 Ile Phe Ser Gly Leu Ala Asn Ser Arg Gly Ile Cys Ile Ala His Glu
 225 230 235 240
 Gly Leu Val Pro Gln His Asp Thr Ser Gly Gln Gln Leu Gly Lys Val
 245 250 255
 Val Asp Val Leu Arg Gln Val Asn Gln Ser Lys Val Gln Val Val Val
 260 265 270
 Leu Phe Ala Ser Ala Arg Ala Val Tyr Ser Leu Phe Ser Tyr Ser Ile
 275 280 285
 Leu His Asp Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ser Trp Leu
 290 295 300
 Thr Ser Asp Leu Val Met Thr Leu Pro Asn Ile Ala Arg Val Gly Thr
 305 310 315 320
 Val Leu Gly Phe Leu Gln Arg Gly Ala Leu Leu Pro Glu Phe Ser His
 325 330 335
 Tyr Val Glu Thr Arg Leu Ala Leu Ala Asp Pro Thr Phe Cys Ala
 340 345 350
 Ser Leu Lys Ala Glu Leu Asp Leu Glu Glu Arg Val Met Gly Pro Arg
 355 360 365
 Cys Ser Gln Cys Asp Tyr Ile Met Leu Gln Asn Leu Ser Ser Gly Leu
 370 375 380
 Met Gln Asn Leu Ser Ala Gly Gln Leu His His Gln Ile Phe Ala Thr
 385 390 395 400
 Tyr Ala Ala Val Tyr Ser Val Ala Gln Ala Leu His Asn Thr Leu Gln
 405 410 415
 Cys Asn Val Ser His Cys His Thr Ser Glu Pro Val Gln Pro Trp Gln
 420 425 430
 Leu Leu Glu Asn Met Tyr Asn Met Ser Phe Arg Ala Arg Asp Leu Thr
 435 440 445
 Leu Gln Phe Asp Ala Lys Gly Ser Val Asp Met Glu Tyr Asp Leu Lys
 450 455 460
 Met Trp Val Trp Gln Ser Pro Thr Pro Val Leu His Thr Val Gly Thr
 465 470 475 480
 Phe Asn Gly Thr Leu Gln Leu Gln His Ser Lys Met Tyr Trp Pro Gly
 485 490 495
 Asn Gln Val Pro Val Ser Gln Cys Ser Arg Gln Cys Lys Asp Gly Gln
 500 505 510
 Val Arg Arg Val Lys Gly Phe His Ser Cys Cys Tyr Asp Cys Val Asp
 515 520 525
 Cys Lys Ala Gly Ser Tyr Arg Lys His Pro Asp Asp Phe Thr Cys Thr
 530 535 540
 Pro Cys Gly Lys Asp Gln Trp Ser Pro Glu Lys Ser Thr Thr Cys Leu
 545 550 560

-continued

Pro Arg Arg Pro Lys Phe Leu Ala Trp Gly Glu Pro Ala Val Leu Ser
 565 570 575
 Leu Leu Leu Leu Cys Leu Val Leu Gly Leu Thr Leu Ala Ala Leu
 580 585 590
 Gly Leu Phe Val His Tyr Trp Asp Ser Pro Leu Val Gln Ala Ser Gly
 595 600 605
 Gly Ser Leu Phe Cys Phe Gly Leu Ile Cys Leu Gly Leu Phe Cys Leu
 610 615 620
 Ser Val Leu Leu Phe Pro Gly Arg Pro Arg Ser Ala Ser Cys Leu Ala
 625 630 635 640
 Gln Gln Pro Met Ala His Leu Pro Leu Thr Gly Cys Leu Ser Thr Leu
 645 650 655
 Phe Leu Gln Ala Ala Glu Ile Phe Val Glu Ser Glu Leu Pro Leu Ser
 660 665 670
 Trp Ala Asn Trp Leu Cys Ser Tyr Leu Arg Gly Pro Trp Ala Trp Leu
 675 680 685
 Val Val Leu Leu Ala Thr Leu Val Glu Ala Ala Leu Cys Ala Trp Tyr
 690 695 700
 Leu Met Ala Phe Pro Pro Glu Val Val Thr Asp Trp Gln Val Leu Pro
 705 710 715 720
 Thr Glu Val Leu Glu His Cys Arg Met Arg Ser Trp Val Ser Leu Gly
 725 730 735
 Leu Val His Ile Thr Asn Ala Val Leu Ala Phe Leu Cys Phe Leu Gly
 740 745 750
 Thr Phe Leu Val Gln Ser Gln Pro Gly Arg Tyr Asn Arg Ala Arg Gly
 755 760 765
 Leu Thr Phe Ala Met Leu Ala Tyr Phe Ile Ile Trp Val Ser Phe Val
 770 775 780
 Pro Leu Leu Ala Asn Val Gln Val Ala Tyr Gln Pro Ala Val Gln Met
 785 790 795 800
 Gly Ala Ile Leu Phe Cys Ala Leu Gly Ile Leu Ala Thr Phe His Leu
 805 810 815
 Pro Lys Cys Tyr Val Leu Leu Trp Leu Pro Glu Leu Asn Thr Gln Glu
 820 825 830
 Phe Phe Leu Gly Arg Ser Pro Lys Glu Ala Ser Asp Gly Asn Ser Gly
 835 840 845
 Ser Ser Glu Ala Thr Arg Gly His Ser Glu
 850 855

<210> SEQ ID NO 26
 <211> LENGTH: 2526
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <220> FEATURE:
 <223> OTHER INFORMATION: human T1R1 G-protein coupled receptor sweet
 taste receptor (hT1R1)

<400> SEQUENCE: 26

atgtgtctct	gcacggctcg	cctggtcggc	ctgcagcttc	tcatttcctg	ctgctgggcc	60
tttgcctgcc	atagcacgga	gtcttctccct	gacttcaccc	tccccggaga	ttacctcctg	120
gcaggcctgt	tccctctcca	ttctggctgt	ctgcaggtga	ggcacagacc	cgaggtgacc	180
ctgtgtgaca	ggtctttag	cttcaatgag	catggctacc	acctcttcca	ggctatgcgg	240

-continued

cttggggttg aggagataaa caactccacg gccctgctgc ccaacatcac cctggggta	300
cagctgtatg atgtgtgttc tgactctgc aatgtgtatg ccacgctgag agtgctctcc	360
ctgccagggc aacaccacat agagctccaa ggagaccctc tccactattc ccctacggtg	420
ctggcagtga ttgggctgaa cagcaccaac cgtgctgcca ccacagccgc cctgctgagc	480
ccttcctgg tgcccatgtat tagctatgcg gccagcagcg agacgctcag cgtgaagcgg	540
cagtatccct cttccctgcg caccatcccc aatgacaagt accaggtgaa gaccatggtg	600
ctgctgctgc agaagttcgg gtggacctgg atctctctgg ttggcagcag tgacgactat	660
ggcagctag ggggtgcagggc actggagaac caggccactg gtcagggat ctgcattgct	720
ttcaaggaca tcatgccctt ctctgccag gtggcgtatg agaggatgca gtgcctcatg	780
cgcacccctgg cccaggccgg ggccacccgtc gtgggtgttt tttccagccg gcagttggcc	840
agggtgtttt tcgagtcgtt ggtgctgacc aacctgactg gcaagggtgtg ggtcgcctca	900
gaaggctggg ccctctccag gcacatact ggggtgcccgg ggatccagcg cattggatg	960
gtgctggcg tggccatcca gaagagggtt gtcctggcc tgaaggcgtt tgaagaagcc	1020
tatgcccgaa cagacaagaa ggcccctagg cttgccaca agggctcctg gtgcagcagc	1080
aatcagctct gcagagaatg ccaagcttccatgatgca cgtgccaa gctcaaagcc	1140
ttctccatga gttctgccta caacgcatac cgggctgtgt atgcgggtggc ccatggcctc	1200
caccagctcc tgggctgtgc ctctggagct tggccatggg gccgagtcta cccctggcag	1260
ctttggagc agatccacaa ggtgcatttc cttctacaca aggacactgt ggctttat	1320
gacaacagag atccccctcg tagctataac ataattgcct gggactggaa tggacccaag	1380
tggacccctca cggccctcggtt ttcctccaca tggctccag ttcagctaa cataaatgag	1440
acccaaatcc agtggcacgg aaaggacaac caggtgccta agtctgtgt ttcagcgcac	1500
tgtcttgaag ggcaccagcg agtggttacg gggttccatc actgctgctt tgagtgtgt	1560
ccctgtgggg ctgggacccctt cctcaacaag agtgcacccct acagatgcca gccttgggg	1620
aaagaagagt gggcacctga gggaaaggccac acctgtttcc cgcgcactgt ggtgttttg	1680
gctttgcgtg agcacacccctt tgggggtgtc ctggcagctc acacgcgtct gctgctgct	1740
ctgcttggga ctgctggcct gttgcctgg cacctagaca cccctgtgtt gaggtcagca	1800
ggggggccccc tggctttct tatgctggcc tccctggcag caggtgtgtt cagccttat	1860
ggcttcttttgg gggaaacccac aaggcctgcg tgcttgcatac gccaggccct ctttgcctt	1920
ggtttccacca tcttcctgtc ctgcctgaca gttcgctcat tccaactaat catcatcttc	1980
aagtttcca ccaaggtacc tacattctac cacgcctggg tccaaaacca cgggtgtggc	2040
ctgtttgtga tgatcagctc akgggcccaag ctgtttatct gtctaaacttg gctgggtgt	2100
tggacccac tggctgttag ggaataccag cgcttccccc atctgggtat gcttgagtgc	2160
acagagacca actccctggg cttcatactg gccttcctct acaatggccct ccttcctcatc	2220
agtgccttttgc cctgcagctc cctgggtaaag gacttgcacag agaactacaa cgaggccaaa	2280
tgtgtcacct tcagcctgtct cttcaacttc gtgtcctggaa tcgccttctt caccacggcc	2340
agcgtctacg acggcaagta cctgcctgcg gccaacatga tggctgggtt gagcagcctg	2400
agcagcggct tcgggtggta ttttcgtccat aagtgcacg tgatcctctg ccggccagac	2460
ctcaacagca cagagcactt ccaggccctcc attcaggact acacgaggccg ctgcggctcc	2520

-continued

acctga

2526

<210> SEQ_ID NO 27
 <211> LENGTH: 841
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens
 <220> FEATURE:
 <223> OTHER INFORMATION: human T1R1 G-protein coupled receptor sweet taste receptor (hT1R1)

<400> SEQUENCE: 27

```

Met Leu Leu Cys Thr Ala Arg Leu Val Gly Leu Gln Leu Leu Ile Ser
 1           5           10           15

Cys Cys Trp Ala Phe Ala Cys His Ser Thr Glu Ser Ser Pro Asp Phe
20          25           30

Thr Leu Pro Gly Asp Tyr Leu Leu Ala Gly Leu Phe Pro Leu His Ser
35          40           45

Gly Cys Leu Gln Val Arg His Arg Pro Glu Val Thr Leu Cys Asp Arg
50          55           60

Ser Cys Ser Phe Asn Glu His Gly Tyr His Leu Phe Gln Ala Met Arg
65          70           75           80

Leu Gly Val Glu Glu Ile Asn Asn Ser Thr Ala Leu Leu Pro Asn Ile
85          90           95

Thr Leu Gly Tyr Gln Leu Tyr Asp Val Cys Ser Asp Ser Ala Asn Val
100         105          110

Tyr Ala Thr Leu Arg Val Leu Ser Leu Pro Gly Gln His His Ile Glu
115         120          125

Leu Gln Gly Asp Leu Leu His Tyr Ser Pro Thr Val Leu Ala Val Ile
130         135          140

Gly Pro Asp Ser Thr Asn Arg Ala Ala Thr Thr Ala Ala Leu Leu Ser
145         150          155           160

Pro Phe Leu Val Pro Met Ile Ser Tyr Ala Ala Ser Ser Glu Thr Leu
165         170          175

Ser Val Lys Arg Gln Tyr Pro Ser Phe Leu Arg Thr Ile Pro Asn Asp
180         185          190

Lys Tyr Gln Val Glu Thr Met Val Leu Leu Leu Gln Lys Phe Gly Trp
195         200          205

Thr Trp Ile Ser Leu Val Gly Ser Ser Asp Asp Tyr Gly Gln Leu Gly
210         215          220

Val Gln Ala Leu Glu Asn Gln Ala Thr Gly Gln Gly Ile Cys Ile Ala
225         230          235           240

Phe Lys Asp Ile Met Pro Phe Ser Ala Gln Val Gly Asp Glu Arg Met
245         250          255

Gln Cys Leu Met Arg His Leu Ala Gln Ala Gly Ala Thr Val Val Val
260         265          270

Val Phe Ser Ser Arg Gln Leu Ala Arg Val Phe Phe Glu Ser Val Val
275         280          285

Leu Thr Asn Leu Thr Gly Lys Val Trp Val Ala Ser Glu Ala Trp Ala
290         295          300

Lys Ser Arg His Ile Thr Gly Val Pro Gly Ile Gln Arg Ile Gly Met
305         310          315           320

Val Leu Gly Val Ala Ile Gln Lys Arg Ala Val Pro Gly Leu Lys Ala
325         330          335

```

-continued

Phe Glu Ala Tyr Ala Arg Ala Asp Lys Lys Ala Pro Arg Pro Cys
 340 345 350
 His Lys Gly Ser Trp Cys Ser Ser Asn Gln Leu Cys Arg Glu Cys Gln
 355 360 365
 Ala Phe Met Ala His Thr Met Pro Lys Leu Lys Ala Phe Ser Met Ser
 370 375 380
 Ser Ala Tyr Asn Ala Tyr Arg Ala Val Tyr Ala Val Ala His Gly Leu
 385 390 395 400
 His Gln Leu Leu Gly Cys Ala Ser Gly Ala Cys Ser Arg Gly Arg Val
 405 410 415
 Tyr Pro Trp Gln Leu Leu Glu Gln Ile His Lys Val His Phe Leu Leu
 420 425 430
 His Lys Asp Thr Val Ala Phe Asn Asp Asn Arg Asp Pro Leu Ser Ser
 435 440 445
 Tyr Asn Ile Ile Ala Trp Asp Trp Asn Gly Pro Lys Trp Thr Phe Thr
 450 455 460
 Val Leu Gly Ser Ser Thr Trp Ser Pro Val Gln Leu Asn Ile Asn Glu
 465 470 475 480
 Thr Lys Ile Gln Trp His Gly Lys Asp Asn Gln Val Pro Lys Ser Val
 485 490 495
 Cys Ser Ser Asp Cys Leu Glu Gly His Gln Arg Val Val Thr Gly Phe
 500 505 510
 His His Cys Cys Phe Glu Cys Val Pro Cys Gly Ala Gly Thr Phe Leu
 515 520 525
 Asn Lys Ser Asp Leu Tyr Arg Cys Gln Pro Cys Gly Lys Glu Glu Trp
 530 535 540
 Ala Pro Glu Gly Ser Gln Thr Cys Phe Pro Arg Thr Val Val Phe Leu
 545 550 555 560
 Ala Leu Arg Glu His Thr Ser Trp Val Leu Leu Ala Ala Asn Thr Leu
 565 570 575
 Leu Leu Leu Leu Leu Gly Thr Ala Gly Leu Phe Ala Trp His Leu
 580 585 590
 Asp Thr Pro Val Val Arg Ser Ala Gly Gly Arg Leu Cys Phe Leu Met
 595 600 605
 Leu Gly Ser Leu Ala Ala Gly Ser Gly Ser Leu Tyr Gly Phe Phe Gly
 610 615 620
 Glu Pro Thr Arg Pro Ala Cys Leu Leu Arg Gln Ala Leu Phe Ala Leu
 625 630 635 640
 Gly Phe Thr Ile Phe Leu Ser Cys Leu Thr Val Arg Ser Phe Gln Leu
 645 650 655
 Ile Ile Ile Phe Lys Phe Ser Thr Lys Val Pro Thr Phe Tyr His Ala
 660 665 670
 Trp Val Gln Asn His Gly Ala Gly Leu Phe Val Met Ile Ser Ser Ala
 675 680 685
 Ala Gln Leu Leu Ile Cys Leu Thr Trp Leu Val Val Trp Thr Pro Leu
 690 695 700
 Pro Ala Arg Glu Tyr Gln Arg Phe Pro His Leu Val Met Leu Glu Cys
 705 710 715 720
 Thr Glu Thr Asn Ser Leu Gly Phe Ile Leu Ala Phe Leu Tyr Asn Gly
 725 730 735
 Leu Leu Ser Ile Ser Ala Phe Ala Cys Ser Tyr Leu Gly Lys Asp Leu

-continued

740	745	750	
Pro Glu Asn Tyr Asn Glu Ala Lys Cys Val Thr Phe Ser Leu Leu Phe			
755	760	765	
Asn Phe Val Ser Trp Ile Ala Phe Phe Thr Thr Ala Ser Val Tyr Asp			
770	775	780	
Gly Lys Tyr Leu Pro Ala Ala Asn Met Met Ala Gly Leu Ser Ser Leu			
785	790	795	800
Ser Ser Gly Phe Gly Gly Tyr Phe Leu Pro Lys Cys Tyr Val Ile Leu			
805	810	815	
Cys Arg Pro Asp Leu Asn Ser Thr Glu His Phe Gln Ala Ser Ile Gln			
820	825	830	
Asp Tyr Thr Arg Arg Cys Gly Ser Thr			
835	840		

<210> SEQ ID NO 28
 <211> LENGTH: 2520
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <220> FEATURE:
 <223> OTHER INFORMATION: human T1R2 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 28

atggggccca	gggcaaagac	catctgtcc	ctgttcttcc	tcctatgggt	cctggctgag	60
ccggctgaga	actcggactt	ctacctgcct	ggggattacc	tcctgggtgg	cctcttctcc	120
ctccatgcca	acatgaaggg	cattgttca	cttaacttcc	tgcaggtgcc	catgtgcaag	180
gagtatgaag	tgaaggtgat	aggctacaac	ctcatgcagg	ccatgcgcct	cgcgggtggag	240
gagatcaaca	atgacagcag	cctgctgcct	ggtgtgctgc	tgggctatga	gatcgtggat	300
gtgtgctaca	tctccaacaa	tgtccagccg	gtgctctact	tcctggcaca	cgaggacaac	360
cctcttccca	tccaagagga	ctacagtaac	tacatttcc	gtgtggggc	tgtcattggc	420
cctgacaact	ccgagtctgt	catgactgt	gccaacttcc	tctccctatt	tctcatttcca	480
cagatcacct	acagcgccat	cagcgatgag	ctgcgagaca	aggtgcgcct	cccggttttg	540
ctgcgtacca	caccagegc	cgaccaccac	gtcgaggcca	tggtgcagct	gatgctgcac	600
ttccgctgga	actggatcat	tgtgctgggt	agcagcgaca	cctatggccg	cgacaatggc	660
cagctgcttgc	gctgagcgt	ggcccgccgc	gacatctgca	tcgccttcca	ggagacgctg	720
cccacactgc	agccaaacca	gaacatgac	tcaagaggagc	gccagegcct	ggtgaccatt	780
gtggacaagc	tgcagcagag	cacagcgccg	gtcgtggctcg	tgttctcgcc	cgaccgtacc	840
ctgttaccat	tcttcaatga	ggtgctgcgc	cagaacttca	cgccgcgcgt	gtggatcgcc	900
tccgagtcct	ggccatcga	cccggtcttg	cacaacctca	cggagctggg	ccacttgggc	960
actttccctgg	gcatcaccat	ccagagegt	cccatcccg	gcttcagtga	gttccgcgag	1020
tggggccac	aggctggcc	gccacccctc	agcaggacca	gccagagcta	tacctgcaac	1080
caggagtgcg	acaactgcct	gaacgccacc	ttgtccttca	acaccattct	caggctctct	1140
ggggagcgtg	tctgtacag	cgtgtactct	gctgttatg	ctgtggccca	tgcctgcac	1200
agcctccctcg	gctgtacaa	aagcacctgc	accaagaggg	tggtctaccc	ctggcagctg	1260
cttgaggaga	tctggaaggt	caacttca	ctcctggacc	accaaattt	cttcgacccg	1320
caagggacg	tggctctgca	cttggagatt	gtccagtgcc	aatgggacccg	gagccagaat	1380

-continued

cccttccaga gcgtcgccctc ctactacccc ctgcagcgac agctgaagaa catccaagac 1440
 atctcctggc acaccgtcaa caacacgatc cctatgtcca tgtgttccaa gaggtgccag 1500
 tcagggcaaa agaagaagcc tgtgggcac tacgtctgct gcttcgagtg catcgactgc 1560
 cttcccgca cttccctcaa ccacactgaa gatgaatatg aatgccaggc ctgcccgaat 1620
 aacgagtggc cttaccagag tgagacctc tgcttcaagc ggcagctggc cttcctggaa 1680
 tggcatgagg cacccaccaat cgctgtggcc ctgctggccg ccctgggctt cctcagcacc 1740
 ctggccatcc tggtgatatt ctggaggcac ttccagacac ccatagttcg ctggctggg 1800
 ggccccatgt gcttcctgat gtcgacatgc ctgctgggg catacatggt ggtccgggtg 1860
 tacgtgggc cggccaaatgt ctccacatgc ctctgccc agggcccttc tcccccttc 1920
 ttcaacaattt gcatcttcgt tatcgccgtg cgttcttcc agatcgctgc cgccttc 1980
 atggccagcc gcttcccacg cgcttacagc tactgggtcc gctaccaggc gcccctacgtc 2040
 tctatggcat ttatcacggt actcaaaatg gtcattgtgg taattggcat gctggccacg 2100
 ggcttcaatgc ccaccacccg tactgacccc gatgacccca agatcacaat tgtctctgt 2160
 aaccccaact accgcaacag cctgctgttc aacaccagcc tggacctgct gcttcagtg 2220
 gtgggtttca gcttcgccta catggcataa gagctgccc ccaactacaa cgaggccaa 2280
 ttcatcaccc tcagcatgac cttctatttc acctcatccg tctcccttcg caccatcatg 2340
 tctgcctaca gccccgtgtct ggtcaccatc gtggacctct tggtcactgt gctcaaccc 2400
 ctggccatca gcttggccca cttcggcccc aagtgttaca tgatccttc tctaccggag 2460
 cgcaacacgc cccgcctactt caacagcatg atccaggctt acaccatgag gagggactag 2520

<210> SEQ_ID NO 29
 <211> LENGTH: 839
 <212> TYPE: PRT
 <213> ORGANISM: Homo sapiens
 <220> FEATURE:
 <223> OTHER INFORMATION: human T1R2 G-protein coupled receptor sweet taste receptor

<400> SEQUENCE: 29

Met	Gly	Pro	Arg	Ala	Lys	Thr	Ile	Cys	Ser	Leu	Phe	Phe	Leu	Leu	Trp
1				5				10					15		
Val	Leu	Ala	Glu	Pro	Ala	Glu	Asn	Ser	Asp	Phe	Tyr	Leu	Pro	Gly	Asp
			20				25					30			
Tyr	Leu	Leu	Gly	Gly	Leu	Phe	Ser	Leu	His	Ala	Asn	Met	Lys	Gly	Ile
			35				40					45			
Val	His	Leu	Asn	Phe	Leu	Gln	Val	Pro	Met	Cys	Lys	Glu	Tyr	Glu	Val
	50			55			60								
Lys	Val	Ile	Gly	Tyr	Asn	Leu	Met	Gln	Ala	Met	Arg	Phe	Ala	Val	Glu
	65			70			75				80				
Glu	Ile	Asn	Asn	Asp	Ser	Ser	Leu	Leu	Pro	Gly	Val	Leu	Leu	Gly	Tyr
			85				90				95				
Glu	Ile	Val	Asp	Val	Cys	Tyr	Ile	Ser	Asn	Asn	Val	Gln	Pro	Val	Leu
			100				105				110				
Tyr	Phe	Leu	Ala	His	Glu	Asp	Asn	Leu	Leu	Pro	Ile	Gln	Glu	Asp	Tyr
	115			120				125							
Ser	Asn	Tyr	Ile	Ser	Arg	Val	Val	Ala	Val	Ile	Gly	Pro	Asp	Asn	Ser
	130				135			140							

-continued

Glu Ser Val Met Thr Val Ala Asn Phe Leu Ser Leu Phe Leu Leu Pro
 145 150 155 160
 Gln Ile Thr Tyr Ser Ala Ile Ser Asp Glu Leu Arg Asp Lys Val Arg
 165 170 175
 Phe Pro Ala Leu Leu Arg Thr Thr Pro Ser Ala Asp His His Val Glu
 180 185 190
 Ala Met Val Gln Leu Met Leu His Phe Arg Trp Asn Trp Ile Ile Val
 195 200 205
 Leu Val Ser Ser Asp Thr Tyr Gly Arg Asp Asn Gly Gln Leu Leu Gly
 210 215 220
 Glu Arg Val Ala Arg Arg Asp Ile Cys Ile Ala Phe Gln Glu Thr Leu
 225 230 235 240
 Pro Thr Leu Gln Pro Asn Gln Asn Met Thr Ser Glu Glu Arg Gln Arg
 245 250 255
 Leu Val Thr Ile Val Asp Lys Leu Gln Gln Ser Thr Ala Arg Val Val
 260 265 270
 Val Val Phe Ser Pro Asp Leu Thr Leu Tyr His Phe Phe Asn Glu Val
 275 280 285
 Leu Arg Gln Asn Phe Thr Gly Ala Val Trp Ile Ala Ser Glu Ser Trp
 290 295 300
 Ala Ile Asp Pro Val Leu His Asn Leu Thr Glu Leu Gly His Leu Gly
 305 310 315 320
 Thr Phe Leu Gly Ile Thr Ile Gln Ser Val Pro Ile Pro Gly Phe Ser
 325 330 335
 Glu Phe Arg Glu Trp Gly Pro Gln Ala Gly Pro Pro Pro Leu Ser Arg
 340 345 350
 Thr Ser Gln Ser Tyr Thr Cys Asn Gln Glu Cys Asp Asn Cys Leu Asn
 355 360 365
 Ala Thr Leu Ser Phe Asn Thr Ile Leu Arg Leu Ser Gly Glu Arg Val
 370 375 380
 Val Tyr Ser Val Tyr Ser Ala Val Tyr Ala Val Ala His Ala Leu His
 385 390 395 400
 Ser Leu Leu Gly Cys Asp Lys Ser Thr Cys Thr Lys Arg Val Val Tyr
 405 410 415
 Pro Trp Gln Leu Leu Glu Ile Trp Lys Val Asn Phe Thr Leu Leu
 420 425 430
 Asp His Gln Ile Phe Phe Asp Pro Gln Gly Asp Val Ala Leu His Leu
 435 440 445
 Glu Ile Val Gln Trp Gln Trp Asp Arg Ser Gln Asn Pro Phe Gln Ser
 450 455 460
 Val Ala Ser Tyr Tyr Pro Leu Gln Arg Gln Leu Lys Asn Ile Gln Asp
 465 470 475 480
 Ile Ser Trp His Thr Val Asn Asn Thr Ile Pro Met Ser Met Cys Ser
 485 490 495
 Lys Arg Cys Gln Ser Gly Gln Lys Lys Pro Val Gly Ile His Val
 500 505 510
 Cys Cys Phe Glu Cys Ile Asp Cys Leu Pro Gly Thr Phe Leu Asn His
 515 520 525
 Thr Glu Asp Glu Tyr Glu Cys Gln Ala Cys Pro Asn Asn Glu Trp Ser
 530 535 540

-continued

Tyr Gln Ser Glu Thr Ser Cys Phe Lys Arg Gln Leu Val Phe Leu Glu
 545 550 555 560
 Trp His Glu Ala Pro Thr Ile Ala Val Ala Leu Leu Ala Ala Leu Gly
 565 570 575
 Phe Leu Ser Thr Leu Ala Ile Leu Val Ile Phe Trp Arg His Phe Gln
 580 585 590
 Thr Pro Ile Val Arg Ser Ala Gly Gly Pro Met Cys Phe Leu Met Leu
 595 600 605
 Thr Leu Leu Leu Val Ala Tyr Met Val Val Pro Val Tyr Val Gly Pro
 610 615 620
 Pro Lys Val Ser Thr Cys Leu Cys Arg Gln Ala Leu Phe Pro Leu Cys
 625 630 635 640
 Phe Thr Ile Cys Ile Ser Cys Ile Ala Val Arg Ser Phe Gln Ile Val
 645 650 655
 Cys Ala Phe Lys Met Ala Ser Arg Phe Pro Arg Ala Tyr Ser Tyr Trp
 660 665 670
 Val Arg Tyr Gln Gly Pro Tyr Val Ser Met Ala Phe Ile Thr Val Leu
 675 680 685
 Lys Met Val Ile Val Val Ile Gly Met Leu Ala Thr Gly Leu Ser Pro
 690 695 700
 Thr Thr Arg Thr Asp Pro Asp Asp Pro Lys Ile Thr Ile Val Ser Cys
 705 710 715 720
 Asn Pro Asn Tyr Arg Asn Ser Leu Leu Phe Asn Thr Ser Leu Asp Leu
 725 730 735
 Leu Leu Ser Val Val Gly Phe Ser Phe Ala Tyr Met Gly Lys Glu Leu
 740 745 750
 Pro Thr Asn Tyr Asn Glu Ala Lys Phe Ile Thr Leu Ser Met Thr Phe
 755 760 765
 Tyr Phe Thr Ser Ser Val Ser Leu Cys Thr Phe Met Ser Ala Tyr Ser
 770 775 780
 Gly Val Leu Val Thr Ile Val Asp Leu Leu Val Thr Val Leu Asn Leu
 785 790 795 800
 Leu Ala Ile Ser Leu Gly Tyr Phe Gly Pro Lys Cys Tyr Met Ile Leu
 805 810 815
 Phe Tyr Pro Glu Arg Asn Thr Pro Ala Tyr Phe Asn Ser Met Ile Gln
 820 825 830
 Gly Tyr Thr Met Arg Arg Asp
 835

<210> SEQ ID NO 30
 <211> LENGTH: 2553
 <212> TYPE: DNA
 <213> ORGANISM: Homo sapiens
 <220> FEATURE:
 <223> OTHER INFORMATION: human T1R3 G-protein coupled receptor sweet
 taste receptor (hT1R3)

<400> SEQUENCE: 30

atgtctggcc	ctgctgtcct	gggcctcagc	ctctgggctc	tcctgcaccc	tgggacgggg	60
gccccattgt	gcctgtcaca	gcaacttagg	atgaaggggg	actacgtgt	ggggggggctg	120
ttccccctgg	gcgaggccga	ggaggctggc	ctccgcagcc	ggacacggcc	cagcagccct	180
gtgtgcacca	ggttctcctc	aaacggcctg	ctctgggcac	tggccatgaa	aatggccgtg	240

-continued

gaggagatca acaacaagtc ggatctgtgc cccgggctgc gcctgggcta cgaccttt	300
gatacgtgtc cggagccgtgt ggtggccatg aagcccagcc tcatgttctt ggccaaggca	360
ggcagccggc acatcgccgc ctactgcaac tacacgcagt accagccccg tgtgtggct	420
gtcatcgggc cccactcgtc agagctcgcc atggtcaccc gcaagttctt cagcttcttc	480
ctcatgcccc actacggtgc tagcatggag ctgctgagcg cccgggagac cttccctcc	540
ttcttccgca ccgtgcccag cgaccgtgtc cagctgacgg cccggcggga gctgtgcag	600
gagttcggtt ggaactgggt ggccgcctg ggcagcgacg acgagtaacgg ccggcagggc	660
ctgagcatct tctcgccctt ggccgcggca cgcggcatct gcacgcgcga cgagggcctg	720
gtgccgctgc cccgtgcga tgactcgccgg ctggggaaagg tgcaggacgt cctgcaccag	780
gtgaaccaga gcagcgtgca ggtggtgctg ctgttcgcct ccgtgcacgc cgccacgccc	840
ctcttcactt acagcatcag cagcaggctc tcgcccagg tgggggtggc cagcaggccc	900
tggctgaccc tctgacctgtt catggggctg cccggcatgg cccagatggg cacgggtctt	960
ggcttcctcc agaggggtgc ccagctgcac gagttccccc agtacgtgaa gacgcacccgt	1020
gccctggcca ccgaccggc cttctgtctt gcccggcg agaggggaca gggctggag	1080
gaggacgtgg tggggccagcg ctgcccgcag tggactgca tcacgcgtca gaacgtgagc	1140
gcagggctaa ataccacca gacgttctct gtctacgcag ctgtgtatag cgtggcccg	1200
gccctgcaca acactcttca gtgcaacgc tcaggctgcc ccgcgcagga ccccgtaag	1260
ccctggcaga tcctggagaa catgtacaac ctgacccccc acgtggccgg gctgcgcgt	1320
cgggtcgaca gcagcggaaa cgtggacatg gagtacgcacc tgaagctgtg ggtgtggcag	1380
ggctcagtgc ccaggctcca cgcgtggggc aggttcaacg gcagcctcag gacagagcgc	1440
ctgaagatcc gctggcacac gtctgacaac cagaagcccc tggccgggtg ctcgcggcag	1500
tgccaggagg gccaggtgcg ccgggtcaag gggttccactt cctgctgtca cgactgtgt	1560
gactgcgagg cgggcagcta cccggcaaaac ccagacgcaca tcgcctgcac cttttgtggc	1620
caggatgagt ggtccccggc gcgaaggcaca cgctgttccc gccgcaggc tcggttccctg	1680
gcatggggcg agccggctgt gctgctgtc tcctgtgtc tgagcctggc gctggggcctt	1740
gtgctggctg ctttgggtt gttcgttcac catcgggaca gcccactggt tcaggcctcg	1800
ggggggcccc tggcctgtt tggcctgggtg tgcctggggc tggctggctt cagcgtccctc	1860
ctgtttccctg gccagcccg ccctgcccga tgcctggccc agcagccctt gtccacccctc	1920
ccgctcacgg gctgcctgag cacactttc ctgcaggccgg ccgagatctt cgtggagtca	1980
gaactgcctc tgagctgggc agaccggctg agtggctgcc tgcggggccc ctgggcctgg	2040
ctgggtggcgc tgctggccat gctgggtggag gtgcactgt gcacctggta cctgggtggcc	2100
ttccccccgg aggtgggtgac ggactggcac atgctgccc cggaggccgt ggtgcactgc	2160
cgcacacgtc cctgggtcag ctgcggccta gcgcacgcac ccaatgcac gctggccctt	2220
ctctgcttcc tgggcacttt cctggtgccgg agccagccgg gctgtaccaa ccgtgcccgt	2280
ggccctcacct ttgcctacttc atcaccctgg tctcccttgc tggccctccctg	2340
gcacatgtgc aggtgggtctt caggcccccc gtcgcacatgg ggcgcctccctt gctctgtgtc	2400
ctgggcaccc tggctgcctt ccacccgcac aggtgttacc tgctcatgcg gcagccagg	2460
ctcaacaccc ccgagttctt cctgggaggg ggcctgggg atgcccagg ccagaatgac	2520

-continued

gggaacacag gaaatcaggg gaaacatgag tga	2553		
<210> SEQ_ID NO 31			
<211> LENGTH: 850			
<212> TYPE: PRT			
<213> ORGANISM: Homo sapiens			
<220> FEATURE:			
<223> OTHER INFORMATION: human T1R3 G-protein coupled receptor sweet taste receptor (hT1R3)			
<400> SEQUENCE: 31			
Met Leu Gly Pro Ala Val Leu Gly Leu Ser Leu Trp Ala Leu Leu His			
1	5	10	15
Pro Gly Thr Gly Ala Pro Leu Cys Leu Ser Gln Gln Leu Arg Met Lys			
20	25	30	
Gly Asp Tyr Val Leu Gly Gly Leu Phe Pro Leu Gly Glu Ala Glu Glu			
35	40	45	
Ala Gly Leu Arg Ser Arg Thr Arg Pro Ser Ser Pro Val Cys Thr Arg			
50	55	60	
Phe Ser Ser Asn Gly Leu Leu Trp Ala Leu Ala Met Lys Met Ala Val			
65	70	75	80
Glu Glu Ile Asn Asn Lys Ser Asp Leu Leu Pro Gly Leu Arg Leu Gly			
85	90	95	
Tyr Asp Leu Phe Asp Thr Cys Ser Glu Pro Val Val Ala Met Lys Pro			
100	105	110	
Ser Leu Met Phe Leu Ala Lys Ala Gly Ser Arg Asp Ile Ala Ala Tyr			
115	120	125	
Cys Asn Tyr Thr Gln Tyr Gln Pro Arg Val Leu Ala Val Ile Gly Pro			
130	135	140	
His Ser Ser Glu Leu Ala Met Val Thr Gly Lys Phe Phe Ser Phe Phe			
145	150	155	160
Leu Met Pro His Tyr Gly Ala Ser Met Glu Leu Leu Ser Ala Arg Glu			
165	170	175	
Thr Phe Pro Ser Phe Arg Thr Val Pro Ser Asp Arg Val Gln Leu			
180	185	190	
Thr Ala Ala Ala Glu Leu Leu Gln Glu Phe Gly Trp Asn Trp Val Ala			
195	200	205	
Ala Leu Gly Ser Asp Asp Glu Tyr Gly Arg Gln Gly Leu Ser Ile Phe			
210	215	220	
Ser Ala Leu Ala Ala Arg Gly Ile Cys Ile Ala His Glu Gly Leu			
225	230	235	240
Val Pro Leu Pro Arg Ala Asp Asp Ser Arg Leu Gly Lys Val Gln Asp			
245	250	255	
Val Leu His Gln Val Asn Gln Ser Ser Val Gln Val Val Leu Leu Phe			
260	265	270	
Ala Ser Val His Ala Ala His Ala Leu Phe Asn Tyr Ser Ile Ser Ser			
275	280	285	
Arg Leu Ser Pro Lys Val Trp Val Ala Ser Glu Ala Trp Leu Thr Ser			
290	295	300	
Asp Leu Val Met Gly Leu Pro Gly Met Ala Gln Met Gly Thr Val Leu			
305	310	315	320
Gly Phe Leu Gln Arg Gly Ala Gln Leu His Glu Phe Pro Gln Tyr Val			
325	330	335	

-continued

Lys Thr His Leu Ala Leu Ala Thr Asp Pro Ala Phe Cys Ser Ala Leu
 340 345 350

Gly Glu Arg Glu Gln Gly Leu Glu Glu Asp Val Val Gly Gln Arg Cys
 355 360 365

Pro Gln Cys Asp Cys Ile Thr Leu Gln Asn Val Ser Ala Gly Leu Asn
 370 375 380

His His Gln Thr Phe Ser Val Tyr Ala Ala Val Tyr Ser Val Ala Gln
 385 390 395 400

Ala Leu His Asn Thr Leu Gln Cys Asn Ala Ser Gly Cys Pro Ala Gln
 405 410 415

Asp Pro Val Lys Pro Trp Gln Leu Leu Glu Asn Met Tyr Asn Leu Thr
 420 425 430

Phe His Val Gly Gly Leu Pro Leu Arg Phe Asp Ser Ser Gly Asn Val
 435 440 445

Asp Met Glu Tyr Asp Leu Lys Leu Trp Val Trp Gln Gly Ser Val Pro
 450 455 460

Arg Leu His Asp Val Gly Arg Phe Asn Gly Ser Leu Arg Thr Glu Arg
 465 470 475 480

Leu Lys Ile Arg Trp His Thr Ser Asp Asn Gln Lys Pro Val Ser Arg
 485 490 495

Cys Ser Arg Gln Cys Gln Glu Gly Gln Val Arg Arg Val Lys Gly Phe
 500 505 510

His Ser Cys Cys Tyr Asp Cys Val Asp Cys Glu Ala Gly Ser Tyr Arg
 515 520 525

Gln Asn Pro Asp Asp Ile Ala Cys Thr Phe Cys Gly Gln Asp Glu Trp
 530 535 540

Ser Pro Glu Arg Ser Thr Arg Cys Phe Arg Arg Arg Ser Arg Phe Leu
 545 550 555 560

Ala Trp Gly Glu Pro Ala Val Leu Leu Leu Leu Leu Ser Leu
 565 570 575

Ala Leu Gly Leu Val Leu Ala Ala Leu Gly Leu Phe Val His His Arg
 580 585 590

Asp Ser Pro Leu Val Gln Ala Ser Gly Gly Pro Leu Ala Cys Phe Gly
 595 600 605

Leu Val Cys Leu Gly Leu Val Cys Leu Ser Val Leu Leu Phe Pro Gly
 610 615 620

Gln Pro Ser Pro Ala Arg Cys Leu Ala Gln Gln Pro Leu Ser His Leu
 625 630 635 640

Pro Leu Thr Gly Cys Leu Ser Thr Leu Phe Leu Gln Ala Ala Glu Ile
 645 650 655

Phe Val Glu Ser Glu Leu Pro Leu Ser Trp Ala Asp Arg Leu Ser Gly
 660 665 670

Cys Leu Arg Gly Pro Trp Ala Trp Leu Val Val Leu Leu Ala Met Leu
 675 680 685

Val Glu Val Ala Leu Cys Thr Trp Tyr Leu Val Ala Phe Pro Pro Glu
 690 695 700

Val Val Thr Asp Trp His Met Leu Pro Thr Glu Ala Leu Val His Cys
 705 710 715 720

-continued

Arg Thr Arg Ser Trp Val Ser Phe Gly Leu Ala His Ala Thr Asn Ala
 725 730 735

Thr Leu Ala Phe Leu Cys Phe Leu Gly Thr Phe Leu Val Arg Ser Gln
 740 745 750

Pro Gly Cys Tyr Asn Arg Ala Arg Gly Leu Thr Phe Ala Met Leu Ala
 755 760 765

Tyr Phe Ile Thr Trp Val Ser Phe Val Pro Leu Leu Ala Asn Val Gln
 770 775 780

Val Val Leu Arg Pro Ala Val Gln Met Gly Ala Leu Leu Leu Cys Val
 785 790 795 800

Leu Gly Ile Leu Ala Ala Phe His Leu Pro Arg Cys Tyr Leu Leu Met
 805 810 815

Arg Gln Pro Gly Leu Asn Thr Pro Glu Phe Phe Leu Gly Gly Gly Pro
 820 825 830

Gly Asp Ala Gln Gly Gln Asn Asp Gly Asn Thr Gly Asn Gln Gly Lys
 835 840 845

His Glu
 850

<210> SEQ ID NO 32
 <211> LENGTH: 200
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Description of Artificial Sequence:poly Gly
 flexible linker
 <220> FEATURE:
 <221> NAME/KEY: MOD_RES
 <222> LOCATION: (6)...(200)
 <223> OTHER INFORMATION: Gly residues from position 6 to 200 may be
 present or absent

<400> SEQUENCE: 32

Gly
 1 5 10 15

Gly
 20 25 30

Gly
 35 40 45

Gly
 50 55 60

Gly
 65 70 75 80

Gly
 85 90 95

Gly
 100 105 110

Gly
 115 120 125

Gly
 130 135 140

Gly
 145 150 155 160

Gly
 165 170 175

-continued

Gly
 180 185 190

Gly Gly Gly Gly Gly Gly Gly
 195 200

What is claimed is:

1. An isolated homodimeric taste receptor, the receptor comprising two T1R3 polypeptides, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 23, 25, or 31.
2. The isolated receptor of claim 1, wherein the T1R3 polypeptide comprises an amino acid sequence of SEQ ID NO:15, 20, 23, 25, or 31.
3. The isolated receptor of claim 1, wherein the T1R3 polypeptide is encoded by a nucleotide sequence comprising SEQ ID NO:14, 19, 22, 24, or 30.
4. The isolated receptor of claim 1, wherein the T1R3 polypeptides are non-covalently linked.
5. The isolated receptor of claim 1, wherein the T1R3 polypeptides are covalently linked.
6. The isolated receptor of claim 1, wherein the receptor binds to sweet taste ligands.
7. The isolated receptor of claim 6, wherein the sweet taste ligand is a naturally occurring sugar selected from the group consisting of glucose, fructose, galactose, sucrose, maltose, and lactose.
8. The isolated receptor of claim 1, wherein the receptor has G protein coupled receptor activity.
9. The isolated receptor of claim 1, wherein the receptor specifically binds to antibodies raised against SEQ ID NO:15, 20, 23, 25, or 31.
10. The isolated receptor of claim 1, wherein the T1R3 polypeptides are recombinant.
11. A host cell comprising the isolated receptor of claim 10, wherein the host cell does not express T1R1 or T1R2.
12. An isolated homodimeric taste receptor, the receptor consisting of two T1R3 polypeptides, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that has 90% identity to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 23, 25, or 31.
13. An isolated monomeric taste receptor, the receptor consisting of one T1R3 polypeptide, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 23, 25, or 31.
14. The isolated receptor of claim 13, wherein the T1R3 polypeptide comprises an amino acid sequence of SEQ ID NO:15, 20, 23, 25, or 31.
15. The isolated receptor of claim 13, wherein the T1R3 polypeptide is encoded by a nucleotide sequence comprising SEQ ID NO:14, 19, 22, 24, or 30.
16. The isolated receptor of claim 13, wherein the receptor binds to sweet taste ligands.

17. The isolated receptor of claim 13, wherein the sweet taste ligand is a naturally occurring sugar selected from the group consisting of glucose, fructose, galactose, sucrose, maltose, and lactose.
18. The isolated receptor of claim 13, wherein the receptor has G protein coupled receptor activity.
19. The isolated receptor of claim 13, wherein the T1R3 polypeptide is recombinant.
20. A host cell comprising the isolated receptor of claim 19, wherein the host cell does not express T1R1 or T1R2.
21. A host cell expressing a recombinant taste receptor, the receptor comprising a T1R3 polypeptide, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 23, 25, or 31, wherein the cell does not express T1R1 or T1R2.
22. A method of identifying a compound that modulates taste signal transduction in taste cells, the method comprising the steps of
 - (i) contacting the compound with a homodimeric taste receptor comprising two T1R3 polypeptides, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 23, 25 or 31; and
 - (ii) determining the functional effect of the compound upon the receptor, thereby identifying a compound that modulates taste signal transduction.
23. The method of claim 22, wherein the T1R3 polypeptides are non-covalently linked.
24. The method of claim 22, wherein the T1R3 polypeptides are covalently linked.
25. The method of claim 22, wherein the receptor is recombinant.
26. The method of claim 22, wherein the receptor has G protein coupled receptor activity.
27. The method of claim 22, wherein the functional effect is measured in vitro.
28. The method of claim 27, wherein the functional effect is a physical effect.
29. The method of claim 27, wherein the receptor is linked to a solid phase.
30. The method of claim 27, wherein the functional effect is determined by measuring binding of a compound to the receptor.
31. The method of claim 30, wherein the functional effect is determined by measuring binding of a compound to the extracellular domain of the receptor.
32. The method of claim 22, wherein the receptor is expressed in a cell or cell membrane, wherein the cell does not express T1R1 or T1R2.

33. The method of claim 32, wherein the functional effect is a physical effect.

34. The method of claim 33, wherein the functional effect is determined by measuring ligand binding to the receptor.

35. The method of claim 34, wherein the functional effect is determined by measuring binding of a compound to the extracellular domain of the receptor.

36. The method of claim 32, wherein the functional effect is a chemical or phenotypic effect.

37. The method of claim 36, wherein the functional effect is determined by measuring changes in intracellular cAMP, IP₃, or Ca²⁺.

38. The method of claim 32, wherein the cell is a mammalian cell.

39. The method of claim 38, wherein the cell is a human cell.

40. A method of identifying a compound that modulates taste signal transduction in taste cells, the method comprising the steps of

(i) contacting the compound with cell expressing a homodimeric taste receptor comprising two T1R3 polypeptides, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 23, 25, or 31; wherein the cell does not express T1R1 and T1R2; and

(ii) determining the functional effect of the compound upon the receptor, thereby identifying a compound that modulates taste signal transduction.

41. The method of claim 40, wherein the T1R3 polypeptides are non-covalently linked.

42. The method of claim 40, wherein the T1R3 polypeptides are covalently linked.

43. A method of identifying a compound that modulates taste signal transduction in taste cells, the method comprising the steps of

(i) contacting the compound with a monomeric taste receptor comprising one T1R3 polypeptide, wherein

the T1R3 polypeptide is encoded by a nucleotide sequence that hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 23, 25 or 31; and

(ii) determining the functional effect of the compound upon the receptor, thereby identifying a compound that modulates taste signal transduction.

44. A method of identifying a compound that modulates taste signal transduction in taste cells, the method comprising the steps of

(i) contacting the compound with cell expressing a monomeric taste receptor comprising one T1R3 polypeptide, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 23, 25, or 31; wherein the cell does not express T1R1 or T1R2; and

(ii) determining the functional effect of the compound upon the receptor, thereby identifying a compound that modulates taste signal transduction.

45. A method of identifying a compound that modulates taste signal transduction in taste cells, the method comprising the steps of

(i) contacting the compound with cell expressing a taste receptor comprising a T1R3 polypeptide, wherein the T1R3 polypeptide is encoded by a nucleotide sequence that hybridizes under highly stringent hybridization conditions to a nucleotide sequence encoding an amino acid sequence of SEQ ID NO:15, 20, 23, 25, or 31; wherein the cell does not express T1R1 and T1R2; and

(ii) determining the functional effect of the compound upon the receptor, thereby identifying a compound that modulates taste signal transduction.

* * * * *