(54) 实用新型名称
一种拆除砼体支撑时所用托架

(57) 摘要
本实用新型涉及一种拆除砼体支撑时所用托架，用于支撑砼体支撑，包括：垂直于地面立起且围绕矩形的四根立柱，分别搭设于两对立柱顶部且互相平行的两根横向承重梁，以及交叉设置于相邻两根立柱之间的若干剪刀撑。本实用新型提供的拆除砼体支撑时所用托架，坚实耐用，材料简单低廉，使用寿命长，安全系数高，而且可拆卸的设计非常方便，可以节省大量人力物力。
1. 一种拆除砼体支撑时所用托架，用于支撑砼体支撑，其特征在于，包括：垂直于地面立起且围成矩形的四根立柱，分别搭设于两对立柱顶部且互相平行的两根横向承重梁，以及交叉设置于相邻两根立柱之间的若干剪刀撑。

2. 如权利要求1所述的拆除砼体支撑时所用托架，其特征在于，所述四根立柱围成长方形，所述横向承重梁的两端分别设置于间距较小的相邻立柱顶部。

3. 如权利要求1所述的拆除砼体支撑时所用托架，其特征在于，所述拆除砼体支撑时所用托架还包括两块方木，所述方木分别设置于所述横向承重梁上方。

4. 如权利要求1所述的拆除砼体支撑时所用托架，其特征在于，所述砼体支撑的两端分别放置于所述两根横向承重梁上，且所述砼体支撑与所述两根横向承重梁垂直设置。

5. 如权利要求1所述的拆除砼体支撑时所用托架，其特征在于，所述立柱底部分别设有底板。

6. 如权利要求1所述的拆除砼体支撑时所用托架，其特征在于，所述立柱和所述横向承重梁分别由工字钢制成，所述剪刀撑由角钢制成。

7. 如权利要求1所述的拆除砼体支撑时所用托架，其特征在于，所述横向承重梁中部设有加强板。

8. 如权利要求1所述的拆除砼体支撑时所用托架，其特征在于，交错设置的所述剪刀撑在中间交汇位置通过连接板可拆卸式连接。

9. 如权利要求1～8中任一项所述的拆除砼体支撑时所用托架，其特征在于，所述剪刀撑分别与相邻两根立柱可拆卸式连接。

10. 如权利要求9所述的拆除砼体支撑时所用托架，其特征在于，所述立柱的上部和下部分别设有2个具有螺栓孔的钢片，所述立柱通过所述钢片及螺栓与所述剪刀撑可拆卸式连接。
一种拆除砼体支撑时所用托架

技术领域
[0001] 本实用新型涉及一种托架，尤其是一种拆除砼体支撑时所用托架。

背景技术
[0002] 目前，拆除砼支撑主要依靠爆破和机械切割。在使用机械切割时，需要用托架将砼体支撑托住后由叉车运至调运点。现有的托架是按模板排架的形式搭设的，立杆的间距（跨度方向）l＝0.60m，立杆的步距h＝1.60m，梁底增加2道承重立杆，采用的钢管类型为48×3.5。但是这种托架具有很多缺点，如装拆费时、费力、易 Oxford; 和钢管结构零散不够牢固；接头较多，装拆繁琐，不方便周转；因此现有的拆除砼体支撑时所用托架不能满足某些施工的需要。

实用新型内容
[0003] 为了克服上述缺点，本实用新型的目的是提供一种易拆装、坚固可靠且节省材料的拆除砼体支撑时所用托架。
[0004] 为了达到上述目的，本实用所采用的技术方案是：一种拆除砼体支撑时所用托架，用于支撑砼体支撑，其特征在于，包括：垂直于地面立起且围成矩形的四根立柱，分别搭设于两对立柱顶部且互相平行的两根横向承重梁，以及交叉设置于相邻两根立柱之间的若干剪刀撑。
[0005] 作为优选，所述四根立柱围成长方形，所述横向承重梁的两端分别设置于间距较小的相邻立柱顶部。
[0006] 作为优选，所述拆除砼体支撑时所用托架还包括两块方木，所述方木分别设置于所述横向承重梁上方。
[0007] 作为优选，所述砼体支撑的两端分别放置于所述两根横向承重梁上，且所述砼体支撑与所述两根横向承重梁垂直设置。
[0008] 作为优选，所述立柱底部分别设有一底板。
[0009] 可选的，底板形状为矩形、圆形、三角形等，底板材料可以为钢或其他金属。
[0010] 作为优选，所述立柱和所述横向承重梁分别由工字钢制成，所述剪刀撑由角钢制成。
[0011] 作为优选，所述横向承重梁中部设有加劲板。
[0012] 作为优选，交错设置的所述剪刀撑在中间交汇位置通过连接板可拆卸式连接。
[0013] 作为优选，所述剪刀撑分别与相邻两根立柱可拆卸式连接。
[0014] 作为优选，所述立柱的上部和下部分别设有2个具有螺栓孔的钢片，所述立柱通过所述钢片及螺栓与所述剪刀撑可拆卸式连接。
[0015] 采用了上述技术方案的本实用新型的技术效果是：
[0016] 1. 由工字钢制成的立柱和横向承重梁坚实耐用，材料简单低廉，使用寿命长。
[0017] 2. 所述横向承重梁中部设有加劲板，承重能力比传统托架强。
3. 四根立柱相邻两根之间均有剪刀撑加固，安全系数高。
4. 连接处多为螺栓固定，形成可拆卸的设置，方便下次使用，节省人力物力。

附图说明
1. 为本实用新型一实施例的拆除构件支撑时所用托架的结构主视图；
2. 为本实用新型一实施例的拆除构件支撑时所用托架的结构左视图。

具体实施方式
下面结合附图，对本实用新型的具体实施方式作详细说明。
如图1所示，本实用新型提供的一种拆除构件支撑时所用托架的主要包括：立柱1、横向承重梁2、剪刀撑3和方木4。
如图1和2所示，立柱1由四根由16#工字钢制成的柱体，均垂直于地面立起，底部垫有矩形钢片制成的底座5。四根立柱1围成一个长方形，相邻两根立柱1顶部搭设一16#工字钢制成的横向承重梁2，另外两根立柱1顶部同样搭设一相同横向承重梁2，两根横向承重梁2相互平行。本实施例中，所述横向承重梁2的两端分别设置于间距较小的相邻立柱1顶部。本实施例中，立柱1和横向承重梁2所采用的工字钢中间位置均设有加固板7。
如图1所示，每两根相邻立柱1之间通过剪刀撑3可拆卸式固定连接，以防止立柱1倒塌，增强拆除构件支撑时所用托架的整体强度。每个剪刀撑3均由L63×5角钢制成的柱体组成。每根立柱1的上部和下部分别设有2个钢片6，每片钢片6设有两个18mm的螺栓孔。通过上述钢片6和螺栓孔，相邻两根立柱1与一个剪刀撑3可以被多个M16螺栓连接起来。另外，交错设置的剪刀撑3在中间交汇位置通过连接板8可拆卸式连接。连接板8上有一个18mm的螺栓孔，固定时，用M16螺栓穿过该螺栓孔拧紧即可，既能保证结构稳定又方便于拆卸及调运，大大提高了工作效率。

此外，如图1和2所示，切割拆除构件支撑9时，可以在横向承重梁2上垫上方木4，构件支撑两端分别放置于两根横向承重梁2上的方木4上，且构件支撑9与两根横向承重梁2垂直，方木4上表面完全接触构件支撑9下表面，确认支撑稳定后才开始切割，以保证安全。所述方木4可以起到调节高度的作用，还能形成缓冲区域，防止损坏横向承重梁2。

另外，实际施工前，需要对已组装好的本实用新型各部件进行检查，保证其连接牢固，强度和稳定性达到规定要求。
综上所述，本实用新型提供的拆除构件支撑时所用托架具有以下优点：
1. 由工字钢制成的立柱和横向承重梁坚实耐用，材料简单低廉，使用寿命长。
2. 工字钢内中间都加设加固板，承重能力比传统托架强。
3. 四根立柱相邻两根之间均有剪刀撑加固，安全系数高。
4. 连接处多为螺栓固定，形成可拆卸的设置，方便下次使用，节省人力物力。
5. 以上所述仅为本实用新型的较佳实施例，凡依本实用新型权利要求范围所做的均等变化与修饰，皆属本实用新型权利要求的涵盖范围。