摘要

提供喷墨记录装置和喷墨记录头，以及喷墨记录方法。沿着所述墨汁流路配置一个个独立并能驱动的发热量不同的至少2个电热变换体，而它们到喷出口的距离各不相同，并且在进行记录时，在将墨汁驱动信号供给距离喷出口远的一侧的电热变换体之后供给靠近喷出口一侧的电热变换体。预备喷出在要进行每1行的记录且在即将记录时进行，并设定距离喷出口远的一侧的电热变换体一方的喷出次数要比靠近喷出口一侧的电热变换体的喷出次数多。
1. 一种喷墨记录装置，它从记录头喷出墨汁后在记录媒体上进行记录，其特征在于，在经由所述记录头的喷出口的墨汁流路内，沿着所述墨汁流路配置能够一个独立驱动的、发热量不同的至少2个电热变换体，而它们到喷出口的距离各不相同，在进行与记录无关的预备喷出时，在将用于墨汁喷出的驱动信号供给距离喷出口远的一侧的电热变换体之后供给靠近喷出口一侧的电热变换体。

2. 如权利要求1所述的喷墨记录装置，其特征在于，所述预备喷出是要进行每1行记录且在即将记录之前进行的预备喷出，并且，距离喷出口远的一侧的电热变换体的一方的喷出次数要比靠近喷出口一侧的电热变换体的喷出次数多。

3. 如权利要求1所述的喷墨记录装置，其特征在于，所述预备喷出是按每一行喷出次数进行的预备喷出，并且，距离喷出口远的一侧的电热变换体一方的喷出次数要比距离喷出口远的一侧的电热变换体的喷出次数多。

4. 如权利要求1所述的喷墨记录装置，其特征在于，所述预备喷出是刚结束吸引回覆动作之后进行的预备喷出，并且，靠近喷出口一侧的电热变换体一方的喷出次数要比距离喷出口远的一侧的电热变换体的喷出次数多。

5. 如权利要求1所述的喷墨记录装置，其特征在于，在进行记录时，将用于墨汁喷出的驱动信号只供给靠近喷出口一侧的电热变换体。

6. 如权利要求1所述的喷墨记录装置，其特征在于，所述记录头具备产生用于喷出墨汁的热能的电热变换体。

7. 如权利要求6所述的一种喷墨记录装置，其特征在于，所述记录头利用由所述电热变换体产生的热能在墨汁中生成的气泡链从喷出口喷出墨汁。

8. 一种喷墨记录头，它从喷出口喷出墨汁后在记录媒体中进行
记录，其特征在于，在经由所述喷出口的墨汁流路内，沿著所述墨汁流路配置能够个个独立驱动的、发热量不同的至少 2 个电热变换体，而它们到喷出口的距离各不相同，在进行与记录无关的预备喷出时，在将用于墨汁喷出的驱动信号供给距离喷出口远的一侧的电热变换体之后供给就近喷出口一侧的电热变换体。

9. 如权利要求 8 所述的喷墨记录头，其特征在于，所述预备喷出是要进行每 1 行的记录且在即将记录之前进行的预备喷出，并且，距离喷出口远的一侧的电热变换体一方的喷出次数要比靠近喷出口一侧的电热变换体的喷出次数多。

10. 如权利要求 8 所述的喷墨记录头，其特征在于，所述预备喷出是按每一定喷出次数进行的预备喷出，并且，距离喷出口远的一侧的电热变换体一方的喷出次数要比靠近喷出口一侧的电热变换体的喷出次数多。

11. 如权利要求 8 所述的喷墨记录头，其特征在于，所述预备喷出是刚结束吸引回复动作之后进行的预备喷出，并且，靠近喷出口一侧的电热变换体一方的喷出次数要比距离喷出口远的一侧的电热变换体的喷出次数多。

12. 如权利要求 8 所述的喷墨记录头，其特征在于，在进行记录时，将用于墨汁喷出的驱动信号只供给靠近喷出口一侧的电热变换体。

13. 如权利要求 8 所述的喷墨记录头，其特征在于，具备产生用于喷出墨汁的热能的电热变换体。

14. 如权利要求 13 所述的喷墨记录头，其特征在于，利用由所述电热变换体产生的热能在墨汁中生成的膜沸腾、从喷出口喷出墨汁。

15. 一种喷墨记录方法，从记录头喷出墨汁后在记录媒体上进行记录，其特征在于，在经由所述记录头的喷出口的墨汁流路内，沿着所述墨汁流路配置能够个个独立驱动的、发热量不同的至少 2 个电热变换体，而它们到喷出口的距离各不相同，在进行与记录无关的预备喷出时，在将用于墨汁喷出的驱动信号供给距离喷出口远的一侧的电热变换体之后供给就近喷出口一侧的电热变换体。
16. 如权利要求15所述的喷墨记录方法，其特征在于，所述预备喷出是要进行每1行的记录且在即将记录时进行的预备喷出，并且，距离喷出口远的一侧的电热变换体一方的喷出次数要比靠近喷出口一侧的电热变换体的喷出次数多。

17. 如权利要求15所述的喷墨记录方法，其特征在于，所述预备喷出是按每一定喷出次数进行的预备喷出，并且，距离喷出口远的一侧的电热变换体一方的喷出次数要比靠近喷出口一侧的电热变换体的喷出次数多。

18. 如权利要求15所述的喷墨记录方法，其特征在于，所述预备喷出是刚结束吸引回复动作之后进行的预备喷出，并且，靠近喷出口一侧的电热变换体一方的喷出次数要比距离喷出口远的一侧的电热变换体的喷出次数多。

19. 如权利要求15所述的喷墨记录方法，其特征在于，在进行记录时，将用于墨汁喷出的驱动信号只供给靠近喷出口一侧的电热变换体。
喷墨记录装置和喷墨记录头、以及喷墨记录方法

技术领域

本发明涉及喷出墨水后在记录媒体上进行记录的喷墨记录装置和喷墨记录头以及喷墨记录方法。

背景技术

具有打印机、复印机、传真机等能的记录装置，或者作为包含计算机和字处理机等复合型电子设备和工作站等输出据而使用的记录装置用于根据记录信息在纸、布、塑料薄膜，OHP 用的薄板等记录媒体（被记录材料）上将图象（包含文字和符号等）记录下来。所述记录装置按照记录方式可以分为喷墨式、点阵式、感热式、激光束式等。

在与记录媒体的传送方向（走纸方向、副扫描方向）交叉的方向一边进行主扫描、一边进行记录的串行型的记录装置中，通过作为装载在沿着记录媒体移动（主扫描）的托架上的记录设备的记录头对图象进行记录，在结束了 1 行的记录后、进行所定量的走纸（作为副扫描的间距传送），之后，再对停止的记录媒体记录（主扫描）下一行的图象，通过反复进行这样的动作，进行整个记录媒体的记录。另一方面，在只用记录媒体（被记录材料）的传送方向的副扫描记录的线型的记录装置中，将记录媒体设定在所定的记录位置，总括地进行 1 行的记录后，进行所定量的走纸（间距传送），再通过反复进行总括地进行下一行的记录的动作，进行整个记录媒体的记录。

其中，喷墨式的记录装置（喷墨记录装置）是从作为记录设备的喷墨记录头向记录媒体喷出墨汁进行记录的装置，记录设备的小型化容易做到，能高速记录高清晰度的图象，不需要特别的处理、能在普通纸上记录，运行成本低，由于是非打击方式，因此噪音小，而且，
容易使用多种类的墨汁（例如彩色墨汁）记录彩色图象等等，这些都是优点。另外，在喷墨记录装置中，对记录媒体（被记录材料）的材料性质的要求有各种各样，近几年来，对这些材料性质的要求的开发取得了进展，除作为通常的记录媒体的纸（包含薄纸和加工纸）和树脂薄膜（OHP等）之外，还使用将布、皮革、非纺织物，进而将金属作为记录媒体使用的记录装置。

近年来，尤其在喷墨记录装置中，对彩色记录和高图象质量记录的要求越来越高，为了实现高图象质量，人们使用改变点尺寸从而使灰度表现已变成可能的装置。例如，人们知道这样的构成，即，通过在作为流过喷墨记录头的各喷出口的液路的墨汁流路各自的内部设置多个电热变换体（发热元件、加热器）、从在基片上形成的功能元件电路有选择地将驱动信号供给各个电热变换体，就能改变每个象素（每个喷出口）的喷出墨汁量，使图象的灰度记录变成可能。作为这样的记录头的构成的具体例子，人们知道，通过在1个液路（墨汁流路）内、在墨汁的喷出方向（流动方向）配置多个电热变换体（加热器）、并选择驱动的加热器或驱动的加热器的个数，就会使各液路（墨汁流路）中的喷出口和驱动的加热器之间的距离各不相同，由此，就使喷出墨汁量发生变化。

另外，人们知道，作为其它的构成，通过在1个液路（墨汁流路）内配设不同面积的多个加热器，同样选择驱动的加热器或驱动的加热器的个数使喷出墨汁量变化。另外，为了防止在喷出口附近和在该喷出口流过的墨汁流路内的增粘墨汁和滞留在该墨汁流路内的气泡所引起的喷出不良现象发生，例如，在记录即将开始时在所定的地方（所定的顺序）通常进行与记录无关的墨汁喷出的所谓预备喷出。而此，由于小体积的液滴（小液滴）与大体积的液滴（大液滴）比较，在记录开始之后不久容易发生喷出不良现象，因此，在喷出特开平08-183186号和特开平10-01622号中记载的那样的小液滴后进行记录时，通过进行用比这时的喷出量（小液滴）大数倍的液滴（中液滴和大液滴）进行喷出的预备喷出，或者改变预备喷出的间隔时间，就能防止
喷出不良现象发生。

但是，使用在1个墨汁流程中配置多个加热器（电热变换体）的喷出量调制式的喷墨记录头，按照各种图象用高密度进行高清晰的记录。在这种情况下，关于作为所述那样的喷出回复处理中的1个处理动作进行的预备喷出（与记录无关的墨汁喷出）往往产生应解决的技术问题。例如，由于在只是黑色的文字的记录中大部分要求浓度高、速度快的记录，在彩色照片图象等记录中要求高清晰的记录，因此黑色需要用大液滴进行记录，彩色需要用小液滴进行记录。另外，关于彩色记录中的小液滴，人们看到喷出墨汁量每年都有变小的倾向。

另外，为了进行高清晰的图象记录，可望实现记录头的喷出口和流经该喷出口的墨汁流路（液路）的高密度化，并且，对喷出口的宽度尺寸也将加以大的限制。为了在这样受限制的喷出口宽度上喷出黑色的大液滴，存在着加大加热器（电热变换体）的尺寸（表面积等）、或加大喷出口的开口横断面积的方法，但如果使加热器尺寸做得过大，那么由于发生墨汁雾（墨汁的喷雾）等而引起记录品位（等级）的下降，因此有必要加大喷出口的开口横断面积。为此，需要某中程度以上的液路的高度。另一方面，在喷出彩色的小液滴的场合，由于喷出速度越快越能得到高清晰的记录，因此，电热变换体的大小不能做得太小。因此，为了喷出彩色的小液滴，有必要缩小喷出口的大小（开口横断面积）。另外，象彩色的小液滴那样，喷出量变得越少，越容易产生在喷出口附近的增粘墨汁和液路内的气泡引起的喷出不良现象。因此，为了不产生上述的喷出不良现象，就用比小液滴大的液滴（中液滴、大液滴）进行预备喷出，因此能在某中程度上清除增粘墨汁。

但是，如所述那样，由于为了在黑色的喷出口防止墨汁雾而确保喷出横断面积后喷出大液滴，另外，由于在彩色的喷出口不产生增粘墨汁和气泡引起的喷出不良现象而用大的液滴（中液滴、大液滴）进行预备喷出，喷出口的横断面形状有必要作成横断面积小、高度比较高的形状，因此，产生了这样的技术问题，即，在入射一侧的喷出
口部分和液路顶端的最高处部分之间形成多余的空间，即使用中液滴或大液滴进行预备喷出，由于该多余的空
间的原因，也不能完全排出气泡，在该多余的空
间残留着气泡，尽管进行了预备喷出，也往往
会出现记录不良现象。另外，即使增加用中液滴或大液滴的预备喷出次
数（喷出的发生次数），也难以完全排出所
述的残留气泡，其结果，将只会大量地消耗墨汁。

发明内容

本发明的目的之一是提供通过预备喷出完全排出墨汁流路内的气
泡、防止发生记录不良现象、不白白地消耗墨汁、能进行高品位的记
录的喷墨记录装置、喷墨记录头、以及喷墨记录方法。

本发明的其它目的是提供即使是在记录头的墨汁流路的高度高而
喷出口的面积小的场合，进行小液滴的喷出时，通过预备喷出也能完
全排出墨汁流路内的气泡、防止发生记录不良现象、不白白地消耗墨
汁、能进行高品位的记录的喷墨记录装置、喷墨记录头、以及喷墨记
录方法。

本发明的喷墨记录装置，它从记录头喷出墨汁后在记录媒体上进
行记录，其特征在于，在经由所述记录头的喷出口的墨汁流路内，沿
着所述墨汁流路配置能够一个个独立驱动的、发热量不同的至少 2 个
电热变换体，而它们到喷出口的距离各不相同，在进行与记录无关的
预备喷出时、在将用于墨汁喷出的驱动信号供给距离喷出口远的一侧
的电热变换体之后再供给靠近喷出口一侧的电热变换体。

本发明的喷墨记录方法，从记录头喷出墨汁后在记录媒体上进行
记录的喷墨记录方法中，其特征在于，在经由所述记录头的喷出口的墨汁流路内，沿着所述墨汁流路配置能够一个个独立驱动的、发热量不同的至少 2 个电热变换体，而它们到喷出口的距离各不相同。在进行与记录无关的预备喷出时，在将用于墨汁喷出的驱动信号供给距离喷出口远的一侧的电热变换体之后供给靠近喷出口一侧的电热变换体。

若依据这样的本发明，就能提供即使是在记录头的墨汁流路的高度是高的、而喷出口的面积是小的场合进行小液滴的喷出时也能通过预备喷出完全排出墨汁流路内的气泡，防止发生记录不良现象、不白白地消耗墨汁、能进行高品质的记录的喷墨记录装置、喷墨记录头、以及喷墨记录方法。

附图说明

图 1 是表示适用本发明的喷墨记录装置的一个实施例的模式斜视图。

图 2 是表示装载在图 1 中的托架上的喷墨记录头以及墨盒的构成的模式斜视图。

图 3 是表示适用本发明的喷墨记录头的一个实施例构造的模式分解斜视图。

图 4 是放大表示图 3 中的带槽顶板的构造的模式的斜视图。

图 5A 以及图 5B 是表示图 4 中的各墨汁流路内的多个电热变换体的配置状态的模式图，图 5A 是彩色的墨汁流路的场合，图 5B 是表示黑色的墨汁流路的场合。

图 6 是适用本发明的喷墨记录头的一个实施例中的彩色墨汁流路的模式纵向断面图。

图 7 是示例在图 6 的彩色墨汁流路中以中液滴的喷出量方式进行预备喷出时的状态的模式纵向断面图。

图 8 是示例在图 6 的彩色墨汁流路中用大液滴的喷出量方式同时或错开定时驱动前面加热器以及后面加热器后进行预备喷出时的状态
的模式纵向断面图。

图 9 是示例在图 6 的彩色墨汁流路中用小液滴的喷出量方式驱动
前面加热器后进行预备喷出时的状态的模式的纵向断面图。

图 10 是适宜本发明的喷墨记录头的一个实施例中的黑色墨汁流
路的模式的纵向断面图。

具体实施方式

以下，参照附图具体地说明本发明的实施形态。此外，通过各图，
相同的符号表示相同或对应的部分。

图 1 是表示适宜本发明的喷墨记录装置的一个实施例的模式的斜
视图。在图 1 中，托架 1001 具有喷墨记录头 1002 被固定的下端部分
和墨盒被装载的墨盒保持部分，用来将墨汁供给记录头 1002 的彩色墨
盒 1010 和黑色墨盒 1011 沿着墨盒保持部分所形成的盒导杆 1003 自由
装卸（能够互换）地被装载。

所述托架 1001 能够伴随与托架马达（未图示）联动的螺旋导杆
1004 的旋转，并沿着该螺旋导杆 1004 以及与它平行地设置的导杆轴
1005 在箭头 A 方向（主扫描方向）作往复移动。所述喷墨记录头 1002
具有与作为记录媒体的记录纸 1006 对置的喷出口表面，并从在该喷出
口表面构成所定的配置所形成的多个喷出口喷出墨汁后进行记录。就
是说，通过根据记录数据有选择地从在记录头 1002 的喷出口表面上所
形成的多个喷出口喷出的墨汁（墨滴）命中在记录纸 1006 上进行图象
形成（记录）。

在记录时，通过与托架 1001（记录头 1002）的移动（主扫描）同
步后根据记录数据喷出墨汁，并在记录纸 1006 上记录下来，若 1 行的
记录结束，即终止记录，在这期间通过驱动传送滚筒 1007 将记录纸
1006 沿着箭头 B 的方向走纸（传送）到下一行的位置，接着，再驱动
托架 1001、一边移动记录头 1002 一边进行下一行的记录。通过反复
进行这样的 1 行的记录和 1 行的走纸，就能够对整个记录纸 1006 进行
记录。完成了记录的记录纸通过排纸滚筒 1008 被排出。此外，通过装
置主体的记录部分传送的记录纸 1006 通过压纸板 1009 使与记录头 1002 的喷出口表面的间隔保持在所定范围内。

图 2 是表示装载在图 1 中的托架 1001 上的喷墨记录头 1002 和墨盒 1010、1011 的构成的模式斜视图。此外，在图 2 中，假定将记录头 1002 的喷出口表面 1002a 一侧（在图 1 的装配状态中是下面一侧或底面一侧）作为前面部分，将其对面对（在图 1 的装配状态中是上面一侧或顶面一侧）一侧作为后面部分。如图 2 所示那样，彩色墨盒 1010 和黑色墨盒 1011 从被固定在托架 1001 上的记录头 1002 的后面部分（盒导杆 1003）被安装。彩色墨盒 1010 将青绿色、品红色、黄色的各色墨汁贮存部分配置在 1 个筐体内，但各自的墨汁通过隔离壁分离（分开）。另外，黑色墨盒 1011 经由墨汁供给管道 1002a 连接到记录头 1002，彩色墨盒 1010 经由对应于各色墨汁的 3 根墨汁供给管道 1002b、1002c、1002d 被连接到记录头 1002。

图 3 是表示适用于本发明的喷墨记录头的一个实施例构造的模式的分解斜视图。在图 3 中，喷墨记录头 1002 通过在装载了元件基片 101 和配线板（控制设备）103 的底板 102 上层叠带槽顶板 104，并由固定构件 105 固定而被装配。在所述元件基片 101 上设置了作为多个电热变换器的发热元件（请出能量产生设备=加热器）。作为所述记录设备的喷墨记录头 1002 是利用热能喷出墨汁的喷墨记录设备，并具备产生热能的电热变换体（加热器）。另外，所述记录头 1002 通过由所述电热变换体外加的热能在墨汁内产生膜沸腾，利用这时产生的气泡的成长、收缩的压力从喷出口喷出墨汁，进行记录（打印）。

记录头 1002 的喷出口表面 1002a 这样地被配置，以便与记录纸等的记录媒体 1006 设置成所定的间隙（例如约 0.2 2.0 毫米左右）并面对着它。记录头 1002 用在所述喷出口表面 1002a 上所形成的喷出口列在与主扫描方向（该记录头和托架的移动方向）交又的方向排列那样的位置关系被装载在托架 1001 上。这样，就构成根据图象信号或喷出信号驱动（通电）对应的电热变换体、使墨汁流路内（液路）的墨汁产生膜沸腾、通过这时所产生的压力从喷出口喷出墨汁的记录头 1002。
图 4 是放大表示图 3 中的带槽顶板 104 的构造模式的斜视图。在图 4 中，在所述带槽顶板 104 中，形成作为对应于各墨汁颜色（黑色、青绿色、品红色、黄色）的 4 色子盒的通用液室（液池）201，墨盒供管 206 分别与这些通用液室 201 连通。具有所述喷出口表面 1002a 的喷嘴 204 被固定在该带槽顶板 104 的前面部分（在图 1 的装配状态中是下面），在该喷嘴 204 的喷出口表面 1002a 中，如图 2、图 3 以及图 4 所示那样以纵向一列并排的状态形成黑色喷出口列、青绿色喷出口列、品红色喷出口列、黄色喷出口列，并且，各通用液室 201 和所述喷嘴 204 的各喷出口列的喷出口通过墨汁流路 202 被连通，并在各墨汁流路 202 的各自内部、在墨汁流方向（纵向）不同的位置上配置面积不同的多个电热变换体（加热器）。

图 5 是表示图 4 中的各墨汁流路 202 内的多个电热变换体（加热器）的配置状态的模式图，（a）表示彩色墨汁用的墨汁流路的场合，（b）表示黑色墨汁用的墨汁流路的场合。在图 5（a）和（b）中，在元件基片 101 上设置了多个发热元件（电热变换体、喷出能量产生设备、加热器），在墨汁流路（1 墨汁流路）202 的内部纵向排列地配置着一个个独立并能驱动的尺寸不同的多个（2 个）加热器以便使从喷出口到加热器的距离不相同。图 5（a）表示彩色墨汁用的墨汁流路中的加热器的配置状态的一个例子，图 5（b）表示黑色墨汁用的墨汁流路中的加热器的配置状态的一个例子。

在图 5（a）和图 5（b）中，表示具备被设置用于喷出墨滴的多个喷出口、分别与该喷出口连通的多个墨汁流路、用来将墨汁分别供给该墨汁流路的多个供给口、对 1 个所述墨汁流路至少被设置 2 个的发热元件的喷墨记录头。在涉及本实施例的喷墨记录装置中，作为记录用的墨汁使用黄色、品红色、青绿色、黑色 4 色的墨汁。在本申请中，总称黄色墨汁、品红色墨汁、青绿色墨汁为彩色墨汁。另外，在本实施例中，在 1 个墨汁流路中配置了一个个独立并能驱动的 2 个加热器，并按照驱动的加热器的组合（基本上通过替换驱动的加热器）具有小、中、大 3 中喷出量方式，即小液滴、中液滴、大液滴的 3 中喷出量方
式。

在小液滴方式中，只驱动图 5（a）中的前面加热器（喷出口一侧的加热器）501。在中液滴方式中，只驱动图 5（a）中的后面加热器（距离喷出口远的加热器）502。在大液滴方式中，同时或错开定时地驱动图 5（b）中的前面加热器（喷出口一侧的加热器）503 以及后面加热器（距离喷出口近的一侧的加热器）504 的两个加热器。此外，在涉及本实施例的记录头 1002 中，如图 5 所示那样，在彩色的墨汁流路中，从元件基片 101 的前端到前面加热器 501 的距离选定为 50 μm，从元件基片 101 的前端到后面加热器 502 的前端的距离选定为 150 μm，在黑色的墨汁流路中，从元件基片 101 的前端到前面加热器 503 的距离选定为 50 μm，从元件基片 101 的前端到后面加热器 504 的距离选定为 174 μm。

在本实施例中，尤其关于彩色墨汁的喷出口，在记录时如小液滴的喷出量方式喷出小液滴，在预备喷出中用中液滴的喷出量方式喷出中液滴，之后，用小液滴的喷出量方式喷出小液滴。图 6 是适用于发明的喷墨记录头的一个实施例中的彩色的墨汁流路（1 个墨汁流路）的模式的纵向断面图，图 7 是示例在图 6 的彩色墨汁流路中用中液滴的喷出量方式进行预备喷出时的状态的模式的纵向断面图，图 8 是示例在图 6 的彩色墨汁流路中用大液滴的喷出量方式同时或错开定时地驱动前面加热器以及后面加热器进行预备喷出时的状态的模式的纵向断面图，图 9 是示例在图 6 的彩色墨汁流路中用小液滴的喷出量方式驱动前面加热器进行预备喷出时的状态的模式的纵向断面图，图 10 是适用本发明的喷墨记录头的一个实施例中的黑色墨汁流路（1 个墨汁流路）的模式的纵向断面图。

下面，参照图 6～图 9 在与以往例子比较的同时说明用适用本发明的记录头进行预备喷出的场合。在图 6 中，由于墨汁流路 202 的顶端最高处部分与到入射一侧喷出部分 208 的间隙 h 大，因此，在该部分对于来自后面的墨汁流来说，流速变慢，流速越慢，越产生淤积部分。因此，有必要清除在墨汁流路 202 内通过吸引回复不能除去而残
留的大泡（气泡）505 和在喷出小液滴进行记录时发生的小泡（气泡）506。但是，象以往那样，在用中液滴的喷出量方式进行预备喷出时的场合，如图 7 所示那样大泡 505 从喷出口 207 排出，但小泡 506 仍滞留在淤积部分而残留着。在这种状态下，若喷出小液滴进行记录，那么将出现气泡引起的喷出不良现象，并发生记录不良。顺便提一下，本实施例中的喷出口面积，彩色喷出口为 175 μm²，黑色喷出口为 310 μm²。

另外，在现有的大液滴的喷出量方式中，在同时或错开定时地驱动前面加热器 501 和后面加热器 502 进行预备喷出的场合，如图 8 所示那样所产生的气泡变大，液滴变大部分，墨汁流路 202 内的墨汁的流速加快，因此不能排出淤积部分的气泡。另外，在用小液滴的喷出量方式只驱动前面加热器 501 进行预备喷出的场合，从记录头 1002 排出的增粘墨汁和气泡的量减少，尤其滞留在墨汁流路 202 的后面的大泡（气泡）505 难以排出。因此，在适用本发明的喷墨记录头 1002 的预备喷出中，首先通过用所述的中液滴的喷出量方式进行预备喷出，如图 7 所示那样，使大泡 505 从喷出口 207 排出，使小泡聚集在墨汁流路 202 的前面。

接着，如图 9 所示那样用小液滴的喷出量方式驱动前面加热器 501 进行预备喷出，并排出墨汁流路 202 的前面的小泡 506。由于在前面加热器 501 的正上方小泡有淤积部分，并且小泡滞留在这里，因此，若使前面加热器 501 产生气泡，那么，通过该压力波直接传送到小泡 506 部分产生墨汁流，并通过该墨汁流排出气泡。这样，通过在中液滴的喷出量方式之后用小液滴的喷出量方式进行预备喷出，即使墨汁流路 202 中的泡（气泡）完全被排出，之后用小液滴的喷出量方式进行记录，也不产生所述那样的泡和墨汁增粘物引起的喷出不良，也不产生混色引起的记录不良，能够进行高品位的记录。另外，也能将墨汁消耗量限制在最小限度。

接着，说明关于即将在记录时（尤其在彩色记录时）的每行记录之前、在进行涉及所述的本实施例的预备喷出动作的预备喷出处理中
采用的场合。在本实施例中的喷墨记录头 1002 中，如所述那样，由于
在多用小液滴的彩色记录时只驱动前面加热器 501，因此在墨汁流路
202 的后面泡的滞留量慢慢地增加下去，就会产生由泡引起的喷出不
良现象。另外，不限于在记录中常常使用全部的墨汁流路，在长时间
不使用的墨汁流路中，在喷出口附近产生增粘墨汁和粘着墨汁，因此
成为记录不良的原因。

因此，在本实施例中，在即将进行每行记录之前进行如下的预备
喷出。即，首先用中液滴的喷出量方式进行 40 发（次）的预备喷出，
之后继续用小液滴的喷出量方式进行 30 发的预备喷出。这种场合的驱
动频率全都是 2KHz。若依据这样的预备喷出的条件，就能够通过中
液滴的喷出量方式对墨汁流路内的比较大的泡的排出和喷出口附近
的增粘墨汁的清除、通过小液滴的喷出量方式进行滞留在墨汁流路的
顶端部分的浮起部分的泡（气泡）的排出。此处，试试改变中液滴的
喷出量方式的发数（喷出次数），但结果是，在 40 发以上，在大泡的
排出和增粘墨汁的清除中能看到良好的效果。另外，当试试也改变用
小液滴的喷出量方式的发数（喷出次数）时，在 30 发以上，在排出滞
留在前面加热器 501 的正上方的泡方面能看到良好的效果。

这样，通过使中液滴的喷出量方式的发数比小液滴的喷出量方式
的发数多，就能防止因墨汁增粘和泡（气泡）引起的记录不良的现象
发生，并能进行高品位的记录。另外，使用小液滴的喷出量方式的发
数（喷出次数）和中液滴的喷出量方式的发数（喷出次数）能够根据
墨汁的种类、墨汁流路的形状、喷出口的面积（开口面积）等进行增
减。

以上说明的实施例（第 1 实施例）是这样地被构成，即，在从记
录头喷出墨汁后在记录媒体上进行记录的喷墨记录装置和喷墨记录方
法中，在通过记录头的喷出口的墨汁流路内，沿着墨汁流路配置一个
个独立并能驱动的发热量不同的至少 2 个电热变换体以便使到喷出口
的距离各不相同，并且在进行与记录无关的预备喷出时、在将用于墨
汁喷出的驱动信号供给距离喷出口远的一侧的电热变换体后供给靠近
喷出口一侧的电热变换体，并且，所述预备喷出是即在每 1 行的记录时进行的预备喷出，被构成为距离喷出口 207 远的一侧的电热变换体 502、504 比靠近喷出口一侧的电热变换体 501、503 的喷出次数多。若依据这样的构成，就能提供在记录头 1002 的墨汁流路 202 的高度高但喷出口 207 的面积小的场合，在进行小液滴的喷出时也能够在预备喷出中完全排出墨汁流路内的泡、不会发生记录不良现象，不会大量地消耗墨汁，能进行高品位的记录的喷墨记录装置、喷墨记录头、以及喷墨记录方法。

下面，将说明关于适用于在每隔用于记录的墨汁喷出等的一定次数的喷出时进行本发明的预备喷出动作的预备喷出动作的场合（第 2 实施例）。此外，在每隔用于记录的一定喷出次数进行预备喷出的场合，由喷出次数计数器对喷出次数记数，并根据该记数值控制预备喷出动作。也象所述的第 1 实施例记述的那样，在喷墨记录头 1002 中填充墨汁的状态下，装载在记录装置中原封不动地长时间放置的场合，或者在记录中有使用的墨汁流路（喷出口）的场合，往往在喷出口附近的墨汁将增加粘度并成为记录不良的原因。

而且，在墨汁喷出时产生的泡（气泡）原封不动地残留在墨汁流路内的状态下，若在以后的记录中该墨汁流路（喷出口）长时间放置不使用，那么往往由于记录的记录头内的温度上升使泡（气泡）长大，引起喷出不良。为了排除这样的记录不良的原因，将采用对喷出次数（喷出发数）记数、尤其一边预测在墨汁喷出时产生的泡（气泡）的状态、一边在所定的定时（周期、所定的喷出次数后）中进行预备喷出的处理方法。

因此，在本实施例（第 2 实施例）中，在一定喷出次数后的该预备喷出动作将在以下那样的条件下进行。即，首先，用中液滴的喷出量方式进行 40 发的预备喷出，之后，继续用小液滴的喷出量方式进行 30 发的预备喷出。这些预备喷出的驱动频率全都是 2KHz。若依据这样的预备喷出的条件，就能够通过中液滴的喷出量方式进行墨汁流路内的比较大的泡的排出和喷出口附近的增粘墨汁的清除、通过小液滴
的喷出量方式进行滞留在墨汁流路的顶端部分的渗透部分的气泡的排出。此处，试验改变用中液滴的喷出量方式的发数（喷出次数），但其结果是，在 40 倍以上，在大泡的排出和增粘墨汁的清除中能看到良好的效果。另外，当也试验改变用小液滴的喷出量方式的发数（喷出次数）时，30 倍以上，在排出滞留在前面加热器 501 的正上方的泡方面能看到良好的效果。

这样，通过使中液滴的喷出量方式的发数比小液滴的喷出量方式的发数多，就能防止因墨汁增粘和泡（气泡）引起的记录不良现象发生。另外，用小液滴的喷出量方式的发数（喷出次数）和用中液滴的喷出量方式的发数（喷出次数）能够根据墨汁的种类、墨汁流路的形状、喷出口的面积（开口面积）等进行增减。

本实施例（第 2 实施例）是这样地被构成的，即，在从记录头喷出墨汁后在记录媒体上进行记录的喷墨记录装置以及喷墨记录方法中，在通过所述记录头的喷出口的墨汁流路内，沿着墨汁流路配置二个独立并能驱动的发热量不同的至少 2 个电热变换体以便使喷出口的距离各不相同，在进行与记录无关的预备喷出时，在将用于墨汁喷出的驱动信号供给距离喷出口远的一侧的电热变换体之后供给喷出口附近一侧的电热变换体，而且，被构成为，所述预备喷出是每隔一定喷出次数进行的预备喷出，距离喷出口 207 远的一侧的电热变换体 502、504 一方的喷出次数要比喷出口附近一侧的电热变换体 501、503 的多。通过这样的构成，在记录头 1002 的墨汁流路 202 的高度高、但喷出口 207 的面积小的场合，在进行小液滴的喷出时，也能提供在预备喷出中完全排出墨汁流路的泡、不会发生记录不良现象、不会大量地消耗齿轮、能进行高品位的记录的喷墨记录装置、喷墨记录头、以及喷墨记录方法。

下面，说明关于适用于在用于维持回复墨汁喷出性能的吸引回复动作之后不久进行本发明的预备喷出动作的预备喷出动作的场合（第 3 实施例）。此外，在吸引回复动作之后，通过吸引从各色喷出口排出的墨汁常常在间隙内相互混合。并且，该混合产生的混合墨汁（混
色墨汁）的一部分有时逆流到喷出口内与墨汁流路内和通用液室内的墨汁混合，因此在开始后的初始阶段使记录品住下降。通常，为了消除这样的混色，做到通过在吸引回复动作之后能进行预备喷出排出在墨汁流路内等中存在的混色墨汁。这时的预备喷出的目的不仅是为了消除混色墨汁，而且也为了排出用上述吸引回复动作不能清除干净的墨汁流路的泡（气泡）的处理动作。

在本实施例（第 3 实施例）中，在吸引回复动作之后不久进行的预备喷出是在下面那样的条件下进行的。即，首先，用中液滴的喷出量方式进行 200 发的预备喷出，之后，继续用小液滴的喷出量方式进行 400 发的预备喷出。这些预备喷出的驱动频率全都是 2KHz。若依据这样的预备喷出的条件，就能够通过中液滴的喷出量方式排出在墨汁流路等中存在的混色墨汁和墨汁流路内比较大的泡。而且，也能够通过小液滴的喷出量方式排出滞留在墨汁流路的顶端部分的渍积部分的泡（气泡）。在这里，试试改改变中液滴的喷出量方式的发数（喷出次数），结果，在 200 发以上，在大泡的排出和增加渍积的清除中能看到良好的效果。另外，在也试试改改变小液滴的喷出量方式的发数（喷出次数）时，在 400 发以上，在排出滞留在前面加热器 501 的正上方的泡方面能看到良好的效果。

在本实施例（第 3 实施例）中，与所述的各实施例（第 1 实施例和第 2 实施例）的场合不同，设定为用小液滴的喷出量方式的发数（喷出次数）比用中液滴的喷出量方式的发数要多。其理由是因为以下缘故，即，由于用吸引回复动作不能除去的墨汁流路内的小泡（气泡）的数量比在记录中产生小泡的数量还要多，因此在该小泡聚集在墨汁流路的顶端部分的渍积部分时，为了排出用小液滴的喷出量方式的该小泡，与在吸引回复动作之后不久进行的预备喷出的中液滴的喷出量方式比较，需要更多的发数。这样，通过使小液滴的喷出量方式中的发数多于中液滴的喷出量方式中的发数，就能够使在墨汁流路内等中存在的混色墨汁和泡（气泡）引起的记录不良现象不出现，并能维
持高品位的记录。另外，在本实施例中，在小液滴的喷出量方式中的
发数（喷出次数）和中液滴的喷出量方式中的发数（喷出次数）可以
根据墨汁的种类、墨汁流路的形状、喷出口的面积（开口面积）进行
增减。

本实施例（第 3 实施例）是这样构成的，即，在从记录头喷出墨
汁后在记录媒体上进行记录的喷墨记录装置和喷墨记录方法中，在通
过所述记录头的喷出口的墨汁流路内，沿著墨汁流路配置一个个独立
并能驱动的发热量不同的至少 2 个电热变换体以便到喷出口的距离
各不相同，并在进行与记录无关的预备喷出时，在将用于墨汁喷出的
驱动信号供给距离喷出口远的一侧的电热变换体之后供给靠近喷出口
一侧的电热变换体，而且，还被构成为，所述预备喷出是在吸引回复
动作之后不久进行的预备喷出，并且，靠近喷出口 207 一侧的电热变
换体 502、503 一方的喷出次数多于距离喷出口 207 远的一侧的电热变
换体 502、504 的喷出次数。通过这样的构成，在记录头 1002 的墨汁
流路 202 的高度高、但喷出口 207 的面积小的场合，在进行小液滴的
喷出时，也能提供在预备喷出中完全排出墨汁流路内的泡、不会出现
记录不良现象、不会大量地消耗墨汁、能进行高品位的记录的喷墨记
录装置、喷墨记录头、以及喷墨记录方法。

此外，在以上的实施例中，举例说明了一边在主扫描方向移动作
为记录设备的喷墨记录头、一边记录的串型喷墨记录装置的场合，
但本发明在使用覆盖记录媒体的全部（全宽度）或一部分的长度的线
型喷墨记录头、只在副扫描时记录的线型喷墨记录装置的场合也能够
同样适用，并能达到同样的效果。另外，本发明在进行单色记录的喷
墨记录装置、使用 1 个或多个记录头用多个不同的颜色记录的彩色喷
墨记录装置、使用相同颜色不同浓度的多种浓度记录的灰度等级记录
用的喷墨记录装置、进而将它们组合起来的喷墨记录装置等的场合也
同样适用，并能得到同样的效果。

另外，本发明在将记录头和墨盒作成一个整体的能互换的记录头
盒的构成，将记录头和墨盒作成不同实体并在其间用墨汁供给用的管子等连接起来的构成等，记录头和墨盒的配置构成为任何场合也能同样地适用，并能得到同样的效果。
图 3
图 5 A

图 5 B
图 7
图 9