

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

H01G 4/12 (2006.01) **H01G 4/30** (2006.01)

(21) 출원번호 **10-2013-0008029**

(22) 출원일자 **2013년01월24일** 심사청구일자 **2013년01월24일**

(65) 공개번호10-2014-0095270(43) 공개일자2014년08월01일

(56) 선행기술조사문헌 JP2000124057 A* KR100586954 B1* KR1020110074259 A

*는 심사관에 의하여 인용된 문헌

(24) 등록일자 (73) 특허권자

(45) 공고일자

(11) 등록번호

삼성전기주식회사

경기도 수워시 영통구 매영로 150 (매탄동)

2014년11월17일

2014년11월11일

10-1462753

(72) 발명자

임진형

경기 수원시 영통구 매영로 150, (매탄동, 삼성 전기)

우석균

경기 수원시 영통구 매영로 150, (매탄동, 삼성 전기)

(뒷면에 계속)

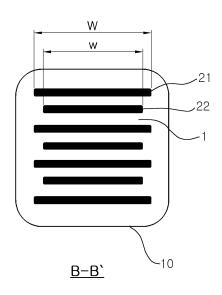
(74) 대리인

특허법인씨엔에스

전체 청구항 수 : 총 16 항

심사관: 전한철

_____ (54) 발명의 명칭 **적충 세라믹 전자부품 및 이의 제조방법**


(57) 요 약

본 발명은 적층 세라믹 전자부품 및 이의 제조방법에 관한 것으로, 본 발명은 유전체층을 포함하는 세라믹 본체; 및 상기 세라믹 본체 내에서 상기 유전체층을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적층되는 제1 및 제2 내부전극;을 포함하며, 상기 제1 및 제2 내부전극의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극의 최소폭을 w라고 정의하면, 하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율 (D)이 20 내지 80%인 적층 세라믹 전자부품,

[식] D=(W-w)/W×100

을 제공한다.

대 표 도 - 도2

(72) 발명자

이충은

경기 수원시 영통구 매영로 150, (매탄동, 삼성 전기) 김두영

경기 수원시 영통구 매영로 150, (매탄동, 삼성 전기)

특허청구의 범위

청구항 1

유전체층을 포함하는 세라믹 본체; 및

상기 세라믹 본체 내에서 상기 유전체층을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적층되는 제1 및 제2 내부전극;을 포함하며,

상기 제1 및 제2 내부전극의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극의 최소폭을 w라고 정의하면,

하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D)이 20 내지 80%이며, 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 200 내지 250 μm에서 상기 제1 내부전극과 제2 내부전극의 폭 차이율이 20 내지 40%인 적층 세라믹 전자부품,

[식] D=(W-w)/W×100.

청구항 2

제1항에 있어서,

상기 제1 내부전극과 제2 내부전극의 인쇄폭 차이는 100 μm 이하인 적층 세라믹 전자부품.

청구항 3

제1항에 있어서,

상기 유전체층의 평균 두께는 0.6 µm 이하인 적층 세라믹 전자부품.

청구항 4

제1항에 있어서.

상기 제1 및 제2 내부전극의 평균 두께는 0.6 μm 이하인 적층 세라믹 전자부품.

청구항 5

삭제

청구항 6

유전체층을 포함하는 세라믹 본체; 및

상기 세라믹 본체 내에서 상기 유전체층을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적층되는 제1 및 제2 내부전극;을 포함하며,

상기 제1 및 제2 내부전극의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극의 최소폭을 w라고 정의하면,

하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D)이 20 내지 80%이며, 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 300 내지 400 μm에서 상기 제1 내부전극과 제2 내부전극의 폭 차이율이 40 내지 70%인 적층 세라믹 전자부품,

[식] D=(W-w)/W×100.

청구항 7

유전체층을 포함하는 세라믹 본체; 및

상기 세라믹 본체 내에서 상기 유전체층을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적층되는 제1 및 제2 내부전극;을 포함하며,

상기 제1 및 제2 내부전극의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극의 최소폭을 w라고 정의하면,

하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D)이 20 내지 80%이며, 상기 제1 및 제2 내부전극 중인쇄폭이 더 넓은 전극의 인쇄폭이 500 μm 이상에서 상기 제1 내부전극과 제2 내부전극의 폭 차이율이 20 내지 80%인 적층 세라믹 전자부품.

[식] D=(W-w)/W×100.

청구항 8

제1항에 있어서,

상기 제1 또는 제2 내부전극의 연결성은 90% 이상인 적층 세라믹 전자부품.

청구항 9

세라믹 분말을 포함하는 슬러리를 이용하여 세라믹 그린시트를 마련하는 단계;

도전성 금속 페이스트를 이용하여 상기 세라믹 그린시트 상에 내부전극 패턴을 형성하는 단계; 및

상기 세라믹 그린시트를 적층하고 소결하여, 유전체층 및 상기 유전체층을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적층되는 제1 및 제2 내부 전극을 포함하는 세라믹 본체를 형성하는 단계;를 포함하며,

상기 제1 및 제2 내부전극의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극의 최소폭을 w라고 정의하면,

하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D)이 20 내지 80%이며, 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 200 내지 250 μm에서 상기 제1 내부전극과 제2 내부전극의 폭 차이율이 20 내지 40%인 적층 세라믹 전자부품의 제조 방법,

[식] D=(W-w)/W×100.

청구항 10

제9항에 있어서,

상기 제1 내부전극과 제2 내부전극의 인쇄폭 차이는 100 μm 이하인 적층 세라믹 전자부품의 제조 방법.

청구항 11

제9항에 있어서,

상기 유전체층의 평균 두께는 0.6 μm 이하인 적층 세라믹 전자부품의 제조 방법.

청구항 12

제9항에 있어서,

상기 제1 및 제2 내부전극의 평균 두께는 0.6 μm 이하인 적층 세라믹 전자부품의 제조 방법.

청구항 13

삭제

청구항 14

세라믹 분말을 포함하는 슬러리를 이용하여 세라믹 그린시트를 마련하는 단계;

도전성 금속 페이스트를 이용하여 상기 세라믹 그린시트 상에 내부전극 패턴을 형성하는 단계; 및

상기 세라믹 그린시트를 적충하고 소결하여, 유전체충 및 상기 유전체충을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적충되는 제1 및 제2 내부 전극을 포함하는 세라믹 본체를 형성하는 단계;를 포함하며,

상기 제1 및 제2 내부전극의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극의 최소폭을 w라고 정의하면,

하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D)이 20 내지 80%이며, 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 300 내지 400 μm에서 상기 제1 내부전극과 제2 내부전극의 폭 차이율이 40 내지 70%인 적층 세라믹 전자부품의 제조 방법,

[식] D=(W-w)/W×100.

청구항 15

세라믹 분말을 포함하는 슬러리를 이용하여 세라믹 그린시트를 마련하는 단계;

도전성 금속 페이스트를 이용하여 상기 세라믹 그린시트 상에 내부전극 패턴을 형성하는 단계; 및

상기 세라믹 그린시트를 적충하고 소결하여, 유전체충 및 상기 유전체충을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적충되는 제1 및 제2 내부 전극을 포함하는 세라믹 본체를 형성하는 단계;를 포함하며,

상기 제1 및 제2 내부전극의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극의 최소폭을 w라고 정의하면,

하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D)이 20 내지 80%이며, 상기 제1 및 제2 내부전극 중인쇄폭이 더 넓은 전극의 인쇄폭이 500 μm 이상에서 상기 제1 내부전극과 제2 내부전극의 폭 차이율이 20 내지 80%인 적층 세라믹 전자부품의 제조 방법,

[식] D=(W-w)/W×100.

청구항 16

제9항에 있어서.

상기 제1 또는 제2 내부전극의 연결성은 90% 이상인 적층 세라믹 전자부품의 제조 방법.

청구항 17

제9항에 있어서.

상기 세라믹 그린 시트의 적층수는 400층 이상인 적층 세라믹 전자부품의 제조 방법.

청구항 18

제9항에 있어서,

상기 도전성 금속은 니켈(Ni), 구리(Cu), 팔라듐(Pd) 및 팔라듐-은(Pd-Ag) 합금으로 이루어진 군으로부터 선택된 하나 이상인 적층 세라믹 전자부품의 제조 방법.

명 세 서

기술분야

[0001] 본 발명은 단차 영향성을 개선하여 신뢰성이 우수한 대용량 적층 세라믹 전자부품 및 이의 제조방법에 관한 것이다.

배경기술

- [0002] 최근, 전자 제품들의 소형화 추세에 따라, 적층 세라믹 전자 부품 역시 소형화되고, 대용량화될 것이 요구되고 있다.
- [0003] 이에 따라 유전체와 내부전극의 박막화, 다층화가 다양한 방법으로 시도되고 있으며, 근래에는 유전체층의 두께는 얇아지면서 적층수가 증가하는 적층 세라믹 전자 부품들이 제조되고 있다.
- [0004] 이러한 대용량화를 구현하기 위해서 유전체층 두께와 내부 전극 층 두께가 얇아질수록 내부전극 도포 두께에 의한 단차 영향성이 커지고 있다.
- [0005] 단차값이 커질수록 내부전극 단차부분의 밀도가 저하되어 크랙 불량이 발생할 수 있다.
- [0006] 또한, 비어있는 단차부를 채워주기 위해 내부전극이 늘어나면서 내부전극의 끊김이 심화 되어 신뢰성이 저하될 수 있다.
- [0007] 한편, 내부 전극 층 두께가 얇아질수록 내부전극층의 두께가 불균일해지고 전극 층이 연속적으로 두께가 유지되면서 연결되지 못하고 부분적으로 끊겨서 연결성이 저하된다.
- [0008] 또한 전극이 끊어지면서 유전체층의 평균 두께는 같지만 부분적으로 두꺼워지거나 얇아지는 부분이 발생되어 유전체층이 얇아진 부분에서 절연특성이 저하되어 신뢰성이 저하되는 문제점이 있었다.

선행기술문헌

특허문헌

(특허문헌 0001) 한국공개공보 제2011-0074259호

발명의 내용

해결하려는 과제

[0009] 본 발명은 단차 영향성을 개선하여 신뢰성이 우수한 대용량 적층 세라믹 전자부품 및 이의 제조방법에 관한 것

이다.

과제의 해결 수단

- [0010] 본 발명의 일 실시형태는 유전체층을 포함하는 세라믹 본체; 및 상기 세라믹 본체 내에서 상기 유전체층을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적층되는 제1 및 제2 내부전극; 을 포함하며, 상기 제1 및 제2 내부전극의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극의 최소폭을 w라고 정의하면, 하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D)이 20 내지 80%인 적층 세라믹 전자부품,
- [0011] [식] D=(W-w)/W×100
- [0012] 을 제공한다.
- [0013] 상기 제1 내부전극과 제2 내부전극의 인쇄폭 차이는 100 μm 이하일 수 있다.
- [0014] 상기 유전체층의 평균 두께는 0.6 µm 이하일 수 있다.
- [0015] 상기 제1 및 제2 내부전극의 평균 두께는 0.6 µm 이하일 수 있다.
- [0016] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 200 내지 250 µm에서 상기 제1 내부전극과 제 2 내부전극의 폭 차이율이 20 내지 40%일 수 있다.
- [0017] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 300 내지 400 μm에서 상기 제1 내부전극과 제 2 내부전극의 폭 차이율이 40 내지 70%일 수 있다.
- [0018] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 500 µm 이상에서 상기 제1 내부전극과 제2 내 부전극의 폭 차이율이 20 내지 80%일 수 있다.
- [0019] 또한, 상기 제1 또는 제2 내부전극의 연결성은 90% 이상일 수 있다.
- [0020] 본 발명의 다른 실시형태는 세라믹 분말을 포함하는 슬러리를 이용하여 세라믹 그린시트를 마련하는 단계; 도전 성 금속 페이스트를 이용하여 상기 세라믹 그린시트 상에 내부전극 패턴을 형성하는 단계; 및 상기 세라믹 그린시트를 적충하고 소결하여, 유전체충 및 상기 유전체충을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적충되는 제1 및 제2 내부 전극을 포함하는 세라믹 본체를 형성하는 단계;를 포함하며, 상기 제1 및 제2 내부전극의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극의 최소폭을 w라고 정의하면, 하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D)이 20 내지 80%인 적충 세라믹 전자부품의 제조 방법,
- [0021] [식] D=(W-w)/W×100
- [0022] 을 제공한다.
- [0023] 상기 제1 내부전극과 제2 내부전극의 인쇄폭 차이는 100 μm 이하일 수 있다.

- [0024] 상기 유전체층의 평균 두께는 0.6 µm 이하일 수 있다.
- [0025] 상기 제1 및 제2 내부전극의 평균 두께는 0.6 μm 이하일 수 있다.
- [0026] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 200 내지 250 µm에서 상기 제1 내부전극과 제 2 내부전극의 폭 차이율이 20 내지 40%일 수 있다.
- [0027] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 300 내지 400 μm에서 상기 제1 내부전극과 제 2 내부전극의 폭 차이율이 40 내지 70%일 수 있다.
- [0028] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 500 μm 이상에서 상기 제1 내부전극과 제2 내 부전극의 폭 차이율이 20 내지 80%일 수 있다.
- [0029] 또한, 상기 제1 또는 제2 내부전극의 연결성은 90% 이상일 수 있다.
- [0030] 상기 세라믹 그린 시트의 적층수는 400층 이상일 수 있다.
- [0031] 상기 도전성 금속 페이스트는 금속 분말 40 내지 50 중량부를 포함할 수 있으며, 상기 금속은 니켈(Ni), 구리 (Cu), 팔라듐(Pd) 및 팔라듐-은(Pd-Ag) 합금으로 이루어진 군으로부터 선택된 하나 이상일 수 있다.

발명의 효과

[0032] 본 발명에 따르면 정전용량의 대용량화를 구현하면서 단차에 의한 영향성을 줄여 크랙 불량을 감소시키고, 내전 압 특성과 신뢰성이 우수한 대용량 적층 세라믹 전자부품의 구현이 가능하다.

도면의 간단한 설명

- [0033] 도 1은 본 발명의 일 실시형태에 따른 적층 세라믹 캐패시터를 개략적으로 나타내는 사시도이다.
 - 도 2는 본 발명의 일 실시형태에 따른 도 1의 B-B' 단면도이다.
 - 도 3은 본 발명의 다른 실시형태에 따른 도 1의 B-B' 단면도이다.
 - 도 4는 본 발명의 다른 실시형태에 따른 적층 세라믹 캐패시터의 제조 공정도이다.
 - 도 5는 내부전극의 인쇄폭에 따른 두께를 나타내는 그래프이다.
 - 도 6은 본 발명의 일 실시예 및 비교예의 내부전극의 영역별 연결성을 나타내는 SEM(Scanning Electron Microscope) 사진이다.
 - 도 7은 제1 내부전극과 제2 내부전극의 인쇄폭 차이에 따른 적층 세라믹 커페시터의 정전 용량 백분율을 나타내는 그래프이다.

발명을 실시하기 위한 구체적인 내용

[0034] 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설

명을 위해 과장될 수 있으며, 도면상의 동일한 부호로 표시되는 요소는 동일한 요소이다.

- [0035] 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시형태를 설명한다.
- [0036] 도 1은 본 발명의 일 실시형태에 따른 적층 세라믹 캐패시터를 개략적으로 나타내는 사시도이다.
- [0037] 도 2는 본 발명의 일 실시형태에 따른 도 1의 B-B' 단면도이다.
- [0038] 도 3은 본 발명의 다른 실시형태에 따른 도 1의 B-B' 단면도이다.
- [0039] 도 1 및 도 2를 참조하면, 본 발명의 일 실시형태에 따른 적층 세라믹 전자부품은 유전체층(1)을 포함하는 세라 믹 본체(10); 및 상기 세라믹 본체(10) 내에서 상기 유전체층(1)을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적층되는 제1 및 제2 내부전극(21, 22);을 포함하며, 상기 제1 및 제2 내부전극(21, 22)의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극(21, 22)의 최소폭을 w라고 정의하면, 하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D)이 20 내지 80%일 수 있다
- [0040] [식] D=(W-w)/W×100.
- [0041] 이하에서는 본 발명의 일 실시형태에 따른 적층 세라믹 전자부품을 설명하되, 특히 적층 세라믹 커패시터로 설명하지만 이에 제한되는 것은 아니다.
- [0042] 상기 세라믹 본체(10)는 특별히 제한되지 않으며, 예를 들어 육면체 형상을 가질 수 있다.
- [0043] 한편, 본 실시 형태의 적층 세라믹 커패시터에 있어서, '길이 방향'은 도 1의 'L' 방향, '폭 방향'은 'W' 방향, '두께 방향'은 'T' 방향으로 정의하기로 한다. 여기서 '두께 방향'은 유전체층를 쌓아 올리는 방향 즉 '적층 방향'과 동일한 개념으로 사용할 수 있다.
- [0044] 본 발명의 일 실시형태에 따른 적층 세라믹 커패시터는 유전체층(1)을 포함하는 세라믹 본체(10); 및 상기 세라 믹 본체(10) 내에서 상기 유전체층(1)을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적층되는 제1 및 제2 내부전극(21, 22);을 포함할 수 있다.
- [0045] 상기 제1 및 제2 내부전극(21, 22)은 특별히 제한되지 않으며, 예를 들어, 팔라듐(Pd), 팔라듐-은(Pd-Ag) 합금 등의 귀금속 재료 및 니켈(Ni), 구리(Cu) 중 하나 이상의 물질로 이루어진 도전성 페이스트를 사용하여 형성될 수 있다.
- [0046] 정전 용량 형성을 위해 제1 및 제2 외부전극(31, 32)이 상기 세라믹 본체(10)의 외측에 형성될 수 있으며, 상기 제1 및 제2 내부전극(21, 22)과 전기적으로 연결될 수 있다.
- [0047] 상기 제1 및 제2 외부전극(31, 32)은 내부전극과 동일한 재질의 도전성 물질로 형성될 수 있으나 이에 제한되지는 않으며, 예를 들어, 구리(Cu), 은(Ag), 니켈(Ni) 등으로 형성될 수 있다.
- [0048] 상기 제1 및 제2 외부전극(31, 32)은 상기 금속 분말에 글라스 프릿을 첨가하여 마련된 도전성 페이스트를 도포한 후 소성함으로써 형성될 수 있다.

- [0049] 본 발명의 일 실시형태에 따르면, 상기 제1 및 제2 내부전극(21, 22)은 상기 세라믹 본체(10) 내에서 폭 방향으로 인쇄폭이 차이가 나도록 교차 적충될 수 있다.
- [0050] 상기 제1 및 제2 내부전극(21, 22)이 폭(W) 방향으로 인쇄폭이 차이가 나도록 교차 적충함으로써, 단차에 영향을 미치는 내부전극 간의 거리를 길게 함으로써, 단차 영향을 개선할 수 있다.
- [0051] 즉, 적층 세라믹 커패시터의 대용량화를 구현하기 위해서 유전체층 두께와 내부 전극 층 두께가 얇아질수록 내부전극 도포 두께에 의한 단차값이 크게 되며, 상기 단차값이 커질수록 내부전극 단차부분의 밀도가 저하되어 크랙 불량이 발생할 수 있다.
- [0052] 또한, 비어있는 단차부를 채워주기 위해 내부전극이 늘어나면서 내부전극의 끊김이 심화 되어 신뢰성이 저하될 수 있다.
- [0053] 본 발명의 일 실시형태에 따르면, 상기 제1 및 제2 내부전극(21, 22)이 폭(W) 방향으로 인쇄폭이 차이가 나도록 교차 적층함으로써 상기의 문제점을 해결할 수 있어, 크랙 불량을 감소시킬 수 있다.
- [0054] 본 발명의 일 실시형태에 따르면, 상기 제1 및 제2 내부전극(21, 22)의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극(21, 22)의 최소폭을 w라고 정의하면, 하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D=(W-w)/W ×100)이 20 내지 80%일 수 있다.
- [0055] 상기 제1 내부전극(21)과 제2 내부전극(22)의 최대폭과 최소폭의 폭 차이율(D)은 최대폭에 대한 최대폭과 최소폭의 차이의 백분율로 정의될 수 있다.
- [0056] 즉, 최대폭을 W라 하고, 최소폭을 w라 할면, 폭 차이율(D)= (W-w)/W×100의 식으로 정의될 수 있다.
- [0057] 상기 제1 내부전극(21)과 제2 내부전극(22)의 폭 차이율(D)은 단차 영향을 최소화시키기 위한 본 발명의 목적에 따라 다양하게 변화시킬 수 있으며, 예를 들어 20 내지 80%일 수 있다.
- [0058] 상기 제1 및 제2 내부전극(21, 22) 중 인쇄폭이 더 넓은 전극은 제1 전극일 수도 있고, 제2 전극일 수도 있다.
- [0059] 인쇄폭이 더 넓은 전극이 제1 전극일 경우가 도 2에 도시되어 있으며, 인쇄폭이 더 넓은 전극이 제2 전극일 경우가 도 3에 도시되어 있다.
- [0060] 도 2를 참조하면, 본 발명의 일 실시형태에 따른 적충 세라믹 커패시터의 내부전극에 있어서, 제1 내부전극(2 1)의 인쇄폭이 더 넓을 수 있으며, 도 3을 참조하면, 본 발명의 다른 실시형태에 따른 적충 세라믹 커패시터의 내부전극은 제2 내부전극(22)의 인쇄폭이 더 넓을 수 있다.
- [0061] 구체적으로, 상기 제1 및 제2 내부전극(21, 22) 중 인쇄폭이 더 넓은 전극의 인쇄폭이 200 내지 250 µm일 경우에 상기 제1 내부전극(21)과 제2 내부전극(22)의 폭 차이율은 20 내지 40%일 수 있다.
- [0062] 상기와 같이 폭 차이율이 20 내지 40%일 경우에 정전 용량을 유지하면서도 단차에 의한 영향이 줄어들어 크랙 불량을 감소시킬 수 있으며, 전극 늘어남이 억제되어 내전압 향상 및 신뢰성도 우수한 적층 세라믹 커패시터를 구현할 수 있다.
- [0063] 상기 인쇄폭이 더 넓은 전극의 인쇄폭이 200 내지 250 µm일 경우에 상기 폭 차이율이 20% 미만의 경우에는 단 차 영향의 감소 효과가 적어 크랙 불량 발생의 문제가 발생할 수 있다.
- [0064] 또한, 상기 인쇄폭이 더 넓은 전극의 인쇄폭이 200 내지 250 μm일 경우에 상기 폭 차이율이 40%를 초과하는 경 우에는 정전 용량 감소의 문제가 발생할 수 있다.

- [0065] 한편, 상기 제1 및 제2 내부전극(21, 22) 중 인쇄폭이 더 넓은 전극의 인쇄폭이 300 내지 400 µm일 경우에 상기 제1 내부전극(21)과 제2 내부전극(22)의 폭 차이율은 40 내지 70%일 수 있다.
- [0066] 상기와 같이 폭 차이율이 40 내지 70%일 경우에 정전 용량을 유지하면서도 단차에 의한 영향이 줄어들어 크랙 불량을 감소시킬 수 있으며, 전극 늘어남이 억제되어 내전압 향상 및 신뢰성도 우수한 적층 세라믹 커패시터를 구현할 수 있다.
- [0067] 상기 인쇄폭이 더 넓은 전극의 인쇄폭이 300 내지 400 µm일 경우에 상기 폭 차이율이 40% 미만의 경우에는 단 차 영향의 감소 효과가 적어 크랙 불량 발생의 문제가 발생할 수 있다.
- [0068] 또한, 상기 인쇄폭이 더 넓은 전극의 인쇄폭이 300 내지 400 µm일 경우에 상기 폭 차이율이 70%를 초과하는 경우에는 정전 용량 감소의 문제가 발생할 수 있다.
- [0069] 상기 제1 및 제2 내부전극(21, 22) 중 인쇄폭이 더 넓은 전극의 인쇄폭이 500 μm 이상일 경우, 상기 제1 내부 전극(21)과 제2 내부전극(22)의 폭 차이율은 20 내지 80%일 수 있다.
- [0070] 상기와 같이 폭 차이율이 20 내지 80%일 경우에 정전 용량을 유지하면서도 단차에 의한 영향이 줄어들어 크랙 불량을 감소시킬 수 있으며, 전극 늘어남이 억제되어 내전압 향상 및 신뢰성도 우수한 적층 세라믹 커패시터를 구현할 수 있다.
- [0071] 상기 인쇄폭이 더 넓은 전극의 인쇄폭이 500 µm 이상일 경우에 상기 폭 차이율이 20% 미만의 경우에는 단차 영향의 감소 효과가 적어 크랙 불량 발생의 문제가 발생할 수 있다.
- [0072] 또한, 상기 인쇄폭이 더 넓은 전극의 인쇄폭이 500 µm 이상일 경우에 상기 폭 차이율이 80%를 초과하는 경우에는 정전 용량 감소의 문제가 발생할 수 있다.
- [0073] 또한, 상기 제1 내부전극(21)과 제2 내부전극(22)의 인쇄폭 차이는 특별히 제한되는 것은 아니나, 예를 들어 100 µm 이하일 수 있다.
- [0074] 상기 인쇄폭 차이가 100 µm 이하인 경우에 크랙 불량을 감소 및 내전압 특성과 신뢰성이 우수한 효과뿐만 아니라, 적층 세라믹 커패시터의 정전 용량 구현도 가능하다.
- [0075] 즉, 상기 인쇄폭 차이가 100 μm를 초과하는 경우에는 적층 세라믹 커패시터의 정전 용량이 50% 이상 저하되는 문제가 발생할 수 있다.
- [0076] 따라서, 본 발명의 일 실시형태에 따른 적층 세라믹 커패시터는 상기 제1 내부전극(21)과 제2 내부전극(22)의 인쇄폭 차이가 100 μm 이하일 수 있다.
- [0077] 본 발명의 일 실시형태에 따르면, 상기 유전체층(1)의 평균 두께는 0.6 µm 이하일 수 있다.
- [0078] 본 발명의 일 실시형태에서, 상기 유전체층(1)의 두께는 내부 전극층(21, 22) 사이에 배치되는 유전체층(1)의 평균 두께를 의미할 수 있다.
- [0079] 상기 유전체층(1)의 평균 두께는 도 2와 같이 세라믹 본체(10)의 폭 방향 단면을 주사전자현미경(SEM, Scanning Eletron Microscope)으로 이미지를 스캔하여 측정할 수 있다.
- [0080] 예를 들어, 도 2와 같이 세라믹 본체(10)의 길이(L) 방향의 중앙부에서 절단한 폭 및 두께 방향(W-T) 단면을 주 사전자현미경(SEM, Scanning Eletron Microscope)로 스캔한 이미지에서 추출된 임의의 유전체층에 대해서, 폭 방향으로 등간격인 30개의 지점에서 그 두께를 측정하여 평균값을 측정할 수 있다.
- [0081] 상기 등간격인 30개의 지점은 제1 및 제2 내부전극(21, 22)이 중첩되는 영역을 의미하는 용량 형성부에서 측정될 수 있다.
- [0082] 또한, 이러한 평균값 측정을 10개 이상의 유전체층으로 확장하여 평균값을 측정하면, 유전체층의 평균 두께를 더욱 일반화할 수 있다.

- [0083] 상기 유전체층(1)의 평균 두께가 0.6 μm 이하인 경우에는 상기 제1 및 제2 내부전극(21, 22)의 연결성이 저하될 수 있으나, 본 발명의 일 실시형태에 따르면 폭(W) 방향으로 인쇄폭이 차이가 나도록 교차 적층함으로써, 단차 영향을 최소화하여 내부전극의 연결성을 높일 수 있다.
- [0084] 또한, 상기 유전체층(1)의 평균 두께가 0.6 μm 이하인 경우에는 전극이 끊어지면서 유전체층의 평균 두께는 같지만 부분적으로 두꺼워지거나 얇아지는 부분이 발생되어 유전체층이 얇아진 부분에서 내전압특성이 저하되어 신뢰성이 저하될 수 있으나, 본 발명의 일 실시형태에 따르면 내부전극의 연결성을 높임으로써 내전압특성이 향상될 수 있다.
- [0085] 한편, 상기 유전체층(1)의 평균 두께가 0.6 µm를 초과하는 경우에는 유전체층의 평균 두께가 두꺼워서 상기와 같은 내전압특성 및 신뢰성에 문제가 없을 수 있다.
- [0086] 상기 제1 및 제2 내부전극(21, 22)의 소성후 평균 두께는 정전용량을 형성할 수 있다면 특별히 제한은 없으며, 예를 들어, 0.6 μ m 이하일 수 있다.
- [0087] 본 발명의 일 실시형태에 따른 적층 세라믹 전자부품에 있어서 상기 제1 또는 제2 내부전국(21, 22)의 연결성은 90% 이상일 수 있다.
- [0088] 상기 내부전극의 연결성이란, 상기 제1 또는 제2 내부전극(21, 22)의 전체 전극 길이 대비 실제 전극이 형성된 부분의 길이로 정의될 수 있다.
- [0089] 예를 들어, 상기 내부전극의 연결성은 도 2와 같이 적충 본체(10)의 폭 방향 단면을 주사전자현미경(SEM, Scanning Eletron Microscope)로 이미지를 스캔하여 측정할 수 있다.
- [0090] 구체적으로, 도 2와 같이 적층 본체(10)의 길이(L) 방향의 중앙부에서 절단한 폭 및 두께 방향(W-T) 단면을 주 사전자현미경(SEM, Scanning Eletron Microscope)으로 스캔한 이미지에서 추출된 임의의 내부전극층에 대해서, 내부전극 단면의 전체 길이 대비 실제 내부 전극이 형성된 부분의 총 길이를 측정하여 구할 수 있다.
- [0091] 상기 제1 및 제2 내부전극의 연결성 측정은 제1 및 제2 내부전극(21, 22)이 중첩되는 영역을 의미하는 용량 형성부에서 측정될 수 있다.
- [0092] 또한, 이러한 내부전극층의 연결성 측정을 상기 길이 및 두께 방향(L-T) 단면의 중앙부의 10개 이상의 내부전극 층으로 확장하여 평균값을 측정하면, 내부전극층의 연결성을 더욱 일반화할 수 있다.
- [0093] 구체적으로, 제1 및 제2 내부전극(21, 22)의 어느 한 지점에서 측정된 전체 전극 길이를 A 및 실제 전극이 형성된 부분의 길이를 c1, c2, c3, · cn으로 규정하면, 상기 제1 및 제2 내부전극의 연결성은 (c1 + c2 + c3 + · + cn) / A로 표현될 수 있다.
- [0094] 또한, 이는 내부 전극의 도포 비율을 의미하는 것으로서, 상기 임의의 한 지점에서의 내부 전극의 전체 면적 대비 실제 내부 전극이 형성된 면적의 비율로도 정의할 수 있다.
- [0095] 상기 제1 또는 제2 내부전극(21, 22)의 연결성은 후술하는 방법들에 따라 다양하게 구현될 수 있으며, 본 발명의 일 실시형태에 따른 적층 세라믹 전자부품의 제1 또는 제2 내부전극의 연결성은 90% 이상이다.
- [0096] 제1 또는 제2 내부전극(21, 22)의 연결성을 90% 이상 구현하기 위한 방법으로는 내부전극을 형성하는 도전성 페이스트에서 메탈 파우더의 입자 크기를 변화시키거나 첨가하는 유기물과 세라믹의 양을 조절하는 방법 등이 있다.
- [0097] 그리고, 소성 공정에서 승온 속도와 소성 분위기를 조절하여 전극 연결성을 제어하는 것이 가능하다.

- [0098] 본 발명의 일 실시형태에 따르면, 상기 내부전극 층의 연결성을 구현하기 위하여, 상기 용량 형성부의 제1 및 제2 내부전극에 대하여 폭(W) 방향으로 인쇄폭이 차이가 나도록 교차 적층함으로써, 단차 영향을 최소화하는 방법을 사용할 수 있다.
- [0099] 본 발명의 일 실시형태에 따르면, 상기 제1 또는 제2 내부전극(21, 22)의 연결성을 90% 이상 구현함으로써, 정전 용량이 증가하고 신뢰성이 우수한 고용량 적층 세라믹 커패시터의 제조가 가능하다.
- [0100] 도 4는 본 발명의 다른 실시형태에 따른 적층 세라믹 커패시터의 제조 공정도이다.
- [0101] 도 4를 참조하면, 본 발명의 다른 실시형태에 따른 적층 세라믹 전자부품의 제조방법은 세라믹 분말을 포함하는 슬러리를 이용하여 세라믹 그린시트를 마련하는 단계; 도전성 금속 페이스트를 이용하여 상기 세라믹 그린시트 상에 내부전극 패턴을 형성하는 단계; 및 상기 세라믹 그린시트를 적층하고 소결하여, 유전체층 및 상기 유전체 층을 사이에 두고 서로 대향하도록 배치되며, 폭 방향으로 인쇄폭이 차이가 나도록 교차 적층되는 제1 및 제2 내부 전극을 포함하는 세라믹 본체를 형성하는 단계;를 포함하며, 상기 제1 및 제2 내부전극의 최대폭을 W라 하고, 상기 제1 및 제2 내부전극의 최소폭을 w라고 정의하면,
- [0102] 하기식으로 표현되는 상기 최대폭과 최소폭의 폭 차이율(D)이 20 내지 80%일 수 있다
- [0103] [식] D=(W-w)/W×100.
- [0104] 상기 유전체층의 평균 두께는 0.6 μm 이하일 수 있으며, 상기 제1 및 제2 내부전극의 평균 두께는 0.6 μm 이하일 수 있다.
- [0105] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 200 내지 250 µm에서 상기 제1 내부전극과 제 2 내부전극의 폭 차이율이 20 내지 40%일 수 있다.
- [0106] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 300 내지 400 μm에서 상기 제1 내부전극과 제 2 내부전극의 폭 차이율이 40 내지 70%일 수 있다.
- [0107] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 500 μm 이상에서 상기 제1 내부전극과 제2 내 부전극의 폭 차이율이 20 내지 80%일 수 있다.
- [0108] 또한, 상기 제1 또는 제2 내부전극의 연결성은 90% 이상일 수 있다.
- [0109] 상기 세라믹 그린 시트의 적층수는 특별히 제한되지 않으며, 고용량 적층 세라믹 전자부품의 제조를 위하여 예를 들어 400층 이상일 수 있다.
- [0110] 상기 적층수가 400층 미만일 경우에는 유전체층 및 내부전극층의 두께가 두꺼워 내부전극의 연결성의 문제 및 내전압 특성의 문제가 발생하지 않을 수 있다.
- [0111] 즉, 상기 적충수가 400충 이상일 경우에만 유전체충의 두께가 얇아져서 내부전극의 연결성이 문제되고 이로 인하여 내전압 특성이 저하되는 문제가 있을 수 있으며, 본 발명의 일 실시형태에 따르면, 상기 제1 및 제2 내부전극(21, 22)이 폭(W) 방향으로 인쇄폭이 차이가 나도록 교차 적충함으로써, 크랙 발생 감소, 내부전극의 연결성 및 내전압 특성을 향상시킬 수 있다.
- [0112] 상기 도전성 금속 페이스트는 특별히 제한되지 않으며, 예를 들어 금속 분말 40 내지 50 중량부를 포함할 수 있으며, 상기 금속은 니켈(Ni), 구리(Cu), 팔라듐(Pd) 및 팔라듐-은(Pd-Ag) 합금으로 이루어진 군으로부터 선택된하나 이상일 수 있다.

- [0113] 상기의 실시형태에 따른 적층 세라믹 전자부품의 제조방법은 상기 제1 내부전극과 제2 내부전극의 폭 차이율이 20 내지 80%가 되도록, 상기 제1 내부전극과 제2 내부전극을 폭 방향으로 인쇄폭이 차이가 나게 교차 적층한 것을 제외하고는 일반적인 방법과 동일하다.
- [0114] 상기 제조방법에 의해 제조된 적층 세라믹 전자부품은 내부전극 간의 단차 영향이 최소화되어 크랙 발생이 감소하고, 내부전극의 연결성이 높아지므로, 내전압 특성과 신뢰성이 우수한 적층 세라믹 전자부품을 구현할 수있다.
- [0115] 이하, 실시예를 들어 본 발명을 더욱 상세히 설명하지만, 본 발명이 이에 의해 제한되는 것은 아니다.
- [0116] 본 실시예는 0.6 μm 이하의 평균 두께를 갖는 유전체층(1)을 적용한 적층 세라믹 캐패시터에 대해, 제1 내부전 극과 제2 내부전극의 폭 차이율이 20 내지 80%가 되도록 교차 적층함으로써, 크랙 발생, 내전압 및 신뢰성 향상 여부를 시험하기 위해 수행되었다.
- [0117] 본 실시예에 따른 적층 세라믹 캐패시터는 하기와 같은 단계로 제작되었다.
- [0118] 우선, 평균 입경이 0.1μm인 티탄산바륨(BaTiO₃) 등의 파우더를 포함하여 형성된 슬러리를 캐리어 필름(carrier film)상에 도포 및 건조하여 1.05μm 및 0.95μm의 두께로 제조된 복수 개의 세라믹 그린 시트를 마련하며, 이로써 유전체층(1)을 형성하게 된다.
- [0119] 다음으로, 니켈 입자 평균 크기가 0.1 내지 0.2 µm이며, 40 내지 50 중량부의 니켈 분말을 포함하는 내부전극용 도전성 페이스트를 마련하였다.
- [0120] 상기 그린시트 상에 상기 내부전극용 도전성 페이스트를 스크린 인쇄공법으로 도포하여 내부전극을 형성한 후 400 내지 500층 적층하여 적층체를 만들었다.
- [0121] 이후 압착, 절단하여 1005 규격의 Size의 칩을 만들며, 상기 칩을 H₂ 0.1%이하의 환원 분위기의 온도 1050~1200 ℃에서 소성하였다.
- [0122] 다음으로, 외부전극, 도금 등의 공정을 거쳐 적층 세라믹 캐패시터로 제작하였다.
- [0123] 비교예는 제1 및 제2 내부전극 간의 인쇄폭에 있어서, 차이가 없도록 제작한 것을 제외하고는 상기 실시예에 의한 방법과 동일하게 제작하였다.
- [0124] 아래의 표 1은 세라믹 그런 시트의 두께 및 적층수에 따른 단차율을 비교한 표이다.

丑 1

[0125]

	시트 두께(μm)	적층수	단차율(%)	비고(내부전극 도포 두께, µm)
	0.5	500	50.0	
비교예	0.7	400	41.7	
	1.0	300	33.3	0.5
	0.5	500	25.0	
실시예	0.7	400	20.8	
	1.0	300	16.7	

- [0126] 상기 [표 1]을 참조하면, 비교예는 동일한 그린 시트 두께 및 적충수에 대하여 실시예에 비하여 단차율이 큰 것을 알 수 있다.
- [0127] 즉, 본 발명의 일 실시형태에 따른 적충 세라믹 커패시터의 경우 제1 내부전극과 제2 내부전극의 폭 차이율이 20 내지 80%가 되도록 교차 적충함으로써, 단차율이 감소하였음을 알 수 있다.
- [0128] 상기 단차율(%)은 (내부전극의 두께 × 적층수) / {(그린시트의 두께 + 내부전극의 두께) × 적층수}에 의하여 구할 수 있다.
- [0129] 도 5는 내부전극의 인쇄폭에 따른 두께를 나타내는 그래프이다.
- [0130] 도 5를 참조하면, 내부전극의 인쇄폭과 인쇄 두께 사이에는 인쇄폭이 작아질수록 인쇄 두께가 증가하는 경향이 있을 수 있으며, 인쇄폭은 정전 용량과도 관련이 있으므로, 용량 및 두께비를 고려하여 인쇄폭이 차이가 나도록 교차 적층할 수 있다.
- [0131] 아래의 표 2는 내부전극의 인쇄폭이 차이가 나도록 교차 적층할 경우 두께비를 비교한 표이다.

[0132]

<u>#</u> 2										
	좁은 폭(µm)									
		50	80	100	200	250	300	400	500	600
넓은 폭. (µm)	50	0.00	-	-	-	-	-	-	_	-
	80	0.11	0.00	_	_	_	_	_	_	_
	100	0.14	0.04	0.00	-	-	-	_	_	-
	200	0.17	0.07	0.03	0.00	_	_	_	_	_
	250	0.15	0.05	0.01	-0.02	0.00	-	_	_	-
	300	0.08	0.04	-0.09	-0.13	-0.10	0.00	_	_	-
	400	0.09	0.05	0.01	-0.11	-0.08	0.02	0.00	_	-
	500	0.07	0.02	-0.10	-0.15	-0.11	-0.01	-0.03	0.00	-
	600	0.06	0.04	0.01	-0.16	-0.12	-0.02	-0.04	0.01	0.00

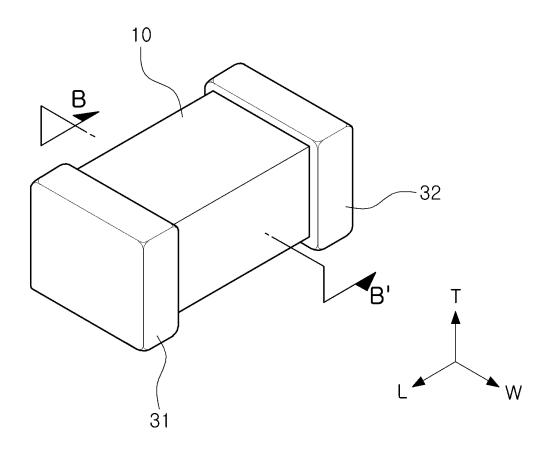
 $\mathbf{E} \circ$

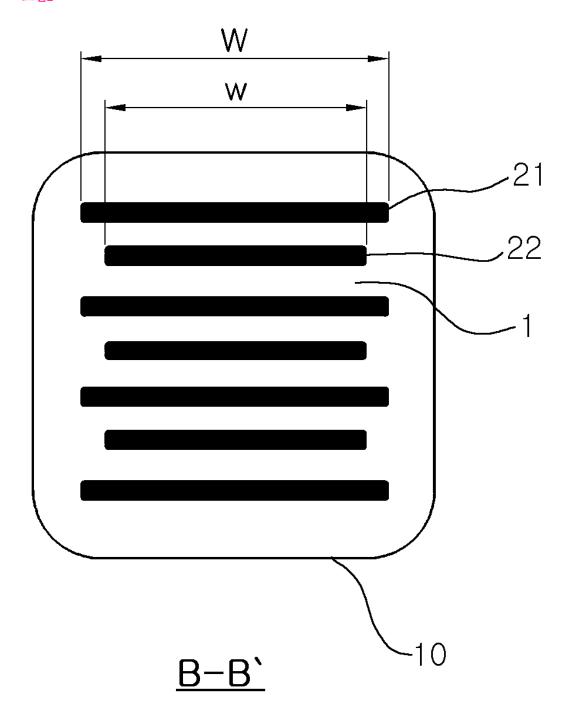
- [0133] 상기 [표 2]를 참조하면 두께비가 음(-)의 값을 가질 때가 단차 영향을 최소화할 수 있는 경우이며, 이에 따라 단차 영향을 최소화할 수 있는 폭 변화율을 나타낼 수 있다.
- [0134] 즉, 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 200 내지 250 µm에서 상기 제1 내부전극 과 제2 내부전극의 폭 차이율이 20 내지 40%일 수 있다.
- [0135] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 300 내지 400 μm에서 상기 제1 내부전극과 제 2 내부전극의 폭 차이율이 40 내지 70%일 수 있다.
- [0136] 상기 제1 및 제2 내부전극 중 인쇄폭이 더 넓은 전극의 인쇄폭이 500 μm 이상에서 상기 제1 내부전극과 제2 내 부전극의 폭 차이율이 20 내지 80%일 수 있다.
- [0137] 아래의 표 3은 본 발명의 실시예 및 비교예에 따른 크랙 불량 발생율, 정전용량, 내전압 및 고온 가속수명 고장

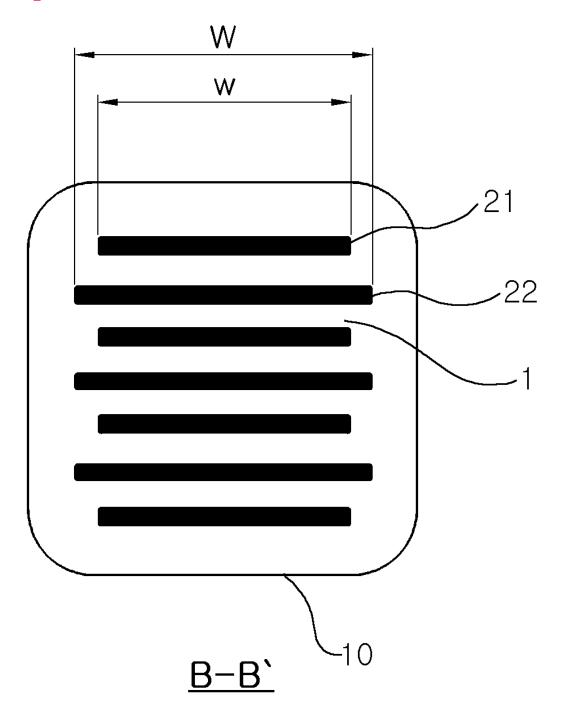
률을 비교한 표이다.

丑 3

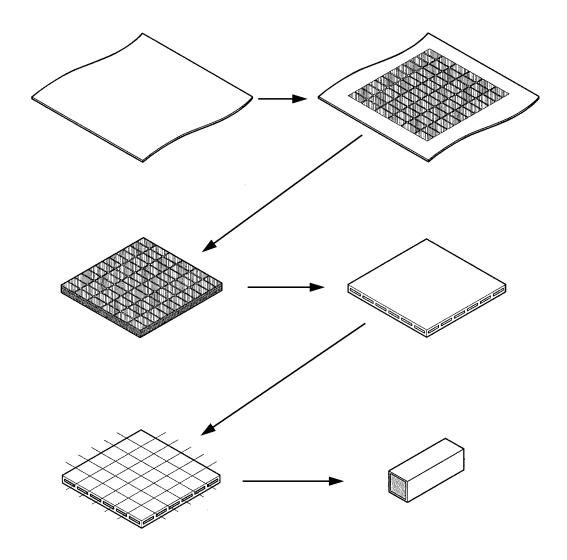
구분	크랙불량율(%)	정전용량(μF)	내전압(V)	고온 가속 수명
				고장률(Fit)
비교예	5	12.7	40	14
실시예	2	11.8	43	6
	비교예	비교예 5	비교예 5 12.7	비교예 5 12.7 40

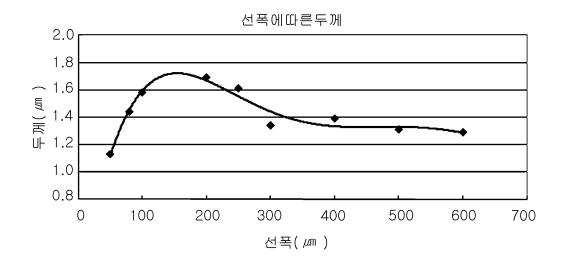

- [0139] 상기 [표 3]을 참조하면, 본 발명의 일 실시예에 따른 적충 세라믹 커패시터의 경우가 비교예에 비하여 정전 용량은 다소 감소하나, 크랙 발생율이 5%에서 2%로 감소하였으며, 내전압이 향상되고 신뢰성도 우수함을 알 수 있다.
- [0140] 도 6은 본 발명의 일 실시예 및 비교예의 내부전극의 영역별 연결성을 나타내는 SEM(Scanning Electron Microscope) 사진이다.
- [0141] 도 6을 참조하면, 본 발명의 일 실시형태에 따른 적층 세라믹 커패시터의 경우가 비교예에 비하여 내부전극의 연결성이 90% 이상으로서, 전극 연결성이 전체 영역에서 고른 것을 알 수 있다.
- [0142] 도 7은 제1 내부전극과 제2 내부전극의 인쇄폭 차이에 따른 적충 세라믹 커패시터의 정전 용량 백분율을 나타내는 그래프이다.
- [0143] 도 7을 참조하면, 상기 인쇄폭 차이가 100 µm를 초과하는 경우에는 적충 세라믹 커패시터의 정전 용량이 50% 이상 저하되어 문제가 있음을 알 수 있다.
- [0144] 따라서, 본 발명의 일 실시형태에 따르면, 제1 내부전극과 제2 내부전극의 인쇄폭 차이는 100 µm이하일 수 있다.
- [0145] 결론적으로, 본 발명의 일 실시형태에 따른 적층 세라믹 전자부품은 내부전극 간의 단차 영향이 최소화되어 크 랙 발생이 감소하고, 내부전극의 연결성이 높아지므로, 내전압 특성과 신뢰성이 우수한 적층 세라믹 전자부품을 구현할 수 있다.
- [0146] 본 발명은 상술한 실시형태 및 첨부된 도면에 의해 한정되는 것이 아니며, 첨부된 청구범위에 의해 한정하고자한다. 따라서, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 당 기술분야의 통상의지식을 가진 자에 의해 다양한 형태의 치환, 변형 및 변경이 가능할 것이며, 이 또한 본 발명의 범위에 속한다고 할 것이다.

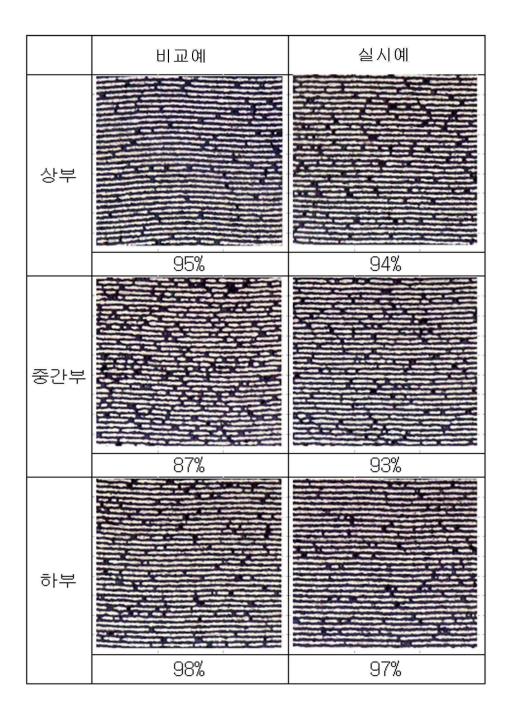

부호의 설명


[0147] 1: 유전체 층 10: 세라믹 본체

21, 22: 제1 및 제2 내부전극


31, 32: 외부 전극





도면4

