wo 2015/038198 A1 I}] A1 00O OO

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/038198 Al

19 March 2015 (19.03.2015) WIPOIPCT
(51) International Patent Classification: (74) Agent: ADELIL, Mani; Adeli LLP, 11859 Wilshire Blvd,
HO4L 12/721 (2013.01) HO4L 12/935 (2013.01) Suite 500, Los Angeles, CA 90025 (US).
HOAL 127741 (2013.01) (81) Designated States (uniess otherwise indicated, for every
(21) International Application Number: kind of national protection available): AE, AG, AL, AM,
PCT/US2014/036274 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
. . BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
(22) International Filing Date: . DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
30 April 2014 (30.04.2014) HN, HR, HU, ID, IL, I, IR, IS, JP, KE, KG, KN, KP, KR,
(25) Filing Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
. MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
(26) Publication Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(30) Priority Data: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
61/878,032 15 September 2013 (15.09.2013) Us TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
14/069,284 31 October 2013 (31.10.2013) UsS ZW.
(71) Applicant: NICIRA, INC. [US/US], 3401 Hillview Aven- (84) Designated States (unless otherwise indl'cated, fO}" every
ue, Palo Alto, CA 94304 (US). kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(72) Inventors: PETTIT, Justin; 3401 Hillview Avenue, Palo UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

Alto, CA 94304 (US). JACKSON, Ethan, J.; 3401
Hillview Avenue, Palo Alto, CA 94304 (US). GROSS,
Jesse, E.; 3401 Hillview Avenue, Palo Alto, CA 94304
(US). ZHOU, Andy; 3401 Hillview Avenue, Palo Alto,
CA 94304 (US).

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: DYNAMICALLY GENERATING ENTRIES IN FLOW TABLES FROM ENTRIES HAVING WILDCARD FIELDS

(57) Abstract: Some embodiments of the
invention provide a switching element that
receives a packet and processes the packet
by dynamically generating a flow entry
with a set of wildcard fields. The switching
element then caches the flow entry and pro-
cesses any subsequent packets that have
header values that match the flow entry's
non-wildcard match fields. In generating
the flow, the switching element initially

wildcards some of all of match fields and
generates a new flow entry by un-wildcard-

ing each match field that was consulted or
examined to generate the flow entry.

WO 2015/038198 A1 WAL 00TV VAT 0 O L AT

Published:
— with international search report (Art. 21(3))

WO 2015/038198 PCT/US2014/036274

DYNAMICALLY GENERATING ENTRIES IN FLOW TABLES FROM ENTRIES
HAVING WILDCARD FIELDS

BACKGROUND
[0001] Many current enterprises have large and sophisticated networks comprising
switches, hubs, routers, servers, workstations and other network devices, which support a
variety of connections, applications and systems. The increased sophistication of computer
networking, including virtual machine migration, dynamic workloads, multi-tenancy, and
customer specific quality of service and security configurations require a better paradigm for
network control. Networks have traditionally been managed through low-level configuration of
individual components.
[0002] In response, there is a growing movement, driven by both industry and academia,
towards a new network control paradigm called Software-Defined Networking (SDN). In the
SDN paradigm, a network controller, running on one or more servers in a network, controls,
maintains, and implements control logic that governs the forwarding behavior of shared
network switching elements on a per user basis.
[0003] Typically, the shared network switching elements are software switching
clements. A software switching element brings many features that are standard in a hardware
switch to virtualized environments. The software switching element can also be more flexible
than the hardware switch. For instance, the software switching element can be programmed to
emulate a traditional switch pipeline or can be programmed to extend for new models.
[0004] One of the main challenges in developing such a software switching element is
performance. A hardware switch has application-specific integrated circuits (ASICs) that are
specifically designed to support in-hardware forwarding. The problem with a software switch is
that it operates on a host (e.g., x86 box), such as a hypervisor. Thus, methods for increasing the

performance of the software switching element are needed.

WO 2015/038198 PCT/US2014/036274

BRIEF SUMMARY

IS seme ombodiments of the invention provide ¢ switching cloment that receives a
packet and processes the packet by dynamically generating a flow entry with a set of wildeard
ficlds, The switthing cloment then caches the fow entry snd processes any subseguent packets
that have header values that match the flow ontry’s non-wildeard match fickds, In other words,
pach subsequent packet does not have to have header values that match gl of the flow entry’s
match ficlkds but only tis non-wildeard ficlds.
{006} In generating the flow, the switching element initially wildcards some of all of
match fields and penerates a now flow ontry by un-wikdcarding cach match ficld that was
consulted or examined fo gencrate the flow eotry. The switching element of some mbodiments
gonerates & flow entry with wildeard fields based on one or more Hows in a set of one or more
flow tables. As an example, whon a packet is recetved, the switching elemoent may select o flow
from 8 flow table and wn-wildeards each match ficld that is compared against a packet header
value. In some embodiments, the match field s wn-wildearded regardloss of whether there was a
match between the match fickd and the header value,
{0607} The switching cloment way iteratively select the next flow 1n the How table until
& matching flow s found, I a wmatching How s found, it then generates a flow entry with wero
or more wildeard fields, depending on the number of rematning wildeard match fields. In some
cases, the switching element may rocivculate to find one or more other matching Rows to
generate one consolidated flow entry for multiple flows from one or more flow tables. In some
embodiments, the switching cloment uses one of several different classification algorithms te
find & matching flow. Examples of such algorithms include a tupde space search algorithm, a
staged lookup algorithm, and a decision tege algorithm,
{00081 Alteratively, or conjunctively with such matching, the switching cloment of
some cmbodiments un-wildeards mateh ficlds based on an action assoctated with s matching
flow. As an cxample, the switching element of some embadiments can be configured to do
normal L2 processing. o such cases, the switching olement may use g madia aceess conirol
address (MAC) leaming algorithin 1o derive an output port for & given packet based on ¢ setof
one or more packet header values, The switching cloment can nse the algorithm to identify a

MAU adidress of a machine {o.g., a virtual machinge) that 1s connected to ity port or attached to

its virtual interface, The switching elsment can then compare the MAC address to the header's
& ¥

o4

WO 2015/038198 PCT/US2014/036274

destination Ethernet address and speocify an output port if the addresses matches one another.
Since the destination MAC address has been looked at, the swirching clement can then un-
wiklcards the corresponding match fiekd when generating the wildeard flow.

HHHIS Genersting 8 now flow onfty can be an oxpensive Of IGossor ntensive
operation, This s because the switching sloment might have to derive match ficld values andior
iterate through flows in a flow table to find 8 matching fow, Even If » matching fow is found,
one of the flow’s associated actions may spoctty a resubmit operation to find another flow from
the flow table. As such, the switch clement may potentially have to perform a number of
different tasks just to generate one How entry, However, by gonerating a flow entry with such
witdeard fields, the swilching elewent does not have 1o geonerate a new flow eoniry when #
recetves @ sumifar packet with one or move different header values, The switching elersent can

continue to process such a stmdler packet as long as its header values mateh the non-wildeard

fields.
{0010} The preceding Summary s intended 1o serve as a brief mtroduction to some

crtbodirnonts as doseribed heren, It is not mgant to be an introduction or overview of all subject
matier disclosed in this document. The Detailed Description that follows and the Drawings that
are referved to in the Detatled Description will further deseribe the embodiments desertbed in
the Summary as well as other embodiments. Accordingly, to understand all the embodiments
described by this document, @ full roview of the Summary, Detatled Description and the
Drawings 18 needed. Moreover, the clatmed subject matters are not 1o be limited by the
llustrative detatls in the Summary, Detatled Description and the Drawings, but rather are to be
defined by the appended claims, bocause the claimed subject matters can be embodied in other

pectfic formy without departing from the spivit of the subject matiers.

I

WO 2015/038198 PCT/US2014/036274

BRIEF DESCRIPTION OF THE DRAWINGS
{1 The novel festures of the mvention are set forth in the appended claims.
Heowaver, for purposes of explanation, seversl embodiments of the invention arg set forth in the
following fgures.
0012} Figure 1 conveptually lustrates a process that some cmbodiments use @

generate @ How with zero or more wildeard ficlds,

preress

0013} Figure 2 illustrutes an oxample of @ swiching clomant that dynsmically
generates a flow with a wildeard ficld.

014} Figure 3 shows an example how the switthing element oses the flow with the
wildeard field to process subseguent packeis.

{0015 Figure 4 conceptually Hustrates an architectwral disgram of a software-
switching element of some embodiments.

{016} Figure 8 conceptuslly iHustrates several processes, which show the fnteractions

betweeon several switch components when gonerate and cache fow with zere or move wildeard

flelds,
{0617} Figure 6 iltustrates an oxample of a switching clewont that finds a matching

flow that s stored m 4 cache,

{0018} Figure 7 tHustrates an oxample of manstorring control o a switeh dasron when
there is no matching fow stored in the cachs.

{0019} Figure 8 ilustrates an example of the switch dacmon generating a flow to store
i the cache.

{00201 Figure 9 shows an example of un-wildearding a match field because it was
compared against & header vatue.

00211 Figure 10 Hustrates sy oxample of rerating twough multiple fows and un-

witdearding multipls match fields.

{0022} Figure 11 provides an tHustrstive cxample of s resubmit operation.
{0023} Figure 12 lustrates an cxample of the swithing cloment uwn-wildearding a

match fickd thut is not explicitly specified fn g fow from a flow table.
{024} Figure 13 illustrates an cxample of the switching cloment un-wildourds the

corresponding MAC address ficlds based on an sction associated with a flow.

WO 2015/038198 PCT/US2014/036274

{00251 Figure 14 provides an illustrative oxample of how the switching element utilizes
a number of different components 1o generate the flow entry.

0026} Figure 15 illustrates an oxample of how the datapath flow gonerator generates a
flow by interfacing with different components.

0027} Figure 16 conceptually tlustrates o process that some embodiments porfornm

dynarically generate a new flow with zere or more wildeard ficlds,

00281 Figure 17 tlustrates seversl examples of flows that are stored in 8 datapath
{0029} Figure 18 conceptoaily ilustrates an clechromic system with which some

embodiments of the sovention are implomented.

h

WO 2015/038198 PCT/US2014/036274

DETAILED DESCRIPTION
{036] In the following dotailed description of the invention, numerous dotails,
cxamples, and embodiments of the invention are set forth and deseribed, However, it will be
clear and apparent fo one skilled i the art that the inveation is not limited to the cmbodiments
set forth and that the invention may be practiced without some of the specitic detatls and
examplos discussed.
00311 Some enthodiments of the invention provide a switching clomoent that reegives a
packet and processes the packet by dynuwmically gencrating 2 flow eatry with a set of wildeard
ficlds, The switching eloment then caches the flow entry and processes any subsequent packoets
that have beader values that mateh the fow entry’s non-wildeard match fields. In other words,
cuch subseguent packet does not have to have header values that maich all of the How cniry’s
match fHekds bt only s nop-wildeard fields. By generating a flow entry with such wildeard
fields, the switching cloment does vot have to generate & new How entry when it receives a
strilar packet with one or move diffevent header values, The switching clement can contibue o
process such a similar packet as long as ity header values mateh the non-wildeard ficlds.
{0032} Figure 1 conceptually illustrates a process 100 that some embodiments use 1o
process packets. Specifically, the process 100 illustrates an example of dynamically pencrating
a flow with zero or more wildeard felds. In some embodiments, the process 100 s performed
by a switching olement. The provess 1) beging when it receives {at 103} a packet. The process

100 they defermines {at 110) whether there 18 a flow ontry stored in the cache that cay process

the packet. In particular, it deteomines whether there is a flow entey in which all of its non-
wildeard felds match the corresponding header values, I & maiching flow entry 1s found, the

process 100 selects {at 113} the flow wntry. The process 100 then porforms (at 1203 a set of

actions on the packet according to the sclected How entry.

{33} Wher there s a miss in the cache, the procoss 100 dynamically gonsrates a new

fow cntry. In genorating the Row entry, the process 100 initalizes (at 125) some or sl match as

witdeard ficlds, The process 100 then gonerates {at 130) ¢ vew flow entry by un-wildcarding
cach match field that was consulted or examined when gencrating the flow entry. That s, it un-

wildeards cach mateh field that it cared sbout {o.g., looked at) during the generation of the flow

SRy,

&

WO 2015/038198 PCT/US2014/036274

00341 The provess 100 of some ombodiments gonvrates & flow eatry with wildoard
fickds based on one or more flows I g sot of one or more flow tables, As an example, when a
packet is receivad, the process 100 may seleet & How from a flow table and un-wikdcards cach
mateh field that s compared against @ packet header value. In some embodiments, the match

flald iy unewildearded regardluss of whether there was a mateh berweon the match fichd and the
header value. The process 100 may ftomtively select the next flow in the tlow table watil &
matching flow is found. If a matching flow ix found, it then gonerates a fow entry with zero or
more wildeard fields, depending on the number of remaining wildeard match fields. In some

cases, the process 100 may recirculate to find one or more other matching flows fo gonerate one

consolidated How entry for muliiple Hows from one or more tlow fables,
{03S] In some embodiments, the process 100 uses one of several different classification
algorithms 1o find a matching flow. Examples of such aigmii'ihms wchude a taple space search

algorithm, a staged lookup algonithim, and « decision tree algorithm. These algorithms will be
descnbed below in sub-section HLC below,

{0036} Alternatively, or comjunctively with such matching, the process 100 of some
embodiments un-wildeards match felds based on an action associated with & matching flow. Ag
an oxample, the process 100 of some embodiments can be configured to do normal 12
processing. In such cases, the process 100 may wse a moedia access control address (MAC)
fourning algorithm to derive un output port for a given pucket based on a sot of one or more
packet header values. The process 100 can use the algorithm to wdentily @ MAC address of a
machine (e.g., & virtual machine) that is connected to its port or attached fo iy virtual interface.
The provess 100 can then compare the MAC address to the header™s destination Ftharnet
address and specitfy an outpat port i the addresses matches one another, Since the destination
MAC address has beon looked at, the provess 100 can then w-wildeards the corvesponding
match field when generating the wildeard flow.

{0037} As shown i Figure I, upon gencrating the flow entry, the procass 100 ¢
stores {at 138} the How entry in the cache. The process 100 caches the flow entry so that it can
process HO0 any subsequent packets with header valugs that match all of the fow's non-
wildeard fields. The process 100 performis {ut 140) the new fow catry’s associated sot of

agtions of the reccived packet. The process 100 then waits {at 145) for additional packets, i

-4

WO 2015/038198 PCT/US2014/036274

there is another packet, the process 100 returns o 103, which is described sbove, Otherwise, the
process H0 then ends,

jO038] Some embodiments perform varistions on the process 100, The specific
operations of the process 100 may not be performed in the exact order shown and desenbed.
The specific operstions may not be performied i one continuous serics of operations, and
differont specific eperations may be performed i different embodiments,

{00391 Having deseribed oue coxumple process, seversl additionsl coxemples of
generating and using wildeard flows will now bhe described by reference to Figures 2 and 3.
Figare 2 illusirates an cxample of dynamically penervating s wildeard flow. Specifically, this
figure shows a switching element 205 that examunes & flow entry in a flow table and generates a
cache flow entry with at least one wildeard field. This example is shown in terms of five stages
of operations 245-263 of the switching element. The switching clement 205 tnchudes a datapath
flaw generator 210 and a datapath manager 220,

10048} The switching clement 205 forwards data {e.g., data frames, packets, ete.} from
one notwork node {e.g., maching) to one or more other network nodes, The switching eloment
2035 can recetve packets and can process those packets according to 8 set of flow entries in one
or more How tables {eg., the flow table 213). The switching cloment 2035 of some embodiments
is a software ov virtaal switeh. In some smbodiments, a software is formed by storing its flow
tablefs) and logie m the memory of a stundalone device {e.g., 8 standalone computery, while in
other erpbodiments, it 18 formed by storing its flow tablefs) and logic in the memory of & device
{e.g., u computer) that also excoutes a hypervisor and one or more virtual machines on top of
that hypervisor.

{041} The datapath flow genorator 210 8 & component of the switching clement 203
that makes switching decisions. The datapath manager 220 receives the switching decisions,
caches themy, and usos theny fo pocess packets. For dnstance, when a packet comes in, the
datapath manager 220 fest checks the datapath cache 223 1o find 2 matching Hlow entey. I no
matching entry iy found, the contrel is shifted o the datapath flow gencrator 218, The dataputh
flow gencrator 210 then examings 8 flow table (tg., the flow table 2153 o generate a flow ©
push down to the datapath cache 225, In this manner, when any subsequent packet s recaaved,

the datapath manager 220 can quickly process the packet ssing the cached flow entry. The

g

WO 2015/038198 PCT/US2014/036274

datapath manager 220 provides a fust path to process vach packet. However, the switching
decisions sre nhimately made through the datapath How generator 210, 1n some embodimernts.
042} The process of determining what 0 do when there 1s @ missed in the cache can be
an expensive operation. The process must be performed cach time thers is a miss in the cache.
Ther switching cloment 205 must porform g number of different tagks o generate 8 How entry o
store iu the datapath cache 225, As an example, the datapath flow gonerator 210 must tterate
through one or more flow tables © find a matching How entry, This cun ondatl dynamically
generating a How based on a defiudt rude of no matching table entry 18 found. For instance, the
switching clement can be configured to do normal L2 sndior L3 processing for any packet
without a matching flow entry, The generation of a flow entry {0 store in the cache can also
cntail performing a pumber of resubmits, and deriving or fearming output poris, eic.
{0043} To speed up processing, the switching element 203 of some cmbodiments
supports Hows with wildeards instead of only exact maich flows. In pavticular, 1t gonerates a
flow with one or more wildeards and caches that flow. This flow s also referred to as a
megatiow because o allows packels that have differont wildeard values to be quackly processes.
In other words, this caching now collapses similar flows info one aserspace "megatiow™ that
makes many Jow musses a cache lookup wmstead of & full translation (e.g., through the datapath
flow generator 210}
{44} Having dexcribed several component of the switching clemunt 203, an example
of dynamically generating a wildeard flow will now be desenibed by reference to the five
operational stages 2435-265 that are iHustrated in Figare 2. The first stage 345 illusirates the
switching element 205 receiving a packst 230, The switching eloment 203 is associated with the
flow table 215, To simpiify the deseription, the flow table 215 meludes only one fow 235
However, one of ordinary skill in the undorstand that the table can include many more flows.
{45} The flow 235 in some embodiments is a table entry that is used to maich and
process packets. It inclades a st of match ficlds to mutch packets and one or more actions ©
perform on matthing packets. In the example of Figure 2, the match fields are ingross port and
Ethernet destination address (c.g., dostination MAC addresses). The sction is shown ax a
nurber two. This number represents an output port, Accordingly, the flow 233 provides a rule
that states that all packets received through mmgress port ong and that has the matching Fthernet

distination sddress should be output to port two.

i

WO 2015/038198 PCT/US2014/036274

{0046} Aside from the match ficlds and the action, the flow entry 233 can include other
variables, such priority and timeont values. The prionty value identifies the matching
precedencs of a flow, For example, the flow table 2135 can include multiple entries that can
handle s same packet. In some ombodiments, the switching clement ferates through flow
cutrics hase on the priceity value, The switching clement might cxaming & flow ontry with a
higher priovty valpe before s lower one. In fhus way, 8 flow entry with 2 higher valog will
match befors a lower one, The fivst muteh can then be used o gonerate a cache flow entry, Seo,
typicatly, the matching How with the highest priority s used process g packet, but this may not
be frue in all cases. As mentioned above, the switch element mught re-search the same {low
table to find one or roore other flows, In such cases, the switching clement might consolidate the
flows inte one cache How entry. The switching element might perform mudtiple sets of action or
Just one set of action (e.g., the matching Sow with the highest priority value), Difforent from the
priovity value, the timeout value veprosents how long the flow staysin the flow table 213 before
it expires. This can be an idle imeowt {e.g, it 18 inactive) o ovent a hard umeont {o.g.,
repardioss of its activity).
100471 The first stage 243 also flustrates the packet 238 that s sent to the switching
clement. The term “packet™ 18 used here as well as throughout s application to refer 0 »
collection of bits in a particular format sent across @ network, One of ordinary skifl 1 the ant
witl recognize that the term “packet” may be uwsed herein to refor to various formatied

collections of bits that may be seat across a network, such as Ethernet frames, TOP sepments,

LIDP datagrams, 1P packets, ete.
130451 11 some embodiments, the packet i3 a unit of data that comprises hoader and wser

data. The header of & packet inclodes control information that is necassary for the delivery
network to deliver the 'pac-.km;\r from the node that transmits the data packets to the node to
which the packets are to be dulivered, The user data of the packet is data that is to be delivered
from one node to another, The user data iy alse called a payload. A data packet may include
headers of ong or more communication protocols, When a data packet mcludes move than ong
header, the outer-most header ts followed by ether headers, The mnermost header is usually the
fast header of the headers before the paviead of the packet. For the network that buplontents the
protocol of the outer-most header of a packet, the nerwork considers only the onter-most header

of the packet as the heuder and the other hoaders and the user data of the packet are together

i

WO 2015/038198 PCT/US2014/036274

considerad as the paviead of the packet. To simply the discussion, the packet 230 is shown with
onby two hewdsr valoes, namely Ethemet and 1P destination addresses, However, a typical
packet contains more header values.

{149 In the first stage 243, the switching cloment 205 receives the packet 230, The
second stage 250 shows that ditaputh mansger 220 looks for ¢ matching fow that i stored in
the datapath cache 225, The datapath cache 225 provides & fast path to process incoming packet
begause it does not nvolve any wanslation by the datapath How gencrator 210, In the sccond
stage T30, there are no How cntrics stoved i the datapath cache 225, Accordingly, the packet
processing is transferred o the datapath flow gencrator 210, In some embodiments, the
transferning eotails sending the packet 230 to the datapath flow generator 210

{00501 The third stage 255 Hustrates the datapath flow generator 210 dysamically
generating a How entry 240 with at least one wildeard field, In wildearding, the datepath flow
generator of sone embodiments intially wildeards some or all mateh felds. When a packet is
received, the datapath Bow generator 210 selects a flow frova the flow table and sn-wildeards
cach match fickd that ot consults or examings, This can mclude companng match field and
header valaes, and deriving or fearniug output ports,

LUIRE In the example of the third stage 255, the datapath flow generator 210 has
specitied some or alf of the match fields to be wildeard fields. That 15, some or all of the match
ficlds hus been imtialized to be wildeard fields, ncluding dextination Fthernet address field and
IP desunation address ficld. The datapath flow generator 210 has also selected the flow entry
235 from the flow table 215 to detormine if it ix 3 mateh for the packet 230, In making this
determmnation, the datapath flow generator 210 bas comparad the ingress port of the How entry
235 with the ingress port at which the packst 230 was received. The datapath flow generator
210 has also compared the destination Ethernet addresses match field agamst the cormesponding
header field. As the destination Ethernet address mateh field was consulted, the datapath Sow
generator has also specificd the destination Ethornet address as 8 non-wildeard field. However,
the destination 1P match field romaing ¢ wildcard ficld, Thix iy conceptually shown by the
asterisk symbel in the cache flow eniry 240,

{52} In the third stape 2385, the datapath flow penerator 210 has genersted the cache
entry 240 based on the matching flow 235, The fourth stage 260 illustrates that the flow entry

240 has boen pushed down and stored in the datapath cache 225, The cached entry 240 includes

WO 2015/038198 PCT/US2014/036274

an ingress port valoe, Ethernet destination address value, 1P destination address value, and an
action value. Although the IP address ix shown, that ficld has boon specified as a wildeard fickd.
Here, the slash mark followed by the astonsk symbol indicates that the ontire ficld has
completely been wildearded, This ficld has been wildearded because it was not consulted when
penerating the flow entry 240,

{853) As shown i the fourth stage 260, the cached Aow entry 240 s also difforont
from the flow 233 from the How table 215, Awde from the wildeasrd, i some cmbodimenty, the
cachg flow catry doos not have a priotity value, This is because the datapath cache 240 does nat
store multiple Hows that can match a same packet. In other words, the datapath cache stores
only one flow thal can match a given packet, instead of mnltiple entries, Therefore, there are no
resubinit operations with the datapath cache, 1o some such ernbodiments. Alternatively, the flow
entry 240 of some cmbodiments 18 associated with a priovdy value, In addition, the detapath
manager 220 may perform one or mere resgbmit operafions operation o find any other
matching Bows from the datapath cache.

{0054} The fifth stage 260 Hlustrates the switching cleraont 203 processing the packet
230, The cache entry 240 specthies that any packet that is received at ingross port one and hag an
Ethernet destination address A" should be outpat to port two. The P destination address match
field bas been wildcarded so that field can have any different value. Pollowing this rule, the
datapath manager 220 outputs the packet 230 through port two.

[0055] {n the preceding oxample, the switching element 205 dynamically generates a
flow 240 with at least one wild card ficld. As mentioned above, this flow is also reforred to as g
“megaflow”™ becauss it allows packets that have different wildesrd values {0 be quickly
processed. This caching techuique collapses stmilar inte flows nte one wsorspace mepaflow that
makes many How nisses @ cache lookup nstead of a foll translation.

{56} Figure 3 shows an example how the switching clomont 205 uses the flow entry
240 1o process subsequent packets 305 und 310, Specifically, this figure illustrates the switching
clement 203 at time one when 1t receives one subsequent packet 305 and ar time two when #
receives anothor subsequent packet 310, At time one, the switching cloment 208 recuives the
packet 303, The datapath manager 220 recetves the packet and parses 1t 1o oxtract or strip its
header values. The datapath manager 220 also wdlentifies the mgress port through which the

packet 305 was recetved. The dataputh munger 220 selects the flow entry 240 from the datapath

WO 2015/038198 PCT/US2014/036274

cache 225 and compares the identificd ingress port value with the value from the flow entry, As
the port values match, the datapath manager compares the non-wildeard match ficld value (e,
destination Ethernet addross ficld) to the corresponding header fivld value, Ax those two valuss

match, the datapath manager pm“fmm:s the associated action, which is t© output the packet to
port two, The datapath manager 220 ignores the 1P destination mateh ficld from the flow eatry
240 because 1t has boon wildcarded. In thus case, eveon if the 1P destination address mateh field
has not been wildearded, the packet would have boun output to port twe, This 1s bocause the IP

destination address values from the flow entry and the packet header match one another

{0057} At time two, the switching clement 205 recetves another subsequent packet 31
Sinular fo fume one, the dalapath manager 220 receives the packet and patses # 10 extract or

strip its header valoes. The datapath manager also identifies the ingress port throongh which the
packet was received. The datapath manger selocts the cache entry 240 and compares the ingress
port and the non-wildcard wateh Held (e, destination Bthermnet address field) to the header
ficlds. As those two values match, the defapath manager pettforms the associated achion, which
is to output the packet to port two,

{0058] At thmne two, the destination 1P addvess fields of the flow entry 240 and the
packet’s header do not match, Thorefore, there would have beon a miss in the datapath cache
228, and the packet processing would have to be shifted to the datapath How gencrator 21 As
stated above, the procoss of determining what to do with & flow when # i suissed in the caghe
can be an exponsive operation. The datapath How generator 205 must porform a number of
different tasks to gonerate a cache flow ontry, such as Herating through flows in the flow table
215 to find & matching flow and/or dertving match field values. Al time two, those tasks do not
have to be performed. This I8 because the destination 1P address match field hay been
wildcarded and the packet 310 is processed regardiess of the musmateh in the fisld valaes
Accordingly, by eaching the flow with the wildeard field, the switching clement avoids having
to duo another transtation to cachic another flow, Such goneration of wildeard flows can provide
significant flow serup performance, especiatly when the switching element is able to wildvard
many Hows

{59 Several more detatled cxamples of dynanucally generating and using wildeard
flows. Specifically, Section I describes several an example software-switching eloment that

implomonts some embodiments of the invention. Section 11 then describes a more detailed

WO 2015/038198 PCT/US2014/036274

exwnple of how the switching slement processes packets. Thiv s followed by Section {1 that

.

escribes various exumples of penerating flows with zero or more wildeard ficlds, Lastly,

Scction IV describes sn electronic systom for implomenting some ombediments of the

mvention.

i Example Switching Element
{066} As method above, the switching element of some embodiments recetves a packet

and procusses the packet by dvnamically generating a flow cntey with a sot of wildeard ficlds
The switching clement then stores that flow entry in & caghe and processes sy subsequent
packets that bave beader values that maich the flow entry’s non-wildeard match fields, In some
embodiments, the swiiching clement 18 4 software or virtnal switch. An example of such a
software switch will not be described by reference to Figare 4

{0061} Figure 4 concepiually ilostretes an architoctursl diagram of a software-
switching clement 405 of some embodiments that s implemented in a host 400, In this example,
the softwarc-switching clemont 405 operates on a virteal machine (VM) 495 and includes
several components, Those components imnclodes an Open vSwitch (OVS) kerel maodule 420,
which runs i the kernel of the VM 433, and an OVS daemon 440 and an OVS database server

445, which ron 1 the userspace 450 of the VM 495,

j0062} Ay shown in Figore 4, the host 400 inclndes hardware 470, hypervisor 465, and
YMs 402 and 404, The hardware 470 may mclude typical computer hardware, suach ax

processing apits, volatite memory {o.g., random access memory {(RAM)), nonvolatile memory
{e.p., hard disc drives, optical discs, #ic.), notwork adapters, video adapters, or any other type of
computer hardware. Ay shown, the hardware 470 meludes NICxs 485 and 49€¢, which are typical
network interface controllors for commecting a computing device o a notwork,

{00631 The hypervisor 463 15 a soflware abatraction layer that runs on top of the
hardware 470 and runs below any operation svstom. The hyperviser 463 handles various
management tasks, such ax memory ranagement, processor scheduling, or any other oporations
for controliing the cxecuwtion of the VMs 402 and 404, Moreover, the hvpervisor 463
conununicatos with the VM 493 to achiove various operations (.., sotting prioritics). In seme
ginbodiments, the hypervisor 465 18 one type of hypervisor {Xen or KVM hypervisor) while, i
other embadiments, the hypervisor 465 may be any other type of hypervisor for providing

hardware virtualization of the hardware 470 on the host 400,

14

WO 2015/038198 PCT/US2014/036274

{0064} As shown, the hypervisor 463 inclades device drivers 475 and 480 for the NiCs

485 and 490, respectively. The device drivers 475 and 488 allow an operating system to interact

with the havdware of the host 400, VMx 402 and 404 are virtual machines rupning on the
W

hyporvisor 465, As such, the VMg 402 and 404 run any nwwber of different operating systems.

Exampleos of such oporations systoms twlude Linnxk, Solaris, FresBSD, or any other type of

UNIX based opemting system. Other examples inchude Windows based operating systonms as
wetl,
{65] In some embodiments, the VM 495 ix a unigue virtual machine, which fnclodes a

modified Linux kernel, running on the hypereisor 465, In such cases, the VM 495 mav be
referred to as domen O or dom in some embodiments. The VM 495 of such smbodiments is
respousible for managing and controlling other VMs running on the hypervisor 463 {eg, VMs
490 and 4935). For instance, the VM 495 may bave special rights to access the bardware 470 of
the host 400, In such cmbodiments, other VM running onthe hypervisor 463 interact with the
VM 495 in order to access the hardware 470 In addition, the VM 495 may be responsible for
starting snd stopping VM on the bypervisor 463, The VM 495 may perform other functions for
managing and coutrolling the VMg runming on the bhyporvisor 4635, Some embodiments of the
VA 495 may include several dacmons (g, Linux dacmonsy for supporting the management
and control of other VMs running on the hypervisor 465 Since the VM 495 of some
cmbodiments 1S manages and controlx other VMs running on the hypervisor 46035, the VM 4893
may be required fo ran on the hypervisor 463 before any other VM is run on the hypervisor 465,
{66} As shown in Figure 4, the VM 493 inclodes a kernet 435 and & userspace 430, In
some embodinients, the kersel is the most basic component of an operating systom that runs on
& soparate memory space and i responsible for managing systom resources {eg.,
communicalion between hardware and software resouress). In contrast, the usorspace s a
mentory space where all usor mods applications may nun,

00671 As shown, the userspace 450 of the VM 493 includes the OVS dacmon 440 and
the OVS dutabase server 443, Other applications {uot shown) raay by included in the uscrspace
of the VM 495 ax well, The OVS dacmion 440 15 an application that ruas m the background of
the uscrspace of the VM 495, The OVS dacroon 440 of some cmbodiments receives switeh
configuration from the network controlier 406 (in a norwork contraller clustery and the OVS

database server 448, The management information includes bridge information, and the switch

WO 2015/038198 PCT/US2014/036274

configuration includes various flows. These flows are stored in the flow table 413, Accordingly,
the softwarc-switching element 405 may be referred to as ¢ managed forwarding clement,

0068} In some embodiments, the OVS deemon 440 conununicates with the network
controller ustng QpenFlow Protocol. In some cmbodiments, the OVS database sorver 445
conununicates with the network contraller 406 wnd the OVS dacmonddQ through s dutabase
communication protocol {e.g., OVS dutabase protocol). The database protocol of some

casbodiments 1% a JavaScript Object Notation (ISON) remete procedurs call (RPCY based

protocol.
{00691 The OVS dutabuse servier 945 is also an apphication that runs in the backgroonnd

of the userspace of the VM 495, The OVS datsbase server 445 of some embodiments
conumpucates with the network controller 406 in order to configure the OVS switching element
{.g., the OVY daemon 440 andior the OVS kernol modale 420}, For instance, the OVS database
server 445 receives management foformation from the network controller 406 for configuring
bridees, ingress ports, cgress ports, QoS configurations for ports, ete, and stores the
information in a set of databases,

100761 As titastrated in Figure 4, the kernel 455 includes the OVS kernel modude 420,
Thiz module processes and routes network data (e.g., packets) betecen VMg running on the
host 400 and network hosts external to the host {Le., network data received through the NiCs
485 and 490). For example, the OVE kemnel modale 420 of some embodiments routes packets
between VMs nunning on the host 400 and network hosts external to the bost 400 couple the
OVE kernel module 420 through s bridge 408,

100711 I some embodiments, the bridge 408 manages a set of rudes {eug., flow eniriss)
that speaify operations for processing and forwarding packets. The bridpe 408 conumunicates
with the OVS daemon 440 in order to process and forward packets that the bridge 408 recetves.
For instance, the bridge 408 receives commands, from the network controlier 406 via the OVS
dacmon 443, related to processing ind forwarding of packets.

{00721 In the exawmple of Figure 4, the bridge 408 fncludes a packet processer 430, &
classifier 460, and an sction processor 435, The packet procossor 430 roceives a packet and
parses the packet to sirp header values, The packet provessor 430 can perform a number of
different operations, For mstance, In some embodiments, the packet processor 430 18 a network

stack that is associated with varions network fayers to differently process different types of data

Y

PCT/US2014/036274

WO 2015/038198

Frrespective of all the difforent operations that it can perform, the packet

sos the datapath cache 425 to find matching flows for

that i roocives
processor 430 passes the header values to the classifior 460
423 contains any recently used flows, The flows may be

wildearded, When the classific

The classifier 460 ace
Hed in the datapath cache 423,

{00731
different packets, The datapath cact
ificd, or may contain one or miwe match ficlds that we
ruli insty
2 Daemon 440, One main distinetion
hat thore 13 af most only oue

os 4135 s the

fully specified,
460 veceives the hender values, 1t tries to find 2 flow or rul
If it dovs not fnd one, then the control s shifted to the OVE
b of flow tables

between the fast path cache 423 and the set of flow tabl

matching flow entry in the fast path cache 423
I the classifier 460 finds o matching fow, the action processor 435 recetves the
packet and performs a set of action that is associated with the matching flow. The action
S dacmon 440, a packet and a sot

{0074}

processor 4335 of some embodiment slso receives, from the QVS
of instructions to perform on the packet. For mstance, when there s no maiching flow 1 the

erform on the
datapath cache 423, the packet is sent to the OVS dacroon 440, The OVS dacmon 440 may

gonerate 8 fow and install that flow in the datapath cache 425, The OVS dacmon 440 nugt

- and insts
also send the packet to the action processor 433 with the set of actions to parform on that

packet.

j0075] The OVS daemon 440 of some embodiments nchudes a datapath flow gonerator

The datapath How generator 440 s a component of the software switching clement 405 that
makes switching decisions. Each time there is a miss in the datapath cache 435, the datapath
flow generator 440 gonerates 8 new flow to install in the cache. In some cmbodiments, the

datapath How generator works o conjunction with ity own separate classtfior {not shown} to
find one or more matching fows from a set of one or more flow table 415, However, different

from the classifier 460, the OVS dacmon’s classificr can porform one or more rosubmits, That
is, a packet can go through the dacmen’s classifier nuttiple times o find several matching flows
135, When multiple matching Bows are found, the datapath flow

atey o store w the

rom onge or more flow tab

generater 410 of some cmbodiments gencrates one consolidated flow

datapath cache 425, In some cmbodiments, the switching eloment atlows fows with wildeards
it from the datapath flows, these fows

to be specified in the flow table 415, However, d
are not dynamically genevated on the fly {o.g.. i response 1o 0 miss in the datapath)

WO 2015/038198 PCT/US2014/036274

{0076} One of ordimary skill in the art would understand that the architccture is an
example architecture and that different embodinments can include difforent suts of components.
The naming of the various components is arbitrary and can change from ong implemontation 0
apothor, Also, the architecture shows two different layers {eg., the kemed layor and the
userspace layer) porforming virious operations. In some tmbodinments, these operations aoour at

Just one layer (0.g., at the userspaee layery or are further split into other lavers.

. Packet Processing Operations
{077} The previous section described an example architecture of a switching element

that geperates flows with 2er0 ov more wildeard fields, The architecture showed various
components, including a kemel module and an OVS deernon. Figare § conceptuadly iltustrates
several processes 300A-D, which show the infersctions between such conponents o generate
and cache a How with zero or more wildeard ficlds. The processes S00A-D will be descoibed by
reference to Figures §-9,

{0078} The process S00A shows cxample operations performed by a kemel module
when it receives a packet. The process J00A hegins when it receives {at 503) a packet. The
process 300A then performas a Jookup operation on the cache o tdentify a maiching How entey
for the packet. Specifically, the process SO0A eratively selects {at S04) a How entry that i
cached to find one How entry that matches cach of the entry™s non-wildeard ficlds. I a matching
enfry iy found, the procexs SO0A selects {at 308} the flow oniry, The process S00A then
performs {at SHY a set of actions that 1s specified by that flow eotry. If no matching entey s
found, the process S00A proceeds to 306, which is deseribed below, In some cmbodiments, the
packet may be sont the OVS duemon (e, the userspace) even if there 1 3 match m the kernel,
Thix 18 because some packets are foo complicated for the kemel to handle. Thus, in some
embodiments, ¥ “userspace™ action ix nstalled in the dutapath cache {e.g., the kemel flow table),
which specifies pushing all packets to the OVS daemon.

{00791 Figure & illustrates sn oxample of a switching clemoent 403 that finds a mateh in
a datapath cache 423, Two operstional stages 603 and 610 of the switching clement’s kernel
module 420 sre shown in this figure. The bridge 408 has baen configured, and two flow cotries
120 and 623 are stored in the datupath cache 423, In this example, each of the flow entrics 620
amt 625 has at least one wildcard match ficld. These entries might have been pushed down

garlicr by the OVS daemon (not shown) based on two previously received packets.

I8

WO 2015/038198 PCT/US2014/036274

{00801 The first stage 605 Hustrates the kernel module 420 recciving a packet 615, In
particular, the mcket £15 is reccived by the packet processor 430 through the bridge 408, The
packet includes @ number of header ficlds. To simply the discussion, the heador fields arc
specified as field 1 through Feld N The header ficld 1 has a valpe of A, figld 2 has a valoe of
“B”.and field W has a value o
{081} The sccond stage 610 illustratos an example of processing the packet after
finding ¢ matching flow in the datapath cache 425, In procussing the packet, the packet
processor 430 fivst strips the hoaders off the packet 615, The classificr 400 then selects the tiest
flow ontry 620 and compares its pon~wildeard mateh field values against the corresponding
header values. Here, the fivst Bow ontry 620 18 4 nateh for the packet 613, Accordingly, the
action provessor 435 porforms the flow entry’s associated set of actions on the packet 6135,

which ix o output the packet to output pori three,

{0082} Refersing to Figure §, when there is no watching Sow, the process 300A sends
{at 306} the packet {a the header values) to the OVS dacrpon for processing, Figure 7
lustrates an example of transtorring control to the OVS dacroon 4480 when there 18 a miss n the

datapath. cache 425, Two operational stages 705 and 710 are illustrated in thes Higuee, The st
stage 705 iustrates the kernel wodule 420 recaiving a packet 718, In particudar, the packet 713
is vecatved by the packet processor 430 through the bridge 408, The packet includes a number
of header fields, The header Held 1 has o valug of "E7, ficld 2 has a value of F", and fisld N
has a value o 7G7

{83 The second stage 718 tHustrates an example of how control is shifted to the OVE
dacmon whon there is 2 miss i the datapath cache 423, In particular, the packet processor 430
first parses the packet to strip the headers from the packet 7150 The classificr 460 then selecty
the first flow entry 620 and compares Hs now-wildeard match feld values sgainst the
corresponding beader values, The non-wildeard fields of the first flow entry 620 do not match
the correspending header values, Accordingly, the classifier 400 selocts the sccond flow entry
625 and compares its non-wildeard match field values against the corresponding header valoes,
The second flow ontry 625 8 alse not a mateh for the packet 715, Ax there is no matching ertry,
the classitior 460 sonds the packet 10 the OVS dacmon 444,

{0084} Referring to Figare 8 Process SO00B shows several example operations that can

gocnr at the OVS dacmion when it redsives a packet frony the kernel module. As shown, the

Y

WO 2015/038198 PCT/US2014/036274

process S00B boging when it recoives {(at 512 the pucket from the kernel meodule. The provess
then dynamically generates {at 514) 2 now flow entry with zere or more wildeard ficlds,

{0085} Figure 8 illustrates an oxample of the OVS davmon 440 generating a flow and
sending i e the kernel module 420, Two operational stages 8035 and 810 are Hustrated i this
fgure. These stuges 0803 and 810 sre o continuation of the stages 705 und 710 shown m Figure
7. As shown, the OVS ducmon 440 ncludes a datapath fow generator 410 o dynamically

ponprate g now flow to store in the datapath cache 4235, Similar to the kernel module 420, the

7

datapath flow genevator 410 is assoctated with a classifier 720, This classifier 720 is used to
find 8 matching flow from one or wmore Hlow tables 415, Different from the classifier 460, the
OVS dacmon’s classitier 415 can perform one or more resubmits. That 48, a packet can go
through the dagmon’s classifier mubtiple fimes to find several matching flows from one or more
flow tables (e, the flow table 415). For instance, even il a matching flow s found, the Bow's
assoctated action noay specity s resubnit operation. The resabmit operation re-searches the
same flow fable {or another specificd flow table) and creates a flow ontry that specifies
additional actions found, W any, in addition 1o any other actions in the original matching flow,
In sorae embodimnonts, the datapath How generstor specifies performing only & set of actions
assoctated with the flow from the Bow table with the highest priority value.

00861 The first stage 805 iltestrates the OVS daemon 4440 after it has received the
packet 715 from the kernel module 420, Thix stage also shows the OVS dasmon 440 sending a
new flow 820 to the keenel module 420, The datapath flow gonerator 410 has gonerated the new
flow K20, In gencrating the flow, the datapath flow genorator 410 of some crsbodiments initially
wildeards some or all malch fields. Upon the datapath flow generator 410 receiving the packet,
i calls the classifier 410 to iterate through flows In the flow table 4135, The classificor 410 selects
a flow eadry from the fow table and un-wildeards cach match ficld that was compared against
the packet’s header ficld,

{0087} Adternatively, ot cotjunctively with such matching, the data flow gencrator 440
of some embodiments ponerates a flow eutey by dertving ov learning output ports, In deriving,
thy dats flow generator 440 may consult onge or more match ficld values, un~wildeard the nmatch
fickds, and specify those match field values as von-wildeard tield values in the flow eniry. The
data flow generator 440 of some cmbodiments gencrates a flow entry by conumuucating with

one or more different forwarding decision modules 725, such a5 o MAC feaming module, This

WO 2015/038198 PCT/US2014/036274

MAC learning module may learn MAC addresses in a typical manner that laver 2 switchex leam
MAC addresses. For instance, when a MAC address (ie., a destination MAC address of &
packet s not included in g set of tables of learned MAC addresses), the MAC learning module
may flood all of the ports of the bridge 408 and record the MAC address of the packet that
responds to the flood.

{H88] Referring to Figare 8, after pensrating the flow entry, the process 3008 sonds (st
516} instructions to the kemel modale to cache the flow entry, The process then sends (at 318}
the packet fo the kermel module with ustractions to perform g set of actions on the packet. The
process M08 then ends.

{0089} The provess S00C shows operations performed by the kerncl module atter the
OVS daemon has generated a new flow entry and sent instructions to install the new flow entry
in the cache. As shown, the process S00C begins when §f recetves (at 520) the tostructions from
the OVE deemon to cache the new fow entey. The process 300C then caches (at 322) the flow
entry. The process 3000 then ends.

{0090} The process 300D shows operations porformed by the kernel module after the
OVS dacmon has generated @ new flow ontry and sent the packet to the kernel modale with
instroctions to perform a set of actions on the packet. As shown, the process 0013 beging when
it recetves {at 524) the packet with instructions fo porform a set of actions on the packet. The
process 300D then porforms (at 326) the set of action on the packet. The process 300D the
ends.

{91} The sccond stage 810 of Figure 8 illusirates the kernel module 420 after
recetving the flow entey X820, The classifier 460 has roceived the tlow entry 820 through the
bridge 408, The classifior 460 has installed the flow entry 820 in the datapath cache 423 To
quickly procoss similar packels withowt causing a miss in the datapath cache 4235, the third
stages 815 iHustrates that the flow entry 820 includes a numbar of wildeard mateh fields. The
packet 18 then receivad at the action processor from the OVS daemon, The packet ix recoived
with instructions to perform a sot of setions, The sot of actions may be the swoe as the ong
associated with the cached flow entry 820, In the example of the sceond stage 803, the action
processor 4335 performs the flow entry’s associated action on the packet 715, which 15 to ouput

the packet to output port five,

33
-

WO 2015/038198 PCT/US2014/036274

HL Dynamically Generating Flows with Wildeards
{1192} As mentioned above, the switching clement of some embodiments dynamically

gonerates flows with wildeards. In gonerating, the switching clement imtially wildcards sone of
all of match ficlds and generates a now How entry by un~wildcarding cach match field that was
constlted to generate the flow entey. The switching cloment of some embodiments gonerates a
flow by un-wildearding cach match ficld that was compared against a header value, Seversl
such examples will now be desernibed below by reference to Figares 9-17,

Al Examples of Generating Flows
{00931 Figure 9 shows an cxample of wi-wildcarding a match ficld because 1t was
cornpared against a header value. Four operational stages 905-920 of the switching element 403
are shown in the fgure. The switching clernont 405 includes the datapath flow generator 418,
which was described above by reforence 1o Figure 4.
{0094} Stage 903 begins when there 18 a wuss in the datapath cache. The packet
processing 1s shifted from the kernel module to the OVS dacmon 440, In particular, the kernel
module sends the packet 945 to the OVS dacmon 440, The daemon’s datapath flow generator
410 receives the packet 410 and gonerates a new flow entry o store 1o the datapath cache,
{095} The first stage 905 Mustrates the datapath How generator 410 recetving the
packet 943, The packet 945 has the following header ficld values: Ethornet source value of "AY,
Ethernet destination valus of "BY, and ficld N value of “C7 To find # matching How, the
datapath flow generator 410 selects & first flow or rule 930 from the flow rable 415, I there are
multiple flows, the flow may be sorted by priority values (o.g., from highest to lowest),
{00961 The second stage 910 tlusirates that the datapath flow generstor 410 mitlalizing
a group of match field values as wildeards. The detapath flow generator 410 of some
embodiments generates a fow entry 940 by keeping track of the data value of cach mateh fiedd,
and & mask associated with that field. If 3 ficld ix masked, that match feld value was ot
consulted (e.g., comparcd against a corresponding header filed valug) to ponerate the fow entry.
Ax such, ¢ masked field reprosents & wildeard ficld. Tn some embodiments, the entite match
ficld may be masked or wildcarded, Alterpatively or conjunctively, the switching cloment 403
of some crabodiments allows masking or wildearding at the sub-value level. In other words, the
switching element supports masking portion of the ateh field {e.g., & portion of the 1P address

ficld} rather than the entire match field value. In the example of Figure 9, a mask value of zevo
J ol

g
i

WO 2015/038198 PCT/US2014/036274

indicates that the meteh ficld has been completely wildearded, and & mask value of one
indicatos that tho match field was consulted.
0097} The third stage 915 iHustrates the datapath flow generator 410 generating the
cache flow cntry 940 based on the selected flow 930 and the packet header values. bpmfm ally,
the datapath flow generator 410 has selected the flow 930 and compared the flow’s Ethornet
destination value with the corvesponding header value, As the Ethernet destination wmaigh field
was compared against g header field value, the dutapath flow generator 410 hes unmasked the
match feld. This (s shown in the thard stage 9135 with the zero value being replaced by the one
value s the cache How entry 240, namely from the mask of the Ethernet destnation address
maich field.
{00981 The third stage 915 also illustrates that the datapath flow gonerator 410 has
found a moniching How for the packet. This is becanse the How’s enly match field matches the
corresponding header vatne, The fourth stage 920 shows the OVS dacmon 440 sending the
cache Row entry 940 to the kemel module. Specifically, the datapath flow generator 410 has
associated the setion from the flow 930 with the cache flow entry 940, The cache flow entry
948 reads that Ethernet souwrce address has & valoe of YAY, Ethemet destination address has a
value of "B, and field N has a value of "C7L Although the Hihernet source address and Field N
are assoviated with values, the zero value after the slash mark indicates that cach of those match
ficlds 1§ completely masked or wildearded. In addition, the cache flow entry 940 iy associated
with an action, which is to drop any packet that has an Ethoret destination address value of
B
{3099} The previous example illustrated the OVS dacmon 440 finding a maich with a
first flow 930 from the flow table 415, Figure 18 illustrates an example of iterating through
raftipie Bows o find a match. Specifically, this Bgure Hlustrates that & wildcard mateh field is
specified to be a non-wildeard fleld when Ut is comparsd against & corresponding header value,

regardieoss of whether thore was a match or o musmatch, This figure iy simtar to the provious

fac

o~

figure, exeopd that the flow 930 is the second flow in the flow table 413,

{00106} Four operational stages 10051020 of the switching cloment 405 are shown in
Figure 10, The first stage 1005 tHustrates the datapath flow generator 410 receiving the packet
945, The packet has the following header field values, Ethernet source value of “A”, Ethernet

destination value of "BY, and ficld N value of (. To find « matching flow, the datapath tflow

3
Lk

WO 2015/038198 PCT/US2014/036274

gonerator 410 selects a first flow or rule 1030 from the flow table 415 The flow 1030 has
istructions 1o output overy packet with an Ethernet source value of D" 1o output port two.
001011 The second stage 1010 illustrates the datapath fow gencrator 418 building the
vache flow entry 1023 based on the selected flow 1030 and the packet header values, The ficld
values arce oxtracted from the packet header and cuch vulue s associated with 8 musk that
identifics whether the value is associated with s wildcard match field.

{00102 1 the cxample of the sceond stage 1010, the datapath flow gencrator has selocted
the flow 1030 with the highest priovty value and compared the flow’s Ethernet source valug
with the corresponding header value. As the Ethernet source match field was compared against
a header ficld value, the datapath How generator 410 has nnmasked the match feld. This 1
shown in the second stage 1010 with the zero value being replaced with the one value in the
cache How entry 1023, namely from the mask of the Ethernet source address mateh field,
{00103} In the sccond stage 1010, the fow 1030 was wot match for the packet 943
because thelr Fthernot sources address valoes did not muateh, Accordingly, in the third stage
10135, the datspath flow generstor has sclected the How 930 with the next nghest priovity value.
Specifically, the datapath flow generator 410 has selected the flow 9380 and compared the flow’s
Ethernet deshnation value with the corresponding header value, As the Ethernet destination
match fleld was compared against o header field value, the datapath Qow geoerator 410 has
unmasked the mateh Geld, Thix is shown in the third stage 1015 with the zero value being
replaced with the one value 1 the cache flow entry 128, namely from the mask of the Etheroot
destination sddress match field.

{00164} The third stage 1013 alse illustrates that the datapath flow gonevator 410 has
found a matching flow for the packet. This iy because the second flow™s only watch field
matches the corresponding header value, The fourth stage 1020 shows the OVS dacmon 440
sending the cache flow entry 1023 to the kornel module, Specifically, the datapath flow
penerator 410 hus associated the action from the flow B30 with the cache flow entry 1023, The

.,

vache flow entry 1025 reads that Ethernet source sddress bas 2 value of A", Ethernot
destination sddress has a value of "B, field N hay & value of “C” Although Field N is
associated with a value, the zoro value after the slash mark indicates that the mateh ficld &
contpletely masked or wildearded, In addition, the cache flow entry 1023 §s associated with an

action, which is to drop any packet that has an Ethernet destination address value of "B™

3
=

WO 2015/038198 PCT/US2014/036274

{00105 As mantinned above, even if & matching flow is found i a flow table, one of the
flow™s assomated actions mey spocify a resubmit operation to find another flow from the flow
table. Figure 11 provides an dlustrative example of gencrating & Sow entry based on multiple
matching fows from a flow table. Four operational stages 1105-1120 are ilustrated in this
fgure. These stages 1105-1120 are stmilar to the previous ftt. ure, except thut the first flow from
the flow tuble is a match for packet, The first flow ix associated with a resubmit action.

100106} The fiest stage 1105 illustrates the datapath flow generator 410 reeeiving the
packet 945, The sccond stage 1110 iHustrates the datapath flow generator 410 building the
cache flow ontry 1125 based on the sclected flow 1030 and the pac:k.ct header values.
Specifically, the datapath flow generator bas selected the flow 1130 (e.g., with the highest
prioeity value) from table xero and compared the flow’s Ethernet source value with the
corresponding beader value. As the Ethomet source mateh field was compared against o beader
field value, the datepath Bow generator 410 has unmasked the metch Geld, This is shown i the
second stage HO with the zero value being replaced with the one valoe 1 the cache flow enfry
125, namely from the mask of the Bthernet source address mateh ficld.

{00167} 1y the sccond stage 1110, the flow 1030 was & mateh for the packet 943 because
thetr Etherset sources address values matches one another. However, the flow 1130 &
associated with a vesobmiut operation {e.g., to concatenate multiple flows info one datapath
flow). The resubnut operation specifies resubmitting into snother flow tuble {fo, flow table

two)., Accordingly, in the third stage 1115, the datapath Sow generator 410 has selected the flow

)

135 (o, with the highest priority valug) from flow table two. Specifically, the dutaputh flow
generator 410 has selected the flow 1135 and compared the HSow’s Ethernet destination value
with the corresponding header value, As the Ethornet destination match field was compared
agamst & header fiold value, the datapath flow generator 410 has uamasked the match field. Thas
is shows in the third stage 1115 with the zove valae being replaced with the one value in the
cache flow cntry 1125, namely from the mask of the Etheret destivation address mateh field.

{00108} The third stage 1113 also dlusirates that the datapath flow gencrator 410 bas
found a matching flow for the packet. Thix 1s because the only mateh ficld of the flow 1135
matches the corresponding header value, In this example, all mateh ficlds that were specified as

wildcards or non-wildcards carvies over when there 15 a resubmit operation. That 15, the OVS

33
L4

WO 2015/038198 PCT/US2014/036274

dammon doos not reinitialize all the match felds as wildeards when there is 8 resubmit.
However, the OVS dacmon might reinitialize them as wildeards, in some other embodimoents,

{00109 The fourth stage 1120 shows the OVS dacmon 440 sending the cache flow entry
1125 to the kerned module. Specifically, the datapath Bow goncrator 410 has assoviated the
action from the How 1135 with the cache flow eriry 11235, The cache flow entry 1123 reads that
Ethernet source addross has g value of “A”, Ethernet destination address has a value of “B7, and
fleld N has g value of “C7. Although Fickd N is associated with a value, the zero value after the
slash mark indicates that the match ficld 18 completely masked or wildcarded, In addition, the

cache flow entry 1123 15 assoclated with an action, which 1s to drop any packet that has an

Ethernet destination address value of "B™,
{00114 In the example desenbed above, the OVS dasmon finds & matching flow that has

a resubmil action, The resubrait action specifics performaing a resubinil to another flow table. In
some embodiments, the resubmit action can specify 8 vesubmil operation on the same fow
table. One example way of resubmttiog the packet to the same How fable i fo modify the
packet 1o some way bofore the resnbmission, For mstance, the action of the initial meiching
flow could specify changing o matching header value {e.g., the Ethemet source valug), This s
bocause if the matching header value vemains the same, the same imtial How will once again
match the packet,

{0111} In some casos, @ fow m a flow tuble may have & value for & match ficld value
that requires the datapath How generator 410 to examine one or wore other mateh felds. For
example, when g match ficld relates to an 1P addross or an Ethernet address, the datapath How
generator 410 might frst consult the Ethertype muatch field and determaine if the corresponding
header value matches the match ficld value. The datapath flow gonerator may then un-wildeard

the Ethertype mateh field

{112 Figure 12 tHustrates o example of the switching clement 405 un-wildearding a

match field that is not explicitly specifind in a flow 1240, Five oporational stages 1205-1228 of
the switching clement 4035 are shown in this fipure. The first stage 1205 iHlustrates the datapath
flow gencrator 410 recuiving 8 packet 1235, The packet has the following header field values,
Ethertype of “0x08007, 1P sources address value of “1.1L117, and IF destinution address value

of “1.1.1.27, To find a matching flow, the datapath flow generator 410 selects a first flow orvule

3
o

WO 2015/038198 PCT/US2014/036274

1240 from the flow table 415, The flow 1230 has a rule that states thut any packet with an 1P
sources address of “11.1.17 should be output to port two,

0113} The second stage 1210 ilustrates the first comparison was made for g mateh
ficld that is not explicitly specified in the flow 1240, The fisst comparison was made to a refated
flzld that fudicates which protocol is oncapsulated in the payload of the packet or frame. The
header valoe “0x0800™ mdicates that the Bthartypo ts for Internct Protocol version 4 (1Pv4), The
comparison of the Ethertype mateh ficld provides the datapath flow generator 410 with & quick
feedback on whether to compare the match field of the flow 1240 to the corresponding header
value, In this case, as the Ethertype value relates to the IP source or destination address, the
datapath. flow generator 410 unrasks the Ethertype voatch feld and procecds to stage three
1215, In cases wheve the Etherbepe values does not relate fo IP source or destination address, the
datapath flow generator 410 may vomask the Ethertype mateh field and select another flow to
perform the matching,

{00114} The third stage 1215 Hustrates comparing a match field associated with the flow
1240 to the corresponding header wvalue, Specifically, the datapath flow gonerator 410 has
selected the flow 1240 and conapared the fow s 1P source address valoe with the corvesponding
header value, As the IP source address mateh field was compared against a header field value,
the datapath flow generator 410 has enmasked the maich field, This s shown in the third stage
1213 with the zere being replaced by # one in the gache How entry 1235, namely from the mask
of the P source address mateh field.

{115 The thivd stage 1213 also dlustrates that the datapath flow generator 410 has
found # mutching flow for the packet 1230, This is because the flow’s only mateh field matches
the corresponding header value, The fifth stage 1223 shows the OV dacmon 440 sending the
cache flow entry 1235 to the kernel module. Specifically, the dataputh flow goncrator 410 has
associated the action from the flow 1240 with the cache flow entry 1235, The cache flow entry
1235 reads that any packet having the EtherType value of " 0x0800™ and 1P source address
value of 1LY should be output to port two, The cache flow entey 1235 includes a valug for

the 1P destinatinn address match ficld. However, the zoro value after the slash mark indicates

that the 1P destination address match ficld ix completely masked or wildearded.
{00116} In several of the examples described above, the switching clement un-wildeards

cach match ficld that was compared against a header value 1o find & matching flow,

33
¥

WO 2015/038198 PCT/US2014/036274

Altematively, or conjunctively with such comparison, the switching clement of some
cmbodiments en-wildeards match ficlds aBier it finds the matching flow, For example, an action
associated with the flow may specify consuliing one or more header ficld values, When those
ficld values gre consulted, the switching clomenmt of some cmbodiments unewildeards the
corresponding maich fields,

{117 Figure 13 #Hustmtes an example of the switching eloment 405 that examines ong
or more nrateh fields based on an action of & match rule. In this example, the flow twble includes
a rube 1325 that specifies doing normal L27L3 processing fov all packets. Four operational
stages 1305-1320 of the switching clemoent 405 are shown in this figure, This example assumes
that the switching oloment 405 is performing & bonding oporation that allows more than one

interfaces for a port.

{00118} The first stage 1305 Qlustrates the datapath flow generator 410 recetving 8 packet
13380, The packet bas the following bheader field values, Ethornet type of "0<08007, Ethernet

source of "Foo", Fiheruet destination of "Bar”, 1P sources address value of LIS, P
destination address value of "1 1L2Y, and & fiold N valoe of "A”, To find a matching How, the
datapath How gencrator 410 selects a fivst Sow or vule 1325 from the fow table 413

{00119} The second stage 1313 illustrates BtherType value being consulted for the cache
flow entry 1335, Here, the datapath flow generator 410 has examined the BtherType value and
unmasked the same field. The third stage 1315 illustrates IP source address and dostination
address values being consulted for the cache flow entry 1335, Here, the IP address values are
derived from the corresponding pucket header values, The third stage 13135 slso shows that that
two 1P sowee and destination mateh ficlds are specificd 0 be non-wildeurd fields, This is
biecause the switching elenent has been configured to do normal L2/L3 processing by matching
at foast these two field valoes agamst incoming packets.

{1 20 The fourth stage 1320 illustrates Ethornet source address and dostination addross

beirg consulted to the cache flow entry 1335, Here, the Ethernet address values sre devived
from the corresponding packet header values, The fourth stage 1320 also shows that that the twe
match ficlds arg specified to be non-wildeard fields as the corresponding masks are ramoved
from the cache flow entry 1333, This s because the switching elontent has bosn confipured to
do normal L2/L3 processing by matching at least these two additional ficld valoes againyt

incoming packets.

Tud

WO 2015/038198 PCT/US2014/036274

001211 I the fourth stage 1320, the switching cloment 4038 has assoviated an action o
the cache flow entry 1335, In some embodiments, the switching clement 405 assigns the action
based on results of a learning algorithm. As an example, the datapath flow generator might have
chosen an output port based on the rosults of the MAC learning alporithm, In some
cmsbodiments, the OVE duemon includes a MAC kearning module. The MAC fearning module
of some embodiments identifics, for u given packet, one or more ports to cuiput the packet

based on the packet’s header ficld values,

{0122} Figure 14 provides an dlustrative example of how the switching element 405
utilizes a nomber of different components fo generate the How entry 1335, Three operational

stages 1405-1415 of the switching clement 403 ave shown in this figure. As shown, the datapath
flow generator 410 operates in conjunction with 8 number of modules to dynamically gonerate a
flow eniry to cache in a datapath cache. These modules include the classafier 720, a bonding

modude 1420, and & MAC fearning module 1423, The cache How 410 gmeraior Wy operate in

conjunction with a set of other modules 1430 to roateh andfor devve field values.
{01231 The first stage 1305 Hustrates the OVS dacmon 440 recoiving the packet 1330,

The packet s passed to the classifter 720 throagh the datapath Qow genevator 410 As shown in
the second stage 1310, the classifior 720 devives various field values velating to the packet. This
inclodes (1} the ingress port through which the packet was recerves, (23 the EtherType value, (3)
the source 1P address, and (4) the destination 1P address, The sccond stage 1410 slso shows that
the packet processing operation s then shifted to the bonding modute 1420,

{124 The third stage 1418 illustrates the bonding module 1420 calling the MAU
fearning module to associate the cache flow colry with MAC address valuex, In some
embodiments, the MACU leaming module 1430 of some ambodiments identifies, for a given
packet, one or more ports o cutput the packet based on the packat’s header field values, As
shown in the third stage 1415, the bonding module 1420 adds the Ethoet souwrce and
destination addresses returned by the MAC leaming module 1430 o the cache How entry.
{0125} Figure 15 illustrates an example of how the datapath flow penerator 410
gengrates a flow by nterfacing with different conponents. Here, the componenis include the
clagsifior 720, the bonding wmodule 1420, the MAC lewming module 1423, Bidwectional
Forwarding Detection (BFD) module 1505, and learning sction module 1310, As mentioned

above, the MAC leaming moduele 1435 tdentifies, for a given packet, one or more ports o

WO 2015/038198 PCT/US2014/036274

output the packet bascd on the pucket’s heador fickd values {cg., the destination Ethernet field

value).
{00126} The classifior 720 of some embodiments s called fo match cortain mateh fields,

The bonding module 1420 is called to perform bonding oporation that sllows mors than ons
tterfaces for a port, The BFD module 1303 is used o detect whether & packet is & BFD packet.
For example, if 4 packet comes in, the BFD modale 1505 may be called to detormune whether
the packet is a BFD packet or not. This may cause # change in the masking or wildearding of
match fields relating to BFD. If the packet is a BFD, the BFD module 1505 may consume the
packet and gencration of the cache flow will tormunate at that point, Different fromw the BFD
module 503, the learn action module 1510 installs & rule in the classifier, which can affedt
traffic. The learn action modale 1310 can be used to move abstractly fearmn MAC addresses. For
example, 1 a packet with a particelar Ethernet source address comes in through port 1, the leam
action moedule 1310 can be used to install a role that specifies that any packet whose destination
MAC address field has the same address shoudd be output to pott L

{00127} The datapath flow gonerator 410 may call any one or raore of these modules.
One or more of these modeles way call another module. Bach one of the difforent modules may
be called an arbitrary nomber of times when gencrating the flow to store 1o the cache, As an
example, the data How generator may call the classifier and recoive a resulty however,
depending on the How, it can call other modides such ax the MAC leaming module. One of
ordinary skilled in the art wouold vnderstand that the wodules shown in Figure 18 arc example
modules, For gxample, different ombodiments cun include even more modutes, fower modules,

or different combination of modales.

B. Example Flow
{06128} Having deseribud various sxamples of generating cache flow ontries, an example

mrocess will now be described. Figure 16 conceptually illustrates a process 1600 that sonme
cmbodiments porform to dynamically generate @ new flow with zere or more wildeard fields. In
some embodiments, the provess & porformed by the switching eloment’s QVS dacmon.

00129} The process 1600 beging whan it roceives (at 1605} & packet (o, from the
kernel module). The process 1600 then ininalizes or sots {at 1610) all match fields ax wildeard
match fields. Alternatively, the process 1600 might imtialize some but not all match ficlds as

wildeard fickds, In addition, the process 1000 might initialize an ingross port ficld as s wildeard

WO 2015/038198 PCT/US2014/036274

ficld. The ingress port is the port through which the switching clement has received the packet.
The ingress port may be a logical port. In some embodiments, the process never wildeards the
ingress port field.
{1 30 At 1613, the process 1600 determines if there any available flows {c.g., n a flow
tuble), At 1610, the process selects a How from a flow rable. I there ure no flows, the process
might select & vule {e.g., a default rule), The switching chuanent can have such one or more rules
that specifies porforming normal L2 processing, dropping packet, andfor sending the packet
the network controtler. In some embodiments, the process 1600 selects 2 flow secording o s
associated priority value, For examaple, the process 1600 might iteratively select flows, starting
from the one with the highest prionity value to the lowest priortly value. This is bocause there
might be two flows i a flow table that mateh & packet but only one matching How is cached in
a datapath cache,
{00131} After sefecting a flow, the process 1600 determines {at 1620) whether any one or
more wetch ficlds have been compared with header values. If so, the process 1600 marks {at
1625y cach of the one or more match ficlds ay nonewildeard ficlds, Otherwise, the process
deternines (at 16303 whether the How s @ match for the packet, If the flow is not a match, the
process veturms to 1615, which s desertbed above, Otherwdse, the process 1600 determines (at
1633} whether the sction of the matching Bow specifies consulting one or more watch fields,
For example, based on the action, a switching clement might conxalt a destination Ethernet
address value of a packet to compare against @ MAC address of a virtual machine that s
connected to iy port. As another example, the process 1600 might cheek if the packet is a BFD
packet. I the procoss performs such consultation, the process 1600 marks {at 1640} the one or
more match fields ax non-wildeard fields,
001321 1If the action does not specify examining other muatch fields, the procoss 1600
then detormines (at 1643) whethor the matching flow is associated with 4 resubmit operation, In
sorne embodiments, the resubmit operation i used to concatenate multiple flows into one
datapath flow. For example, the process might be set up asx multiple pipelines the packet goes
through (2.2, 1o do # look-up in the L2 pipeling, then do a resubmit, and do a fook-up in the L3
pipeling, m} Also, cach wildeard and non-wildeard fickds caries over frony one hop to the

nexi,

Lk
——.

WO 2015/038198 PCT/US2014/036274

{00133} If the sction specifies @ rosubmit operation, the provess 1600 returns to 1615,
which is described above, I the flow is net associated with such resubmit action, the process
1600 generatos {at 1650} & new flow eniry. The process 1600 of some embodimonts genorates
the new flow cotry by taking inte secount cach romaining wildeard mateh fields, That iy, the
gonrated flow may include zero or more wildeard flelds based on whether say of the
witdearded fields were marked as non-wildeuwrd files {e.g., at operation 1625 and 1640). Upon
gonerating the flow outry, the provess 1600 sends {at 1633) the flow entry 1o the kernel The
process 1600 then ends.

{00134} Some embodiments performy variations oo the process 1600, The specific
operations of the process 1600 may not be performed in the exact order shown and desenbed.
For example, some ambodiments optimize the process through a series of hash table look-ups
when matching flows. Accordingly, the specific operations may not be performed in one
continuous serics of operations, and different specific operations may be performed ia different

embodiments,

€. Example Classification Algorithms
{00135} 1y several of the examples desoribed above, the datapath flow generator utilizes a

“hucar search™ algorithmy to find a matching flow. The "Huear search” algorithm does pot
require much moemory, but it may be not be vory fast, The swiching element of some
cmbodintents can utibize one of 8 number of different alporithms when ua~wildcarding maich

ficlds. Several examples such classification algorithms will now be described 1 this sub-

seciion,
I. Example Tuple Space Search Algorithm
{41 36] In some embodiments, the switching cloment uses @ tuple search alporithm fo

find & maiching flow. The tuple space scarch algorithm is a hashed-based scarch algorithm, ftis

similar to the “linear scarch” alporithm. However, instead of lncarly traversing through avery

rule, the tuple space alporithm Hocarly traversex through different groups of rules that are

organized b}.f mateh fields. {n some cuses, the tuple space scarch can be much faster than g
“hncur scarch”™ because 1t can perform a lookup within a group of rules that have the same

wildeard pattern nsing a hash table

{00137} An example of a tople space scarch will now be described. Suppose that a

witching cloment maintaing a flow table with the following three rules:

e
it

WO 2015/038198 PCT/US2014/036274

priority 3, in_portsl, eth sres2~2 Action 1

priority 4, in_port=2, eth_sre=3-3 Action 2, and

priority 3, in_port=3-> Action 3
{38 In some ombodiments, at flow table creabion time. the switching cloment
organtzes these rules into different groups based on what ficlds (or partial felds) the rales
mateh on, I this case, thore are two groups:

group 1 {in___gort,, cih srok and
{0{1135‘} Here, cach role is placed in g hash table that belongs to a particular group {eg.,
group | or groap 13 The hash table can bave very fast (c.g., nearly instant) lookup. Thus,
instead of a lincarly traversing througl all of the rules, the switching element can fraverse
through each hash fable, doing « hash {able lookup on cach one, and un-wildearding the Helds
that the switching ¢loment looks al or consalts. In some ombodiments, each hash fable carvies
with it the priority of the highest priovity rele B contamns, Hence, if thore 18 a match in the fivst
hash table, the switching clevoent 18 programmed to know that the rule has a higher prionty
value than every other role i a subseguent table, The swilching eloment can theretore skip the

fookup and vo~wildearding i the subsequent bash table,

2. Example Staged Lookap Algorithm
HU R In some embodiments, the switching clement uses a staged lookup algorithm to

search for one or more matching Hows. The staged lookup algorithm s simular to the wple
space algorithim; however, it takex into account the fact that some header fickds may change
more froquently than others, Based on thus faet, it porforms a musdti-staged scarch starting with
wftequently changing fields, and progressing to frequently changing ongs,

{00141} 1y uillizing this algorithoy, the switching element of some smbodinents does not
fook at all the ficlds (v, I @ bash table} at oncw but Best looks at those fields that do not
change freguently, If none of those fields matchey, the switching cloment terminates the lookup
operation without having o lookup fields that ehange frequently, For instance, suppose that
there is a particular hash table, which looks st the ficlds, in_port, sth_see, ip sre, and top_sre
{142} With standard tuple space seurch, the sofbware switthing clement looks at all
those fields trrespective of whether the fields changes frequently or infrequently, With the

staged lookup algonthm, the lookap s broken inte different stages, For instance, in the first

Lk
Lk

WO 2015/038198 PCT/US2014/036274

stage, the algorithm can look up the in_port in a hash table and got g simple “yex™ or "no™ as to
whether thore s 8 match on the in port. If the answers “no”, the algonthm can tormunaty
knowing that no further stages match, I the spswer s “ves™, the algorithm can proceed to the
next stape, which looks op the in_port and oth_see in & separate hash table. I successtul, the

algorithm may move onto w port, oth see, and ip see, Thereafter, i succussful sgam, the
that, at cach stage, if there s a miss, the algorithm can terminate without looking at the igher
layer headers, This 48 important because the hugher layer headors are the ones that are most

Hkely to change from packet to packet and thorefore the ost problomatic when irving to

sroprove performance (e.g., megaflow performance}
3. Other Example Algorithms
{00143} In some embodiments, the switching cloment uses a decision tree algonthm o

perform the classification operations, In some embodiments, the decision tree algorithn entails

g several phases of operations. For exaraple, 1 the first phase, some ficlds of the

o

performin
packet header ave split up into multiple chunks that are psod to index nto multiple momorics in
parallel, BEach of the paralled lookeps yields an output value, The contents of cach memory are
chosen so that the result of the lookep s narrower than the mdex. In subsequent phases, the
index into cach memuory is formed by combining the resulis of the lookups from carlior phases.
In the final phase, there i one result left from the lookap. This is bocause of the way the
memory contents have been pre-computed. The decision tree algorithm s also deseribed w the
docament cutitied “Packet Classification on Multiple Fialds” by Pankaj Gupta and Nick
McKeown, The docwment was published n Octeber of 1999 and s incorporated herein by
reference. In cach phase of the deeision trae, the switching olement of some ambodimaents does
not wildeard a match field i it bas to look at a fickd n the packet header. This same principle
applics to the varions different versions of the decision trog algorithi, in some embodiments,
B Example Datapath Flows

{144} Figure 17 illustrates several examples of flows 1700 that are stored in a dataputh
cache, In some embodiments, the Bows are stored in the datapath cache based on the number of
flows that are curvently stored in the cache, For example, if the switching eloment i not heavily
foaded, g fow wil stay i the cache 1f 1 was not used wathin & particular time peried {e.g., five

seconds), I the flow was not used within the particular time peried, the flow may be dropped

WO 2015/038198 PCT/US2014/036274

from the cache. Onge the datapath reachey & certain throshold number, the sf‘x\:*itf;‘.hing clement
may change bow long a flow stavs da the cache. For example, if the cache s hewvily loaded, a
flow might only last a hundred milliscconds if it was not wxed. In some cmbodiments, the
userspace makes the decistons sbhout how long a flow stays in the cache based on how recently
it was used andfor the amount of flows in the datapath cache.

{H145] In the example of Figure 17, the datapath 1700 includes two flows. Bach of
these flows has the Etheraet sowrces and destination muatch ficlds un-wildearded. The romaming
fickds are all wildearded. Specifically, the 1P source, 1P destination, protocol; time to live, time
of service, fragment, (Iatornet Control Message Protocol) ICMP type, and IMCP code match
fickds bave all been wildcarded. Each flow is also associated with severa] other values such as

bvte size, lastused, packets, and achion.
v 3 s 4

iV, Eleetronic System
{00146} Many of the above-described features and applications are foplemented as

software processes that are specified as a set of natructions recorded on & computer readable
storage medium (also weforred o as computer readable medium). When these instroctions are
excouted by ong or wore compuotational or procossing unit{s) {o.g., OUC OF MO PrOcOssoTs,
cores of processors, or other processing units), they cause the processing opit(s} to perform the
actions indicated in the matructions. Examples of computer readable media include, but are not
fimtted to, CIRROMYy, flash drives, random access memory {RAM) chips, hard derves, eraxable
progranunable read-ouly memories (EPROMS), clectrically erasable programmable read-only
memories (EEPROMs), ote. The computer readable media does not include earrier waves and
clectronic signals passing wirelessly ov over wired connections,
{147} In this specification, the term “software™ i meant to include fimware restding in
read-only memory or applications stored In nagnetic storage, which can be read into memuory
for processing by a processor. Alse, in some embodiments, multiple software inventions can be
implemented s sub-parts of a larger program while remaining distinet software inventions. In
some embodiments, multiple software inventions can also be implomented ay separate
programs, Finally, any combination of scpamate programs that together implement 8 software
wvention described here is within the scope of the invention, o some embodiments, the

software programs, when installed to operate on one or more electronic systoms, dofine one or

Lk
L4

WO 2015/038198 PCT/US2014/036274

more spectfic machine implementations that execute and porform the operations of the software
JOErams.

001481 Figure 18 conceptually iHlustrates un clectromic systom 1800 with which some
cmbodiments of the invention are implemented. The clectronie system 1800 may be a computer
{c.g.. a duesktop computor, personal computer, tablot computer, ote,), server, dedicated swiich,
phone, PRA, or any other sort of eledtromic or computing doevice. Such an clectronic system
cludes virious types of computer readable media and mterfaces for various other types of
computer readable modia. Electronic systom 1800 includes a bus 1805, processing unit(sy 1818,
a system memory 1825, a read-only mierory 1830, a permanent storage device 1835, mput
devices 1840, and ouipul devices 18435,

{00149} The bus 1805 collectively represents all system, penpheral, and chipset buses
that communicatively connect the numeroas infernal devices of the electronic system 1800, For
mstance, the bus 18035 communicatively connects the processing unii(s) 1R10 with the read-only
momory 1830, the systom memory 1825, and the pormanent stovage device 1833,

{00154 From these various momory units, the processing wuts) IRI0 rofnoves
structions to execute and data to process in order to execute the processes of the nvention,
The processing unit{s) may be a single provessor or a multi-core processor in different
embodiments.

{151 The read-only-memory (ROM} 1838 storex static data and instructions that wre
necded by the processing unit(s)y 1810 and other modules of the clectronic system. The
pormanent storage device 1833, on the other band, i a read-and-write momory device. This
device 18 # non-volatile memory unit that stores Instructions and data even when the clectronic
systent 180D is off. Some cmbodinments of the invention use & mass-storage deviee {such as a
magnetic or optical disk and iy corresponding disk drive) as the penmanent storage device 1838,
{52} Other embodimenty use a removable storage device (such as a Hoppy disk, flash
memory device, ote, and 18 corresponding drive) as the permanent storage dovice. Like the
permanent stovage device 1833, the systorn memory 1825 is a read-and-write memory device.
Howover, unlike storage device 1835, the system memory 1823 18 ¢ volaiile read-and-write
memary, such a randowm access memory, The systom menmory 1825 stores some of the
instructions and data that the processer necds at runtime. In some embadiments, the invention’s

sraeesses are stored in the system memory 1825, the permanent storags device 1835, andfor the
} » - A

WO 2015/038198 PCT/US2014/036274

read-only momory 1830, From these various memory units, the procossing wnit(s) 181
refrioves mstructions to exconte and data to procoss in order to exsoute the processes of some
cmbodiments.

{H 53] The bus 1803 alse connects to the input and cutput devices 1840 and 1845, The
input dovices 1840 cnuble the user to conununicate information and select commands to the
cleetronic systern, The tnput devices 1840 include alphanumeric keyboards and pointing dovices
{also called “cursor control devices™), cameras {¢.¢., webcans), microphones or similar devices
for recetving voice conunands, e, The output devices 1845 display images ponerated by the
clectronic system or otherwise output data, The outpat devices 1845 melude printers and display
devices, such as cathode ray tubes (CRTY or Ligoid crysial displays (LOCD), as well as speakers
or similar sudio output devices. Some embodiments include devices such as a touchscreen that
function as both wput and output devices,

{00134] Finally, as shown in Figore 18, bus 1803 also couples electronic system 1800 to
a pobwork 1863 through s netyeork adapter (vot shown). Tn this manney, the computer can be a
part of a network of coraputers (such as a local arca network (“LANYY, a wide aren nebwork
{(“WAN"}, or an Intranet, or a nobwork of networks, such as the Intomet, Any or all components
of electromc systern 1R00 may be used in conjunchion with the invention,

j08155] Some embodiments include clectrome components, such s microprocessors,
storage and memory thal store computer program instructions in a machine-readable or
computer-readable mediam (abernatively reforred to as computerreadable storage media,
machino-readable modia, or machine-readable storage medial. Some cxamples of such
computer-readable media inchide RAM, ROM, read-only compact dises ({CD-ROM), recordable

compact dises {CD-R), rewnitable compact dises (CD-RW), read-only digital versatile dises
{e.g, DVID-ROM, dual-laver DVD-ROMY a variety of recovdablefrewritable DVDs {oug.,
DVD-RAM, DVD-RW, DVD+HRW, ete.), flash memory {¢.g., SD cards, mini-SD cards, micro-~
SD cards, o, magnetic andfor solid stute hard drives, read-only and recordable Blu-Ray®
dises, ultra donsity optical discs, any other optical or magoetic wedia, and floppy disks, The
compmper-roadable modia may store 8 computer program that v exceutable by at least one
processing unit and tuclades sois of instructions for performing various operations. Exaraples of

contputer programs or computer code include machine code, such as is produced by a compiler,

Lt
i

WO 2015/038198 PCT/US2014/036274

amd files including higher-lovel code that are executed by a computer, an gletronic componeut,
OF & MHCTGRrOCessnr using an interpreter,

001561 Whils the asbove discussion primartly refors o microprocesser or multi-core
processors that excoute software, some crbodiments gre performed by one or more integrated
circuity, such as application specific integrated cirenits {ASICs) or field progrwmmable gate
arrays (FPGAs) In some smbodiments, such integrated civouits excoute instructions that are
stored on the circutr wself In addition, some cmbodiments cxecute software stored in
programmable logic devices (PLDsY, ROM, or BAM devices,

{00157} As used in this specification and any claims of thus application, the torms
“compater”, “server”, “processor’, and “mermory” all refer to electronic or other fechnological
devices, These terras exclude people or groups of people. For the purposes of the specification,
the terms display or displaying mecans displaying on an clectronic device, As wsed in this
specification and any claims of this application, the torms “computer readable mediam,”
“computer roadable media” and “machine readable roodium™ are entirely restricted to tangible,
physical ohjects that store mformation v a form that s readable by 8 computer. These torms
exclude any wireless signals, wired download signals, and any other ophereral signals,

{01581 Whafe the tvvention has been deseribed with reference o mumerons specific
details, one of ordinary skill 1 the art will recognize that the invention can be embodicd in other
spectfic forms without departing from the spirit of the invention, In addition, a numbay of the
figures (oclading Figures 1, 5, and 18) conceptoally lustrate processes. The specific
operations of these processes may not be porformed in the exact order shown and deseribed.
The spectfic operations may not be performed o one continuous scrics of operations, and
different specific operations may be performed @ different embodiments. Purthermore, the
process could be implomented using several sub-processes, or as part of a larger macre process.
Thus, onc of ordimary skill in the art would understand that the invention is not to be Hmited by

the foregoing lustrative details, but rather is o be defined by the appended claims.

WO 2015/038198 PCT/US2014/036274

CLAIMS
What is claimed is:
L. A mothod for g switching eloment that forwards packets, the method comprising:

recaiving a packet;

initializing a plurality of mach fields s wildesrd ficlds;

dynamically gonerating a flow entry by un-wildearding cach match field that s
consulted in generating the flow ondry, wherein the flow entry i assoctated with an action;

perfornung the sction on the packet; and

storing the flow ontry 1o a cache fo process any subsequent packet that matches
gach non-wildeard field of the flow entry.

2. The method of claim 1, wherein dynamically gengrating comprises comparing a
value of & mateh ficld against the packet’s header value wnd un~wildearding the match field.

3. The method of clatm 1, whereln dynamically generating comprises selecting one
or more flows frote a How table until a matching fow s found,

4. The method of clam 3, wherein dynamically generating comprises an-
wildearding oue or more fields based on an action associated with the watching flow.

S The method of colaim 3, wheretn dynamically generating comyprises rescarching
the same flow tble or another flow table for anothor matching flow if the matching flow
specifios a resubmit action.

6. The method of claim 1, wheretn dynamically generating comyprises using a hash-
hased algorithm to scarch for one or more matching flows while un~wildearding cach maich
fiold that 1s consulted during the search.

7. The method of clatm &, wherzin the hash-based algortthmy performs a mulii-
staged search, starting with infrequently changing match ficlds, and progressing to frequently

changing ficids.

8. The method of clatm 1, wherein dynamically geonerating comprises using
deciston tree algorithm 1o search for one or more matching fows while an-wildearding cuch

malch ficld that is consulted during the scarch,
g, The method of clatm 1, wherein the packet 15 a fivst packet, the method Rurther
CONTHISITE

recaiving a sscond packet;

WO 2015/038198 PCT/US2014/036274

deternuning that the sccond packet’s header has valuos that mutchex cach non-
wildeard ficld of the flow entry; and
in response to the determination, performing the action of the sscond packet,

10, The methed of claim 1, wherein the flow includes a plurality of wildeard maich
flelds,

11, A nos-transttory maching readable medivm storing a program that when
executed by at loast ong procossing unit forwards packets, the program comprising sets of
mstructions for:

receiving o packet;

initiehzing & plurahty of match fields as wildeard fields;

dyvnamically generating a flow entry by un-wildcarding cach match ficld that is
consultod fo gencrating the flow eptry, wherein the How entry s associated wath an achion

performmng the action on the packet; and

storing the flow entry in a cache to process any subsequent packet that watches
cach non-wildeard field of the Bow entry.

12, The son-trangiory machine readable medivm of clanm 11, wherein the set of
nstroctions for dynamically generating comprises a set of nstructions for comparing a value of
a match field against the packet’s header value and vn-wildearding the mateh field.

13 The pon~trimsitory machine roadable medivum of cham 11, wherein the xot of
mstructions for dynamically generating comprises a set of instructions for selecting one or more
Hows from a flow table until & matching Jow is found.

14, The non-transttory machine readable modiom of claim 13, wherein the sot of
wstructions for dynamically gonerating comprises a st of instructions for un-wildcarding one
or mare fields based on an action associated with the matching How,

13, The non<ransitory machine rcadable medivm of claim 13, wherein the sot of
instructions for dynamically gensrating comprisss a set of wstructions for rescarching the same
flow table or another flow table for another muiching fow if the matching flow specifics a
rexubinit sction,

16, The non-transitory machine roaduble modium of claim 11, wherein the set of
instructions for dynansically generating comprises g set of fnstructions for using & hash-basod

alporithm to search for one or more matching flows while on-wildcarding cach mateh field that

44}

WO 2015/038198 PCT/US2014/036274

ix consulted during the scurch.

17, The non-transitory machine readable mediom of claim 16, wherein the hash-
based algorithe performs a multi-staged svarch, starting with infrequontly changing mateh
ficlds, and progressing © frequently changing felds.

18 The aon-transitory machine readable moediam of clainy 11 whaereln the set of
mstructions for dynsmucally generating comprises a set of nstructions for using a decision tree
algorithm o scarch for one v more matehing Hows while un-wildcarding cach match ficld that
is consulted during the search.

19 The non~transitory machine readable medium of ¢laim 11, whereln the packet ds
a first packet, the program further comprising sets of instructions fon

receiving & second packet;
determining that the second packet’s beader has values that matches each von-
wildeard field of the Hlow entey; and
in response o the deternmination, performing the action of the second packet.
20, The non-transitory machine readable mediwn of clatm 11, wherein the flow

mcludes a plurality of wildeard match fields,

WO 2015/038198

(1/18)

100

¥

> Receive a packet

110

Matching flow entry
stored in cache?

L— 105

— 125

PCT/US2014/036274

Select the flow entry

L— 115

/—120

Initialize some or all of the match
fields as wildcard fields

Perform the flow entry’s

associated set of actions on the

packet

v

Dynamically generate a new flow entry to store in
the cache by un-wildcarding each match field that
was consulted when generating the flow entry

v

associated set of actions on the packet

135
Cache the flow entry o
Perform the new flow entry’s 140

Receive

— 130

additional packets?

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO 2015/038198

(2/18)

PCT/US2014/036274

Switch 205

Switch 205

Datapath Flow Generator 210

Datapath Flow Generator 210

235

Flow Table 215

Flow Table 215

in_port(1), eth_dst(A),
action(2), priority(50)

in_port(1), eth_dst(A),
action(2), priority(50)

\ eth_dst (A)/

\ ip_dst (B)/

Datapath Manager 220

L)

Datapath cache

Datapath Manager 220

25

P pacetr /
>

No cached entry

Datapath cache

25 |

[1] Packet In

[2]

No cached entry

Ingress Port 1

/A

245

A

Switch 205

Datapath Flow Generator 210

235

/4

250

Cache Flow Entry

Datapath Manager 220

Datapath cache 225

No cached entry

255

®

Flow Table 215 1-- _ 240
[4]in._port(1), ethdst(A), action(2), prionity(50)] || [Sth=dst| ip_dst
— — \\\\\ A *
[5]

Switch 205

Switch 205

Datapath Flow Generator 210

Datapath Flow Generator 210

Flow Table 215

Flow Table 215

in_port(1), eth_dst(A),
action(2), priority(50)

in_port(1), eth_dst

(A),

action(2), priority(50)

[6]{

Datapath Manager 220

Datapath Manager 220

Datapath cache 225

Datapath cache

225

>

action(2)

[71in_port(1), eth_dst(A), ip_dst(B/ %),

action(2)

in_port(1), eth_dst(A), ip_dst(B/ %),

Packet Out
Output Port 2

[8]

260
* = Wildcard Field

240

265

FIG. 2

SUBSTITUTE SHEET (RULE 26)

240

WO 2015/038198

PCT/US2014/036274

(3/18)

1)

\ eth_dst(A) /

7

305 \ip_dst(B)/

Packet 2

Switch 205

Datapath Flow Generator 210

Flow Table 215

in_port(1), eth_dst(A), action(2), priority(50)

:

Datapath Manager 220

> Datapath cache 225 -
Packet In : . . [3] Packet Out
[1] Ingress Port 1 [2] in_port(1), eth_dst(A), ip_dst(B/ %), action(2) Output Port 2
240
Switch 205
Datapath Flow Generator 210
Flow Table 215
in_port(1), eth_dst(A), action(2), priorty(50)
\ eth_dst (A) /
310 Nip_dst(C) / '
Packet N [Datapath Manager 220
> Datapath cache 225
Packet In ; ; ; Packet Out
(1] Ingress Port 1 [2] in_port(1), eth_dst(A), ip_dst(B/%), action(2) 131 Satput Port 2

240

FIG. 3

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/036274

WO 2015/038198

(4/18)

v "OId

067 OIN

@87 OIN

alempleH |—

!

——

08% JeAlg 921A8Q

GI¥ lenuQ 92IneQg

_ JosintedAH ||

0¥

——G97v

| GZ¥

Gy

110)7

G6v

x 4
\ /
4 2
0% 2oy I I o B
L INA L INA T T 437
Jossaoold €| 10SS90014
uonoy ig ayoeD yjedejeq 19308y
Jaljsse —
V/|\ \1 097 Jousseld 307 obpug
A 027 (1ebeuepy Yredeleq) s|npojy |sulay
[BUIDY
\ 4
.................... o Svvy
(s)eigeL Mol illg Janlag aseqeleq SAQ
Jojersusn mol4 Yyiedeleq
0¥y uowse
)47 ad SAO A
\ N v
e 0G¥ @oedslasn
00% 1soH
\| y
SLy OLY
90%

(s)Js]j0nU0D JIoMmIBN

SUBSTITUTE SHEET (RULE 26)

WO 2015/038198 PCT/US2014/036274

(5/18)

500A 500B

~——502

512

Receive a packet —»| Receive the packet

v

504 506 Dynamically generate a new | —514
flow entry with zero or more

Send packet to wildcard fields
OVS daemon v

Any flow entry
that match each non-
wildcard field stored in

cache? Send instructions to kernel L — 516
module to store the flow entry
in cache
] * 1
Select the matching flow 9508 Send the packet to the kernel 18
entry from cache module with instructions to
perform a set of actions on
the packet
Perform a set of actions |—9510
based on the selected
flow entry
Start
End OVS Daemon (T2)
Kernel Module (T1)
500C 500D
Start
N ED \
524
20 Receive th ket f th -
. . eceive the packet from the
Receive instructions from the OVS g :
daemon to store the new flow entry [&—— — O\é?fgran?rgzgtvg},ggqis;%cgﬁqﬁéo
in the cache P
¢ packet
522 . 526
Cache the flow entry - Perform the set of actions [~
on the packet
End End
Kernel Module (T3) Kernel Module (T4)

FIG. 5

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/036274
(6/18)

WO 2015/038198

9 "OId

019 Plel4 PIedplip =N

(€ Hod Indino) — v | x a | x| z | |

o7 0y

- N0 190ed 10SS8001d e £ * d v r — <= 10SS820.d
uonoy uondY | N PIeY|Z piey | L plely |pod c__ 19X0ed

ayoe
\ 1onoRd \ 097 Jeuisse|D

80F ebpug

0¥ SINpoN [ula)]

G09 Gev ‘ 029

% 629
—_— 14 4 —
oTF ¥ d ¥ 0ch (1 Mod ssaibul) uj 19308
10S$9201d € ¥ d v | 10S$900.d |-
uonay uolRy | N PIgY | Z pIBY |1 piey pod ul 19)oed
[]
09¥ Jauisse|D —
80% obpug \on NPp@yy Gl9
/(@) ey
0Z% SINPOIA [BUISY /(W) pRey N
Gz X

029 Gor

SUBSTITUTE SHEET (RULE 26)

WO 2015/038198 PCT/US2014/036274

(7/18)
425
Kernel Module 420

‘\‘ field 1(E) ',’

\ field2 (F) ¢ Bridge 408

« field N (G) / Classifier 460
\ Packet in_port |field 1 (field 2 (field_N| Action Action
715 Processor Processor
q 430 1 A B * 3 435
Packet In 2 * D * 4
(ingress Port 2)

5 B \
620 425

705

Kernel Module 420

Bridge 408
Classifier 460
Packet in_port |field 1 (field 2 field_N| Action Action
Processor Processor
430 = 1 A B * 3 435
2 * D * 4

OVS Daemon 440 Y
Datapath Flow Generator 410
Classifier 720 |
| I]
Forwarding Decision
Modules(s)
125
710
FIG. 7 To FIG. 8

SUBSTITUTE SHEET (RULE 26)

WO 2015/038198

From FIG. 7

(8/18)

.

PCT/US2014/036274

OVS Daemon 440

Datapath Flow Generator 410

SUBSTITUTE SHEET (RULE 26)

Classifier 720 ;
Forwarding
415 | Decision Module(s)
25
715 \/ Packet /
820 ﬁ/ Flow Entry /
Kernel Module 420
Y
Bridge
Classifier 460
Packet in_port |field 1 [field 2 |field_N| Action Action
Processor Processor
430 > 1 A B * 3 435
2 * D * 4
805
425
|
Kernel Module 420 /
Bridge 408 /
Classifier 460 / 715
in_port| field 1| field 2[field_N|Action
Packet Action
Processor 1 A B * 3 | Processor >
430 2 * D * 4 435 Packet Out
(Output Port 5)
2 * F * 5
/—
820 810
FIG. 8

PCT/US2014/036274

WO 2015/038198

(9/18)

GlL6

aINpPo [puIay oL [g]

-«

06 Anu3 mol4
ayoed

dolp = uonoe g =1sep Yo

017 Jojelsusn mo|4 yiedeleq

6 ‘Ol s mog e
026 0 L 0 ASen
¥ 2 g v eleq
N PRy [isp ule |2is yse [06

[v]

0¥ uowseq SAO

4 ~
.

"' (doip) uonoe (0/0) N play ™

‘(g) 1sp wie ‘(0/v) 21s yie

AN

doip = uonoe ‘g =1s8p ye [g]

0T ¥ Jojessuso) moj4 Yiedeleq

Ov¥ uowseqg SAO

P
110)7
Anuz mold syoe) [z]
0 0 0 ASen pJesplim-uou = |
pIedpIM = 0
) g v ejeq
0i6 N PIey | Isp Uie |2is Yo —— ov6

-
-
-

-
Y

dolp = uonoe g =1sep yie

0T ¥ Jojessuso) moj4 Yjedejeq

Ov¥y uowseg SAO

110)7

G06

dolp = uoioe g =1sep Yo

0€6
a|NpoN [puJay woi4[}L]

<

akouﬁw:wo Mol4 Yjedeleq

OF% uowsed SAO | /(D) N Py

Gv6

14157 110)7

S (a)isp ye N\

Jo(WoasTye

’ \

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/036274

WO 2015/038198

(10/18)

A13u3 mol4 ayoe)
JASEN

0 l l

0 d v eleq

NPl [Isp uie [o1s yje

GloL

.... [o]

dolip = uonoe ‘g =1ssp yie ‘66 = Auoud [s]

\ Z = uolpoe ‘g =2Js ye {00l = Auoud

\ 0TV Jojessuan) mol4 yjedejeq
\ 0F¥ uowseq SAO
omm
oLoL
Aiju3g moj4 ayoen \
0 0 L |MSeN
8] =] VY | e1eq
N PIeY| 1sp ue|ais yie ——gz01
[v]

dolp = uonoe ‘g =1ssp yie ‘66 = Aond
Z = uonoe ‘g =2Js ye {00l = Auoud [€]

017 Jojeisusn) mol4 yiedejeq

Ov¥y uowseg SAO

0€0l

0} "Oid

8INPOIA |sulsy oL [/]

0col

-«
1 5z01 { A3 moi3
syoe)n

P
d
-
g

dolip = uonoe ‘g =1s8p Yo ‘66 = Alioud
Z = uonoe ‘g = 21s ys ‘{00l = Aoud

017 Jojessusn mol4 yiedeleq

0v¥ uowseq SAO

(doup) uonoe (0/0) N pIal ‘(g) 1sp yie ‘(v) 21s™ yie

5004
Auz mol4 ayae) [g]
0 0 0 IseN
5 q v ejed
N"PIoY | 1P o | oIS U o
x | o6

doup = uonoe ‘g =1ssp Y18 ‘66 = Aluoud +
Z = uoloe ‘g =21s Y18 {00} = Aoud

a|npo [suIay woid [1]

0T ¥ Jojessuso moj4 yiedejeq

/

0v¥ uowseq SAO

1oxoed

0€0l1 Sl

110} 7

Gv6

; (OINPBY

J (Q)sp ue N
/o(Vusye N

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/036274

WO 2015/038198

(11/18)

[9] As3uz moj4 ayoe)

0 l l JSen
0 d v eleq
N PIeY [Isp ue | 2Is yie
GeLl \ ..
1} [
O‘ nh
dolp=uonae :g=1sp” 32 ‘Z=p!" 3|del [g]
(2 1wgnsau=uonoe fy=24s yia {0=p! 9|ge1
07T Jojelsusn) mo|4 Yiedeleq
0F¥ uowseq SAO
OLLL
Aju3 mo|4 ayde) \
0 0 2 ASeN
) g v ejeq
. | N PB4 | 1sp uis | is e ——— Gzl
A
5 [v]

.

doJp=uonoe ‘g=1sp~ yia {g=p! a|qe1
(z)HMwgnsai=uonoe fy=2us"yie {0=p! 9|qer[g]

017 Jojeisusn) mol4 yiedejeq

Ovy uowseqg SAO

o€l

LL "OId

GlLLL

0cll

8INPOI [suJey oL [/]

doJp=uonoe ‘g=1sp~ yia ‘g=p! a|qe1
- (2 1wgnsau=uonoe fy=24s yia {0=pI 9|ge1

01V Jojelsusn) mo|4 Yiedeleq

Ov¥ uowseqg SAO

TANN Aiju3g mol4
ayoen

s

~,
~,

~

.-="" (doup) uonoe (0/0) N“pIoY .
(@) 1sp We ‘() 21 Yo

e ~

Asuz mol4 ayoe) []

GOLL

0 0 0 Asen
0 g v eleq
N PIeY |isp uie | 2is Yo [G2
/— -.
\ !
% ..
| gelLL

doJp=uonoe ‘g=1sp” Yo ‘g=pI 2|qe1 |
(2 wgnsau=uonoe fy=24s yia {0=p! o|gE1

a|npoy [sutey wold []

<
017 Jojeisusn mol4 yiedeleq
OvF uowaoe 1930Ed
)47 ad SAO or6
€Ll oLy J (O)Npies
Jo(@isp_we
A ; (WasTye

1410} 7%

1y
\ A

SUBSTITUTE SHEET (RULE 26)

WO 2015/038198 PCT/US2014/036274

(12/18)
v eth_type(0x0800) 405
\ip_src (1.1.1.1) } 1240
\ip_dst (1.1.1.2) 415 1240
\‘ l’
1230\ /| OVS Daemon 440 OVS Daemon 440
Datapath Flow Generator 410 Datapath Flow Generator 410
1] From Kernel ; — v antinn =
1 Module ip_src = 1.1.1.1; action = 2 ip_src = 1.1.1.1; action = 2
] ‘\ ,’ LY
I' \\ 7 -‘
. > l" [3] i
Data | 0x0800(1.1.1.1 1.1.1.2 1935 Data 0x0800 (1.1.1.1] 1.1.1.2
Mask 0 0 0 Mask 1 0 0
[2] Cache Flow Entry
/ f
1205 1210
1240
OVS Daemon 440 OVS Daemon 440
Datapath Flow Generator 410 Datapath Flow Generator 410
ip_src=1.1.1.1; action = 2 [4]ip_src = 1.1.1.1; action = 2
! 'S l ‘\
4 4 S
! 6] 3 ! [5] \
1235 eth_type [ip_src | ip_dst 1235 — eth_type|ip_src| ip_dst
T
Data 0x0800 |1.1.1.1| 1.1.1.2 Data 0x0800 [1.1.1.1f 1.1.1.2
Mask 1 1 0 Mask 1 1 0
Pl I
1220 1215
eth_type(0x0800), ip_src (1.1.1.1), ip_dst (1.1.1.2/0), action (2)
OVS Daemon 440 / Cache Flow
Entry 1235
Datapath Flow Generator 410
1240
ip_src =1.1.1.1; action = 2 >
[71 To Kernel Module

1225 FIG. 12

SUBSTITUTE SHEET (RULE 26)

€L OIld ohet

4 - (2) uonoe (0/V)N PIBY (211 1) Isp di“(L7)1 L)L) 2us™d
., ‘(reaiisp use (0opois™ e (0080X0)edAi ta (Vuodur L2170
0 I I 0 0 I ASEN T ‘ J
0 I I I I I SAsei

v [CLLHLLLY Jeq 00} [0080X0| ejeq
20 /A T 2 A | P 2 A 4 I 00} | 0080x0(®¥€d

N peu]1sp difois difisp yis|oi1s yie|adAr yie Geel ceel
N PIay|1sp difoss di|1sp yie [ous™yse [adAy yse

PCT/US2014/036274

\ L S/ " ol [

-
-
e

r
-
’

-

(Buisseo0id £/Z7 [BWIOU Op) [BUWION = UOIIOE & 3%

(Buisseooid £7/Z7 [ewIOU Op) [BUION = UONJE ‘¥

0T ¥ Jojessuso moj4 Yyjedejeq

017 Jojessusn) mol4 yiedeleq

Ovy uowseg SAO

0v¥ uowseqg SAO

(13/18)

ﬂ oLeEl Goel

v v

0 0 0 0 0 0 JSEN
0 0 0 0 0 l JSEN

Vo TV LY Je 00, X ee
v LLLLLLL 4] 00} 0080X0 eleq q) 0080x%0 jed

N PIay| 1sp di| ois™di|1sp yis| os Yo [adAy yse

WO 2015/038198

N PIay [1sp di [ous™d1 [1sp yie|ois Yo [adAy Yo ceel Geel
y []
\ / N \ a|NpPoN
' 7 . < [putey woiq [1]
(Buissao0ud £7/Z7 [BWIOU Op) [BWION = UONOE %
(Buissao0id £7/Z7 [BWIOU Op) [BWION = Uoljoe ¥ E
— Q [_ 1
T S —— 017 Jojelsusn) mo|4 Yyredejeq \ (V)N U_Iw_,____ oeel
— JAZ11TL)Isp_diy
0% uowseq SAO Oy UOWSEQ SAQ |/ (1-}'17)) 04s dli \
; (eqpsp uye
Gzel SLy g J (oopoisTue
gzel 110} ¢+ (0ogox0)edAy ye

SUBSTITUTE SHEET (RULE 26)

WO 2015/038198 PCT/US2014/036274

(14/18)

405
1

s eth_type(0x0800), | OVS Daemon 440
\ ip_src(1.1.1.1) /

\ ip_dst(1.1.1.2) /
1330‘\\ ficl d_N((A) 31,' Datapath Flow Generator 410
"/ Packet B Bonding MAC Other
Classifier ;
Module Learning Module(s)
From Kernel Module 720 1420 1425 1430

14(;‘5 &

OVS Daemon 440

Datapath Flow Generator 410

Classifi Bonding MAC Other
378286 1°r l&»| Module Learning Module(s)
. 1420 1425 1430

~
™~

, AN

1410 ! 1
in_port = 1; eth_type = 0x800; ip_src = 1.1.1.1; ip_dst=1.1.1.2

S

103 -

OVS Daemon 440

Datapath Flow Generator 410

Classifier Bonding MAC Other
720 Module [« Learning Module(s)
— 1420 1425 1430

S~ N
IS

I I 1
in_port = 1; eth_type = 0x800; ip_src = 1.1.1.1; ip_dst = 1.1.1.2; eth_src = foo; eth_dst = bar

/
1335 f

1415 FIG. 14

SUBSTITUTE SHEET (RULE 26)

WO 2015/038198 PCT/US2014/036274

(15/18)
OVS Daemon 440
Datapath Flow Generator 410 Classifier
[P 720 <
Bonding Module
«— 1420

eth_src |eth_dst | field_N

Data «—»| MAC Learning Module
1425
Mask
—3 BFD Module
1505

Learn Action Module

1510

FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 2015/038198

PCT/US2014/036274
(16/18)
1600\ Receive a packet — 1605
Initialize all match fields as {1610
wildcard fields
1615

Select a flow from a flow table if available
or select a rule (e.g., a default rule)

1620

Any one or more
atch fields compare

— 1625
Mark the one or more match fields as

non-wildcard fields

Y

1630

Matching flow?

1635

Action specifies
consulting one or more match
fields

— 1640

Mark the one or more match fields as

non-wildcard fields

1645

Action specifies a

esubmit operation?

- — 1650
Generate a flow entry with each remaining f—
wildcard field specified as wildcards

v

Send new flow entry to the kernel

— 1655

FIG. 16 End

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/036274

WO 2015/038198

(17/18)

sczvo | ores | o6 | 00 | o0 |zxoou |owe f oo [o | 999901 00000 1 gogoxo | EO09.09 1 100000
szro [ores | g6 | 00 | 00 |zxoou [omme oo | on | D99 %0 | 99090 1 oosoxo | 109099 | 000 e

0041

SUBSTITUTE SHEET (RULE 26)

PCT/US2014/036274

WO 2015/038198

(18/18)

81 "OId

o8l
cog| _ 0181 0€8l
JJomjaN $90I1A8(Indu| 10S$9201d WOy
N
G081
(NdO)
sao1A8q INdINO Aowsy waisAg nun Buissesold
_ Gz8l 0281
AN Gegl
G¥8lL

AN

008l

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/036274

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L12/721 HO4L12/741 HO4L12/935
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X NOBUTAKA MATSUMOTO ET AL: "LightFlow: 1,3-5,
Speeding up GPU-based flow switching and 11,13-15
facilitating maintenance of flow table",
HIGH PERFORMANCE SWITCHING AND ROUTING
(HPSR), 2012 TEEE 13TH INTERNATIONAL
CONFERENCE ON, IEEE,

24 June 2012 (2012-06-24), pages 76-81,
XP032217636,

DOI: 10.1109/HPSR.2012.6260831

ISBN: 978-1-4577-0831-2

Y the whole document 2,6-10,
12,16-20

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other

. e "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified)

considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later than
the priority date claimed "&" document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

5 September 2014 15/09/2014

Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016 Von Der Straten, G

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2014/036274

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y ANDREW R CURTIS ET AL: "DevoFlow",
SIGCOMM, ACM, 2 PENN PLAZA, SUITE 701 NEW
YORK NY 10121-0701 USA,

15 August 2011 (2011-08-15), pages
254-265, XP058006656,

DOI: 10.1145/2018436.2018466

ISBN: 978-1-4503-0797-0

abstract

page 259, column 2

A US 20137163427 Al (BELIVEAU LUDOVIC [US]
ET AL) 27 June 2013 (2013-06-27)
abstract

paragraph [0044] - paragraph [0102];
figures 1,3-6

2,6-10,
12,16-20

1-20

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2014/036274
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2013163427 Al 27-06-2013 CN 103999431 A 20-08-2014
US 2013163427 Al 27-06-2013
WO 2013093860 Al 27-06-2013

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - wo-search-report
	Page 63 - wo-search-report
	Page 64 - wo-search-report

