

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2012318279 B2

(54) Title
Use of sulfated glycosaminoglycans for improving the bioavailability of Factor VIII

(51) International Patent Classification(s)
A61K 38/00 (2006.01)

(21) Application No: **2012318279** (22) Date of Filing: **2012.10.18**

(87) WIPO No: **WO13/057167**

(30) Priority Data

(31) Number **61/548,606** (32) Date **2011.10.18** (33) Country **US**
11185648.0 **2011.10.18** **EP**

(43) Publication Date: **2013.05.02**
(43) Publication Journal Date: **2013.05.02**
(44) Accepted Journal Date: **2015.06.04**

(71) Applicant(s)
CSL Behring GmbH

(72) Inventor(s)
Metzner, Hubert;Zollner, sabine

(74) Agent / Attorney
FB Rice, Level 23 44 Market Street, Sydney, NSW, 2000

(56) Related Art
WO2011/020866
WO2011/095604
WO2009/108806

5 **Abstract**

The present invention relates to pharmaceutical preparations comprising one or more Factor VIII and a sulfated glycosaminoglycan for increasing the bioavailability of Factor VIII upon non-intravenous administration. The invention further relates to 10 the combined use of Factor VIII and a sulfated glycosaminoglycan for the treatment and prevention of bleeding disorders, whereby the bioavailability of Factor VIII is increased, and to a method for increasing the bioavailability after non-intravenous administration of Factor VIII by coadministration of a sulfated glycosaminoglycan.

5 Use of sulfated glycosaminoglycans for improving the bioavailability of Factor VIII

The present invention relates to pharmaceutical preparations comprising at least one Factor VIII and a sulfated glycosaminoglycan for increasing the bioavailability 10 of Factor VIII upon non-intravenous administration. The invention further relates to the combined use of a Factor VIII and a sulfated glycosaminoglycan for the treatment and prevention of bleeding disorders, whereby the bioavailability of the Factor VIII is increased, and to a method for increasing the bioavailability after non- 15 intravenous administration of a Factor VIII by co-administration of a sulfated glycosaminoglycan.

Background of the invention

20

Factor VIII (FVIII)

FVIII is a blood plasma glycoprotein of about 280 kDa molecular mass, produced in the liver of mammals. It is a critical component of the cascade of coagulation reactions that lead to blood clotting. Within this cascade is a step in which Factor 25 IXa (FIXa), in conjunction with activated Factor VIII (FVIIIa), converts Factor X (FX) to an activated form, FXa. FVIIIa acts as a cofactor at this step, being required together with calcium ions and phospholipids for maximizing the activity of FIXa. The most common hemophilic disorder is caused by a deficiency of functional FVIII called hemophilia A.

30

An important advance in the treatment of Hemophilia A has been the isolation of cDNA clones encoding the complete 2,351 amino acid sequence of human FVIII

(United States Patent No. 4,757,006) and the provision of the human FVIII gene DNA sequence and recombinant methods for its production).

Analysis of the deduced primary amino acid sequence of human FVIII determined

5 from the cloned cDNA indicates that it is a heterodimer processed from a larger precursor polypeptide. The heterodimer consists of a C-terminal light chain of about 80 kDa in a metal ion-dependent association with an about 200 kDa N-terminal heavy chain. (See review by Kaufman, Transfusion Med. Revs. 6:235 (1992)).
10 Physiological activation of the heterodimer occurs through proteolytic cleavage of the protein chains by thrombin. Thrombin cleaves the heavy chain to a 90 kDa protein, and then to 54 kDa and 44 kDa fragments. Thrombin also cleaves the 80 kDa light chain into a 72 kDa protein. It is the latter protein, and the two heavy chain fragments (54 kDa and 44 kDa above), held together by calcium ions, that constitute active FVIII. Inactivation occurs when the 44 kDa A2 heavy chain
15 fragment dissociates from the molecule or when the 72 kDa and 54 kDa domains are further cleaved by thrombin, activated protein C or FXa. In plasma, FVIII is stabilized by association with a 50-fold molar excess of Von Willebrand Factor protein ("VWF"), which appears to inhibit proteolytic destruction of FVIII as described above.

20

The amino acid sequence of FVIII is organized into three structural domains: a triplicated A domain of 330 amino acids, a single B domain of 980 amino acids, and a duplicated C domain of 150 amino acids. The B domain has no homology to other proteins and provides 18 of the 25 potential asparagine(N)-linked glycosylation sites
25 of this protein. The B domain has apparently no function in coagulation and can be deleted with the B-domain deleted FVIII molecule still having procoagulant activity.

Von Willebrand Factor (VWF)

VWF is a multimeric adhesive glycoprotein present in the plasma of mammals,
30 which has multiple physiological functions. During primary hemostasis VWF acts as a mediator between specific receptors on the platelet surface and components of

the extracellular matrix such as collagen. Moreover, VWF serves as a carrier and stabilizing protein for procoagulant FVIII. VWF is synthesized in endothelial cells and megakaryocytes as a 2813 amino acid precursor molecule. The precursor polypeptide, pre-pro-VWF, consists of a 22-residue signal peptide, a 741- residue

5 pro-peptide and the 2050-residue polypeptide found in mature plasma VWF (Fischer et al., FEBS Lett. 351: 345-348, 1994). Upon secretion into plasma VWF circulates in the form of various species with different molecular sizes. These VWF molecules consist of oligo- and multimers of the mature subunit of 2050 amino acid residues. VWF can be usually found in plasma as one dimer up to multimers
10 consisting of 50 - 100 dimers (Ruggeri et al. Thromb. Haemost. 82: 576-584, 1999). The in vivo half-life of human VWF in the human circulation is approximately 12 hours.

15 The most frequent inherited bleeding disorder in humans is von Willebrand's disease (VWD). Depending on the severity of the bleeding symptoms, VWD can be treated by replacement therapy with concentrates containing VWF, in general derived from human plasma but recombinant VWF also is under development. VWF can be prepared from human plasma as for example described in EP 0503991. In patent EP 0784632 a method for isolating recombinant VWF is described.

20 VWF is known to stabilize FVIII in vivo and, thus, plays a crucial role to regulate plasma levels of FVIII and as a consequence is a central factor to control primary and secondary hemostasis. It is also known that after intravenous administration of pharmaceutical preparations containing VWF in VWD patients an increase in
25 endogenous FVIII:C to 1 to 3 units per ml in 24 hours can be observed demonstrating the in vivo stabilizing effect of VWF on FVIII.

30 The patients in general benefit from the specific mode of action of the active ingredients but currently all commercially available Factor VIII preparations are administered via intravenous administration which involves a risk for infections at

the injection site and is in general a procedure patients would like to avoid especially in the treatment of children with defects in their coagulation system.

Until today the standard treatment of Hemophilia A and VWD involves frequent

5 intravenous infusions of preparations of FVIII and VWF concentrates. The treatment of Hemophilia B requires the biweekly administration of Factor IX and in the treatment of inhibitor patients with FVIIa, multiple administrations of FVIIa per week are used to avoid bleedings.

10 These replacement therapies are generally effective, however, for example in severe hemophilia A patients undergoing prophylactic treatment Factor VIII has to be administered intravenously (i.v.) about 3 times per week due to the short plasma half life of Factor VIII of about 12 hours. Already by achieving FVIII levels above 1% of normal human plasma corresponding to a raise of FVIII levels by 0.01 U/ml,

15 severe hemophilia A is turned into moderate hemophilia A. In prophylactic therapy the dosing regime is designed such that the trough levels of FVIII activity do not fall below levels of 2-3% of the FVIII activity of non-hemophiliacs.

20 The administration of a Factor VIII via intravenous administration is cumbersome, associated with pain and entails the risk of an infection especially as this is mostly done in home treatment by the patients themselves or by the parents of children being diagnosed for hemophilia A. In addition, frequent intravenous injections inevitably result in scar formation, interfering with future infusions. As prophylactic treatment in severe hemophilia is started early in life, with children often being less

25 than 2 years old, it is even more difficult to inject FVIII 3 times per week into the veins of such small patients. For a limited period of time, implantation of port systems may offer an alternative. However, in these cases repeated infections may occur and ports can cause inconvenience during physical exercise.

30 Thus there is a great medical need to obviate the need to infuse Factor VIII intravenously.

Subcutaneous administration has been proposed for Factor VIII, e.g. in WO 95/01804 A1 and WO 95/026750. However, very high doses of Factor VIII had to be administered to achieve an acceptable bioavailability.

5

Another approach to improve the bioavailability upon non-intravenous administration has been to use albumin-fused Factor VIII (WO 2011/020866 A2).

10 It is highly desirable to improve the bioavailability of Factor VIII upon non-intravenous administration. The inventors of this application surprisingly found that the bioavailability of Factor VIII is substantially increased if it is administered together with sulfated glycosaminoglycans.

Summary of the invention

15

In a first aspect the present invention therefore relates to a Factor VIII for use in the treatment or prevention of a bleeding disorder, said treatment or prevention comprising the non-intravenous injection of said Factor VIII and of a sulfated glycosaminoglycan,

20

In a further aspect, the present invention therefore relates to a Factor VIII for use in the treatment or prevention of a bleeding disorder, said treatment or prevention comprising the non-intravenous injection of said Factor VIII and of a sulfated glycosaminoglycan, wherein, during a period from 2 hours after injection to 48 hours after injection, the plasma level of the Factor VIII in the treated subject is continuously higher than 2% of the normal plasma level of the Factor VIII in healthy subjects when the Factor VIII is administered subcutaneously at a dose of 50 to 1000 IU/kg body weight.

30

A preferred embodiment of this aspect is a Factor VIII for use in the treatment or prophylaxis of hemophilia A in a human individual, said treatment or prophylaxis comprising the administration of said Factor VIII and of a sulfated glycosaminoglycan by subcutaneous, intradermal or intramuscular injection,
5 wherein, during a period from 2 hours after injection to 48 hours after injection, the plasma level of the Factor VIII in the human individual is continuously higher than 2% of the normal plasma level of the Factor VIII in healthy human individuals when the Factor VIII is administered subcutaneously at a dose of 50 to 1000 IU/kg body weight.

10

Another aspect of the invention is a Factor VIII for use in the treatment or prophylaxis of a bleeding disorder in a human individual, said treatment or prophylaxis comprising the administration of said Factor VIII and of a sulfated glycosaminoglycan by subcutaneous, transdermal or intramuscular injection,
15 wherein the relative bioavailability of the Factor VIII in the human individual is at least 20% higher than that of the Factor VIII administered in the same manner without sulfated glycosaminoglycan.

A preferred embodiment of this aspect is a Factor VIII for use in the treatment or
20 prophylaxis of hemophilia A in a human individual, said treatment or prophylaxis comprising the administration of said Factor VIII and of a sulfated glycosaminoglycan by subcutaneous, intradermal or intramuscular injection, wherein the relative bioavailability of the Factor VIII in the human individual is at least 20% higher than that of the Factor VIII administered in the same manner
25 without sulfated glycosaminoglycan.

In a third aspect, the invention relates to a sulfated glycosaminoglycan for improving the bioavailability of a Factor VIII.
30 In a further aspect, the invention relates to a sulfated glycosaminoglycan for improving the bioavailability of a Factor VIII, wherein said sulfated

glycosaminoglycan and said Factor VIII are administered by subcutaneous, transdermal or intramuscular injection.

5 A further aspect of the invention is a pharmaceutical kit for the therapy or prophylaxis of a bleeding disorder, comprising a Factor VIII and a sulfated glycosaminoglycan.

10 A further aspect of the invention is a method of treating or preventing a bleeding disorder, comprising administering to a subject in need thereof a therapeutically effective amount of a Factor VIII and a sulfated glycosaminoglycan so as to increase the bioavailability of the Factor VIII, wherein said administration comprises subcutaneous, transdermal or intramuscular injection.

15 A further aspect of the invention is a method for increasing the bioavailability of a Factor VIII, wherein a sulfated glycosaminoglycan is co-administered with said Factor VIII by subcutaneous, intradermal or intramuscular injection.

20 In all aspects of the invention, the Factor VIII is preferably human Factor VIII. A preferred sulfated glycosaminoglycan is heparin, most preferably the heparin is unfractionated heparin.

25 According to the invention there is also provided a method for treating or preventing a bleeding disorder, the method comprising administering non-intravenously Factor VIII and of a sulfated glycosaminoglycan.

According to the invention there is also provided a method for treating or preventing a bleeding disorder, the method comprising administering non-intravenously Factor VIII together with a sulfated glycosaminoglycan, wherein the Factor VIII is administered subcutaneously at a dose of 50 IU/kg body weight to about 1,000 IU/kg body weight and wherein the amount of the sulfated glycosaminoglycan is between 0.001 and 100mg per mL product applied.

According to the invention there is also provided a method for improving the bioavailability of Factor VIII in the treatment or prevention of a bleeding disorder, the method comprising administering a sulfated glycosaminoglycan, wherein said glycosaminoglycan and said Factor VIII are administered by subcutaneous, transdermal or intramuscular injection.

According to the invention there is also provided a pharmaceutical kit when used for the treatment or prevention of a bleeding disorder, comprising Factor VIII and a sulfated glycosaminoglycan, wherein said sulfated glycosaminoglycan and said Factor VIII are administered non-intraveneously.

Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.

25

Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date of each claim of this application.

Description of the Figure

Figure 1 depicts the results of Example 1. The bioavailability of FVIII is increased if a sulfated glycosaminoglycan is co-administered. As can be seen, 5 dextran sulfate has no positive effect.

Detailed Description

The present invention concerns the treatment and prophylaxis of bleeding disorders.

5

As used herein, the term "bleeding disorders" includes familial and acquired hemophilia A.

According to the first aspect of the invention a therapeutic, non-intravenous use of a
10 Factor VIII is provided which comprises co-administration of a sulfated
glycosaminoglycan.

Factor VIII may be wild-type Factor VIII polypeptides or Factor VIII polypeptides
which may contain mutations. The degree and location of glycosylation or other
15 post-translation modifications may vary depending on the chosen host cells and the
nature of the host cellular environment. When referring to specific amino acid
sequences, posttranslational modifications of such sequences are encompassed in
this application.

20 The terms "Factor VIII", and FVIII" are used interchangeably herein. "Factor VIII"
includes wild type Factor VIII as well as derivatives of wild type Factor VIII having
the procoagulant activity of wild type Factor VIII. Derivatives may have deletions,
insertions and/or additions compared with the amino acid sequence of wild type
Factor VIII. The term Factor VIII includes proteolytically processed forms of Factor
25 VIII, e.g. the form before activation, comprising heavy chain and light chain.

The term "Factor VIII" includes any Factor VIII variants or mutants having at least
10%, preferably at least 25%, more preferably at least 50%, most preferably at least
75% of the biological activity of wild type Factor VIII. A suitable test to determine the
30 biological activity of Factor VIII is the one stage or the two stage coagulation assay
(Rizza et al. 1982. Coagulation assay of FVIII:C and FIXa in Bloom ed. The

Hemophilias. NY Churchill Livingston 1992) or the chromogenic substrate FVIII activity assay (S. Rosen, 1984. Scand J Haematol 33: 139-145, suppl.). The content of these references is incorporated herein by reference.

- 5 As non-limiting examples, Factor VIII molecules include Factor VIII mutants preventing or reducing APC cleavage (Amano 1998. Thromb. Haemost. 79:557-563), albumin-fused FVIII molecules (WO 2011/020866 A2), FVIII-Fc fusion molecules (WO 04/101740 A), Factor VIII mutants further stabilizing the A2 domain (WO 97/40145), FVIII mutants resulting in increased expression (Swaroop et al.
- 10 1997. JBC 272:24121-24124), Factor VIII mutants with reduced immunogenicity (Lollar 1999. Thromb. Haemost. 82:505-508), FVIII reconstituted from differently expressed heavy and light chains (Oh et al. 1999. Exp. Mol. Med. 31:95-100), FVIII mutants reducing binding to receptors leading to catabolism of FVIII like HSPG (heparan sulfate proteoglycans) and/or LRP (low density lipoprotein receptor
- 15 related protein) (Ananyeva et al. 2001. TCM, 11:251-257), disulfide bond-stabilized FVIII variants (Gale et al., 2006. J. Thromb. Hemost. 4:1315-1322), FVIII mutants with improved secretion properties (Miao et al., 2004. Blood 103:3412-3419), FVIII mutants with increased cofactor specific activity (Wakabayashi et al., 2005. Biochemistry 44:10298-304), FVIII mutants with improved biosynthesis and
- 20 secretion, reduced ER chaperone interaction, improved ER-Golgi transport, increased activation or resistance to inactivation and improved half-life (summarized by Pipe 2004. Sem. Thromb. Hemost. 30:227-237), and FVIII mutants having a deletion of all or part of the B-domain (see, e.g., WO 2004/067566 A1, WO 02/102850 A2, WO 00/24759 A1 and US patent No. 4,868,112). Particularly
- 25 preferred are FVIII molecules which are "single chain" FVIII molecules. Single chain FVIII have a deletion of all or part of the B-domain and a deletion of all or a part of the acidic a3 region, so that the cleavage site at Arg1648 (which is usually cleaved during secretion) is deleted. Single chain FVIII molecules are disclosed in, e.g., WO 2004/067566 A1; US 2002/132306 A1; Krishnan et al. (1991) European
- 30 Journal of Biochemistry vol. 195, no. 3, pages 637-644; Herlitschka et al. (1998)

Journal of Biotechnology, vol. 61, no. 3, pages 165-173; Donath et al. (1995)
Biochem. J., vol. 312, pages 49-55.

All of these Factor VIII mutants and variants are incorporated herein by reference in
5 their entirety.

The amino acid sequence of the mature wild type form of human Factor VIII is
shown in SEQ ID NO:2. The reference to an amino acid position of a specific
sequence means the position of said amino acid in the FVIII wild-type protein and
10 does not exclude the presence of mutations, e.g. deletions, insertions and/or
substitutions at other positions in the sequence referred to. For example, a mutation
in "Glu2004" referring to SEQ ID NO:2 does not exclude that in the modified
homologue one or more amino acids at positions 1 through 2332 of SEQ ID NO:2
are missing. A DNA sequence encoding SEQ ID NO:2 is shown in SEQ ID NO:1.

15 The term "glycosaminoglycan", as used herein, refers to an oligo- or polysaccharide
comprising particularly aminohexose units. Sulfated glycosaminoglycans include,
but are not limited to chondroitin sulfate, dermatan sulfate, keratan sulfate, heparin
and heparan sulfate. Preferably, the sulfated glycosaminoglycan is heparin, most
20 preferably, the sulfated glycosaminoglycan is unfractionated heparin.

The term "heparin" includes unfractionated heparin and heparins having a lower
molecular weight. In one embodiment, the heparin used in accordance with this
invention is "unfractionated heparin" which may have an average molecular weight
25 of about 8 kDa to about 30 kDa, preferably of about 10 kDa to about 20 kDa, most
preferably of about 12 kDa to about 16 kDa, e.g. about 15 kDa. In another
embodiment, the heparin used in accordance with this invention is a low molecular
weight heparin (LMWH). LMWHs are heparins or heparin salts having an average
molecular weight of less than 8000 Da and for which at least 60% of all chains have
30 a molecular weight less than 8000 Da. Preferably, the molecular weight of the
LMWH used in accordance with this invention is about 2 kDa to about 8 kDa, more

preferably about 3 kDa to about 6 kDa, most preferably of about 4 kDa to about 5 kDa, e.g. about 4.5 kDa. The LMWHs can be obtained by various methods of fractionation or depolymerisation of polymeric heparin. Examples of LMWHs include, but are not limited to, ardeparin (Normiflo), certoparin (Sandoparin), 5 enoxaparin (Lovenox and Clexane), parnaparin (Fluxum), tinzaparin (Innohep and Logiparin), dalteparin (Fragmin), reviparin (Clivarin) and nadroparin (Fraxiparin).

The term "heparin" includes also small molecular weight fragments of heparin molecules, either derived from naturally occurring heparin by cleavage and isolation 10 or by synthetic routes. A commercially available sulfated pentasaccharide exists for example that is manufactured synthetically and which structure is derived from heparin. It is available as Fondaparinux sodium.

Chondroitin sulfate includes, e.g., chondroitin sulfate A (chondroitin-4-sulfate), 15 chondroitin sulfate C (chondroitin-6-sulfate), chondroitin sulfate D (chondroitin-2,6-sulfate), and chondroitin sulfate E (chondroitin-4,6-sulfate).

Dermatan sulfate (previously also called chondroitin sulfate B) is another sulfated glycosaminoglycan which is commercially available.

20 Keratan sulfate is another sulfated glycosaminoglycan. The structure of keratan sulfate is described in, e.g., Funderburgh (2000) Glycobiology vol. 10 no. 10 pp. 951-958.

25 Heparan sulfate is an N-sulfated polysaccharide which is different from Heparin (see, e.g., Gallagher, J.T., Lyon, M. (2000). "Molecular structure of Heparan Sulfate and interactions with growth factors and morphogens". In Iozzo, M. V.. Proteoglycans: structure, biology and molecular interactions. Marcel Dekker Inc. New York, New York. pp. 27-59; and Gallagher, J. T. Walker, A. (1985). "Molecular 30 distinctions between Heparan Sulphate and Heparin: Analysis of sulphation

patterns indicates Heparan Sulphate and Heparin are separate families of N-sulphated polysaccharides". Biochem. J. 230 (3): 665-74)

In one embodiment of the invention, the plasma level of the Factor VIII in the
5 treated subject is, during a period from 5 hours after injection to 8 hours after
injection, continuously higher than 2%, preferably higher than 5%, more preferably
higher than 8%, most preferably higher than 10%, of the normal plasma level of the
Factor VIII in healthy subjects. The plasma level is to be determined as shown
hereinafter in Example 1.

10

In one embodiment of the invention, the plasma level of the Factor VIII in the
treated subject is, during a period from 4 hours after injection to 16 hours after
injection, continuously higher than 2%, preferably higher than 5%, more preferably
higher than 8%, most preferably higher than 10%, of the normal plasma level of the
15 Factor VIII in healthy subjects.

In another embodiment of the invention, the plasma level of the Factor VIII in the
treated subject is, during a period from 3 hours after injection to 24 hours after
injection, continuously higher than 2%, preferably higher than 4%, more preferably
20 higher than 6%, most preferably higher than 8%, of the normal plasma level of the
Factor VIII in healthy subjects.

In another embodiment of the invention, the plasma level of the Factor VIII in the
treated subject is, during a period from 2 hours after injection to 32 hours after
25 injection, continuously higher than 2%, preferably higher than 3%, more preferably
higher than 4%, most preferably higher than 5%, of the normal plasma level of the
Factor VIII in healthy subjects.

In yet another embodiment of the invention, the plasma level of the Factor VIII in
30 the treated subject is, during a period from 1 hour after injection to 48 hours after
injection, continuously higher than 2%, preferably higher than 3%, more preferably

higher than 4%, most preferably higher than 5%, of the normal plasma level of the Factor VIII in healthy subjects.

The above-mentioned plasma levels are preferably obtained when the Factor VIII

- 5 (e.g. FVIII) is administered by subcutaneous injection at a dose of less than 1,000 IU/kg body weight, or less than 800 IU/kg body weight, or less than 600 IU/kg body weight, or less than 400 IU/kg body weight, e.g. at a dose of from about 10 IU/kg body weight to about 1,000 IU/kg body weight, or from about 20 IU/kg body weight to about 800 IU/kg body weight, or from about 30 IU/kg body weight to about 700
- 10 IU/kg body weight, or from about 40 IU/kg body weight to about 600 IU/kg body weight, or from about 50 IU/kg body weight to about 500 IU/kg body weight, or from about 75 IU/kg body weight to about 400 IU/kg body weight, or from about 100 IU/kg body weight to about 300 IU/kg body weight, or from about 50 IU/kg body weight to about 1,000 IU/kg body weight, or from about 50 IU/kg body weight to
- 15 about 800 IU/kg body weight, or from about 50 IU/kg body weight to about 700 IU/kg body weight, or from about 50 IU/kg body weight to about 600 IU/kg body weight, or from about 50 IU/kg body weight to about 500 IU/kg body weight, or from about 50 IU/kg body weight to about 400 IU/kg body weight, or from about 50 IU/kg body weight to
- 20 about 300 IU/kg body weight, or about 50 IU/kg body weight to about 200 IU/kg body weight.

In one embodiment, the Factor VIII and the sulfated glycosaminoglycan are contained in the same composition. This composition comprising the two components may be administered to the patient by a single injection or the like.

- 25 In another embodiment, the Factor VIII and the sulfated glycosaminoglycan are not present in the same composition. For example, each of the two components may be provided in a separate dosage form in said pharmaceutical preparation.
- 30 If the two components are not present in the same composition the separate compositions may either be administered separately, or they may be mixed shortly

before administration so that the Factor VIII and the sulfated glycosaminoglycan will be administered simultaneously. If there is separate administration, the administration may be done sequentially, e.g. in a time-staggered manner. In general, it is preferred that the two components are administered simultaneously by 5 a single administration, e.g. injection. Various routes of administration are discussed below. They apply to the above *mutatis mutandis*.

The components of the pharmaceutical preparation may be dissolved in conventional physiologically compatible aqueous buffer solutions to which there 10 may be added, optionally, pharmaceutical excipients to provide the pharmaceutical preparation. The components of the pharmaceutical preparation may already contain all necessary pharmaceutical, physiologically compatible excipients and may be dissolved in water for injection to provide the pharmaceutical preparation.

15 Such pharmaceutical carriers and excipients as well as the preparation of suitable pharmaceutical formulations are well known in the art (see for example "Pharmaceutical Formulation Development of Peptides and Proteins", Frokjaer et al., Taylor & Francis (2000) or "Handbook of Pharmaceutical Excipients", 3rd edition, Kibbe et al., Pharmaceutical Press (2000)). In certain embodiments, a 20 pharmaceutical composition can comprise at least one additive such as a filler, bulking agent, buffer, stabilizer, or excipient. Standard pharmaceutical formulation techniques are well known to persons skilled in the art (see, e.g., 2005 Physicians' Desk Reference®, Thomson Healthcare: Montvale, NJ, 2004; Remington: The Science and Practice of Pharmacy, 20th ed., Gennaro et al., Eds. Lippincott 25 Williams & Wilkins: Philadelphia, PA, 2000). Suitable pharmaceutical additives include, e.g., sugars like mannitol, sorbitol, lactose, sucrose, trehalose, or others, amino acids like histidine, arginine, lysine, glycine, alanine, leucine, serine, threonine, glutamic acid, aspartic acid, glutamine, asparagine, phenylalanine, or others, additives to achieve isotonic conditions like sodium chloride or other salts, 30 stabilizers like Polysorbate 80, Polysorbate 20, Polyethylene glycol, propylene glycol, calcium chloride, or others, physiological pH buffering agents like

Tris(hydroxymethyl)aminomethan, and the like. In certain embodiments, the pharmaceutical compositions may contain pH buffering reagents and wetting or emulsifying agents. In further embodiments, the compositions may contain preservatives or stabilizers. In particular, the pharmaceutical preparation comprising
5 the Factor VIII may be formulated in lyophilized or stable soluble form. The Factor VIII may be lyophilized by a variety of procedures known in the art. Also if the sulfated glycosaminoglycan and the Factor VIII are contained in the same composition, such composition may also be provided in lyophilized or in stable soluble form. Lyophilized formulations are reconstituted prior to use by the addition
10 of one or more pharmaceutically acceptable diluents such as sterile water for injection or sterile physiological saline solution or a suitable buffer solution.

The composition(s) contained in the pharmaceutical preparation of the invention may be delivered to the individual by any pharmaceutically suitable means. Various
15 delivery systems are known and can be used to administer the composition by any convenient route. Preferably, the composition(s) contained in the pharmaceutical preparation of the invention are delivered to the individual by non-intravenous injection. More preferably, the composition(s) of the invention are formulated for subcutaneous, intramuscular, intraperitoneal, intracerebral, intrapulmonar,
20 intranasal, intradermal or transdermal administration, most preferably for subcutaneous, intramuscular or transdermal administration according to conventional methods. The formulations can be administered continuously by infusion or by bolus injection. Some formulations may encompass slow release systems.

25

The composition(s) of the pharmaceutical preparation of the present invention is/are administered to patients in a therapeutically effective dose, meaning a dose that is sufficient to produce the desired effects, preventing or lessening the severity or spread of the condition or indication being treated without reaching a dose which
30 produces intolerable adverse side effects. The exact dose depends on many factors

as e.g. the indication, formulation, mode of administration and has to be determined in preclinical and clinical trials for each respective indication.

In the case of Factor VIII, the dose of one administration may be selected such that,

- 5 during a period from 2 hours after injection to 48 hours after injection, the plasma level of the Factor VIII in the treated subject is continuously higher than 2%, preferably higher than 3%, more preferably higher than 4%, most preferably higher than 5%, of the normal plasma level of Factor VIII in healthy subjects.
- 10 Preferably, the dose of Factor VIII for one administration is less than 1,000 IU/kg body weight, or less than 800 IU/kg body weight, or less than 600 IU/kg body weight, or less than 400 IU/kg body weight, e.g. at a dose of from about 10 IU/kg body weight to about 1,000 IU/kg body weight, or from about 20 IU/kg body weight to about 800 IU/kg body weight, or from about 30 IU/kg body weight to about 700
- 15 IU/kg body weight, or from about 40 IU/kg body weight to about 600 IU/kg body weight, or from about 50 IU/kg body weight to about 500 IU/kg body weight, or from about 75 IU/kg body weight to about 400 IU/kg body weight, or from about 100 IU/kg body weight to about 300 IU/kg body weight, or from about 50 IU/kg body weight to about 1,000 IU/kg body weight, or from about 50 IU/kg body weight to
- 20 about 800 IU/kg body weight, or from about 50 IU/kg body weight to about 700 IU/kg body weight, or from about 50 IU/kg body weight to about 600 IU/kg body weight, or from about 50 IU/kg body weight to about 500 IU/kg body weight, or from about 50 IU/kg body weight to about 400 IU/kg body weight, or from about 50 IU/kg body weight to about 300 IU/kg body weight, or about 50 IU/kg body weight to
- 25 about 200 IU/kg body weight.

The Factor VIII can be administered on its own together with the sulfated glycosaminoglycan. Alternatively, the Factor VIII can be administered in association with vWF, i.e. as a FVIII/vWF complex, together with the sulfated glycosaminoglycan.

The amount of sulfated glycosaminoglycan administered typically ranges from about 0.001 to about 100 mg/mL product applied, from about 0.01 to about 10 mg/mL product applied, from about 0.05 to about 1 mg/mL product applied.

- 5 The term „bioavailability”, as used herein, refers to the proportion of an administered dose of a Factor VIII (e.g. Factor VIII or a FVIII-related preparation) that can be detected in plasma at predetermined times until a final time point after subcutaneous, intravenous or intradermal administration. Typically, bioavailability is measured in test animals by administering a dose of between 10 IU/kg and 1000
- 10 IU/kg of the preparation (e.g. 400 IU/kg body weight); obtaining plasma samples at pre-determined time points after administration; and determining the content of the Factor VIII, e.g. Factor VIII or Factor VIII-related polypeptides in the samples using one or more of a chromogenic or clotting assay (or any bioassay), an immunoassay, or an equivalent thereof. The bioavailability is expressed as the area
- 15 under the curve (AUC) of the concentration or activity of the Factor VIII in plasma on the y-axis and the time after administration on the x-axis until a predefined final time point after administration. Preferably, this predefined time point is 48 hours after administration. Most preferably, the bioavailability is determined as shown in Example 1 below. Relative bioavailability of a test preparation refers to the ratio
- 20 between the AUC of the test preparation (e.g. Factor VIII + sulfated glycosaminoglycan) and that of the reference preparation (e.g. Factor VIII alone) which is administered in the same dose and way (e.g. intravenous, subcutaneous or intradermal) as the test preparation.
- 25 According to the present invention, the bioavailability of the Factor VIII (when co-administered with the sulfated glycosaminoglycan) is higher than that of the Factor VIII when administered alone. Preferably, the bioavailability is increased by at least 20%, more preferably by at least 50%, more preferably by at least 75%, most preferably by at least 100%. The increase in bioavailability is preferably obtained
- 30 when the Factor VIII is administered by subcutaneous injection at a dose of less than 1,000 IU/kg body weight, or less than 800 IU/kg body weight, or less than 600

1IU/kg body weight, or less than 400 IU/kg body weight, e.g. at a dose of from about 10 IU/kg body weight to about 1,000 IU/kg body weight, or from about 20 IU/kg body weight to about 800 IU/kg body weight, or from about 30 IU/kg body weight to about 700 IU/kg body weight, or from about 40 IU/kg body weight to about 600

5 IU/kg body weight, or from about 50 IU/kg body weight to about 500 IU/kg body weight, or from about 75 IU/kg body weight to about 400 IU/kg body weight, or from about 100 IU/kg body weight to about 300 IU/kg body weight, or from about 50 IU/kg body weight to about 1,000 IU/kg body weight, or from about 50 IU/kg body weight to about 800 IU/kg body weight, or from about 50 IU/kg body weight to about 700 IU/kg body weight, or from about 50 IU/kg body weight to about 600 IU/kg body weight, or from about 50 IU/kg body weight to about 500 IU/kg body weight, or from about 50 IU/kg body weight to about 400 IU/kg body weight, or from about 50 IU/kg body weight to about 300 IU/kg body weight, or about 50 IU/kg body weight to about 200 IU/kg body weight.

15

The pharmaceutical composition(s) of the invention may be administered alone or in conjunction with other therapeutic agents. These agents may be incorporated as part of the same pharmaceutical.

20

Examples

Example 1: Assessment of bioavailability of s.c. applied FVIII and various additives in a Hemophilia A model

25

Materials and animal model

The Factor VIII used in the experiments was a B-domain truncated, single-chain recombinant factor VIII (hereinafter referred to as "rFVIII"). The Factor VIII was 30 obtained by directly fusing Asn764 with Thr1653. It has been expressed in cell culture cells and purified from the cell culture medium.

The further agents used are summarized in Table 1.

Table 1

Compound class	Type of compound and/or source
Unfractionated heparin	Heparin-Natrium-25000-ratiopharm
Low molecular weight heparin	Dalteparin (Fragmin® from Pfizer)
Dextran sulfate	Ca. 500 kDa
Pentosan sulfate	Fondaparinux sodium (Arixtra® from SKB)
N-Acetyl de-O-sulfated Heparin	N-Acetyl-de-O-sulfated heparin sodium salt from Sigma-Aldrich (Sigma product No. A6039) CAS Number 133686-69-8
Chondroitin sulfate	Chondroitin sulfate A sodium salt from bovine trachea, obtained from Sigma-Aldrich (Sigma product No. C9819) CAS Number 39455-18-0

5

Factor VIII knockout mice were used as animal model for hemophilia A. These mice lack exons 16 and 17 and thus do not express FVIII (Bi L. et al, Nature genetics, 1995, Vol 10(1), 119-121; Bi L. et al, Blood, 1996, Vol 88(9), 3446-3450). This allows the analysis of FVIII levels following treatment by quantification of FVIII 10 activity in the plasma of the ko mice.

Methods

To assess whether extravascular injections might be an option for an improved 15 therapy with rFVIII (human), a typical representative for an extravascular therapy, subcutaneous injection, was chosen. The design of the non-clinical pharmacokinetic study performed is detailed in tables 2 and 3 below. Plasma levels of Factor VIII activity were determined following a single intravenous or

subcutaneous injection of rFVIII together with various additives (detailed treatment groups in table 2) in a hemophilia A model.

Corresponding groups were treated with the same dose of FVIII (chromogenic substrate (CS) activity assay) in the presence of various different additives. For a single application the various different components for each treatment group were mixed together in a volume of 200 µL (identical volumes for all groups) prior to subcutaneous application to FVIII knockout (ko) mice weighing about 25 g. The treatment groups are summarized in table 2.

10

Under short term anesthesia, blood samples were drawn, anticoagulated using sodium citrate to 10 % citrate blood, processed to plasma and stored at -70°C for the determination of FVIII activity. The sampling time points are detailed in table 3. Quantification of FVIII activity in plasma was performed by a standard, aPTT based approach (Behring Coagulation Timer). The animals were kept at standard housing conditions.

15

Table 2: Treatment groups

No.	Treatment	FVIII (CS activity assay) / Additive Dose	volume [mL/kg]	schedule	route	N
1	rFVIII	400 IU/kg	8	single injection (t=0)	s.c.	25
2	rFVIII / unfractionated Heparin	400 IU/kg / 5 U/mL product applied	8	single injection	s.c.	25
3	Dextran sulfate (ca. 500kDa)	400 µg/mL product applied	8	single injection	s.c.	25
4	rFVIII / Fragmin	400 IU/kg / 5 U/mL product applied	8	single injection	s.c.	20
5	rFVIII / Fondaparinux	400 IU/kg / 10 µg/mL product applied	8	single injection	s.c.	20
6	rFVIII / N-Acetyl de-O-sulfated Heparin	400 IU/kg / 10 µg/mL product applied	8	single injection	s.c.	20
7	rFVIII / Chondroitin sulfate	400 IU/kg / 10 µg/mL product applied	8	single injection	s.c.	20

Results

5 The results are summarized in Table 3 and Figure 1. Subcutaneous injection of 400 IU/kg rFVIII in presence of various sulfated glycosaminoglycans into FVIII ko mice resulted in a significant increase of FVIII activity in plasma level as compared to

administration of FVIII alone or FVIII+dextran sulfate. The increase for co-administration of heparin was particularly strong.

Table 3. FVIII activity in % of the FVIII activity in normal human plasma

Time-point (h)	rFVIII 400 IU/kg s.c.	rFVIII 400 IU/kg / unfractionate d Heparin 5 U/mL (40 U/kg) s.c.	rFVIII 400 IU/kg / Dextransulfat e 400 µg/ml s.c.	rFVIII 400 IU/kg / Fragmin 5 U/mL (40 U/kg) s.c.
0.5	1.02 ± 0.85	2.90 ± 2.70	0 ± 0	3.41 ± 0.61
2	13.04 ± 3.90	15.16 ± 4.12	0.98 ± 1.49	10.65 ± 6.38
5	1.15 ± 1.28	26.66 ± 5.74	2.57 ± 2.67	15.19 ± 7.12
8	2.32 ± 2.27	15.56 ± 4.22	0.64 ± 0.64	21.13 ± 8.92
16	4.82 ± 2.35	12.08 ± 2.35	0.84 ± 1.26	13.19 ± 3.58
24	9.72 ± 8.09	14.10 ± 3.76	0.85 ± 0.89	10.21 ± 3.26
32	2.48 ± 2.20	10.84 ± 5.31	0.92 ± 1.30	5.23 ± 2.83
48	1.15 ± 1.72	7.02 ± 1.24	1.47 ± 1.14	4.71 ± 1.74
AUC 0-48h (h x % of the norm SHP)	202.0	598.4	50.0	475.9

5 The peak values are shaded in grey.

Time-point (h)	rFVIII 400 IU/kg/ Fondaparinux (10 µg/mL) s.c.	rFVIII 400 IU/kg/ N-acetyl de- O-sulfated Heparin (10 µg/mL) s.c.	rFVIII 400 IU/kg/ Chondroitin sulfate (10 µg/mL) s.c.
0.5	7.21 ± 6.77	8.24 ± 11.87	1.98 ± 4.12
2	20.81 ± 11.42	23.37 ± 8.39	16.83 ± 7.22
5	13.01 ± 8.96	16.75 ± 5.08	11.59 ± 5.28
8	18.03 ± 4.70	28.73 ± 9.39	22.59 ± 7.10
16	8.79 ± 5.67	7.69 ± 5.31	3.86 ± 2.76
24	9.61 ± 5.66	10.49 ± 2.12	8.95 ± 2.25
32	3.81 ± 2.13	4.11 ± 1.99	2.83 ± 1.67
48	6.55 ± 2.93	4.73 ± 1.37	7.11 ± 2.86
AUC (h x % of the norm SHP))	435.7	499.6	391.7

The peak values are shaded in grey.

Claims

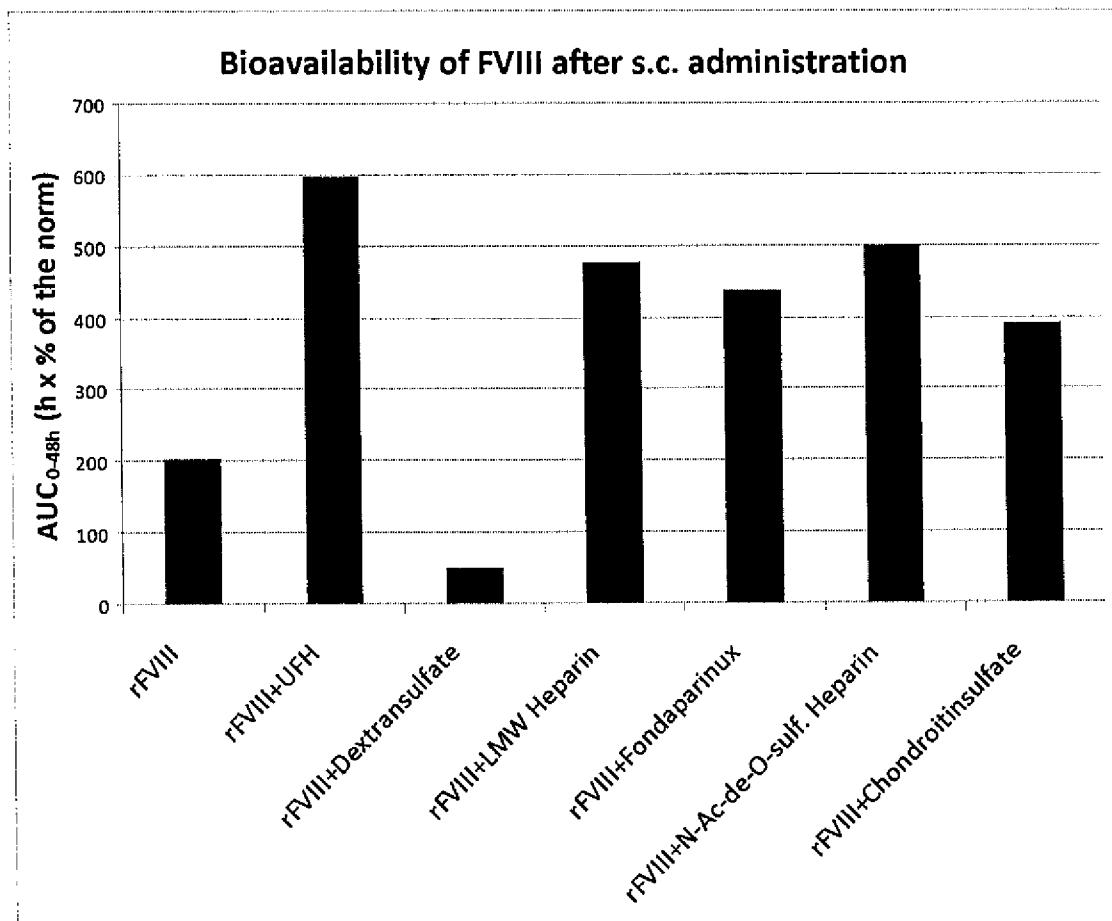
1. A method for treating or preventing a bleeding disorder, the method comprising administering non-intravenously Factor VIII and a sulfated glycosaminoglycan.
5
2. A method for treating or preventing a bleeding disorder, the method comprising administering non-intravenously Factor VIII together with a sulfated glycosaminoglycan, wherein the Factor VIII is administered subcutaneously at a dose of 50 IU/kg body weight to about 1,000 IU/kg body weight and wherein the amount of the sulfated glycosaminoglycan is between 0.001 and 100mg per mL product applied.
10
3. The method according to claim 1 or 2, wherein the Factor VIII and the sulfated glycosaminoglycan are administered simultaneously.
15
4. The method according to claim 1 or 2, wherein the Factor VIII and the sulfated glycosaminoglycan are administered separately.
20
5. The method according to any preceding claim, wherein the sulfated glycosaminoglycan is heparin.
25
6. The method according to any one of claims 1 to 5, wherein the Factor VIII is in association with von Willebrand Factor, and the sulfated glycosaminoglycan is heparin.
7. The method according to any preceding claim, wherein the treated subject is a human individual, and the dose of one administration is less than 500 IU/kg body weight.

8. The method according to any preceding claim, wherein said non-intravenous injection is subcutaneous, transdermal or intramuscular injection.

9. A method for improving the bioavailability of Factor VIII in the treatment
5 or prevention of a bleeding disorder, the method comprising administering a sulfated glycosaminoglycan, wherein said sulfated glycosaminoglycan and said Factor VIII are administered by subcutaneous, transdermal or intramuscular injection.

10 10. The method according to claim 9, wherein the sulfated glycosaminoglycan is heparin.

11. The method according to claim 9 or 10, wherein the bleeding disorder is hemophilia A.


15 12. The method according to any one of claims 9 to 11, wherein the Factor VIII and the sulfated glycosaminoglycan are administered simultaneously.

20 13. The method according to any one of claims 9 to 11, wherein the Factor VIII and the sulfated glycosaminoglycan are administered separately.

25 14. A pharmaceutical kit when used for the treatment of prevention of a bleeding disorder, comprising Factor VIII and a sulfated glycosaminoglycan, wherein said sulfated glycosaminoglycan and said Factor VIII are administered non-intraveneously.

15. The pharmaceutical kit of claim 14, wherein the sulfated glycosaminoglycan is unfractionated heparin.

16. Use of a Factor VIII and a sulfated glycosaminoglycan in the manufacture of a medicament for the treatment and prevention of a bleeding disorder.
- 5 17. A method for treating or preventing a bleeding disorder according to any one of claims 1 to 8, or a method for improving the bioavailability of Factor VIII in the treatment or prevention of a bleeding disorder according to any one of claims 9 to 13, or a pharmaceutical kit according to any one of claims 14-15, or a use according to claim 16, substantially as described herein.

Figure 1

SEQUENCE LISTING

<110> CSL Behring GmbH

<120> Use of sulfated glycosaminoglycans for improving the bioavailability of blood coagulation factors

<130> A182

<150> EP 11185648.0

<151> 2011-10-18

<150> US 61/548606

<151> 2011-10-18

<160> 2

<170> PatentIn version 3.5

<210> 1

<211> 6996

<212> DNA

<213> homo sapiens

<220>

<221> CDS

<222> (1)..(6996)

<400> 1

gcc acc aga aga tac tac ctg ggt gca gtg gaa ctg tca tgg gac tat
48

Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr
1 5 10 15

atg caa agt gat ctc ggt gag ctg cct gtg gac gca aga ttt cct cct
96

Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro
20 25 30

aga gtg cca aaa tct ttt cca ttc aac acc tca gtc gtg tac aaa aag
144

Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys
35 40 45

act ctg ttt gta gaa ttc acg gat cac ctt ttc aac atc gct aag cca
192

Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro
50 55 60

agg cca ccc tgg atg ggt ctg cta ggt cct acc atc cag gct gag gtt
240

Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val
65 70 75 80

tat gat aca gtg gtc att aca ctt aag aac atg gct tcc cat cct gtc
288

Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val
85 90 95

2

agt ctt cat gct gtt ggt gta tcc tac tgg aaa gct tct gag gga gct
336

Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala
100 105 110

gaa tat gat gat cag acc agt caa agg gag aaa gaa gat gat aaa gtc
384

Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val
115 120 125

ttc cct ggt gga agc cat aca tat gtc tgg cag gtc ctg aaa gag aat
432

Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn
130 135 140

ggt cca atg gcc tct gac cca ctg tgc ctt acc tac tca tat ctt tct
480

Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser
145 150 155 160

cat gtg gac ctg gta aaa gac ttg aat tca ggc ctc att gga gcc cta
528

His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu
165 170 175

cta gta tgt aga gaa ggg agt ctg gcc aag gaa aag aca cag acc ttg
576

Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu
180 185 190

cac aaa ttt ata cta ctt ttt gct gta ttt gat gaa ggg aaa agt tgg
624

His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp
195 200 205

cac tca gaa aca aag aac tcc ttg atg cag gat agg gat gct gca tct
672

His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser
210 215 220

gct cgg gcc tgg cct aaa atg cac aca gtc aat ggt tat gta aac agg
720

Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg
225 230 235 240

tct ctg cca ggt ctg att gga tgc cac agg aaa tca gtc tat tgg cat
768

Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His
245 250 255

gtg att gga atg ggc acc act cct gaa gtg cac tca ata ttc ctc gaa
816

Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu
260 265 270

ggt cac aca ttt ctt gtg agg aac cat cgc cag gcg tcc ttg gaa atc
864

Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile
275 280 285

tcg cca ata act ttc ctt act gct caa aca ctc ttg atg gac ctt gga
 912

Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly
 290 295 300

cag ttt cta ctg ttt tgt cat atc tct tcc cac caa cat gat ggc atg
 960

Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met
 305 310 315 320

gaa gct tat gtc aaa gta gac agc tgt cca gag gaa ccc caa cta cga
 1008

Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg
 325 330 335

atg aaa aat aat gaa gaa gcg gaa gac tat gat gat gat ctt act gat
 1056

Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp Leu Thr Asp
 340 345 350

tct gaa atg gat gtg gtc agg ttt gat gat gac aac tct cct tcc ttt
 1104

Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser Pro Ser Phe
 355 360 365

atc caa att cgc tca gtt gcc aag aag cat cct aaa act tgg gta cat
 1152

Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His
 370 375 380

tac att gct gct gaa gag gag gac tgg gac tat gct ccc tta gtc ctc
 1200

Tyr Ile Ala Ala Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu
 385 390 395 400

gcc ccc gat gac aga agt tat aaa agt caa tat ttg aac aat ggc cct
 1248

Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro
 405 410 415

cag cgg att ggt agg aag tac aaa aaa gtc cga ttt atg gca tac aca
 1296

Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr
 420 425 430

gat gaa acc ttt aag act cgt gaa gct att cag cat gaa tca gga atc
 1344

Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile
 435 440 445

ttg gga cct tta ctt tat ggg gaa gtt gga gac aca ctg ttg att ata
 1392

Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile
 450 455 460

ttt aag aat caa gca agc aga cca tat aac atc tac cct cac gga atc
 1440

Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile
 465 470 475 480

act gat gtc cgt cct ttg tat tca agg aga tta cca aaa ggt gta aaa
1488

Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys
485 490 495

cat ttg aag gat ttt cca att ctg cca gga gaa ata ttc aaa tat aaa
1536

His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys
500 505 510

tgg aca gtg act gta gaa gat ggg cca act aaa tca gat cct cgg tgc
1584

Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys
515 520 525

ctg acc cgc tat tac tct agt ttc gtt aat atg gag aga gat cta gct
1632

Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala
530 535 540

tca gga ctc att ggc cct ctc atc tgc tac aaa gaa tct gta gat
1680

Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp
545 550 555 560

caa aga gga aac cag ata atg tca gac aag agg aat gtc atc ctg ttt
1728

Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe
565 570 575

tct gta ttt gat gag aac cga agc tgg tac ctc aca gag aat ata caa
1776

Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln
580 585 590

cgc ttt ctc ccc aat cca gct gga gtg cag ctt gag gat cca gag ttc
1824

Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe
595 600 605

caa gcc tcc aac atc atg cac agc atc aat ggc tat gtt ttt gat agt
1872

Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser
610 615 620

ttg cag ttg tca gtt tgt ttg cat gag gtg gca tac tgg tac att cta
1920

Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu
625 630 635 640

agc att gga gca cag act gac ttc ctt tct gtc ttc ttc tct gga tat
1968

Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr
645 650 655

acc ttc aaa cac aaa atg gtc tat gaa gac aca ctc acc cta ttc cca
2016

Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro
660 665 670

ttc tca gga gaa act gtc ttc atg tcg atg gaa aac cca ggt cta tgg
2064

Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp
675 680 685

att ctg ggg tgc cac aac tca gac ttt cgg aac aga ggc atg acc gcc
2112

Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala
690 695 700

tta ctg aag gtt tct agt tgt gac aag aac act ggt gat tat tac gag
2160

Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu
705 710 715 720

gac agt tat gaa gat att tca gca tac ttg ctg agt aaa aac aat gcc
2208

Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala
725 730 735

att gaa cca aga agc ttc tcc cag aat tca aga cac cgt agc act agg
2256

Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg Ser Thr Arg
740 745 750

caa aag caa ttt aat gcc acc aca att cca gaa aat gac ata gag aag
2304

Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys
755 760 765

act gac cct tgg ttt gca cac aga aca cct atg cct aaa ata caa aat
2352

Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn
770 775 780

gtc tcc tct agt gat ttg ttg atg ctc ttg cga cag agt cct act cca
2400

Val Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser Pro Thr Pro
785 790 795 800

cat ggg cta tcc tta tct gat ctc caa gaa gcc aaa tat gag act ttt
2448

His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr Glu Thr Phe
805 810 815

tct gat gat cca tca cct gga gca ata gac agt aat aac agc ctg tct
2496

Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser
820 825 830

gaa atg aca cac ttc agg cca cag ctc cat cac agt ggg gac atg gta
2544

Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val
835 840 845

ttt acc cct gag tca ggc ctc caa tta aga tta aat gag aaa ctg ggg
2592

Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly
850 855 860

aca act gca gca aca gag ttg aag aaa ctt gat ttc aaa gtt tct agt
2640
Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser
865 870 875 880

aca tca aat aat ctg att tca aca att cca tca gac aat ttg gca gca
2688
Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala
885 890 895

ggt act gat aat aca agt tcc tta gga ccc cca agt atg cca gtt cat
2736
Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His
900 905 910

tat gat agt caa tta gat acc act cta ttt ggc aaa aag tca tct ccc
2784
Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro
915 920 925

ctt act gag tct ggt gga cct ctg agc ttg agt gaa gaa aat aat gat
2832
Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp
930 935 940

tca aag ttg tta gaa tca ggt tta atg aat agc caa gaa agt tca tgg
2880
Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp
945 950 955 960

gga aaa aat gta tcg tca aca gag agt ggt agg tta ttt aaa ggg aaa
2928
Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys
965 970 975

aga gct cat gga cct gct ttg ttg act aaa gat aat gcc tta ttc aaa
2976
Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys
980 985 990

gtt agc atc tct ttg tta aag aca aac aaa act tcc aat aat tca gca
3024
Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Asn Ser Ala
995 1000 1005

act aat aga aag act cac att gat ggc cca tca tta tta att gag
3069
Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile Glu
1010 1015 1020

aat agt cca tca gtc tgg caa aat ata tta gaa agt gac act gag
3114
Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu
1025 1030 1035

ttt aaa aaa gtg aca cct ttg att cat gac aga atg ctt atg gac
3159
Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp
1040 1045 1050

aaa aat gct aca gct ttg agg cta aat cat atg tca aat aaa act
 3204
 Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr
 1055 1060 1065

act tca tca aaa aac atg gaa atg gtc caa cag aaa aaa gag ggc
 3249
 Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly
 1070 1075 1080

ccc att cca cca gat gca caa aat cca gat atg tcg ttc ttt aag
 3294
 Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met Ser Phe Phe Lys
 1085 1090 1095

atg cta ttc ttg cca gaa tca gca agg tgg ata caa agg act cat
 3339
 Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile Gln Arg Thr His
 1100 1105 1110

gga aag aac tct ctg aac tct ggg caa ggc ccc agt cca aag caa
 3384
 Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro Ser Pro Lys Gln
 1115 1120 1125

tta gta tcc tta gga cca gaa aaa tct gtg gaa ggt cag aat ttc
 3429
 Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu Gly Gln Asn Phe
 1130 1135 1140

ttg tct gag aaa aac aaa gtg gta gta gga aag ggt gaa ttt aca
 3474
 Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys Gly Glu Phe Thr
 1145 1150 1155

aag gac gta gga ctc aaa gag atg gtt ttt cca agc agc aga aac
 3519
 Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro Ser Ser Arg Asn
 1160 1165 1170

cta ttt ctt act aac ttg gat aat tta cat gaa aat aat aca cac
 3564
 Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu Asn Asn Thr His
 1175 1180 1185

aat caa gaa aaa aaa att cag gaa gaa ata gaa aag aag gaa aca
 3609
 Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu Lys Lys Glu Thr
 1190 1195 1200

tta atc caa gag aat gta gtt ttg cct cag ata cat aca gtg act
 3654
 Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile His Thr Val Thr
 1205 1210 1215

ggc act aag aat ttc atg aag aac ctt ttc tta ctg agc act agg
 3699
 Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Arg
 1220 1225 1230

caa aat gta gaa ggt tca tat gac ggg gca tat gct cca gta ctt
 3744
 Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr Ala Pro Val Leu
 1235 1240 1245

caa gat ttt agg tca tta aat gat tca aca aat aga aca aag aaa
 3789
 Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys
 1250 1255 1260

cac aca gct cat ttc tca aaa aaa ggg gag gaa gaa aac ttg gaa
 3834
 His Thr Ala His Phe Ser Lys Lys Gly Glu Glu Asn Leu Glu
 1265 1270 1275

ggc ttg gga aat caa acc aag caa att gta gag aaa tat gca tgc
 3879
 Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu Lys Tyr Ala Cys
 1280 1285 1290

acc aca agg ata tct cct aat aca agc cag cag aat ttt gtc acg
 3924
 Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe Val Thr
 1295 1300 1305

caa cgt agt aag aga gct ttg aaa caa ttc aga ctc cca cta gaa
 3969
 Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu
 1310 1315 1320

gaa aca gaa ctt gaa aaa agg ata att gtg gat gac acc tca acc
 4014
 Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp Asp Thr Ser Thr
 1325 1330 1335

cag tgg tcc aaa aac atg aaa cat ttg acc ccg agc acc ctc aca
 4059
 Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro Ser Thr Leu Thr
 1340 1345 1350

cag ata gac tac aat gag aag gag aaa ggg gcc att act cag tct
 4104
 Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala Ile Thr Gln Ser
 1355 1360 1365

ccc tta tca gat tgc ctt acg agg agt cat agc atc cct caa gca
 4149
 Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser Ile Pro Gln Ala
 1370 1375 1380

aat aga tct cca tta ccc att gca aag gta tca tca ttt cca tct
 4194
 Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser Ser Phe Pro Ser
 1385 1390 1395

att aga cct ata tat ctg acc agg gtc cta ttc caa gac aac tct
 4239
 Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe Gln Asp Asn Ser
 1400 1405 1410

tct cat ctt cca gca gca tct tat aga aag aaa gat tct ggg gtc
 4284
 Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys Asp Ser Gly Val
 1415 1420 1425

caa gaa agc agt cat ttc tta caa gga gcc aaa aaa aat aac ctt
 4329
 Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys Lys Asn Asn Leu
 1430 1435 1440

tct tta gcc att cta acc ttg gag atg act ggt gat caa aga gag
 4374
 Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly Asp Gln Arg Glu
 1445 1450 1455

gtt ggc tcc ctg ggg aca agt gcc aca aat tca gtc aca tac aag
 4419
 Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser Val Thr Tyr Lys
 1460 1465 1470

aaa gtt gag aac act gtt ctc ccg aaa cca gac ttg ccc aaa aca
 4464
 Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp Leu Pro Lys Thr
 1475 1480 1485

tct ggc aaa gtt gaa ttg ctt cca aaa gtt cac att tat cag aag
 4509
 Ser Gly Lys Val Glu Leu Leu Pro Lys Val His Ile Tyr Gln Lys
 1490 1495 1500

gac cta ttc cct acg gaa act agc aat ggg tct cct ggc cat ctg
 4554
 Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser Pro Gly His Leu
 1505 1510 1515

gat ctc gtg gaa ggg agc ctt ctt cag gga aca gag gga gcg att
 4599
 Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr Glu Gly Ala Ile
 1520 1525 1530

aag tgg aat gaa gca aac aga cct gga aaa gtt ccc ttt ctg aga
 4644
 Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val Pro Phe Leu Arg
 1535 1540 1545

gta gca aca gaa agc tct gca aag act ccc tcc aag cta ttg gat
 4689
 Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser Lys Leu Leu Asp
 1550 1555 1560

cct ctt gct tgg gat aac cac tat ggt act cag ata cca aaa gaa
 4734
 Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln Ile Pro Lys Glu
 1565 1570 1575

gag tgg aaa tcc caa gag aag tca cca gaa aaa aca gct ttt aag
 4779
 Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys Thr Ala Phe Lys
 1580 1585 1590

aaa aag gat acc att ttg tcc ctg aac gct tgt gaa agc aat cat
 4824
 Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys Glu Ser Asn His
 1595 1600 1605

gca ata gca gca ata aat gag gga caa aat aag ccc gaa ata gaa
 4869
 Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys Pro Glu Ile Glu
 1610 1615 1620

gtc acc tgg gca aag caa ggt agg act gaa agg ctg tgc tct caa
 4914
 Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg Leu Cys Ser Gln
 1625 1630 1635

aac cca cca gtc ttg aaa cgc cat caa cgg gaa ata act cgt act
 4959
 Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu Ile Thr Arg Thr
 1640 1645 1650

act ctt cag tca gat caa gag gaa att gac tat gat gat acc ata
 5004
 Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile
 1655 1660 1665

tca gtt gaa atg aag aag gaa gat ttt gac att tat gat gag gat
 5049
 Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile Tyr Asp Glu Asp
 1670 1675 1680

gaa aat cag agc ccc cgc agc ttt caa aag aaa aca cga cac tat
 5094
 Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys Thr Arg His Tyr
 1685 1690 1695

ttt att gct gca gtg gag agg ctc tgg gat tat ggg atg agt agc
 5139
 Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly Met Ser Ser
 1700 1705 1710

tcc cca cat gtt cta aga aac agg gct cag agt ggc agt gtc cct
 5184
 Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser Val Pro
 1715 1720 1725

cag ttc aag aaa gtt gtt ttc cag gaa ttt act gat ggc tcc ttt
 5229
 Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe
 1730 1735 1740

act cag ccc tta tac cgt gga gaa cta aat gaa cat ttg gga ctc
 5274
 Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu
 1745 1750 1755

ctg ggg cca tat ata aga gca gaa gtt gaa gat aat atc atg gta
 5319
 Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val
 1760 1765 1770

act ttc aga aat cag gcc tct cgt ccc tat tcc ttc tat tct agc
 5364
 Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser
 1775 1780 1785

ctt att tct tat gag gaa gat cag agg caa gga gca gaa cct aga
 5409
 Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg
 1790 1795 1800

aaa aac ttt gtc aag cct aat gaa acc aaa act tac ttt tgg aaa
 5454
 Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys
 1805 1810 1815

gtg caa cat cat atg gca ccc act aaa gat gag ttt gac tgc aaa
 5499
 Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys
 1820 1825 1830

gcc tgg gct tat ttc tct gat gtt gac ctg gaa aaa gat gtg cac
 5544
 Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His
 1835 1840 1845

tca ggc ctg att gga ccc ctt ctg gtc tgc cac act aac aca ctg
 5589
 Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu
 1850 1855 1860

aac cct gct cat ggg aga caa gtg aca gta cag gaa ttt gct ctg
 5634
 Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu
 1865 1870 1875

ttt ttc acc atc ttt gat gag acc aaa agc tgg tac ttc act gaa
 5679
 Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu
 1880 1885 1890

aat atg gaa aga aac tgc agg gct ccc tgc aat atc cag atg gaa
 5724
 Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu
 1895 1900 1905

gat ccc act ttt aaa gag aat tat cgc ttc cat gca atc aat ggc
 5769
 Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly
 1910 1915 1920

tac ata atg gat aca cta cct ggc tta gta atg gct cag gat caa
 5814
 Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln
 1925 1930 1935

agg att cga tgg tat ctg ctc agc atg ggc agc aat gaa aac atc
 5859
 Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn Ile
 1940 1945 1950

cat tct att cat ttc agt gga cat gtg ttc act gta cga aaa aaa
 5904
 His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys
 1955 1960 1965

gag gag tat aaa atg gca ctg tac aat ctc tat cca ggt gtt ttt
 5949
 Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe
 1970 1975 1980

gag aca gtg gaa atg tta cca tcc aaa gct gga att tgg cgg gtg
 5994
 Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val
 1985 1990 1995

gaa tgc ctt att ggc gag cat cta cat gct ggg atg agc aca ctt
 6039
 Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu
 2000 2005 2010

ttt ctg gtg tac agc aat aag tgt cag act ccc ctg gga atg gct
 6084
 Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala
 2015 2020 2025

tct gga cac att aga gat ttt cag att aca gct tca gga caa tat
 6129
 Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr
 2030 2035 2040

gga cag tgg gcc cca aag ctg gcc aga ctt cat tat tcc gga tca
 6174
 Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser
 2045 2050 2055

atc aat gcc tgg agc acc aag gag ccc ttt tct tgg atc aag gtg
 6219
 Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val
 2060 2065 2070

gat ctg ttg gca cca atg att att cac ggc atc aag acc cag ggt
 6264
 Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln Gly
 2075 2080 2085

gcc cgt cag aag ttc tcc agc ctc tac atc tct cag ttt atc atc
 6309
 Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile
 2090 2095 2100

atg tat agt ctt gat ggg aag aag tgg cag act tat cga gga aat
 6354
 Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn
 2105 2110 2115

tcc act gga acc tta atg gtc ttc ttt ggc aat gtg gat tca tct
 6399
 Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser
 2120 2125 2130

ggg ata aaa cac aat att ttt aac cct cca att att gct cga tac
 6444
 Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr
 2135 2140 2145

 atc cgt ttg cac cca act cat tat agc att cgc agc act ctt cgc
 6489
 Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg
 2150 2155 2160

 atg gag ttg atg ggc tgt gat tta aat agt tgc agc atg cca ttg
 6534
 Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys Ser Met Pro Leu
 2165 2170 2175

 gga atg gag agt aaa gca ata tca gat gca cag att act gct tca
 6579
 Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser
 2180 2185 2190

 tcc tac ttt acc aat atg ttt gcc acc tgg tct cct tca aaa gct
 6624
 Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser Lys Ala
 2195 2200 2205

 cga ctt cac ctc caa ggg agg agt aat gcc tgg aga cct cag gtg
 6669
 Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln Val
 2210 2215 2220

 aat aat cca aaa gag tgg ctg caa gtg gac ttc cag aag aca atg
 6714
 Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met
 2225 2230 2235

 aaa gtc aca gga gta act act cag gga gta aaa tct ctg ctt acc
 6759
 Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr
 2240 2245 2250

 agc atg tat gtg aag gag ttc ctc atc tcc agc agt caa gat ggc
 6804
 Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly
 2255 2260 2265

 cat cag tgg act ctc ttt ttt cag aat ggc aaa gta aag gtt ttt
 6849
 His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe
 2270 2275 2280

 cag gga aat caa gac tcc ttc aca cct gtg gtg aac tct cta gac
 6894
 Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp
 2285 2290 2295

 cca ccg tta ctg act cgc tac ctt cga att cac ccc cag agt tgg
 6939
 Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp
 2300 2305 2310

gtg cac cag att gcc ctg agg atg gag gtt ctg ggc tgc gag gca
 6984
 Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu Ala
 2315 2320 2325

cag gac ctc tac
 6996
 Gln Asp Leu Tyr
 2330

<210> 2
 <211> 2332
 <212> PRT
 <213> homo sapiens

<400> 2

Ala Thr Arg Arg Tyr Tyr Leu Gly Ala Val Glu Leu Ser Trp Asp Tyr
 1 5 10 15

Met Gln Ser Asp Leu Gly Glu Leu Pro Val Asp Ala Arg Phe Pro Pro
 20 25 30

Arg Val Pro Lys Ser Phe Pro Phe Asn Thr Ser Val Val Tyr Lys Lys
 35 40 45

Thr Leu Phe Val Glu Phe Thr Asp His Leu Phe Asn Ile Ala Lys Pro
 50 55 60

Arg Pro Pro Trp Met Gly Leu Leu Gly Pro Thr Ile Gln Ala Glu Val
 65 70 75 80

Tyr Asp Thr Val Val Ile Thr Leu Lys Asn Met Ala Ser His Pro Val
 85 90 95

Ser Leu His Ala Val Gly Val Ser Tyr Trp Lys Ala Ser Glu Gly Ala
 100 105 110

Glu Tyr Asp Asp Gln Thr Ser Gln Arg Glu Lys Glu Asp Asp Lys Val
 115 120 125

Phe Pro Gly Gly Ser His Thr Tyr Val Trp Gln Val Leu Lys Glu Asn
 130 135 140

Gly Pro Met Ala Ser Asp Pro Leu Cys Leu Thr Tyr Ser Tyr Leu Ser
 145 150 155 160

His Val Asp Leu Val Lys Asp Leu Asn Ser Gly Leu Ile Gly Ala Leu
 165 170 175

Leu Val Cys Arg Glu Gly Ser Leu Ala Lys Glu Lys Thr Gln Thr Leu
 180 185 190

His Lys Phe Ile Leu Leu Phe Ala Val Phe Asp Glu Gly Lys Ser Trp
 195 200 205

His Ser Glu Thr Lys Asn Ser Leu Met Gln Asp Arg Asp Ala Ala Ser
 210 215 220

Ala Arg Ala Trp Pro Lys Met His Thr Val Asn Gly Tyr Val Asn Arg
 225 230 235 240

Ser Leu Pro Gly Leu Ile Gly Cys His Arg Lys Ser Val Tyr Trp His
 245 250 255

Val Ile Gly Met Gly Thr Thr Pro Glu Val His Ser Ile Phe Leu Glu
 260 265 270

Gly His Thr Phe Leu Val Arg Asn His Arg Gln Ala Ser Leu Glu Ile
 275 280 285

Ser Pro Ile Thr Phe Leu Thr Ala Gln Thr Leu Leu Met Asp Leu Gly
 290 295 300

Gln Phe Leu Leu Phe Cys His Ile Ser Ser His Gln His Asp Gly Met
 305 310 315 320

Glu Ala Tyr Val Lys Val Asp Ser Cys Pro Glu Glu Pro Gln Leu Arg
 325 330 335

Met Lys Asn Asn Glu Glu Ala Glu Asp Tyr Asp Asp Asp Leu Thr Asp
 340 345 350

Ser Glu Met Asp Val Val Arg Phe Asp Asp Asp Asn Ser Pro Ser Phe
 355 360 365

Ile Gln Ile Arg Ser Val Ala Lys Lys His Pro Lys Thr Trp Val His
 370 375 380

Tyr Ile Ala Ala Glu Glu Asp Trp Asp Tyr Ala Pro Leu Val Leu
 385 390 395 400

Ala Pro Asp Asp Arg Ser Tyr Lys Ser Gln Tyr Leu Asn Asn Gly Pro
 405 410 415

Gln Arg Ile Gly Arg Lys Tyr Lys Lys Val Arg Phe Met Ala Tyr Thr
420 425 430

Asp Glu Thr Phe Lys Thr Arg Glu Ala Ile Gln His Glu Ser Gly Ile
435 440 445

Leu Gly Pro Leu Leu Tyr Gly Glu Val Gly Asp Thr Leu Leu Ile Ile
450 455 460

Phe Lys Asn Gln Ala Ser Arg Pro Tyr Asn Ile Tyr Pro His Gly Ile
465 470 475 480

Thr Asp Val Arg Pro Leu Tyr Ser Arg Arg Leu Pro Lys Gly Val Lys
485 490 495

His Leu Lys Asp Phe Pro Ile Leu Pro Gly Glu Ile Phe Lys Tyr Lys
500 505 510

Trp Thr Val Thr Val Glu Asp Gly Pro Thr Lys Ser Asp Pro Arg Cys
515 520 525

Leu Thr Arg Tyr Tyr Ser Ser Phe Val Asn Met Glu Arg Asp Leu Ala
530 535 540

Ser Gly Leu Ile Gly Pro Leu Leu Ile Cys Tyr Lys Glu Ser Val Asp
545 550 555 560

Gln Arg Gly Asn Gln Ile Met Ser Asp Lys Arg Asn Val Ile Leu Phe
565 570 575

Ser Val Phe Asp Glu Asn Arg Ser Trp Tyr Leu Thr Glu Asn Ile Gln
580 585 590

Arg Phe Leu Pro Asn Pro Ala Gly Val Gln Leu Glu Asp Pro Glu Phe
595 600 605

Gln Ala Ser Asn Ile Met His Ser Ile Asn Gly Tyr Val Phe Asp Ser
610 615 620

Leu Gln Leu Ser Val Cys Leu His Glu Val Ala Tyr Trp Tyr Ile Leu
625 630 635 640

Ser Ile Gly Ala Gln Thr Asp Phe Leu Ser Val Phe Phe Ser Gly Tyr
645 650 655

Thr Phe Lys His Lys Met Val Tyr Glu Asp Thr Leu Thr Leu Phe Pro

660

665

670

Phe Ser Gly Glu Thr Val Phe Met Ser Met Glu Asn Pro Gly Leu Trp
675 680 685

Ile Leu Gly Cys His Asn Ser Asp Phe Arg Asn Arg Gly Met Thr Ala
690 695 700

Leu Leu Lys Val Ser Ser Cys Asp Lys Asn Thr Gly Asp Tyr Tyr Glu
705 710 715 720

Asp Ser Tyr Glu Asp Ile Ser Ala Tyr Leu Leu Ser Lys Asn Asn Ala
725 730 735

Ile Glu Pro Arg Ser Phe Ser Gln Asn Ser Arg His Arg Ser Thr Arg
740 745 750

Gln Lys Gln Phe Asn Ala Thr Thr Ile Pro Glu Asn Asp Ile Glu Lys
755 760 765

Thr Asp Pro Trp Phe Ala His Arg Thr Pro Met Pro Lys Ile Gln Asn
770 775 780

Val Ser Ser Ser Asp Leu Leu Met Leu Leu Arg Gln Ser Pro Thr Pro
785 790 795 800

His Gly Leu Ser Leu Ser Asp Leu Gln Glu Ala Lys Tyr Glu Thr Phe
805 810 815

Ser Asp Asp Pro Ser Pro Gly Ala Ile Asp Ser Asn Asn Ser Leu Ser
820 825 830

Glu Met Thr His Phe Arg Pro Gln Leu His His Ser Gly Asp Met Val
835 840 845

Phe Thr Pro Glu Ser Gly Leu Gln Leu Arg Leu Asn Glu Lys Leu Gly
850 855 860

Thr Thr Ala Ala Thr Glu Leu Lys Lys Leu Asp Phe Lys Val Ser Ser
865 870 875 880

Thr Ser Asn Asn Leu Ile Ser Thr Ile Pro Ser Asp Asn Leu Ala Ala
885 890 895

Gly Thr Asp Asn Thr Ser Ser Leu Gly Pro Pro Ser Met Pro Val His
900 905 910

Tyr Asp Ser Gln Leu Asp Thr Thr Leu Phe Gly Lys Lys Ser Ser Pro
 915 920 925

Leu Thr Glu Ser Gly Gly Pro Leu Ser Leu Ser Glu Glu Asn Asn Asp
 930 935 940

Ser Lys Leu Leu Glu Ser Gly Leu Met Asn Ser Gln Glu Ser Ser Trp
 945 950 955 960

Gly Lys Asn Val Ser Ser Thr Glu Ser Gly Arg Leu Phe Lys Gly Lys
 965 970 975

Arg Ala His Gly Pro Ala Leu Leu Thr Lys Asp Asn Ala Leu Phe Lys
 980 985 990

Val Ser Ile Ser Leu Leu Lys Thr Asn Lys Thr Ser Asn Asn Ser Ala
 995 1000 1005

Thr Asn Arg Lys Thr His Ile Asp Gly Pro Ser Leu Leu Ile Glu
 1010 1015 1020

Asn Ser Pro Ser Val Trp Gln Asn Ile Leu Glu Ser Asp Thr Glu
 1025 1030 1035

Phe Lys Lys Val Thr Pro Leu Ile His Asp Arg Met Leu Met Asp
 1040 1045 1050

Lys Asn Ala Thr Ala Leu Arg Leu Asn His Met Ser Asn Lys Thr
 1055 1060 1065

Thr Ser Ser Lys Asn Met Glu Met Val Gln Gln Lys Lys Glu Gly
 1070 1075 1080

Pro Ile Pro Pro Asp Ala Gln Asn Pro Asp Met Ser Phe Phe Lys
 1085 1090 1095

Met Leu Phe Leu Pro Glu Ser Ala Arg Trp Ile Gln Arg Thr His
 1100 1105 1110

Gly Lys Asn Ser Leu Asn Ser Gly Gln Gly Pro Ser Pro Lys Gln
 1115 1120 1125

Leu Val Ser Leu Gly Pro Glu Lys Ser Val Glu Gly Gln Asn Phe
 1130 1135 1140

Leu Ser Glu Lys Asn Lys Val Val Val Gly Lys Gly Glu Phe Thr
 1145 1150 1155

Lys Asp Val Gly Leu Lys Glu Met Val Phe Pro Ser Ser Arg Asn
 1160 1165 1170

Leu Phe Leu Thr Asn Leu Asp Asn Leu His Glu Asn Asn Thr His
 1175 1180 1185

Asn Gln Glu Lys Lys Ile Gln Glu Glu Ile Glu Lys Lys Glu Thr
 1190 1195 1200

Leu Ile Gln Glu Asn Val Val Leu Pro Gln Ile His Thr Val Thr
 1205 1210 1215

Gly Thr Lys Asn Phe Met Lys Asn Leu Phe Leu Leu Ser Thr Arg
 1220 1225 1230

Gln Asn Val Glu Gly Ser Tyr Asp Gly Ala Tyr Ala Pro Val Leu
 1235 1240 1245

Gln Asp Phe Arg Ser Leu Asn Asp Ser Thr Asn Arg Thr Lys Lys
 1250 1255 1260

His Thr Ala His Phe Ser Lys Lys Gly Glu Glu Asn Leu Glu
 1265 1270 1275

Gly Leu Gly Asn Gln Thr Lys Gln Ile Val Glu Lys Tyr Ala Cys
 1280 1285 1290

Thr Thr Arg Ile Ser Pro Asn Thr Ser Gln Gln Asn Phe Val Thr
 1295 1300 1305

Gln Arg Ser Lys Arg Ala Leu Lys Gln Phe Arg Leu Pro Leu Glu
 1310 1315 1320

Glu Thr Glu Leu Glu Lys Arg Ile Ile Val Asp Asp Thr Ser Thr
 1325 1330 1335

Gln Trp Ser Lys Asn Met Lys His Leu Thr Pro Ser Thr Leu Thr
 1340 1345 1350

Gln Ile Asp Tyr Asn Glu Lys Glu Lys Gly Ala Ile Thr Gln Ser
 1355 1360 1365

Pro Leu Ser Asp Cys Leu Thr Arg Ser His Ser Ile Pro Gln Ala
 1370 1375 1380

Asn Arg Ser Pro Leu Pro Ile Ala Lys Val Ser Ser Phe Pro Ser
 1385 1390 1395

Ile Arg Pro Ile Tyr Leu Thr Arg Val Leu Phe Gln Asp Asn Ser
 1400 1405 1410

Ser His Leu Pro Ala Ala Ser Tyr Arg Lys Lys Asp Ser Gly Val
 1415 1420 1425

Gln Glu Ser Ser His Phe Leu Gln Gly Ala Lys Lys Asn Asn Leu
 1430 1435 1440

Ser Leu Ala Ile Leu Thr Leu Glu Met Thr Gly Asp Gln Arg Glu
 1445 1450 1455

Val Gly Ser Leu Gly Thr Ser Ala Thr Asn Ser Val Thr Tyr Lys
 1460 1465 1470

Lys Val Glu Asn Thr Val Leu Pro Lys Pro Asp Leu Pro Lys Thr
 1475 1480 1485

Ser Gly Lys Val Glu Leu Leu Pro Lys Val His Ile Tyr Gln Lys
 1490 1495 1500

Asp Leu Phe Pro Thr Glu Thr Ser Asn Gly Ser Pro Gly His Leu
 1505 1510 1515

Asp Leu Val Glu Gly Ser Leu Leu Gln Gly Thr Glu Gly Ala Ile
 1520 1525 1530

Lys Trp Asn Glu Ala Asn Arg Pro Gly Lys Val Pro Phe Leu Arg
 1535 1540 1545

Val Ala Thr Glu Ser Ser Ala Lys Thr Pro Ser Lys Leu Leu Asp
 1550 1555 1560

Pro Leu Ala Trp Asp Asn His Tyr Gly Thr Gln Ile Pro Lys Glu
 1565 1570 1575

Glu Trp Lys Ser Gln Glu Lys Ser Pro Glu Lys Thr Ala Phe Lys
 1580 1585 1590

Lys Lys Asp Thr Ile Leu Ser Leu Asn Ala Cys Glu Ser Asn His

1595

1600

1605

Ala Ile Ala Ala Ile Asn Glu Gly Gln Asn Lys Pro Glu Ile Glu
 1610 1615 1620

Val Thr Trp Ala Lys Gln Gly Arg Thr Glu Arg Leu Cys Ser Gln
 1625 1630 1635

Asn Pro Pro Val Leu Lys Arg His Gln Arg Glu Ile Thr Arg Thr
 1640 1645 1650

Thr Leu Gln Ser Asp Gln Glu Glu Ile Asp Tyr Asp Asp Thr Ile
 1655 1660 1665

Ser Val Glu Met Lys Lys Glu Asp Phe Asp Ile Tyr Asp Glu Asp
 1670 1675 1680

Glu Asn Gln Ser Pro Arg Ser Phe Gln Lys Lys Thr Arg His Tyr
 1685 1690 1695

Phe Ile Ala Ala Val Glu Arg Leu Trp Asp Tyr Gly Met Ser Ser
 1700 1705 1710

Ser Pro His Val Leu Arg Asn Arg Ala Gln Ser Gly Ser Val Pro
 1715 1720 1725

Gln Phe Lys Lys Val Val Phe Gln Glu Phe Thr Asp Gly Ser Phe
 1730 1735 1740

Thr Gln Pro Leu Tyr Arg Gly Glu Leu Asn Glu His Leu Gly Leu
 1745 1750 1755

Leu Gly Pro Tyr Ile Arg Ala Glu Val Glu Asp Asn Ile Met Val
 1760 1765 1770

Thr Phe Arg Asn Gln Ala Ser Arg Pro Tyr Ser Phe Tyr Ser Ser
 1775 1780 1785

Leu Ile Ser Tyr Glu Glu Asp Gln Arg Gln Gly Ala Glu Pro Arg
 1790 1795 1800

Lys Asn Phe Val Lys Pro Asn Glu Thr Lys Thr Tyr Phe Trp Lys
 1805 1810 1815

Val Gln His His Met Ala Pro Thr Lys Asp Glu Phe Asp Cys Lys
 1820 1825 1830

Ala Trp Ala Tyr Phe Ser Asp Val Asp Leu Glu Lys Asp Val His
 1835 1840 1845

Ser Gly Leu Ile Gly Pro Leu Leu Val Cys His Thr Asn Thr Leu
 1850 1855 1860

Asn Pro Ala His Gly Arg Gln Val Thr Val Gln Glu Phe Ala Leu
 1865 1870 1875

Phe Phe Thr Ile Phe Asp Glu Thr Lys Ser Trp Tyr Phe Thr Glu
 1880 1885 1890

Asn Met Glu Arg Asn Cys Arg Ala Pro Cys Asn Ile Gln Met Glu
 1895 1900 1905

Asp Pro Thr Phe Lys Glu Asn Tyr Arg Phe His Ala Ile Asn Gly
 1910 1915 1920

Tyr Ile Met Asp Thr Leu Pro Gly Leu Val Met Ala Gln Asp Gln
 1925 1930 1935

Arg Ile Arg Trp Tyr Leu Leu Ser Met Gly Ser Asn Glu Asn Ile
 1940 1945 1950

His Ser Ile His Phe Ser Gly His Val Phe Thr Val Arg Lys Lys
 1955 1960 1965

Glu Glu Tyr Lys Met Ala Leu Tyr Asn Leu Tyr Pro Gly Val Phe
 1970 1975 1980

Glu Thr Val Glu Met Leu Pro Ser Lys Ala Gly Ile Trp Arg Val
 1985 1990 1995

Glu Cys Leu Ile Gly Glu His Leu His Ala Gly Met Ser Thr Leu
 2000 2005 2010

Phe Leu Val Tyr Ser Asn Lys Cys Gln Thr Pro Leu Gly Met Ala
 2015 2020 2025

Ser Gly His Ile Arg Asp Phe Gln Ile Thr Ala Ser Gly Gln Tyr
 2030 2035 2040

Gly Gln Trp Ala Pro Lys Leu Ala Arg Leu His Tyr Ser Gly Ser
 2045 2050 2055

Ile Asn Ala Trp Ser Thr Lys Glu Pro Phe Ser Trp Ile Lys Val
 2060 2065 2070

Asp Leu Leu Ala Pro Met Ile Ile His Gly Ile Lys Thr Gln Gly
 2075 2080 2085

Ala Arg Gln Lys Phe Ser Ser Leu Tyr Ile Ser Gln Phe Ile Ile
 2090 2095 2100

Met Tyr Ser Leu Asp Gly Lys Lys Trp Gln Thr Tyr Arg Gly Asn
 2105 2110 2115

Ser Thr Gly Thr Leu Met Val Phe Phe Gly Asn Val Asp Ser Ser
 2120 2125 2130

Gly Ile Lys His Asn Ile Phe Asn Pro Pro Ile Ile Ala Arg Tyr
 2135 2140 2145

Ile Arg Leu His Pro Thr His Tyr Ser Ile Arg Ser Thr Leu Arg
 2150 2155 2160

Met Glu Leu Met Gly Cys Asp Leu Asn Ser Cys Ser Met Pro Leu
 2165 2170 2175

Gly Met Glu Ser Lys Ala Ile Ser Asp Ala Gln Ile Thr Ala Ser
 2180 2185 2190

Ser Tyr Phe Thr Asn Met Phe Ala Thr Trp Ser Pro Ser Lys Ala
 2195 2200 2205

Arg Leu His Leu Gln Gly Arg Ser Asn Ala Trp Arg Pro Gln Val
 2210 2215 2220

Asn Asn Pro Lys Glu Trp Leu Gln Val Asp Phe Gln Lys Thr Met
 2225 2230 2235

Lys Val Thr Gly Val Thr Thr Gln Gly Val Lys Ser Leu Leu Thr
 2240 2245 2250

Ser Met Tyr Val Lys Glu Phe Leu Ile Ser Ser Ser Gln Asp Gly
 2255 2260 2265

His Gln Trp Thr Leu Phe Phe Gln Asn Gly Lys Val Lys Val Phe
 2270 2275 2280

Gln Gly Asn Gln Asp Ser Phe Thr Pro Val Val Asn Ser Leu Asp
2285 2290 2295

Pro Pro Leu Leu Thr Arg Tyr Leu Arg Ile His Pro Gln Ser Trp
2300 2305 2310

Val His Gln Ile Ala Leu Arg Met Glu Val Leu Gly Cys Glu Ala
2315 2320 2325

Gln Asp Leu Tyr
2330