发明名称
磁阻随机存取存储器（MRAM）器件及其制造方法

摘要
一种方法包括：图案化多个磁隧道结（MTJ）层以形成MTJ单元；在MTJ单元的顶面上方及其侧壁上形成介电保护层；在相同的真空环境中真空位实施图章化的步骤以及形成介电保护层的步骤；在介电保护层上实施等离子处理以将介电保护层转变成处理过的介电保护层。由此，处理过的介电保护层改成了对H₂O或O₂以及因此而引起的退化的防护。本发明还提供了一种磁阻随机存取存储器（MRAM）器件及其制造方法。
1. 一种方法，包括：
图案化多个磁隧道结（MTJ）层以形成MTJ单元；
在所述MTJ单元的顶面上方及侧壁上形成介电保护层；
实施处理以将所述介电保护层转换为处理过的一层电保护层，其中，所述处理包括含氮气的气体；以及
在所述处理过的介电保护层上形成介电层。
2. 根据权利要求1所述的方法，其中，所述介电保护层是氮化硅。
3. 根据权利要求1所述的方法，其中，所述处理是采用包含N₂的气体实施的等离子处理。
4. 根据权利要求1所述的方法，其中，所述含氮气的气体不包含氧气或氢气。
5. 根据权利要求1所述的方法，其中，通过游离基喷淋化学气相沉积（RSCVD），采用小于或者等于约4.5Å/sec的沉积速率形成所述介电保护层。
6. 根据权利要求1所述的方法，其中，在范围处于约200℃至约300℃之间的温度下形成所述介电保护层。
7. 根据权利要求1所述的方法，其中，在游离基喷淋化学气相沉积（RSCVD）装置中实施形成介电保护层步骤和实施所述处理的步骤，并且在所述步骤之间不存在真空破坏。
8. 根据权利要求1所述的方法，进一步包括：
在所述MTJ单元上方形成顶部电极层；
图案化所述顶部电极层以形成顶部电极，其中，使用相同的掩模图案化所述顶部电极层和所述MTJ层，并且其中，所述顶部电极位于所述处理过的介电保护层下方；以及
蚀刻所述介电层以及所述处理过的介电保护层来暴露所述顶部电极。
9. 一种用于形成磁矩随时间存储器（MRAM）器件的方法，包括：
提供具有多个磁隧道结（MTJ）层的衬底；
图案化所述多个磁隧道结（MTJ）层以形成MTJ单元；
在所述MTJ单元的顶面上方及其侧壁上形成氮化硅层，其中，所述氮化硅层的密度大于约2.4g/cm³；以及
采用包含N₂的气体对所述氮化硅层实施等离子处理。
10. 一种器件，包括：
磁隧道结（MTJ）单元；
介电保护层，与所述MTJ单元的侧壁物理接触，其中，所述介电保护层的密度大于约2.4g/cm³；以及
介电层，位于所述介电保护层的顶面和侧壁上方，并接触所述介电保护层的顶面和侧壁。
磁阻随机存取存储器（MRAM）器件及其制造方法

技术领域
[0001] 本发明一般地涉及半导体领域，更具体地来说，涉及磁阻随机存取存储器器件及其制造方法。

背景技术
[0002] 半导体存储器件用于进行各种电子应用的集成电路中，电子应用包括无线电通信装置、电视机、手机和个人计算装置。存储器件包括电荷存储器件，如动态随机存取存储器（DRAM）和闪速存储器。
[0003] 存储器件的较近的进步涉及自旋电子器件，其结合了半导体技术和磁性材料。使用电子的自旋极化而不是电子的电荷来指示状态是“1”还是“0”。一种类型的半导体存储器件是磁阻随机存取存储器（MRAM），其涉及自旋电子器件，自旋电子器件结合了半导体技术和磁性材料和器件。采用电子的自旋，通过它们的磁矩而不是电子的电荷来指示位值。
[0004] 典型的MRAM单元可以包括磁隧道结（MTJ）器件，MTJ器件一般包括自由层、固定层（pinned layer）、以及介于自由层和固定层之间的隧道层。施加通过隧道层的电流来反转自由层的磁化方向，这导致自由层内的注入的极化电子自由层的磁化施加自旋力矩。固定层具有固定的磁化方向。当电流以从自由层到固定层的方向流动时，电子以相反方向从固定层到自由层流动。在通过固定层，流过隧道层，然后注入自由层中并在自由层中积累之后，电子以与固定层相同的磁化方向发生极化。最终，自由层的磁化与固定层的磁化平行，并且MTJ器件将处于低电阻状态。由电流引起的该电子注入被称为主要注入（major injection）。
[0005] 当施加从固定层流到自由层的电流时，电子以从自由层到固定层的方向流动。具有与固定层的磁化方向相同的极化的电子能够流过隧道层并进入固定层。相反地，具有不同于固定层的磁化的极化的电子将被固定层反射（阻止），并在自由层中积累。最终，自由层的磁化将与固定层的磁化反平行，并且MTJ器件将处于高电阻状态。由电流引起的相应电子注入被称为次要注入（minor injection）。

发明内容
[0006] 为解决现有技术中所存在的技术问题，根据本发明的一个方面，提供了一种方法，包括：图案化多个磁隧道结（MTJ）层以形成MTJ单元；在所述MTJ单元的顶面上方及其侧壁上形成介电保护层；实施处理以将所述介电保护层转变成处理过的介电保护层，其中，所述处理包含氮气的气体；以及在所述处理过的介电保护层上方形成介电层。
[0007] 在该方法中，所述介电保护层是氮化硅。
[0008] 在该方法中，所述处理是采用包含N_{2}的气体实施的等离子处理。
[0009] 在该方法中，所述含氮气的气体不包含氧气或氨气。
[0010] 在该方法中，通过游离基喷淋化学气相沉积（RSCVD），采用小于或者等于约
4.5 Å/sec的沉积速率形成所述介电保护层。

[0011] 在该方法中，在范围处于约 200°C至约 300°C之间的温度下形成所述介电保护层。
[0012] 在该方法中，在游离基喷淋化学气相沉积（RSCVD）装置中实施形成介电保护层的步骤和实施所述处理的步骤，并且在两个步骤之间不存在真空破坏。
[0013] 该方法，进一步包括：在所述 MTJ 单元上方形成顶部电极层；图案化所述顶部电极层以形成顶部电极，其中，使用相同的掩模图案化所述顶部电极层和所述 MTJ 层，并且其中，所述顶部电极位于所述处理过的介电保护层下方，以及蚀刻所述介电层以及所述处理过的介电保护层来暴露所述顶部电极。
[0014] 在该方法中，所述处理将所述介电保护层的至少顶部从 SiN 转变成 SiNH。
[0015] 根据本发明的另一方面，提供了一种用于形成磁矩随机存取存储器（MRAM）器件的方法，包括：提供具有多个磁隧道结（MTJ）层的衬底；图案化所述多个磁隧道结（MTJ）层以形成 MTJ 单元；在所述 MTJ 单元的顶面上方及其侧壁上形成氮化硅层，其中，所述氮化硅层的密度大于约 2.4 g/cm³；以及采用包含 N₂ 的气体对所述氮化硅层实施等离子处理。
[0016] 在该方法中，所述等离子处理进一步包含 Ar 气体。
[0017] 在该方法中，在游离基喷淋化学气相沉积（RSCVD）装置中，在范围处于约 200°C至约 300°C之间的温度下，形成所述氮化硅层。
[0018] 在该方法中，采用小于或者等于约 4.5 Å/sec的沉积速率形成所述氮化硅层。
[0019] 在该方法中，在游离基喷淋化学气相沉积（RSCVD）装置中原位实施所述等离子处理。
[0020] 该方法进一步包括：在所述处理过的氮化硅层上方形成氧化物层。
[0021] 该方法进一步包括：在所述 MTJ 单元上方形成顶部电极层；图案化所述顶部电极层以形成顶部电极，其中，采用相同的掩模图案化所述顶部电极层和所述 MTJ 层，并且其中，所述顶部电极位于所述处理过的氮化硅层下方；以及蚀刻所述氧化物层和所述处理过的氮化硅层以暴露所述顶部电极。
[0022] 在该方法中，采用范围处于约 1000 瓦特至约 2500 瓦特的功率，在范围处于约 10 秒至约 40 秒的时间周期内，实施所述等离子处理。
[0023] 根据本发明的又一方面，提供了一种器件，包括：磁隧道结（MTJ）单元；介电保护层，与所述 MTJ 单元的侧壁物理接触，其中，所述介电保护层的密度大于约 2.4 g/cm³；以及介电层，位于所述介电保护层的顶面和侧壁上方，并接触所述介电保护层的顶面和侧壁。
[0024] 在该器件中，所述介电保护层的顶部具有不同于所述介电保护层的底部的组成。
[0025] 在该器件中，所述介电保护层的顶部由 SiNH 组成，并且所述介电保护层的底部由 SiN 形成。

附图说明

[0026] 为了更充分地理解实施例及其优点，现在将结合附图所进行的以下描述作为参考，其中：
[0027] 图 1 至图 8 是根据各个实施例的制造磁阻随机存取存储器（MRAM）器件的中间阶段的剖面图；以及
[0028] 图 9 显示用于实施图案化和沉积步骤的生产工具，其中，图案化用于形成磁隧
道结（MTJ）单元，以及沉积步骤用于形成覆盖MTJ单元的介电保护层。

具体实施方式

[0029] 在下面详细讨论本发明实施例的制造和使用。然而，应该理解，实施例提供了许多可以在各种具体环境中实现的可应用的概念。所讨论的具体实施例仅仅是示例性的，并不用于限制本发明的范围。

[0030] 根据各个实施例提供了磁阻随机存取存储器（MRAM）器件及其形成方法。示出了形成磁隧道结（MTJ）单元和上覆的结构的中间阶段。讨论了实施例的变化。在所有的视图和示例性实施例中，所示的参考符号用于指定相似的元件。

[0031] 参考图1，提供了MRAM器件10，其包括衬底20。衬底20可以由公知的半导体材料如硅、硅锗、或碳化硅等形成。在实施例中，衬底20是体硅衬底。在图3至图8中，所示衬底20位于图3至图8中示出的结构的下方。衬底20上方形成介电层12。在实施例中，介电层12是低k介电层，该低k介电层具有小于约3.0或者低于约2.5的k值。在介电层12中形成金属部件14。该金属部件可以由铜或铜合金形成。在介电层12上方形成介电层22。在实施例中，介电层22包含碳化硅。

[0032] 例如采用化学汽相沉积（CVD）方法，在介电层22上方形成绝缘层24。底部电极层26和MTJ结构28。绝缘层24可以由氮化硅、氧化硅、氢氧化硅、或其他介电材料形成。底部电极层26由导电材料如金属或金属合金形成。在实施例中，底部电极层26由钥或钥合金形成。底部电极层26电连接于金属部件14。

[0033] MTJ结构28可以包括各种层。图2示出了图1中示出的结构的一部分的放大图，其中所示的区域由如图1中所示的区域29获得的。在示例性实施例中，如图2中所示，MTJ结构28包括牵制层（pinning layer）28A、位于牵制层28A上方的固定层28B、位于固定层28B上方的隧道阻挡层28C，以及位于隧道阻挡层28C上方的自由层28D。层28A、28B、28C和28D中的相邻层也可以彼此物理接触。此外，MTJ结构28可以具有其他变化。在示例性实施例中，牵制层28A由PtMn形成，固定层28B由CoFe或CoFeB形成，隧道阻挡层28C由MgO形成，以及自由层28D由CoFeB形成。可自由对自由层28D的磁矩进行编程，并且得到的MTJ结构28的电阻可以在高电阻和低电阻之间变化。可以意识到：MTJ结构28的材料和结构可以具有许多变化，这些变化也在本发明的范围内。例如，MTJ结构28可以进一步包括其他层，如反铁磁层（未示出）。层28A至28D可以与图2中所示的顺序相反的顺序形成。因此，自由层28D可以是MTJ结构28中的底层，而牵制层28A可以是MTJ结构28中的顶层。

[0034] 再次参考图1，在MTJ结构28上方形成顶部电极层30。在实施例中，顶部电极层30由钥、钥合金、或者其他金属材料形成。在顶部电极层30上方形成多个部件，其中该多个部件用于图案化顶部电极层30和MTJ结构28。在实施例中，该多个部件包括非晶碳（APF）部件31、硬掩膜部件32（例如，其可以由氧化硅形成），以及底部抗反射涂层（BARC）部件34（其可以由氮氧化硅形成）。在可选实施例中，该多个部件可以包括层的不同组合。

[0035] 参考图3，提供光刻胶部件36，以便图案化MTJ结构28来限定MTJ单元。在实施例中，通过提供光刻胶层（未示出）形成光刻胶部件36。然后通过曝光和显影工艺图案化光刻胶部件36。可以意识到：尽管仅示出了光刻胶部件36的一部分，但可以存在在图案化的
光刻胶元件的阵列，其用于形成 MTJ 单元阵列。随后，通过采用光刻胶组件 36 作为掩模的蚀刻工艺将光刻胶组件 36 的图案转印到下面的 BARC 层（未示出）、硬掩模层（未示出）、和 APF 层（未示出）以形成如图 3 中所示的 BARC 组件 34、硬掩模组件 32、和 APF 组件 31。参考图 4，通过采用光刻胶组件 36 和/或 BARC 组件 34 作为掩模的蚀刻工艺图像 MTJ 结构 28 和顶部电极层 30。得到的图案化 MTJ 结构 28 和顶部电极层 30 的部分分别被称为 MTJ 单元 38 和顶部电极 40。然后，在形成 MTJ 单元 38 和顶部电极 40 之后，通过剥离和/or 蚀刻工艺去除光刻胶组件 36 和 BARC 组件 34。

接下来，通过例如蚀刻工艺去除硬掩模组件 32 和 APF 组件 31，并且得到的结构在于图 5 中示出。图 5 还示出了介电保护层 42 的形成。在实施例中，介电保护层 42 在顶部电极 40 的侧壁和顶部面上延伸，并与顶部电极的侧壁和顶部物理接触，以及与 MTJ 单元 38 的侧壁物理接触。在实施例中，介电保护层 42 由氮化硅（SiN）形成，但是其还可以由其他介电材料形成。介电保护层 42 的形成方法可以包括游离基喷雾化学气相沉积（RSCDV）或其他等离子体产生 CVD 方法。在实施例中，通过 RSCVD 采用低沉积速率（例如不大于约 4.5 Å/sec）形成介电保护层 42。由此，介电保护层 42 可以达到相对较高的密度（例如，大于约 2.4 g/cm³）。在实施例中，采用范围处于约 2.0 Å/sec 至约 4.5 Å/sec 之间的沉积速率形成介电保护层 42。在实施例中，在范围处于约 200℃至约 300℃之间的温度下形成介电保护层 42。在实施例中，采用包含 SiH₄ 和 NH₃ 气体的化学气相沉积形成介电保护层 42。在实施例中，Ar 与 SiH₄ 和 NH₃ 气体混合用于形成介电保护层 42。SiH₄ 和 NH₃ 气体的流量例如分别处于约 20 sccm 至约 45 sccm 以及约 1000 sccm 至约 2000 sccm 的范围内。在实施例中，在范围处于约 100 Torr 至约 300 Torr 之间的压力下，采用范围处于约 1000 瓦特至约 2000 瓦特之间的功率，形成介电保护层 42。例如，介电保护层 42 的厚度可以处于约 30 Å 至约 150 Å 之间。

在实施例中，在相同的真空条件下原位实施蚀刻 MTJ 结构 28 而形成 MTJ 单元 38 的步骤以及形成介电保护层 42 的步骤，而在蚀刻 MTJ 结构 28 的步骤和形成介电保护层 42 的步骤之间不发生真空破坏。还可以在相同的真空环境中实施去除硬掩模组件 32 的步骤，该步骤在图案化顶部电极层 30 和 MTJ 结构 28 之后实施。图 9 说明了用于实施蚀刻 MTJ 结构 28 而形成 MTJ 单元 38 的步骤以及形成介电保护层 42 的步骤的生产工具 100。生产工具 100 包括用于将 MMAM 器件 10 装载至生产工具 100 内并将 MMAM 器件 10 从生产工具 100 中取出的装载环 110。生产工具 100 进一步包括多个蚀刻室 102，其用于蚀刻不同的层来形成顶部电极 40、MTJ 单元 38 和硬掩模组件 32。介电保护层 42 例如在室 104 中形成，室 104 连接于蚀刻室 102，并与蚀刻室 102 共享相同的真空环境。因此，在蚀刻 MTJ 结构 28 的步骤和形成介电保护层 42 的步骤期间以及在这两个步骤之间不发生真空破坏，并且当在室 102 和 104 之间转移时，MMAM 器件 10 不暴露于外部环境。可选地，还可以在生产工具 100 中原位实施蚀刻顶部电极层 30 以形成顶部电极 40 的步骤。因此，在相应的实施例中，从蚀刻电极层 30 的步骤开始到形成介电保护层 42 的步骤不存在真空破坏。

接下来，如图 6 中所示，在介电保护层 42 的上方提供处理 44。在实施例中，处理 44 为采用包含 N₂ 和 Ar 气体的化学气相等离子处理。例如，N₂ 和 Ar 气体的流量分别处于约 500 sccm 至约 1500 sccm 以及约 100 sccm 至约 500 sccm 的范围内。在实施例中，处理 44 是不采用包含氧气或氢气的气体等离子处理，因为氧和氢气分别可以破坏自由层 28D 和隧道阻挡层 28C。在实施例中，处理 44 是采用范围处于约 1000 瓦特至约 2500 瓦特之间的功
率，范围在约10秒至约40秒之间的时间周期内实施的等离子处理。然后通过处理44将介电保护层42转变成处理过的介电保护层42’。在实施例中，处理44可以生成N-H键以减少处理过的表面上的自由键（dangling bond）。由此，与处理44之前介电保护层42上的自由键相比，处理过的介电保护层42’具有减少的自由键。在实施例中，介电保护层42由SiN组成，处理44将介电保护层42的上部从SiN转变成SiNH，但是介电保护层42的下部保持不变，仍由SiN组成。在可选实施例中，处理44将介电保护层42转变成全部由SiNH组成的处理过的介电保护层42’。处理过的介电保护层42’具有改进的膜质量，其可以提供更好的保护来阻止H₂O或O₂的穿透。由此，处理过的介电保护层42’可以对MTJ单元38提供更好的保护以免退化，并因此改进MRAM器件的性能。

[0040] 在实施例中，在形成介电保护层42之后通过共享相同的真空环境原位实施处理44。在实施例中，与形成介电保护层42相同的室中（例如在室104中）提供处理44。因此，在形成介电保护层42和处理44之间不存在真空破坏。在可选实施例中，与用于形成介电保护层42的室不同的室中（例如，在室106而不是室104中）提供处理44。因为在生产工具100（图9）中将MRAM器价10从室104转移到室106，所以在形成介电保护层42和处理44之间不存在真空破坏。在可选实施例中，在形成介电保护层42之后，将MRAM器件10从生产工具100中取出，并将其传送到另一室（未示出）进行处理44。因此，在形成介电保护层42和处理44之间存在真空破坏。

[0041] 图7和图8示出了位于处理过的介电保护层42’上方的部件的形成。参考图7，在处理过的介电保护层42’的上方形成介电层50，并且介电层50可以接触处理过的介电保护层42’。在实施例中，介电层50是氧化物层，其可以进一步是氧化硅层。接下来，在介电层50上方形成B ARC层52，其中，例如，该B ARC层52可以由氮氧化硅形成。

[0042] 如图8中所示，实施蚀刻步骤以蚀刻BARC层52、介电层50、以及处理过的介电保护层42’的部分，直到将顶部电极40暴露出来。接下来，去除BARC层52，而介电层50和处理过的介电保护层42’可以保留去除。在后续步骤中，可以在介电层50、顶部电极40、以及处理过的介电保护层42’的上边缘的上方形成其他层如氮化铝层（未示出），并且该其他层如氮化铝层（未示出）可能接触介电层、顶部电极，以及处理过的介电保护层的上边缘。

[0043] 在实施例中，处理44可以将介电保护层42转变成具有改进的膜质量的处理过的介电保护层42’。因此，处理过的介电保护层42’可以保护MTJ单元38免受潮湿、氧气，以及在后续工艺步骤中所用的蚀刻气体的影响。因此，根据实施例，处理过的介电保护层42’可以对器件提供显著更好的保护。

[0044] 根据实施例，一种方法包括图案化多个磁隧道结（MTJ）层以形成MTJ单元；在MTJ单元的顶面上方及其侧壁上形成介电保护层；实施处理以将介电保护层转变成处理过的介电保护层；以及在处理过的介电保护层的上方形成介电层。处理包含氮气的气体。

[0045] 根据其他实施例，一种方法包括提供具有多个磁隧道结（MTJ）层的衬底；图案化多个磁隧道结（MTJ）层以形成MTJ单元；在MTJ单元的顶面上方及其侧壁上形成氮化硅层，以及采用含N₂的气体对氮化硅层实施等离子处理。氮化硅层的密度大于约2.4g/cm³。

[0046] 根据另一些实施例，一种器件包括：磁隧道结（MTJ）单元；介电保护层，该介电保护层与MTJ单元的侧壁物理接触；以及介电层，该介电层位于介电保护层的顶面和侧壁的上方，并接触介电保护层的顶面和侧壁。介电保护层的密度大于约2.4g/cm³。
[0047] 尽管已经详细地描述了实施例及其优势，但应该理解，可以在不背离所附权利要求限定的实施例的精神和范围的情况下，在其中进行各种改变、替换和更改。而且，本申请的范围并不仅限于本说明书中描述的工艺、机器、制造、材料组分、装置、方法和步骤的特定实施例。作为本领域普通技术人员根据本发明将很容易理解，根据本发明可以利用现有的或今后开发的用于执行与本文所述相应实施例基本上相同的功能或者获得基本上相同的结果的工艺、机器、制造、材料组分、装置、方法或步骤。因此，所附权利要求预期在其范围内包括这样的工艺、机器、制造、材料组分、装置、方法或步骤。此外，每条权利要求构成单独的实施例，并且多个权利要求和实施例的组合在本发明的范围内。
图 3
图 4
图 5
图 7
图9