

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
4 June 2009 (04.06.2009)

PCT

(10) International Publication Number
WO 2009/068204 A1(51) International Patent Classification:
C07K 16/30 (2006.01) A61P 35/00 (2006.01)
A61K 39/395 (2006.01)(74) Common Representative: BAYER SCHERING
PHARMA AKTIENGESELLSCHAFT; Law and
Patents, Patents and Licensing, Building Q18, 51368
Leverkusen (DE).(21) International Application Number:
PCT/EP2008/009756(22) International Filing Date:
19 November 2008 (19.11.2008)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
61/004,378 26 November 2007 (26.11.2007) US

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): BAYER SCHERING PHARMA AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, 13353 Berlin (DE).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): KAHNERT, Antje [DE/DE]; Barbarossaplatz 4, 40545 Düsseldorf (DE). LIGHT, David [US/US]; 614 South Fremont Street, San Mateo, CA 94402 (US). SCHNEIDER, Douglas [US/US]; 3329 Walnut Lane, Lafayette, CA 84549 (US). PARRY, Renate [US/US]; 21 Kingwood Road, Oakland, CA 94619 (US). SATOZAWA, Noboru [JP/JP]; 405-1-406 Mobara, Mobara, Chiba 297-0026 (JP). HEITNER, Tara [DK/DK]; Gammel Kongevej 23.3. sal, DK-1610 Copenhagen (DK). STEIDL, Stefan [DE/DE]; Planeggerstrasse 37, 82141 München (DE). SCHUBERT, Ulrike [DE/DE]; Beinhoferstr. 3, 81247 München (DE).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- with sequence listing part of description published separately in electronic form and available upon request from the International Bureau

(54) Title: ANTI-MESOTHELIN ANTIBODIES AND USES THEREFOR

(57) Abstract: The present invention provides recombinant antigen-binding regions and antibodies and functional fragments containing such antigen-binding regions that are specific for the membrane-anchored, 40.kDa mesothelin polypeptide, which is overexpressed in several tumors, such as pancreatic and ovarian tumors, mesothelioma and lung cancer cells. These antibodies, accordingly, can be used to treat these and other disorders and conditions. Antibodies of the invention also can be used in the diagnostics field, as well as for further investigating the role of mesothelin in the progression of disorders associated with cancer. The invention also provides nucleic acid sequences encoding the foregoing antibodies, vectors containing the same, pharmaceutical compositions and kits with instructions for use.

WO 2009/068204 A1

Anti-Mesothelin Antibodies and Uses Therefor

The present invention provides recombinant antigen-binding regions and antibodies and functional fragments containing such antigen-binding regions that are specific for the membrane-anchored, 40 kDa mesothelin polypeptide, which is overexpressed in several tumors, such as pancreatic and ovarian tumors, mesothelioma and lung cancer cells. These antibodies, accordingly, can be used to treat these and other disorders and conditions. Antibodies of the invention also can be used in the diagnostics field, as well as for further investigating the role of mesothelin in the progression of disorders associated with cancer. The invention also provides nucleic acid sequences encoding the foregoing antibodies, vectors containing the same, pharmaceutical compositions and kits with instructions for use.

BACKGROUND OF THE INVENTION

Antibody-based therapy is proving very effective in the treatment of various cancers, including solid tumors. For example, HERCEPTIN® has been used successfully to treat breast cancer. Central to the development of a successful antibody-based therapy is isolation of antibodies against cell-surface proteins found to be preferentially expressed on tumor cells. The mesothelin precursor polypeptide is a glycoprophatidylinositol (GPI)-anchored, glycosylated cell surface protein that is proteolytically cleaved to a 30 kDa N-terminal secreted polypeptide and a 40 kDa, C-terminal polypeptide, which predominantly occurs in the membrane-bound, GPI-anchored form (Chang, K. and I. Pastan, Proc. Natl. Acad. Sci. U S A, (1996) 93(1):136), and which is named mesothelin herein.

Mesothelin is preferentially expressed by certain tumor cells, particularly mesothelioma cells, pancreatic tumor cells and ovarian carcinoma cells, while its expression is limited in normal tissue, making it an ideal target for tumor therapy (Argani, P. *et al.*, Clin. Cancer Res. (2001) 7(12): 3862; Hassan, R., *et al.*, Clin. Cancer Res. (2004) 10(12 Pt 1):3937). The function of mesothelin is unknown, and no apparent reproductive, hematologic, or anatomic abnormalities were observed in mice deficient in mesothelin gene expression (Bera, T.K. and I. Pastan, Mol. Cell. Biol. (2000) 20(8):2902).

Antibody-based, targeted therapy against mesothelin-expressing cancer cells has been proposed for the treatment of lung, ovarian and pancreatic cancer. Mab K1 was the first antibody to membrane-bound mesothelin polypeptide which was described (Chang, K., *et al.*, Int. J. Cancer, (1992) 50(3):373). Mab K1 was generated by immunizing mice. Due to low affinity and poor internalization rates of the antibody, an immunotoxin consisting of Mab K1 linked to a chemically modified truncated form of *Pseudomonas* exotoxin A was not considered suitable for clinical development (Hassan, R., *et al.*, J. Immunother. (2000) 23(4):473; Hassan, R., *et al.*, Clin. Cancer Res. (2004) 10(12 Pt 1): 3937). Subsequently, single-chain antibodies with higher affinities were developed, including SS1-(dsFv)-PE38, which showed killing activity of tumor cells in vitro (Hassan, R., *et al.*, Clin. Cancer Res. (2002) 8(11): 3520) as well as potency in a murine model of human mesothelin-expressing tumors (Fan, D., *et al.*, Mol. Cancer Ther. (2002) 1(8): 595). These data validate mesothelin as a suitable target for immunotherapy of multiple cancers. However, in clinical trials, SS1-(dsFv)-PE38 was immunogenic, preventing a second administration for the majority of patients. Furthermore, SS1-(dsFv)-PE38 has been shown to have a fast blood clearance and

attempts are being reported to increase the molecular weight by pegylating the fusion protein (Filpula, D., *et al.*, *Bioconjugate Chem.* (2007) 18(3): 773).

MS-1, MS-2 and MS-3 are mesothelin-binding antibodies which elicit immune effector activity at the cell surface due to their human IgG1 isotype and 5 internalize into mesothelin expressing cells (WO 2006/099141 A2). One of these antibodies, the unconjugated IgG anti-mesothelin antibody MOR Ab 009 is currently being tested in a clinical trial for therapeutic effects in the treatment of pancreatic cancer.

The predictive value of xenograft murine cancer models for clinical outcome 10 of immunotoxin cancer therapy is often limited by a lack of cross-reactivity of the therapeutic antibodies with their murine homologues, which leads to reduced unspecific binding to normal tissue. On the other hand, neutralizing anti-mouse Fv antibodies which are formed in patients being treated with murine or chimeric antibodies may result in either dose-limiting toxicity or diminished therapeutic 15 potency. Thus, to fully exploit the potential of specific mesothelin expression in cancer therapy, targeting antibodies are required which combine the advantages of increased affinities and reduced dissociation rates with a fully human variable chain format, and with murine cross-reactivity.

A further necessary feature of novel antibodies is invariant affinity to 20 different cancer cell lines expressing mesothelin on their surface. Mesothelin is a highly variable protein, undergoing post-translational proteolytic digestion as well as glycosylation at multiple sites (Hassan, R., *et al.*, *Clin. Cancer Res.* (2004) 10(12 Pt 1): 3937). Variability extends to the transcriptional level, since three 25 different splice variants have been detected, although transcript variant 1 (NM_005823) seems to represent the major species present in tumor cell lines tested so far (Muminova, Z.E., *et al.*, *BMC Cancer* (2004) 4:19; Hellstrom, I., *et*

al., Cancer Epidemiol. Biomarkers Prev. (2006) 15(5):1014). Thus, effective anti-mesothelin antibodies must bind to an epitope invariantly presented by tumor cells from different patients, independently of individual variance including, but not restricted to, variances in glycosylation patterns, which leads to the expression of 5 different forms of mesothelin.

Provided herein are antibodies, antigen-binding antibody fragments thereof, or variants thereof, that bind to mesothelin with high and invariant affinity, internalize efficiently, and that are preferably cross-reactive to mesothelin from another species. Also provided are antibody-based therapies for cancer, in 10 particular for mesothelin expressing tumors, for example pancreatic, ovarian, or lung cancer, using antibodies, antigen-binding antibody fragments thereof, or variants thereof, that facilitate delivery of therapeutically active agents to cancer cells.

15

SUMMARY OF THE INVENTION

It is an object of the invention to provide human and humanized antibodies, or antigen-binding antibody fragments thereof, or variants thereof, that are highly selective for the 40 kDa, C-terminal extracellular part of the mesothelin precursor 20 polypeptide, and which may be employed in methods for detection of mesothelin expression, which is associated with disease states such as cancer of the pancreas, ovary, and lung, and in the treatment of such disease states. Toward these ends, it is an object of the invention to provide isolated human antibodies, or antigen binding antibody fragments thereof, that specifically bind to an epitope present in 25 the mesothelin polypeptide (SEQ ID NO:370), which is invariantly presented by mesothelin-expressing cancer cell lines, and which is bound by these antibodies with comparable affinities. As used herein, the term 'invariant presentation' of the

epitope refers to the presence of an epitope recognized by a particular antibody on a broad range of mesothelin expressing tumor cell lines which express different forms of mesothelin. As used herein, different 'forms' of mesothelin include, but are not restricted to, different glycoforms, different isoforms or mesothelin 5 polypeptides which undergo different translational and posttranslational modifications. As used herein, the term 'comparable affinities' refers to half-maximal antibody potency (EC_{50}) values obtained by Scatchard Analysis of FACS data of antibody binding to cells expressing different forms of mesothelin, which do not differ by more than factor 10, or, preferably, factor 5, or, even preferably, 10 factor 2.

It is another object of the invention to provide antibodies, or antigen-binding antibody fragments thereof, or variants thereof that are safe for human administration.

It is another object of the invention to provide antibodies, or antigen-binding 15 antibody fragments thereof, or variants thereof, which bind to human mesothelin and are cross-reactive to mesothelin of another species. Preferably said other species is a rodent, such as for example mouse or rat. Most preferably the antibodies, or antigen-binding antibody fragments thereof, or variants thereof bind to human mesothelin and are cross-reactive to murine mesothelin.

20 It is another object of the invention to provide antibodies, or antigen-binding antibody fragments thereof, or variants thereof, which invariantly bind to different mesothelin-expressing cell lines with comparable affinity. As used herein, the term 'invariant binding' of a particular antibody to mesothelin refers to its ability to bind to mesothelin on a broad range of mesothelin-expressing cancer cell lines 25 which express different forms of mesothelin. Invariant binding may be caused by, but is not restricted to, the fact that antibodies, or antigen-binding antibody

fragments thereof, or variants thereof, recognize an epitope of mesothelin that is not masked by another extracellular antigen, such as cancer antigen 125 (CA125), which interacts with mesothelin.

It is another object of the invention to provide antibodies or variants thereof, 5 which bind to different mesothelin-expressing cancer cells or tumor cells and elicit immune effector activity (e.g. ADCC or CDC) against mesothelin-expressing cancer cells, by using one or more antibodies or variants thereof, of the invention.

It is another object of the invention to provide antibodies, or antigen-binding 10 antibody fragments thereof, or variants thereof, which are internalized following binding to a mesothelin expressing cell. It is also an object of the present invention to provide methods for treating disease by delivering cytotoxic drugs or drug-releasing enzymes to mesothelin-expressing cancer cells, by using one or more antibodies, or antigen-binding antibody fragments thereof, or variants 15 thereof, of the invention.

It is another object of the invention to provide antibodies which constitute a tool for diagnosis of malignant or dysplastic conditions in which mesothelin expression is elevated compared to normal tissue. Provided are anti-mesothelin antibodies conjugated to a detectable marker. Preferred markers are a radiolabel, 20 an enzyme, a chromophore or a fluorescer.

The invention is also related to polynucleotides encoding the antibodies of the invention, cells expressing the antibodies of the invention, methods for producing the antibodies of the invention, methods for inhibiting the growth of dysplastic cells using the antibodies, and methods for treating and detecting 25 cancer using the antibodies.

The invention provides antibodies that are distinguished from Mab K1, SS1, MS-1, MS-2 and MS-3 in that they a) invariantly bind to mesothelin b) are cross-reactive to murine mesothelin c) bind to mesothelin with lower affinities d) internalize efficiently into mesothelin-expressing cells, and e) contain human 5 variable regions.

These and other objects of the invention are more fully described herein.

In one aspect, the invention provides an isolated antibody or functional antibody fragment that contains an antigen-binding region that is specific for an 10 epitope of the 40 kDa mesothelin polypeptide.

Such an antibody or functional fragment thereof may contain an antigen-binding region that contains an H-CDR3 region depicted in SEQ ID NO: 67-98; the antigen-binding region may further include an H-CDR2 region depicted in SEQ ID NO:31-66; and the antigen-binding region also may contain an H-CDR1 15 region depicted in SEQ ID NO:1-30. Such a mesothelin -specific antibody of the invention may contain an antigen-binding region that contains an L-CDR3 region depicted in SEQ ID NO:160-197; the antigen-binding region may further include an L-CDR1 region depicted in SEQ ID NO:99-128; and the antigen-binding region also may contain an L-CDR2 region depicted in SEQ ID NO:129-159.

20 Peptide variants of the sequences disclosed herein are also embraced by the present invention. Accordingly, the invention includes anti-mesothelin antibodies having a heavy chain amino acid sequence with: at least 60 percent sequence identity in the CDR regions with the CDR regions depicted in SEQ ID NO:1- 197 ; and/or at least 80 percent sequence homology in the CDR regions 25 with the CDR regions depicted in SEQ ID NO: 1-197. Further included are anti-

mesothelin antibodies having a light chain amino acid sequence with: at least 60 percent sequence identity in the CDR regions with the CDR regions depicted in SEQ ID NO: 1-197; and/or at least 80 percent sequence homology in the CDR regions with the CDR regions depicted in SEQ ID NO: 1-197.

5 An antibody of the invention may be an IgG (*e.g.*, IgG₁), while an antibody fragment may be a Fab or scFv, for example. An inventive antibody fragment, accordingly, may be, or may contain, an antigen-binding region that behaves in one or more ways as described herein.

The invention also is related to isolated nucleic acid sequences, each of 10 which can encode an antigen-binding region of a human antibody or functional fragment thereof that is specific for an epitope of mesothelin. Such a nucleic acid sequence may encode a variable heavy chain of an antibody and include a sequence selected from the group consisting of SEQ ID NOS 284-326: or a nucleic acid sequence that hybridizes under high stringency conditions to the 15 complementary strand of SEQ ID NO: 284-326. The nucleic acid might encode a variable light chain of an isolated antibody or functional fragment thereof, and may contain a sequence selected from the group consisting of SEQ ID NOS: 327-369, or a nucleic acid sequence that hybridizes under high stringency conditions to the complementary strand of SEQ ID NO: 327-369.

20 Nucleic acids of the invention are suitable for recombinant production. Thus, the invention also relates to vectors and host cells containing a nucleic acid sequence of the invention.

Compositions of the invention may be used for therapeutic or prophylactic 25 applications. The invention, therefore, includes a pharmaceutical composition containing an inventive antibody (or functional antibody fragment) and a

pharmaceutically acceptable carrier or excipient therefor. In a related aspect, the invention provides a method for treating a disorder or condition associated with the undesired presence of mesothelin expressing cells. Such method contains the steps of administering to a subject in need thereof an effective amount of the 5 pharmaceutical composition that contains an inventive antibody as described or contemplated herein.

The invention also provides instructions for using the antibody library to isolate one or more members of such library that binds specifically and invariantly to mesothelin.

DESCRIPTION OF THE FIGURES

Figure 1 shows anti-mesothelin antibody epitope grouping by Biacore pairwise binding analysis. Competitive binding of pairs of antibodies was determined by immobilizing one antibody to the sensor chip, binding soluble mesothelin to this antibody and immediately binding a second antibody to mesothelin. Pairs of antibodies which recognize the same or overlapping epitopes on mesothelin cannot bind simultaneously. All combinations of antibody pairs were tested. Representative data for MF-T are shown (A). Panel B depicts the relative positions of epitopes of seven anti-mesothelin antibodies, in which competition is depicted by overlapping circles.

Figure 2 shows different forms of mesothelin recognized by antibodies of the invention. 1. and 2.: MF-J binding to mesothelin in OVCAR-3 cell extracts; 3. and 4.: MF-J binding to mesothelin in CHO-A9 cell extracts; 5. MF-J binding to mesothelin in NCI-H226 cell extracts; 6. MF-J binding to recombinant, deglycosylated mesothelin; 7. MOR06635 binding to OVCAR-3 cell extracts; and 8. MOR06635 binding to NCI-H226 cell extracts.

Figure 3 shows that cancer antigen 125 (CA125) binds mesothelin when it is bound to a subset of mesothelin antibodies including MOR06640 and MF-T, while other antibodies, such as MF-226, compete with CA125 for mesothelin binding. Data shown are relative light units (RLU) detected by SECTOR Light Imager (Meso Scale Discovery). Plates were coated with the mesothelin antibody depicted. Mesothelin was added at the concentrations indicated and titrated down. CA125 was bound subsequently at a constant concentration. Detection was

performed with a mouse anti-CA125 antibody and an MSD Sulfo tag labelled anti mouse FAB antibody.

Figure 4 provides data on internalization of ^{125}I -anti-mesothelin antibodies on CHO-A9 cells expressing mesothelin. Relative internalization of seven anti-
5 mesothelin mabs, including the commercial positive control K1, in the absence (A), and in the presence (B) of the stabilizing second antibody. Representative data using MF-226 plus second antibody, showing relative amounts of dissociated, surface-bound and internalized antibody at 37°C over time (C) is compared with that at the non-permissive temperature of 0°C (D).

10

DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on the discovery of novel antibodies that are specific to or have a high affinity for mesothelin and can deliver a therapeutic benefit to a subject. The antibodies of the invention, which may be human or
15 humanized, can be used in many contexts, which are more fully described herein.

Definitions

A “human” antibody or functional human antibody fragment is hereby defined as one that is not chimeric (*e.g.*, not “humanized”) and not from (either in
20 whole or in part) a non-human species. A human antibody or functional antibody fragment can be derived from a human or can be a synthetic human antibody. A “synthetic human antibody” is defined herein as an antibody having a sequence derived, in whole or in part, *in silico* from synthetic sequences that are based on the analysis of known human antibody sequences. *In silico* design of a human
25 antibody sequence or fragment thereof can be achieved, for example, by analyzing

a database of human antibody or antibody fragment sequences and devising a polypeptide sequence utilizing the data obtained therefrom. Another example of a human antibody or functional antibody fragment is one that is encoded by a nucleic acid isolated from a library of antibody sequences of human origin (*i.e.*, 5 such library being based on antibodies taken from a human natural source). Examples of human antibodies include HuCAL antibodies as described in Knappik et al., *J. Mol. Biol.* (2000) 296:57 and U.S. Patent No. 6,300,064.

A “humanized antibody” or functional humanized antibody fragment is 10 defined herein as one that is (i) derived from a non-human source (*e.g.*, a transgenic mouse which bears a heterologous immune system), which antibody is based on a human germline sequence; or (ii) chimeric, wherein the variable domain is derived from a non-human origin and the constant domain is derived from a human origin or (iii) CDR-grafted, wherein the CDRs of the variable 15 domain are from a non-human origin, while one or more frameworks of the variable domain are of human origin and the constant domain (if any) is of human origin.

As used herein, an antibody “binds specifically to,” is “specific to/for” or “specifically recognizes” an antigen (here, mesothelin) if such antibody is able to 20 discriminate between such antigen and one or more reference antigen(s), since binding specificity is not an absolute, but a relative property. In its most general form (and when no defined reference is mentioned), “specific binding” is referring to the ability of the antibody to discriminate between the antigen of interest and an unrelated antigen, as determined, for example, in accordance with one of the 25 following methods. Such methods comprise, but are not limited to Western blots, ELISA-, RIA-, ECL-, IRMA-tests and peptide scans. For example, a standard

ELISA assay can be carried out. The scoring may be carried out by standard color development (*e.g.* secondary antibody with horseradish peroxide and tetramethyl benzidine with hydrogenperoxide). The reaction in certain wells is scored by the optical density, for example, at 450 nm. Typical background (=negative reaction) 5 may be 0.1 OD; typical positive reaction may be 1 OD. This means the difference positive/negative can be more than 10-fold. Typically, determination of binding specificity is performed by using not a single reference antigen, but a set of about three to five unrelated antigens, such as milk powder, BSA, transferrin or the like.

However, “specific binding” also may refer to the ability of an antibody to 10 discriminate between the target antigen and one or more closely related antigen(s), which are used as reference points. Additionally, “specific binding” may relate to the ability of an antibody to discriminate between different parts of its target antigen, *e.g.* different domains or regions of mesothelin, such as epitopes in the N-terminal or in the C-terminal region of mesothelin, or between one or more key 15 amino acid residues or stretches of amino acid residues of mesothelin.

Also, as used herein, an “immunoglobulin” (Ig) hereby is defined as a protein belonging to the class IgG, IgM, IgE, IgA, or IgD (or any subclass thereof), and includes all conventionally known antibodies and functional fragments thereof. A “functional fragment” or “antigen-binding antibody 20 fragment” of an antibody/immunoglobulin hereby is defined as a fragment of an antibody/immunoglobulin (*e.g.*, a variable region of an IgG) that retains the antigen-binding region. An “antigen-binding region” of an antibody typically is found in one or more hypervariable region(s) of an antibody, *i.e.*, the CDR-1, -2, and/or -3 regions; however, the variable “framework” regions can also play an 25 important role in antigen binding, such as by providing a scaffold for the CDRs. Preferably, the “antigen-binding region” comprises at least amino acid residues 4

to 103 of the variable light (VL) chain and 5 to 109 of the variable heavy (VH) chain, more preferably amino acid residues 3 to 107 of VL and 4 to 111 of VH, and particularly preferred are the complete VL and VH chains (amino acid positions 1 to 109 of VL and 1 to 113 of VH; numbering according to WO 5 97/08320). A preferred class of immunoglobulins for use in the present invention is IgG. "Functional fragments" of the invention include Fab, Fab', F(ab')₂, and Fv fragments; diabodies; linear antibodies; single-chain antibody molecules (scFv); and multispecific antibodies formed from antibody fragments (C. A. K Borrebaeck, editor (1995) *Antibody Engineering* (Breakthroughs in Molecular 10 Biology), Oxford University Press; R. Kontermann & S. Duebel, editors (2001) *Antibody Engineering* (Springer Laboratory Manual), Springer Verlag). An antibody other than a "bispecific" or "bifunctional" antibody is understood to have each of its binding sites identical. The F(ab')₂ or Fab may be engineered to minimize or completely remove the intermolecular disulphide interactions that 15 occur between the C_{H1} and C_L domains.

An antibody of the invention may be derived from a recombinant antibody library that is based on amino acid sequences that have been designed *in silico* and encoded by nucleic acids that are synthetically created. *In silico* design of an antibody sequence is achieved, for example, by analyzing a database of human 20 sequences and devising a polypeptide sequence utilizing the data obtained therefrom. Methods for designing and obtaining *in silico*-created sequences are described, for example, in Knappik *et al.*, J. Mol. Biol. (2000) 296:57; Krebs *et al.*, J. Immunol. Methods. (2001) 254:67; and U.S. Patent No. 6,300,064 issued to Knappik *et al.*, which hereby are incorporated by reference in their entirety.

25 As used herein, different 'forms' of antigen, e.g. mesothelin, are hereby defined as different protein molecules resulting from different translational and

posttranslational modifications, such as, but not limited to, differences in splicing of the primary mesothelin transcript, differences in glycosylation, and differences in posttranslational proteolytic cleavage.

As used herein, the term 'invariant binding' of a particular antibody to mesothelin refers to its ability to bind to mesothelin on a broad range of mesothelin-expressing cancer cell lines which express different forms of mesothelin. For invariantly binding antibodies, EC50 values determined by FACS titration on two distinct cancer cell lines might differ no more than 10fold, or, preferably, 5fold, and most preferably between 1 and 3fold.

10 As used herein, the term 'epitope' includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. Two antibodies are said 15 to 'bind the same epitope' if one antibody is shown to compete with the second antibody in a competitive binding assay, by any of the methods well known to those of skill in the art.

Antibodies of the Invention

20 The present invention relates to methods to inhibit growth of mesothelin-positive cancer cells and the progression of neoplastic disease by providing anti-mesothelin antibodies. Provided are human monoclonal antibodies, antigen-binding antibody fragments thereof, and variants of the antibodies and fragments, that specifically bind to the 40 kDa, C-terminal domain of the mesothelin 25 precursor polypeptide (SEQ ID NO 370), which is named 'mesothelin' herein.

The antibodies, antigen-binding antibody fragments, and variants of the antibodies and fragments of the invention are comprised of a light chain variable region and a heavy chain variable region. Variants of the antibodies or antigen-binding antibody fragments contemplated in the invention are molecules in which

5 the binding activity of the antibody or antigen-binding antibody fragment for mesothelin is maintained.

Throughout this document, reference is made to the following representative antibodies of the invention: "MF-J", "MOR07265", "MOR06631", "MOR 06635", "MOR06669", "MOR07111", "MOR06640", "MOR06642", "MOR06643", "MF-226", "MOR06626", "MOR06638", "MF-A", "MOR06657", 5 "MF-T", "MF1", "MF-5", "MF-8", "MF-24", "MF-25", "MF-27", "MF-73", "MF-78", "MF-84", "MF-101", "MF-230", "MF-236", "MF-252", "MF-257", "MF-423", "MF-427", "MF-428", "MF-C", "MF-I", "MF-L", "MF-M", "MF-P", "MF-Q", "MF-S", "MF-V", "MF-W", and "MF-Y". MF-J represents an antibody having a variable heavy region corresponding to SEQ ID NO: 284 (DNA)/SEQ ID NO: 198 (protein) and a variable light region corresponding to SEQ ID NO: 327 (DNA)/SEQ ID NO: 241 (protein). MOR 07265 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 285 (DNA)/SEQ ID NO: 199 (protein) and a variable light region corresponding to SEQ ID NO: 328 (DNA)/SEQ ID NO: 242 (protein). MOR 06631 represents an antibody having a 10 variable heavy region corresponding to SEQ ID NO: 286 (DNA)/SEQ ID NO: 200 (protein) and a variable light region corresponding to SEQ ID NO: 329 (DNA)/SEQ ID NO: 243 (protein). MOR 06669 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 287 (DNA)/SEQ ID NO: 201 (protein) and a variable light region corresponding to SEQ ID NO: 330 (DNA)/SEQ ID NO: 244 (protein). MOR 07111 represents an antibody having a 15 variable heavy region corresponding to SEQ ID NO: 288 (DNA)/SEQ ID NO: 202 (protein) and a variable light region corresponding to SEQ ID NO: 331 (DNA)/SEQ ID NO: 245 (protein). MOR 06640 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 289 (DNA)/SEQ ID NO: 203 (protein) and a variable light region corresponding to SEQ ID NO: 332 (DNA)/SEQ ID NO: 246 (protein). MOR 06642 represents an antibody having a 20 variable heavy region corresponding to SEQ ID NO: 290 (DNA)/SEQ ID NO: 204 (protein) and a variable light region corresponding to SEQ ID NO: 333 (DNA)/SEQ ID NO: 247 (protein). MOR 06657 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 291 (DNA)/SEQ ID NO: 205 (protein) and a variable light region corresponding to SEQ ID NO: 334 (DNA)/SEQ ID NO: 248 (protein). MF-A represents an antibody having a variable heavy region corresponding to SEQ ID NO: 292 (DNA)/SEQ ID NO: 206 (protein) and a variable light region corresponding to SEQ ID NO: 335 (DNA)/SEQ ID NO: 249 (protein). MF-C represents an antibody having a variable heavy region corresponding to SEQ ID NO: 293 (DNA)/SEQ ID NO: 207 (protein) and a variable light region corresponding to SEQ ID NO: 336 (DNA)/SEQ ID NO: 250 (protein). MF-I represents an antibody having a variable heavy region corresponding to SEQ ID NO: 294 (DNA)/SEQ ID NO: 208 (protein) and a variable light region corresponding to SEQ ID NO: 337 (DNA)/SEQ ID NO: 251 (protein). MF-L represents an antibody having a variable heavy region corresponding to SEQ ID NO: 295 (DNA)/SEQ ID NO: 209 (protein) and a variable light region corresponding to SEQ ID NO: 338 (DNA)/SEQ ID NO: 252 (protein). MF-M represents an antibody having a variable heavy region corresponding to SEQ ID NO: 296 (DNA)/SEQ ID NO: 210 (protein) and a variable light region corresponding to SEQ ID NO: 339 (DNA)/SEQ ID NO: 253 (protein). MF-P represents an antibody having a variable heavy region corresponding to SEQ ID NO: 297 (DNA)/SEQ ID NO: 211 (protein) and a variable light region corresponding to SEQ ID NO: 340 (DNA)/SEQ ID NO: 254 (protein). MF-Q represents an antibody having a variable heavy region corresponding to SEQ ID NO: 298 (DNA)/SEQ ID NO: 212 (protein) and a variable light region corresponding to SEQ ID NO: 341 (DNA)/SEQ ID NO: 255 (protein). MF-S represents an antibody having a variable heavy region corresponding to SEQ ID NO: 299 (DNA)/SEQ ID NO: 213 (protein) and a variable light region corresponding to SEQ ID NO: 342 (DNA)/SEQ ID NO: 256 (protein). MF-V represents an antibody having a variable heavy region corresponding to SEQ ID NO: 300 (DNA)/SEQ ID NO: 214 (protein) and a variable light region corresponding to SEQ ID NO: 343 (DNA)/SEQ ID NO: 257 (protein). MF-W represents an antibody having a variable heavy region corresponding to SEQ ID NO: 301 (DNA)/SEQ ID NO: 215 (protein) and a variable light region corresponding to SEQ ID NO: 344 (DNA)/SEQ ID NO: 258 (protein). MF-Y represents an antibody having a variable heavy region corresponding to SEQ ID NO: 302 (DNA)/SEQ ID NO: 216 (protein) and a variable light region corresponding to SEQ ID NO: 345 (DNA)/SEQ ID NO: 259 (protein).

variable heavy region corresponding to SEQ ID NO: 290 (DNA)/SEQ ID NO: 204 (protein) and a variable light region corresponding to SEQ ID NO: 333 (DNA)/SEQ ID NO: 247 (protein). MOR 06643 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 291 (DNA)/SEQ ID NO: 5 205 (protein) and a variable light region corresponding to SEQ ID NO: 334 (DNA)/SEQ ID NO: 248 (protein). MF-226 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 292 (DNA)/SEQ ID NO: 206 (protein) and a variable light region corresponding to SEQ ID NO: 335 (DNA)/SEQ ID NO: 249 (protein). MOR 06626 represents an antibody having a 10 variable heavy region corresponding to SEQ ID NO: 293 (DNA)/SEQ ID NO: 207 (protein) and a variable light region corresponding to SEQ ID NO: 336 (DNA)/SEQ ID NO: 250 (protein). MOR 06635 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 294 (DNA)/SEQ ID NO: 208 (protein) and a variable light region corresponding to SEQ ID NO: 337 15 (DNA)/SEQ ID NO: 251 (protein). MOR 06638 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 295 (DNA)/SEQ ID NO: 209 (protein) and a variable light region corresponding to SEQ ID NO: 338 (DNA)/SEQ ID NO: 252 (protein). MF-A represents an antibody having a variable heavy region corresponding to SEQ ID NO: 296 (DNA)/SEQ ID NO: 210 (protein) and a variable light region corresponding to SEQ ID NO: 339 20 (DNA)/SEQ ID NO: 253 (protein). MOR 06657 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 297 (DNA)/SEQ ID NO: 211 (protein) and a variable light region corresponding to SEQ ID NO: 340 (DNA)/SEQ ID NO: 254 (protein). MF-T represents an antibody having a variable 25 heavy region corresponding to SEQ ID NO: 298 (DNA)/SEQ ID NO: 212 (protein) and a variable light region corresponding to SEQ ID NO: 341

(DNA)/SEQ ID NO: 255 (protein). MF-L represents an antibody having a variable heavy region corresponding to SEQ ID NO: 299 (DNA)/SEQ ID NO: 213 (protein) and a variable light region corresponding to SEQ ID NO: 342 (DNA)/SEQ ID NO: 256 (protein). MF-1 represents an antibody having a variable 5 heavy region corresponding to SEQ ID NO: 300 (DNA)/SEQ ID NO: 214 (protein) and a variable light region corresponding to SEQ ID NO: 343 (DNA)/SEQ ID NO: 257 (protein). MF-5 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 301 (DNA)/SEQ ID NO: 215 (protein) and a variable light region corresponding to SEQ ID NO: 344 10 (DNA)/SEQ ID NO: 258 (protein). MF-8 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 302 (DNA)/SEQ ID NO: 216 (protein) and a variable light region corresponding to SEQ ID NO: 345 (DNA)/SEQ ID NO: 259 (protein). MF-24 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 303 (DNA)/SEQ ID NO: 15 217 (protein) and a variable light region corresponding to SEQ ID NO: 346 (DNA)/SEQ ID NO: 260 (protein). MF-25 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 304 (DNA)/SEQ ID NO: 218 (protein) and a variable light region corresponding to SEQ ID NO: 347 (DNA)/SEQ ID NO: 261 (protein). MF-27 represents an antibody having a 20 variable heavy region corresponding to SEQ ID NO: 305 (DNA)/SEQ ID NO: 219 (protein) and a variable light region corresponding to SEQ ID NO: 348 (DNA)/SEQ ID NO: 262 (protein). MF-73 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 306 (DNA)/SEQ ID NO: 220 (protein) and a variable light region corresponding to SEQ ID NO: 349 25 (DNA)/SEQ ID NO: 263 (protein). MF-78 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 307 (DNA)/SEQ ID NO:

221 (protein) and a variable light region corresponding to SEQ ID NO: 350 (DNA)/SEQ ID NO: 264 (protein). MF-84 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 308 (DNA)/SEQ ID NO: 222 (protein) and a variable light region corresponding to SEQ ID NO: 351 5 (DNA)/SEQ ID NO: 265 (protein). MF-101 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 309 (DNA)/SEQ ID NO: 223 (protein) and a variable light region corresponding to SEQ ID NO: 352 (DNA)/SEQ ID NO: 266 (protein). MF-230 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 310 (DNA)/SEQ ID NO: 10 224 (protein) and a variable light region corresponding to SEQ ID NO: 353 (DNA)/SEQ ID NO: 267 (protein). MF-236 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 311 (DNA)/SEQ ID NO: 225 (protein) and a variable light region corresponding to SEQ ID NO: 354 (DNA)/SEQ ID NO: 268 (protein). MF-252 represents an antibody having a 15 variable heavy region corresponding to SEQ ID NO: 312 (DNA)/SEQ ID NO: 226 (protein) and a variable light region corresponding to SEQ ID NO: 355 (DNA)/SEQ ID NO: 269 (protein). MF-275 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 313 (DNA)/SEQ ID NO: 227 (protein) and a variable light region corresponding to SEQ ID NO: 356 20 (DNA)/SEQ ID NO: 270 (protein). MF-423 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 314 (DNA)/SEQ ID NO: 228 (protein) and a variable light region corresponding to SEQ ID NO: 357 (DNA)/SEQ ID NO: 271 (protein). MF-427 represents an antibody having a variable heavy region corresponding to SEQ ID NO: 315 (DNA)/SEQ ID NO: 229 (protein) and a variable light region corresponding to SEQ ID NO: 358 25 (DNA)/SEQ ID NO: 272 (protein). MF-428 represents an antibody having a

variable heavy region corresponding to SEQ ID NO: 316 (DNA)/SEQ ID NO: 230 (protein) and a variable light region corresponding to SEQ ID NO: 359 (DNA)/SEQ ID NO: 273 (protein). MF-C represents an antibody having a variable heavy region corresponding to SEQ ID NO: 317 (DNA)/SEQ ID NO: 231 (protein) and a variable light region corresponding to SEQ ID NO: 360 (DNA)/SEQ ID NO: 274 (protein). MF-I represents an antibody having a variable heavy region corresponding to SEQ ID NO: 318 (DNA)/SEQ ID NO: 232 (protein) and a variable light region corresponding to SEQ ID NO: 361 (DNA)/SEQ ID NO: 275 (protein). MF-M represents an antibody having a variable heavy region corresponding to SEQ ID NO: 319 (DNA)/SEQ ID NO: 233 (protein) and a variable light region corresponding to SEQ ID NO: 362 (DNA)/SEQ ID NO: 276 (protein). MF-P represents an antibody having a variable heavy region corresponding to SEQ ID NO: 320 (DNA)/SEQ ID NO: 234 (protein) and a variable light region corresponding to SEQ ID NO: 363 (DNA)/SEQ ID NO: 277 (protein). MF-Q represents an antibody having a variable heavy region corresponding to SEQ ID NO: 321 (DNA)/SEQ ID NO: 235 (protein) and a variable light region corresponding to SEQ ID NO: 364 (DNA)/SEQ ID NO: 278 (protein). MF-S represents an antibody having a variable heavy region corresponding to SEQ ID NO: 322 (DNA)/SEQ ID NO: 236 (protein) and a variable light region corresponding to SEQ ID NO: 365 (DNA)/SEQ ID NO: 279 (protein). MF-U represents an antibody having a variable heavy region corresponding to SEQ ID NO: 323 (DNA)/SEQ ID NO: 237 (protein) and a variable light region corresponding to SEQ ID NO: 366 (DNA)/SEQ ID NO: 280 (protein). MF-V represents an antibody having a variable heavy region corresponding to SEQ ID NO: 324 (DNA)/SEQ ID NO: 238 (protein) and a variable light region corresponding to SEQ ID NO: 367

(DNA)/SEQ ID NO: 281 (protein). MF-W represents an antibody having a variable heavy region corresponding to SEQ ID NO: 325 (DNA)/SEQ ID NO: 239 (protein) and a variable light region corresponding to SEQ ID NO: 368 (DNA)/SEQ ID NO: 282 (protein). MF-Y represents an antibody having a 5 variable heavy region corresponding to SEQ ID NO: 326 (DNA)/SEQ ID NO: 240 (protein) and a variable light region corresponding to SEQ ID NO: 369 (DNA)/SEQ ID NO: 283 (protein).

In one aspect, the invention provides antibodies which bind to epitopes of mesothelin, whose amino acid sequence is depicted by SEQ ID NO: 370, that are 10 distinct from the mesothelin epitope recognized by Mab K1.

In other aspects the invention provides antibodies which bind to one or more amino acids of the epitopes of antibodies MF-J or MF-T. In certain aspects said antibodies bind to at least two, at least three, at least four, at least five or at least six amino acids of the epitopes of antibodies MF-J or MF-T. In certain aspects the 15 antibodies of the present invention bind to one or more amino acids of the epitope recognized by the antibody MF-J. In alternative aspects the antibodies of the present invention bind to one or more amino acids of the epitope recognized by the antibody MF-T.

In another aspect, the invention provides antibodies having an antigen-20 binding region that can bind specifically to or has a high affinity for one or more regions of mesothelin, whose amino acid sequence is depicted by SEQ ID NO: 370. An antibody is said to have a “high affinity” for an antigen if the affinity measurement is at least 100 nM (monovalent affinity of Fab fragment). An inventive antibody or antigen-binding region preferably can bind to mesothelin 25 with an affinity of less than about 100 nM, more preferably less than about 60 nM, and still more preferably less than about 30 nM. Further preferred are

antibodies that bind to mesothelin with an affinity of less than about 10 nM, and more preferably less than about 3 nM. For instance, the affinity of an antibody of the invention against mesothelin may be about 10.0 nM or 0.19 nM (monovalent affinity of Fab fragment).

5 Table 1 provides a summary of dissociation constants and dissociation rates of representative antibodies of the invention, as determined by surface plasmon resonance (Biacore) on directly immobilized mesothelin.

10 **Table 1: Monovalent dissociation constants and dissociation rates to
mesothelin determined for anti-mesothelin Fabs by surface plasmon
resonance**

Antibody	K _D [M]	k _d [1/s]
MF-A	1.9 x 10 ⁻⁸	7.9 x 10 ⁻²
MOR06657	9.5 x 10 ⁻¹⁰	5.5 x 10 ⁻³
MF-J	9.2 x 10 ⁻⁹	2.9 x 10 ⁻³
MOR06631	9 x 10 ⁻¹¹	1.4 x 10 ⁻⁵
MOR06669	2.4 x 10 ⁻¹⁰	8.1 x 10 ⁻⁵
MOR06643	3.6 x 10 ⁻¹⁰	2.8 x 10 ⁻⁴
MF-226	5.8 x 10 ⁻⁸	3.8 x 10 ⁻²
MOR06626	6.7 x 10 ⁻¹⁰	1.2 x 10 ⁻³
MOR06638	1.6 x 10 ⁻⁸	6.3 x 10 ⁻³

15 The IgG1 format was used for the cell-based affinity determination, determined by fluorescence-activated cell sorting (FACS) combined with Scatchard analysis, and live cell enzyme-linked immunosorbed assay (ELISA).

Table 2 denotes the binding strength of representative IgG antibodies on mesothelin-expressing CHO-A9 cells.

Table 2: Cell-based binding potency of anti-mesothelin antibodies as determined by cell ELISA and FACS on mesothelin-expressing CHO-A9 cells

Antibody (IgG)	EC50	
	FACS [nM]	Cell ELISA [nM]
MF-A	0.05	0.8
MF-J	0.11	3.9
MF-L	0.07	0.8
MF-T	0.27	1.5
MF-226	0.15	0.4

Antibody Generation

A synthetic antibody phage display library (Knappik, A., *et al.*, *J. Mol. Biol.* (2000) 296(1): 57) was used to isolate high affinity, mesothelin-specific, human 10 monoclonal antibodies, by a combination of whole cell and protein pannings and through the development of specific tools. These tools and methods include a mesothelin-expressing recombinant cell-line and the development of panning procedures and screening assays capable of identifying antibodies that preferentially bind to mesothelin displayed on the cell surface and that are 15 crossreactive to mesothelin from other species.

Antibodies to the mesothelial cancer cell-surface marker, mesothelin, were discovered by a combination of three non-conventional approaches in phage-display technology (PDT). First, a recombinant cell line expressing the membrane-bound, 40 kDa domain of mesothelin was constructed by stable 5 transfection of CHO-K1 cells with a plasmid encoding the GPI-anchored C-terminal part of the protein (SEQ ID 371), to give the CHO-A9 cell line. Second, dual-alternating cell-surface selections were performed with the latter recombinant cell line and the squamous cancer cell line NCI-H226. Pre-adsorption with CHO-K1 cells was included to avoid the selection of Fab 10 fragments binding to epitopes of the parental cells. Additional selections were performed with recombinant, soluble purified human mesothelin (unique source of “MF-24”, “MF-25”, and “MF-27”), with recombinant, murine mesothelin, with purified deglycosylated mesothelin (unique source of “MF-5” and “MF-8”), and with biotinylated mesothelin in soluble phase. Third, screening methods were 15 developed which allowed for successive screening of the phage outputs obtained in panning on whole NCI-H226 cells as well as CHO-A9 cells. The combination of these specific methods allowed the isolation of the unique antibodies “MF-J”, “MF-226”, “MF-A”, “MF-T”, “MF-1”, “MF-5”, “MF-8”, “MF-24”, “MF-25”, “MF-27”, “MF-73”, “MF-78”, “MF-84”, “MF-101”, “MF-230”, “MF-236”, “MF- 20 252”, “MF-275”, “MF-423”, “MF-427”, “MF-428”, MF-C”, “MF-I”, “MF-L”, “MF-M”, “MF-P”, “MF-Q”, MF-S”, “MF-U”, “MF-V”, “MF-W”, and “MF-Y”. These unique antibodies were further characterized by their binding affinity in two cell based ELISA’s, by BIACore binding to soluble mesothelin, by their ability to recognize different epitopes on soluble mesothelin, and by their ability 25 to cross react with murine mesothelin assessed by FACS and immunoblotting, and their ability to be internalized in three different cell based assays. Two of the

internalization assays quantitatively measured the internalization of radiolabelled anti-mesothelin antibodies either in the absence or presence of a secondary antibody to human IgG. This data was used to select four antibodies for further affinity maturation.

5 In order to obtain antibodies with robust invariant binding to different forms of mesothelin displayed on different cancer cell lines, to increase species cross-reactivity, and to further increase affinity and decrease dissociation rates, a strategy for affinity maturation was designed. Affinity maturation was performed on antibodies 'MF-J', 'MF-226', 'MF-L' and 'MF-A'. Affinity maturation
10 included generation of new antibody repertoires by the exchange of H-CDR2, L-CDR3, or a combination of both H-CDR2 and L-CDR3 regions of the parental antibodies. Alternating selections were performed with the two mesothelin-expressing cancer cell lines NCI-H226 and OVCAR-3, as well as recombinant purified and biotinylated human and murine meothelin in solution using magnetic
15 beads. Increasing stringency was obtained by gradual reduction of antigen and extension of the washing procedure.

Screening was performed by first ranking the hits by decreasing affinity, as determined on antigen-coated beads in solution, by measuring an
20 electrochemiluminescent signal in a M-384 Workstation (BioVeris). Subsequently, a resulting selection of high-affinity binders was submitted to solution-equilibrium titration (SET) screening (Haenel, C., *et al.*, *Anal. Biochem.* (2005) 339(1): 182). The best binders were further screened by analysis of cross-reactivity to murine mesothelin, as well as for binding to mesothelin on NCI-H226 cells by FACS. The combination of these specific methods allowed the
25 isolation of the unique antibodies 'MOR07265', 'MOR06631', 'MOR 06635',

‘MOR06669’, ‘MOR07111’, ‘MOR06640’, ‘MOR06642’, ‘MOR06643’, ‘MOR06626’, ‘MOR06638’ and ‘MOR06657’.

Peptide Variants

Antibodies of the invention are not limited to the specific peptide sequences 5 provided herein. Rather, the invention also embodies variants of these polypeptides. With reference to the instant disclosure and conventionally available technologies and references, the skilled worker will be able to prepare, test and utilize functional variants of the antibodies disclosed herein, while appreciating that variants having the ability to bind to mesothelin fall within the scope of the 10 present invention.

A variant can include, for example, an antibody that has at least one altered complementary determining region (CDR) (hyper-variable) and/or framework (FR) (variable) domain/position, vis-à-vis a peptide sequence disclosed herein. To better illustrate this concept, a brief description of antibody structure follows.

15 An antibody is composed of two peptide chains, each containing one (light chain) or three (heavy chain) constant domains and a variable region (VL, VH), the latter of which is in each case made up of four FR regions and three interspaced CDRs. The antigen-binding site is formed by one or more CDRs, yet the FR regions provide the structural framework for the CDRs and, hence, play an 20 important role in antigen binding. By altering one or more amino acid residues in a CDR or FR region, the skilled worker routinely can generate mutated or diversified antibody sequences, which can be screened against the antigen, for new or improved properties, for example.

Tables 3 (VH) and 4 (VL) delineate the CDR and FR regions for certain 25 antibodies of the invention and compare amino acids at a given position to each

other and to corresponding consensus or “master gene” sequences (as described in U.S. Patent No. 6,300,064):

Table 3: VH Sequences

		CDR1											
		1											
MF-226	HC	(1)		A	V	V	A	T	G	N	Y	Q	I
MF-A	HC	(1)	Q			S	V	V	A	G	T	S	G
MF-T	HC	(1)								S			I
MF-J	HC	(1)							N		M		V
MOR06640	HC	(1)	Q						N		M		V
Consensus		(1)	Q	V	E	V	K	K	P	G	E	S	I
		CDR2										CDR3	
		51											
MF-226	HC	(51)	N	H	G	G	D	K	A	Q	K	R	W
MF-A	HC	(51)	I	K	F	G	S	A	N	A	Q	T	R
MF-T	HC	(51)	D	G	R								-
MF-J	HC	(51)	M	S	Y								Y
MOR06640	HC	(51)	M	S	Y								Y
Consensus		(51)	I	M	P	D	S	T	R	Y	S	T	G
		CDR3											
		101											
MF-226	HC	(101)		T	W	--	I	F	Y				
MF-A	HC	(101)	S	-----	M				Y				
MF-T	HC	(100)	Q	L	Y	G	T	Y	M	G			
MF-J	HC	(101)		M	Y	G	A	L	V				
MOR06640	HC	(101)		M	Y	G	A	L	V				
Consensus		(101)	H	G	Y	G	L	D	W	G	Q	T	L

Table 4: VL Sequences

Sequence alignment of VL genes for MF-226, MF-A, MF-T, MF-J, and MOR06640. The alignment shows the CDR1, CDR2, and CDR3 regions. The Consensus sequence is shown at the bottom.

CDR1 (Region 1-50)

	1	50
MF-226 VL	(1) - P A V S N I - S Y L T	
MF-A VL	(1) A - S I T T D V G Y Y H K M	
MF-T VL	(1) A - S I T T D I G Y S H K M	
MF-J VL	(1) S T L L E A L R A Q V R S - - S R L A K Q R	
MOR06640 VL	(1) S T L L E A L R A Q V R S - - S R L A K Q R	
Consensus	(1) DIVLTQ PASVSGSPGQRITISCTGSSS IG N VSWYQQ PG APKLL	

CDR2 (Region 51-100)

	51	100
MF-226 VL	(49) NDNQ D S A T S T D R R T F S	
MF-A VL	(50) S V S N N T A G A W A H M S L G	
MF-T VL	(50) V N N S N N T A S S D I E S A T	
MF-J VL	(49) A A A T A D F G D F T S E P F T Q Q Y D F P P -	
MOR06640 VL	(49) A A A T A D F G D F T S E P F V Q Q S H D P S G	
Consensus	(51) I Y G S K R P S G V P R F S G S K S G T T A S L T I S G L Q A E D E A D Y Y C Y S	

CDR3 (Region 101-114)

	101	114
MF-226 VL	(99) -	
MF-A VL	(100) K	
MF-T VL	(100) P	
MF-J VL	(98) - T Q V E I K R T	
MOR06640 VL	(99) - T Q V E I K R T	
Consensus	(101) V F G G G T K L T V L G Q	

In certain aspects the present invention provides antibodies

- wherein the HCDR1 region is selected from sequence ID's [all respective SEQ IDs of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30.

5 - wherein the HCDR2 region is selected from sequence ID's 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65 or 66.

10 - wherein the HCDR3 region is selected from sequence ID's 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97 or 98.

- wherein the LCDR1 region is selected from sequence ID's 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 102 or 128.

15 - wherein the LCDR2 region is selected from sequence ID's 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159 or 155.

- wherein the LCDR3 region is selected from sequence ID's 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196 or 197. or combinations of these CDR regions.

Preferred aspects are antibodies: in which the CDR sequences are selected from the MF-J series as shown in table 7 or other combinations of the CDR regions shown in table 7.

In certain aspects the present invention provides antibodies

- wherein the VH is selected from sequence ID 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239 or 240,
- 5 - wherein the VL is selected from sequence ID 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282 or 283.

As above, preferred aspects for MF-J series as shown in table 7 or other 10 combinations of the VH and VL regions shown in table 7.

The skilled worker can use the data in Tables 3, 4 and 7 to design peptide variants that are within the scope of the present invention. It is preferred that variants are constructed by changing amino acids within one or more CDR regions; a variant might also have one or more altered framework regions. With 15 reference to a comparison of the novel antibodies to each other, candidate residues that can be changed include *e.g.* residues 3 or 45 of the variable light and *e.g.* residues 16 or 43 of the variable heavy chains of MF-226 and MF-T, since these are positions of variance vis-à-vis each other. Alterations also may be made in the framework regions. For example, a peptide FR domain might be altered where 20 there is a deviation in a residue compared to a germline sequence.

With reference to a comparison of the novel antibodies to the corresponding consensus or “master gene” sequence, which are listed in Knappik *et al.*, 2000, candidate residues that can be changed include *e.g.* residues 29 or 52 of the variable light chain of MF-T compared to VLλ2 and *e.g.* residues 43 or 57 of the 25 variable heavy chain of MF-A compared to VH1A (Knappik, A., *et al.*, J. Mol.

Biol. (2000) 296(1): 57). Alternatively, the skilled worker could make the same analysis by comparing the amino acid sequences disclosed herein to known sequences of the same class of such antibodies, using, for example, the procedure described by Knappik, A., *et al.* (2000) and U.S. Patent No. 6,300,064 issued to

5 Knappik *et al.*

Furthermore, variants may be obtained by using one antibody as starting point for optimization by diversifying one or more amino acid residues in the antibody, preferably amino acid residues in one or more CDRs, and by screening the resulting collection of antibody variants for variants with improved properties.

10 Particularly preferred is diversification of one or more amino acid residues in CDR-3 of VL, CDR-3 of VH, CDR-1 of VL and/or CDR-2 of VH. Diversification can be done by synthesizing a collection of DNA molecules using trinucleotide mutagenesis (TRIM) technology (Virnekäs, B., Ge, L., Plückthun, A., Schneider, K.C., Wellnhofer, G., and Moroney S.E. (1994) Trinucleotide 15 phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucl. Acids Res. 22, 5600.).

Conservative Amino Acid Variants

Polypeptide variants may be made that conserve the overall molecular structure of an antibody peptide sequence described herein. Given the properties 20 of the individual amino acids, some rational substitutions will be recognized by the skilled worker. Amino acid substitutions, *i.e.*, "conservative substitutions," may be made, for instance, on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved.

25 For example, (a) nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; (b)

polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; (c) positively charged (basic) amino acids include arginine, lysine, and histidine; and (d) negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Substitutions typically may be made 5 within groups (a)-(d). In addition, glycine and proline may be substituted for one another based on their ability to disrupt α -helices. Similarly, certain amino acids, such as alanine, cysteine, leucine, methionine, glutamic acid, glutamine, histidine and lysine are more commonly found in α -helices, while valine, isoleucine, phenylalanine, tyrosine, tryptophan and threonine are more commonly found in 10 β -pleated sheets. Glycine, serine, aspartic acid, asparagine, and proline are commonly found in turns. Some preferred substitutions may be made among the following groups: (i) S and T; (ii) P and G; and (iii) A, V, L and I. Given the known genetic code, and recombinant and synthetic DNA techniques, the skilled scientist readily can construct DNAs encoding the conservative amino acid 15 variants. In one particular example, amino acid position 3 in SEQ ID NOS: 199-205, 207-211 or 213-240 can be changed from a Q to an E.

As used herein, "sequence identity" between two polypeptide sequences, indicates the percentage of amino acids that are identical between the sequences. "Sequence homology" indicates the percentage of amino acids that either are 20 identical or that represent conservative amino acid substitutions. Preferred polypeptide sequences of the invention have a sequence identity in the CDR regions of at least 60%, more preferably, at least 70% or 80%, still more preferably at least 90% and most preferably at least 95%. Preferred antibodies also have a sequence homology in the CDR regions of at least 80%, more 25 preferably 90% and most preferably 95%.

DNA molecules of the invention

The present invention also relates to the DNA molecules that encode an antibody of the invention. These sequences include, but are not limited to, those DNA molecules set forth in SEQ IDs 284-369.

5 DNA molecules of the invention are not limited to the sequences disclosed herein, but also include variants thereof. DNA variants within the invention may be described by reference to their physical properties in hybridization. The skilled worker will recognize that DNA can be used to identify its complement and, since DNA is double stranded, its equivalent or homolog, using nucleic acid 10 hybridization techniques. It also will be recognized that hybridization can occur with less than 100% complementarity. However, given appropriate choice of conditions, hybridization techniques can be used to differentiate among DNA sequences based on their structural relatedness to a particular probe. For guidance regarding such conditions see, Sambrook et al., 1989 (Sambrook, J., Fritsch, E. F. 15 and Maniatis, T. (1989) Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA) and Ausubel et al., 1995 (Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Sedman, J. G., Smith, J. A., & Struhl, K. eds. (1995). Current Protocols in Molecular Biology. New York: John Wiley and Sons).

20 Structural similarity between two polynucleotide sequences can be expressed as a function of "stringency" of the conditions under which the two sequences will hybridize with one another. As used herein, the term "stringency" refers to the extent that the conditions disfavor hybridization. Stringent conditions strongly disfavor hybridization, and only the most structurally related molecules 25 will hybridize to one another under such conditions. Conversely, non-stringent conditions favor hybridization of molecules displaying a lesser degree of

structural relatedness. Hybridization stringency, therefore, directly correlates with the structural relationships of two nucleic acid sequences. The following relationships are useful in correlating hybridization and relatedness (where T_m is the melting temperature of a nucleic acid duplex):

5 a. $T_m = 69.3 + 0.41(G+C)\%$

 b. The T_m of a duplex DNA decreases by 1°C with every increase of 1% in the number of mismatched base pairs.

10 c. $(T_m)_{\mu 2} - (T_m)_{\mu 1} = 18.5 \log_{10} \mu 2 / \mu 1$
 where $\mu 1$ and $\mu 2$ are the ionic strengths of two solutions.

Hybridization stringency is a function of many factors, including overall DNA concentration, ionic strength, temperature, probe size and the presence of agents which disrupt hydrogen bonding. Factors promoting hybridization include high DNA concentrations, high ionic strengths, low temperatures, longer probe size and the absence of agents that disrupt hydrogen bonding. Hybridization typically is performed in two phases: the “binding” phase and the “washing” phase.

20 First, in the binding phase, the probe is bound to the target under conditions favoring hybridization. Stringency is usually controlled at this stage by altering the temperature. For high stringency, the temperature is usually between 65°C and 70°C, unless short (< 20 nt) oligonucleotide probes are used. A representative hybridization solution comprises 6X SSC, 0.5% SDS, 5X Denhardt's solution and 25 100 µg of nonspecific carrier DNA. See Ausubel *et al.*, section 2.9, supplement 27 (1994). Of course, many different, yet functionally equivalent, buffer conditions are known. Where the degree of relatedness is lower, a lower temperature may be chosen. Low stringency binding temperatures are between

about 25°C and 40°C. Medium stringency is between at least about 40°C to less than about 65°C. High stringency is at least about 65°C.

Second, the excess probe is removed by washing. It is at this phase that more stringent conditions usually are applied. Hence, it is this "washing" stage 5 that is most important in determining relatedness via hybridization. Washing solutions typically contain lower salt concentrations. One exemplary medium stringency solution contains 2X SSC and 0.1% SDS. A high stringency wash solution contains the equivalent (in ionic strength) of less than about 0.2X SSC, with a preferred stringent solution containing about 0.1X SSC. The temperatures 10 associated with various stringencies are the same as discussed above for "binding." The washing solution also typically is replaced a number of times during washing. For example, typical high stringency washing conditions comprise washing twice for 30 minutes at 55° C. and three times for 15 minutes at 60° C.

15 Accordingly, the present invention includes nucleic acid molecules that hybridize to the molecules of set forth in SEQ ID 284-369 under high stringency binding and washing conditions, where such nucleic molecules encode an antibody or functional fragment thereof having properties as described herein. Preferred molecules (from an mRNA perspective) are those that have at least 75% 20 or 80% (preferably at least 85%, more preferably at least 90% and most preferably at least 95%) homology or sequence identity with one of the DNA molecules described herein. In one particular example of a variant of the invention, nucleic acid position 7 in SEQ ID NOS: 285-291, 293-297, or 299-326 can be substituted from a C to a G, thereby changing the codon from CAA to GAA.

Functionally Equivalent Variants

Yet another class of DNA variants within the scope of the invention may be described with reference to the product they encode. These functionally equivalent genes are characterized by the fact that they encode the same peptide sequences found in SEQ ID 284-369 due to the degeneracy of the genetic code.

It is recognized that variants of DNA molecules provided herein can be constructed in several different ways. For example, they may be constructed as completely synthetic DNAs. Methods of efficiently synthesizing oligonucleotides in the range of 20 to about 150 nucleotides are widely available. *See Ausubel et al.*, section 2.11, Supplement 21 (1993). Overlapping oligonucleotides may be synthesized and assembled in a fashion first reported by Khorana *et al.*, *J. Mol. Biol.* 72:209-217 (1971); *see also Ausubel et al.*, *supra*, Section 8.2. Synthetic DNAs preferably are designed with convenient restriction sites engineered at the 5' and 3' ends of the gene to facilitate cloning into an appropriate vector.

As indicated, a method of generating variants is to start with one of the DNAs disclosed herein and then to conduct site-directed mutagenesis. *See Ausubel et al.*, *supra*, chapter 8, Supplement 37 (1997). In a typical method, a target DNA is cloned into a single-stranded DNA bacteriophage vehicle. Single-stranded DNA is isolated and hybridized with an oligonucleotide containing the desired nucleotide alteration(s). The complementary strand is synthesized and the double stranded phage is introduced into a host. Some of the resulting progeny will contain the desired mutant, which can be confirmed using DNA sequencing. In addition, various methods are available that increase the probability that the progeny phage will be the desired mutant. These methods are well known to those in the field and kits are commercially available for generating such mutants.

Recombinant DNA constructs and expression

The present invention further provides recombinant DNA constructs comprising one or more of the nucleotide sequences of the present invention. The recombinant constructs of the present invention are used in connection with a 5 vector, such as a plasmid, phagemid, phage or viral vector, into which a DNA molecule encoding an antibody of the invention is inserted.

The encoded gene may be produced by techniques described in Sambrook *et al.*, 1989, and Ausubel *et al.*, 1989. Alternatively, the DNA sequences may be chemically synthesized using, for example, synthesizers. See, for example, the 10 techniques described in OLIGONUCLEOTIDE SYNTHESIS (1984, Gait, ed., IRL Press, Oxford), which is incorporated by reference herein in its entirety. Recombinant constructs of the invention are comprised with expression vectors that are capable of expressing the RNA and/or protein products of the encoded 15 DNA(s). The vector may further comprise regulatory sequences, including a promoter operably linked to the open reading frame (ORF). The vector may further comprise a selectable marker sequence. Specific initiation and bacterial secretory signals also may be required for efficient translation of inserted target gene coding sequences.

The present invention further provides host cells containing at least one of 20 the DNAs of the present invention. The host cell can be virtually any cell for which expression vectors are available. It may be, for example, a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, and may be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by 25 calcium phosphate transfection, DEAE, dextran mediated transfection, electroporation or phage infection.

Bacterial Expression

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a 5 functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, if desirable, to provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli*, *Bacillus subtilis*, *Salmonella typhimurium* and various species within the genera *Pseudomonas*, *Streptomyces*, and 10 *Staphylococcus*.

Bacterial vectors may be, for example, bacteriophage-, plasmid- or phagemid-based. These vectors can contain a selectable marker and bacterial origin of replication derived from commercially available plasmids typically containing elements of the well known cloning vector pBR322 (ATCC 37017). 15 Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is de-repressed/induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained 20 for further purification.

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the protein being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of antibodies or to screen peptide libraries, for example, vectors which 25 direct the expression of high levels of fusion protein products that are readily purified may be desirable.

Therapeutic Methods

Therapeutic methods involve administering to a subject in need of treatment a therapeutically effective amount of an antibody contemplated by the invention.

5 A "therapeutically effective" amount hereby is defined as the amount of an antibody that is of sufficient quantity to deplete mesothelin -positive cells in a treated area of a subject—either as a single dose or according to a multiple dose regimen, alone or in combination with other agents, which leads to the alleviation of an adverse condition, yet which amount is toxicologically tolerable. The
10 subject may be a human or non-human animal (*e.g.*, rabbit, rat, mouse, monkey or other lower-order primate).

An antibody of the invention might be co-administered with known medicaments, and in some instances the antibody might itself be modified. For example, an antibody could be conjugated to an immunotoxin or radioisotope to
15 potentially further increase efficacy.

The inventive antibodies can be used as a therapeutic or a diagnostic tool in a variety of situations where mesothelin undesirably expressed or found. Disorders and conditions particularly suitable for treatment with an antibody of the inventions are pancreatic cancer, ovarian cancer, mesothelioma and lung
20 cancer.

To treat any of the foregoing disorders, pharmaceutical compositions for use in accordance with the present invention may be formulated in a conventional manner using one or more physiologically acceptable carriers or excipients. An antibody of the invention can be administered by any suitable means, which can
25 vary, depending on the type of disorder being treated. Possible administration routes include parenteral (*e.g.*, intramuscular, intravenous, intraarterial,

intraperitoneal, or subcutaneous), intrapulmonary and intranasal, and, if desired for local immunosuppressive treatment, intralesional administration. In addition, an antibody of the invention might be administered by pulse infusion, with, *e.g.*, declining doses of the antibody. Preferably, the dosing is given by injections, most 5 preferably intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic. The amount to be administered will depend on a variety of factors such as the clinical symptoms, weight of the individual, whether other drugs are administered. The skilled artisan will recognize that the route of administration will vary depending on the disorder or condition to be 10 treated.

Determining a therapeutically effective amount of the novel polypeptide, according to this invention, largely will depend on particular patient characteristics, route of administration, and the nature of the disorder being treated. General guidance can be found, for example, in the publications of the 15 International Conference on Harmonisation and in REMINGTON'S PHARMACEUTICAL SCIENCES, chapters 27 and 28, pp. 484-528 (18th ed., Alfonso R. Gennaro, Ed., Easton, Pa.: Mack Pub. Co., 1990). More specifically, determining a therapeutically effective amount will depend on such factors as toxicity and efficacy of the medicament. Toxicity may be determined using 20 methods well known in the art and found in the foregoing references. Efficacy may be determined utilizing the same guidance in conjunction with the methods described below in the Examples.

Diagnostic Methods

25 Mesothelin antibodies can be used for detecting the presence of mesothelin-expressing tumors. The presence of mesothelin-containing cells within various

biological samples, including serum, prostate and other tissue biopsy specimens, may be detected with mesothelin antibodies. In addition, mesothelin antibodies may be used in various imaging methodologies such as immunoscintigraphy with a ^{99m}Tc (or other isotope) conjugated antibody. For example, an imaging 5 protocol similar to the one recently described using a ¹¹¹In conjugated anti-PSMA antibody may be used to detect pancreatic or ovarian carcinomas (Sodee et al., Clin. Nuc. Med. 21: 759-766, 1997). Another method of detection that can be used is positron emitting tomography (see Herzog et al., J. Nucl. Med. 34:2222-2226, 1993).

10

Pharmaceutical Compositions and Administration

The present invention also relates to pharmaceutical compositions which may comprise mesothelin antibodies, alone or in combination with at least one 15 other agent, such as stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. Any of these molecules can be administered to a patient alone, or in combination with other agents, drugs or hormones, in pharmaceutical compositions where it is mixed with excipient(s) or 20 pharmaceutically acceptable carriers. In one embodiment of the present invention, the pharmaceutically acceptable carrier is pharmaceutically inert.

The present invention also relates to the administration of pharmaceutical compositions. Such administration is accomplished orally or parenterally. 25 Methods of parenteral delivery include topical, intra-arterial (directly to the tumor), intramuscular, subcutaneous, intramedullary, intrathecal, intraventricular,

intravenous, intraperitoneal, or intranasal administration. In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used 5 pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Ed. Maack Publishing Co, Easton, Pa.).

10 Pharmaceutical compositions for oral administration can be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for ingestion by the patient.

15 Pharmaceutical preparations for oral use can be obtained through combination of active compounds with solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are carbohydrate or protein fillers such as sugars, including lactose, sucrose, mannitol, 20 or sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose such as methyl, cellulose, hydroxypropylmethylcellulose, or sodium carboxymethylcellulose; and gums including arabic and tragacanth; and proteins such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, alginic acid, or a 25 salt thereof, such as sodium alginate.

Dragee cores are provided with suitable coatings such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol and/or titanium dioxide, lacquer solutions, and 5 suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, ie. dosage.

Pharmaceutical preparations that can be used orally include push-fit capsules 10 made of gelatin, as well as soft, sealed capsules made of gelatin and a coating such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with a filler or binders such as lactose or starches, lubricants such as talc or magnesium stearate, and optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, 15 liquid paraffin, or liquid polyethylene glycol with or without stabilizers.

Pharmaceutical formulations for parenteral administration include aqueous solutions of active compounds. For injection, the pharmaceutical compositions of the invention may be formulated in aqueous solutions, preferably in 20 physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances that increase viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. 25 Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or

synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

5

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

10 Kits

The invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention. Associated with such container(s) 15 can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, reflecting approval by the agency of the manufacture, use or sale of the product for human administration.

20 In another embodiment, the kits may contain DNA sequences encoding the antibodies of the invention. Preferably the DNA sequences encoding these antibodies are provided in a plasmid suitable for transfection into and expression by a host cell. The plasmid may contain a promoter (often an inducible promoter) to regulate expression of the DNA in the host cell. The plasmid may also contain 25 appropriate restriction sites to facilitate the insertion of other DNA sequences into the plasmid to produce various antibodies. The plasmids may also contain

numerous other elements to facilitate cloning and expression of the encoded proteins. Such elements are well known to those of skill in the art and include, for example, selectable markers, initiation codons, termination codons, and the like.

5 **Manufacture and Storage.**

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, 10 encapsulating, entrapping or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with may acids, including by not limited to hydrochloric, sulfuric, acetic, lactic, tartaric, malic, succinic, etc. Salts tend to be more soluble in aqueous or 15 other protonic solvents that are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder in 1 mM-50 mM histidine, 0.1%-2% sucrose, 2%-7% mannitol at a pH range of 4.5 to 5.5 that is combined with buffer prior to use.

20 After pharmaceutical compositions comprising a compound of the invention formulated in an acceptable carrier have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of mesothelin antibodies, such labeling would include amount, frequency and method of administration.

Therapeutically Effective Dose.

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose, i.e. treatment of a particular disease state characterized by mesothelin expression. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., neoplastic cells, or in animal models, usually mice, rabbits, dogs, or pigs. The animal model is also used to achieve a desirable concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of protein or its antibodies, antagonists, or inhibitors that ameliorate the symptoms or condition. Therapeutic efficacy and toxicity of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED₅₀ (the dose therapeutically effective in 50% of the population) and LD₅₀ (the dose lethal to 50% of the population). The dose ratio between therapeutic and toxic effects is the therapeutic index, and it can be expressed as the ratio, ED₅₀/LD₅₀. Pharmaceutical compositions that exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used in formulating a range of dosage for human use. The dosage of such compounds lies preferably within a range of circulating concentrations what include the ED₅₀

with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.

The exact dosage is chosen by the individual physician in view of the patient
5 to be treated. Dosage and administration are adjusted to provide sufficient levels
of the active moiety or to maintain the desired effect. Additional factors that may
be taken into account include the severity of the disease state, eg, tumor size and
location; age, weight and gender of the patient; diet, time and frequency of
administration, drug combination(s), reaction sensitivities, and tolerance/response
10 to therapy. Long acting pharmaceutical compositions might be administered every
3 to 4 days, every week, or once every two weeks depending on half-life and
clearance rate of the particular formulation.

Normal dosage amounts may vary from 0.1 to 100,000 micrograms, up to a
15 total dose of about 1 g, depending upon the route of administration. Guidance as
to particular dosages and methods of delivery is provided in the literature. See
U.S. Pat. No. 4,657,760; 5,206,344; or 5,225,212. Those skilled in the art will
employ different formulations for polynucleotides than for proteins or their
inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific
20 to particular cells, conditions, locations, etc. Preferred specific activities for a
radiolabeled antibody may range from 0.1 to 10 mCi/mg of protein (Riva et al.,
Clin. Cancer Res. 5:3275s-3280s, 1999; Wong et al., Clin. Cancer Res. 6:3855-
3863, 2000; Wagner et al., J. Nuclear Med. 43:267-272, 2002).

The present invention is further described by the following examples. The examples are provided solely to illustrate the invention by reference to specific embodiments. These exemplifications, while illustrating certain specific aspects of the invention, do not portray the limitations or circumscribe the scope of the 5 disclosed invention.

All examples were carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in detail. Routine molecular biology techniques of the following examples can be 10 carried out as described in standard laboratory manuals, such as Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

EXAMPLES

15

EXAMPLE 1: Antibody Generation from HuCAL Libraries

For the generation of therapeutic antibodies against mesothelin, selections with the MorphoSys HuCAL GOLD phage display library were carried out. HuCAL GOLD® is a Fab library based on the HuCAL® concept (Knappik, A., *et 20 al.*, J. Mol. Biol. (2000) 296(1): 57; Krebs, B., *et al.*, J. Immunol. Methods. (2001) 254(1-2): 67), in which all six CDRs are diversified, and which employs the CysDisplay™ technology for linking Fab fragments to the phage surface (Löhning, 2001; WO 01/05950).

A. Phagemid rescue, phage amplification and purification

HuCAL GOLD® phagemid library was amplified in 2 x TY medium containing 34 µg/ml chloramphenicol and 1 % glucose (2 x TY-CG). After helper phage infection (VCSM13) at an OD600 of 0.5 (30 min at 37°C without shaking; 5 30 min at 37°C shaking at 250 rpm), cells were spun down (4120 g; 5 min; 4°C), resuspended in 2 x TY / 34 µg/ml chloramphenicol / 50 µg/ml kanamycin and grown overnight at 22°C. Phages were PEG-precipitated from the supernatant, resuspended in PBS / 20 % glycerol and stored at -80°C. Phage amplification between two panning rounds was conducted as follows: mid-log phase TG1 cells 10 were infected with eluted phages and plated onto LB-agar supplemented with 1 % of glucose and 34 µg/ml of chloramphenicol (LB-CG). After overnight incubation at 30°C, colonies were scraped off, adjusted to an OD600 of 0.5 and helper phage added as described above.

B. Pannings with HuCAL GOLD®

15 For the selections HuCAL GOLD® antibody-phages were divided into three pools corresponding to different VH master genes (pool 1: VH1/5λκ, pool 2: VH3 λκ, pool 3: VH2/4/6 λκ). These pools were individually pre-absorbed on mesothelin-negative CHO-K1 cells for depletion of irrelevant antibody phages and subsequently subjected to 3 rounds of alternating whole cell panning on 20 mesothelin-expressing CHO-A9 and NCI-H226 cells followed by pH-elution. Finally, the remaining antibody phages were used to infect *E. coli* TG1 cells. After centrifugation the bacterial pellet was resuspended in 2 x TY medium, plated on agar plates and incubated overnight at 30°C. The selected clones were then scraped from the plates, phages were rescued and amplified. The second and 25 the third round of selections were performed as the initial one.

The Fab encoding inserts of the selected HuCAL GOLD® phages were subcloned into the expression vector pMORPH®x9_Fab_FS (Rauchenberger, R., *et al.*, J. Biol. Chem. (2003) 278(40): 38194) to facilitate rapid expression of soluble Fab. The DNA of the selected clones was digested with XbaI and EcoRI 5 thereby cutting out the Fab encoding insert (ompA-VLCL and phoA-Fd), and cloned into the XbaI / EcoRI cut vector pMORPH®x9_Fab_FS. Fab expressed in this vector carry two C-terminal tags (FLAG™ and Strep-tag® II) for detection and purification.

10 **C. Affinity maturation Affinity maturation of selected Fab by stepwise exchange of CDR cassettes**

To increase affinity and biological activity of selected antibody fragments (MF-L, MF-A, MF-J, MF-T and MF-226) , L-CDR3 and H-CDR2 regions were optimized in parallel by cassette mutagenesis using trinucleotide directed mutagenesis (Virnekäs *et al*, Nucleic Acids Res. 22(25): 5600-7), while the 15 framework regions were kept constant (WO2006122797). Pannings for selection of high affinity phage displayed Fab fragments were performed either on purified biotinylated recombinant mesothelin (human or murine mesothelin) or directly on mesothelin expressing cell lines (NCI-H226 or OVCAR-3). Combinations of these different panning strategies were also applied throughout the three panning 20 rounds which were performed.

25 **EXAMPLE 2: Epitope Grouping**

Epitope grouping experiments were performed using Biacore by monitoring simultaneous binding of pairs of anti-mesothelin antibodies to immobilized mesothelin. Briefly, the first antibody was covalently immobilized to

the sensor chip through primary amine coupling using n-hydroxysuccinamide (NHC) and N-ethyl-N'- dimethylaminopropyl carbodiimide (EDC). Unoccupied binding sites on the surface were then blocked with ethanolamide. Soluble mesothelin was captured on the surface via the immobilized antibody, therefore,

5 the epitope of the capture antibody is blocked for all bound mesothelin molecules. A second antibody was immediately passed over the surface to bind to the immobilized mesothelin. Two antibodies recognizing the same or overlapping epitopes cannot bind to the mesothelin, whereas antibodies with distinct epitopes are able to bind. The antibody surface was regenerated with glycine, pH 2.8, to

10 remove bound proteins and then the process was repeated with other antibodies. All combinations of seven antibodies were tested. Representative results using MF-T and several other antibodies are shown in Figure 1A. Use of MF-T as the second antibody served as a positive control and anti-FLAG served as a negative control. Figure 1B depicts a summary of the pairwise binding results for seven

15 anti-mesothelin antibodies in a Venn diagram with circles representing individual epitopes. Overlapping circles represent overlapping epitopes. MF428 competed for binding with all other antibodies tested. MF-J and MF-T bind to distinct epitopes compared to each other and to MF-A, MF-226 and MF-L, which seem to compete for the same epitope region. The commercially available mouse antibody

20 K1 binds to an epitope region distinct from the one recognized by MF-J and MF-T, but seems to share a similar epitope region to MF-A, MF-L and MF-226.

EXAMPLE 3: Cross-reactivity to murine mesothelin

25 Shown in Table 5 are results of Biacore and ELISA studies showing cross-reactivity of antibodies of the invention to murine mesothelin. The kinetic constants k_{on} and k_{off} were determined with serial dilutions of the respective

purified Fab fragment binding to covalently immobilized human or murine mesothelin using the Biacore 3000 instrument (Biacore, Uppsala, Sweden). Covalent antigen immobilization was achieved by a standard EDC-NHS coupling procedure. Kinetic measurements were done in PBS, pH 7.2 at a flow rate of 20 5 μ l/min using Fab concentration ranging from 1.5-500 nM. Injection time for each concentration was 1 min, followed by 3 min dissociation phase. For regeneration 5 μ l 10 mM glycine buffer, pH 1.8 was used. All sensograms were fitted using the BIA evaluation software 3.1 (Biacore).

10

Table 5: Monovalent anti-mesothelin antibody affinities to human and murine mesothelin (Fab formats)

Antibody (Fab)	Human mesothelin		Murine mesothelin	
	K_D [M]	k_d [1/s]	K_D [M]	k_d [1/s]
MF-226	5.8×10^{-8}	3.8×10^{-2}	1.28×10^{-6}	1.4×10^{-1}
MOR 06626	6.7×10^{-10}	1.2×10^{-3}	6.7×10^{-9}	9.8×10^{-3}
MOR 06638	1.6×10^{-8}	6.3×10^{-3}	3.2×10^{-7}	4.0×10^{-2}
MF-A	1.9×10^{-8}	7.9×10^{-2}	6.7×10^{-7}	2.7×10^{-1}
MOR 06657	9.5×10^{-10}	5.5×10^{-3}	3.6×10^{-7}	1.6×10^{-1}

EXAMPLE 4: Invariant binding to mesothelin on different cancer cell lines

15

Figure 2 depicts immunoblots of mesothelin-expressing cell lines generated with anti-mesothelin antibody MF-J (A) and MOR 06635 (B). Briefly, cell extracts were generated by a standard lysis protocol by sonicating the cells for 3

min in the presence of DNase and RNase. Cell proteins were separated by SDS-PAGE under denaturing and reducing conditions, blotted onto nitrocellulose membranes and incubated with the appropriate primary antibody (MF-J-IgG or MOR 06635-Fab). Anti-human IgG peroxidase-coupled secondary antibody was 5 used for detection, which was performed with ECL substrate. While only one band appeared when extracts of OVCAR-3 cells were blotted with mesothelin antibodies, multiple bands were observed in CHO-A9 and NCI-H226 cells. This indicates the presence of different isoforms of mesothelin in OVCAR-3, CHO-A9 and NCI-H226 cell lines. Since OVCAR-3 and CHO-A9 express the same, fully 10 spliced transcript variant (Muminova, Z.E., *et al.*, BMC Cancer (2004) 4:19), and SEQ ID 371, the multiple bands must be caused by translational or posttranslational modifications, which might consist in, but are not limited to, for example, differences in glycosylation patterns.

Table 6 shows that EC₅₀ values obtained by FACS titration of representative 15 affinity matured antibodies of the invention on NCI-H226 and OVCAR-3 cells do not vary significantly for a subset of IgGs (i.e. MOR07265, -6631, -6669, -7111,- 6640, -6642) while other IgGs show a more than eight fold higher EC₅₀ value on OVCAR-3 than NCI-H226 (i.e. MOR06626, -6638, -6657. -6643). Most notably 20 IgGs MOR07265, -6631, -6635, -6669, -7111,- 6640, -6642 are affinity matured derivatives of parental IgG MF-J, indicating that these IgGs bind to a related epitope which is invariably present on OVCAR-3 as well as NCI-H226 cells. Thus these data demonstrate the quality of invariant binding provided in the present invention.

FACS titration was performed in a 96 well microtiter plate, in which serial 25 dilutions of the primary antibody in a volume of 80 µl of FACS buffer (3% FCS,

0.02% NaN₃ in PBS) were mixed with 20 µl of a cell suspension consisting of 10⁶ cells/ml which had been detached with accutase or trypsin/EDTA, and resuspended in FACS buffer. Incubation was performed at 4 °C for 1 hour with agitation. Cells were washed twice with FACS buffer and resuspended in 100 5 µl/well of anti-human PE conjugate solution in FACS buffer. Incubation and washing was performed as before. Analysis of cell-bound antibodies was done using the FACS Array device. EC₅₀ values were determined from fluorescence medians of duplicates using Prism 4.0 software (GraphPad) applying non-linear regression fit.

10

Table 6: FACS titration of IgG antibodies on NCI-H226 and OVCAR-3 cells

Antibody (IgG)	EC ₅₀ [nM]		x-fold different EC ₅₀ on OVCAR-3 vs. NCI-H226
	NCI-H226	OVCAR-3	
MOR06626	0.44	9.68	22.0
MOR06638	0.19	4.19	22.1
MOR07265	1.11	1.06	1.0
MOR06631	2.02	0.96	0.5
MOR 06669	0.41	1.40	3.4
MOR07111	0.80	1.35	1.7
MOR06640	0.63	0.53	0.8
MOR06642	0.58	0.54	0.9
MOR06657	0.14	0.53	14
MOR06643	0.23	1.86	8.1

EXAMPLE 5: Binding to mesothelin in the presence of cancer antigen 125 (CA125)

Figure 3 shows that cancer antigen 125 (CA125) binds to mesothelin which is in turn bound to a subset of mesothelin antibodies including MOR06640 and MF-T, 5 while other antibodies, such as MF-226, compete with CA125 for mesothelin binding. Data shown are relative light units (RLU) detected by SECTOR Light Imager (Meso Scale Discovery). Plates were coated with the mesothelin antibody depicted at 15 µg/ml, and washed and blocked after each subsequent incubation. Mesothelin was added at the concentrations indicated and titrated down from 10 10 µg/ml to 0.08 µg/ml. Plates were subsequently incubated with CA125 (Lee Biosolutions, Cat # 150-11, 50 000 U/ml diluted 1:300). Detection was performed with a mouse anti-CA125 antibody and an MSD Sulfo tag (Meso Scale Discovery) labelled anti mouse Fab antibody. An unspecific human control antibody was coated as a control. Further controls included the full assay setup 15 with mesothelin at the highest concentrations tested (10 µg/ml) and omission of either CA125 or the mouse anti-CA125 antibody, or full assay setup without mesothelin. This example shows that antibodies, antigen-binding antibody fragments, or variants thereof, which invariantly bind mesothelin can be identified by in vitro testing.

20

EXAMPLE 6: Internalization

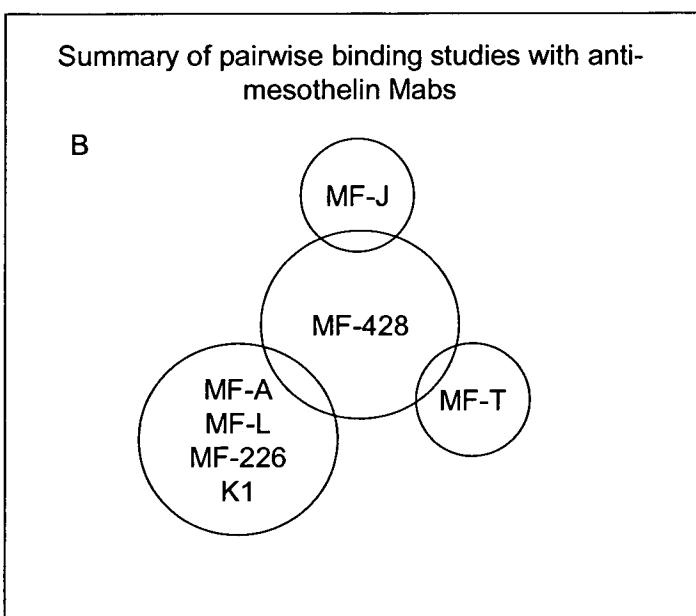
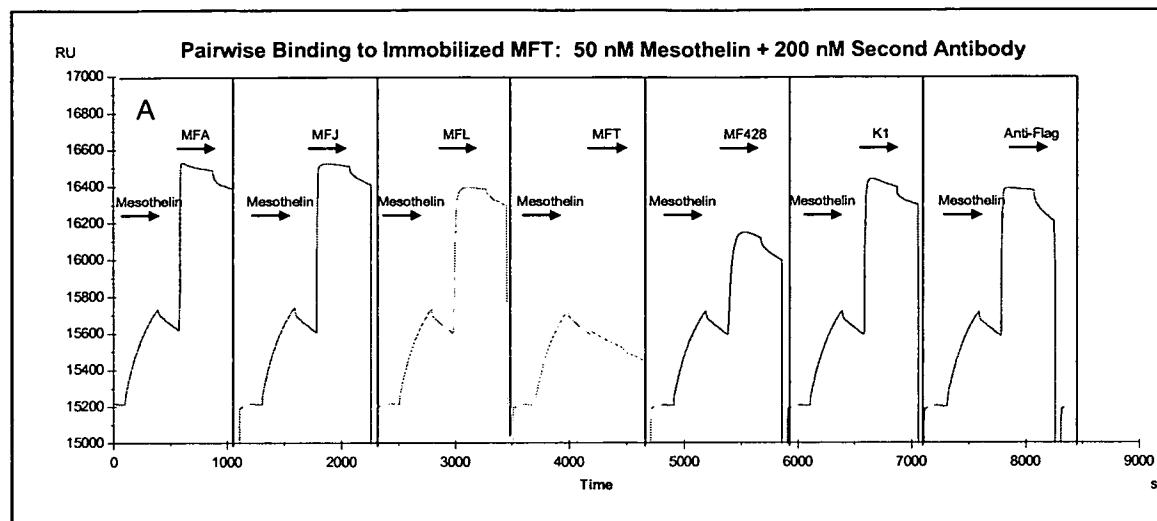
Relative internalization of anti-mesothelin antibodies on CHO-A9 cells is 25 shown in Figure 4. Briefly, CHO-A9 cells expressing mesothelin protein were

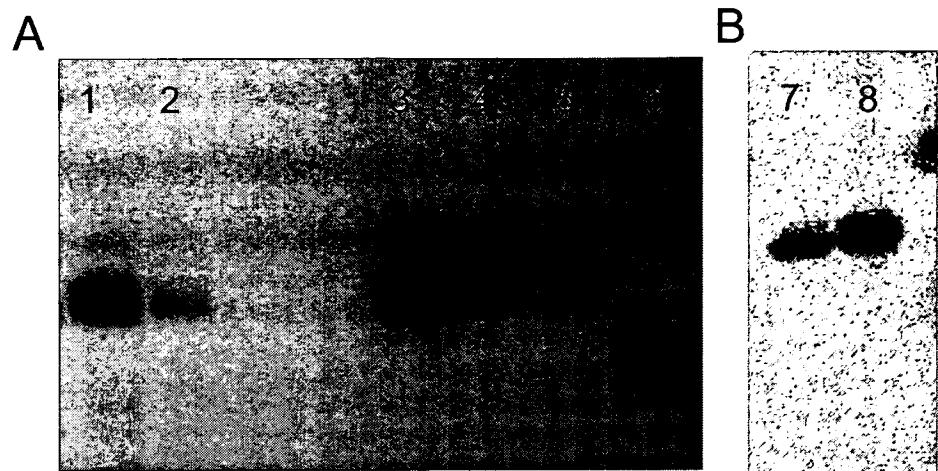
labeled with ^{125}I -anti-mesothelin antibodies for 2 hours at 0 °C, to bind the labeled antibody to cell surface mesothelin. The low temperature inhibited internalization. Unbound antibody was washed away using cold buffer and individual aliquots of labeled cells were placed in a 37° C water bath to initiate internalization. A time course was run in which triplicate samples were collected at: 0, 15, 30, 45, 60, 75 and 90 minutes. At each time point, samples were centrifuged to pellet cells and the supernatant was collected, which contained antibody that had dissociated from the cells. The cell pellet was then briefly washed with acid (PBS + 1% glucose pH1.0) in order to remove cell surface-bound labeled antibody, and then pelleted by centrifugation. The supernatant, containing antibody eluted from the cell surface was collected. The pellet fraction, containing internalized antibody, was collected separately. After completion of the time course, the radioactivity in each of the fractions from all time points was determined using a gamma counter. The percentage of total counts present in the fractions represents the percentage of the antibody that was dissociated, bound to the cell surface or internalized at each time point. In experiments in which a second antibody (goat anti-human IgG Fc, or goat anti-mouse IgG Fc, respectively) was added along with the primary labeled antibody to crosslink and thus stabilize the cell surface-bound antibody, much lower antibody dissociation rates were observed compared to cells only treated with the primary antibody. Correspondingly higher internalization levels were also achieved for all antibodies tested with the second antibody. In the absence of a second antibody, the relatively rapid off-rates of the antibodies, as seen in the Biacore studies, reduced the antibodies' residency time on the cell surface such that internalization was significantly reduced. Therefore, four candidate antibodies were chosen for affinity maturation to obtain progenitor antibodies with reduced dissociation rates.

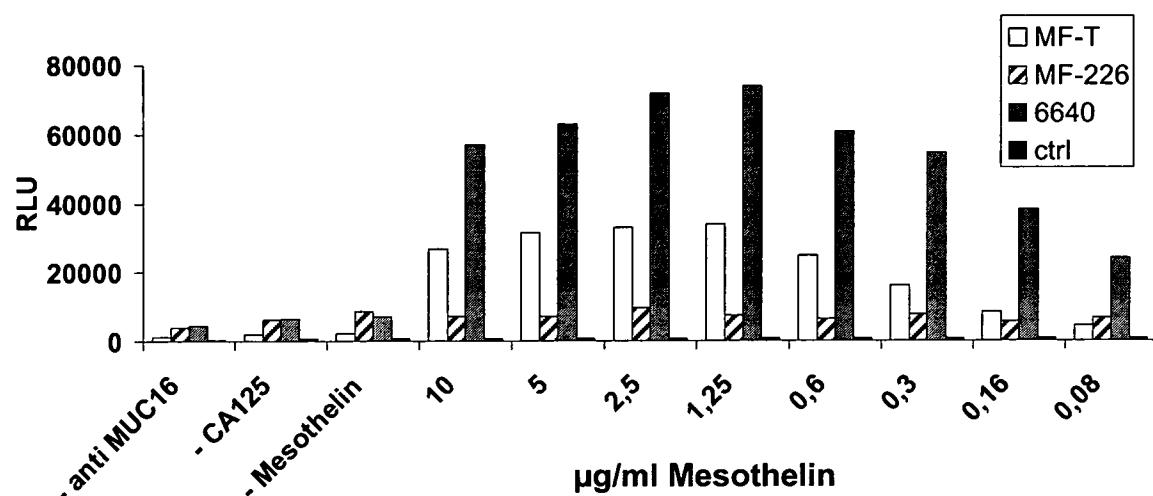
Page intentionally left blank

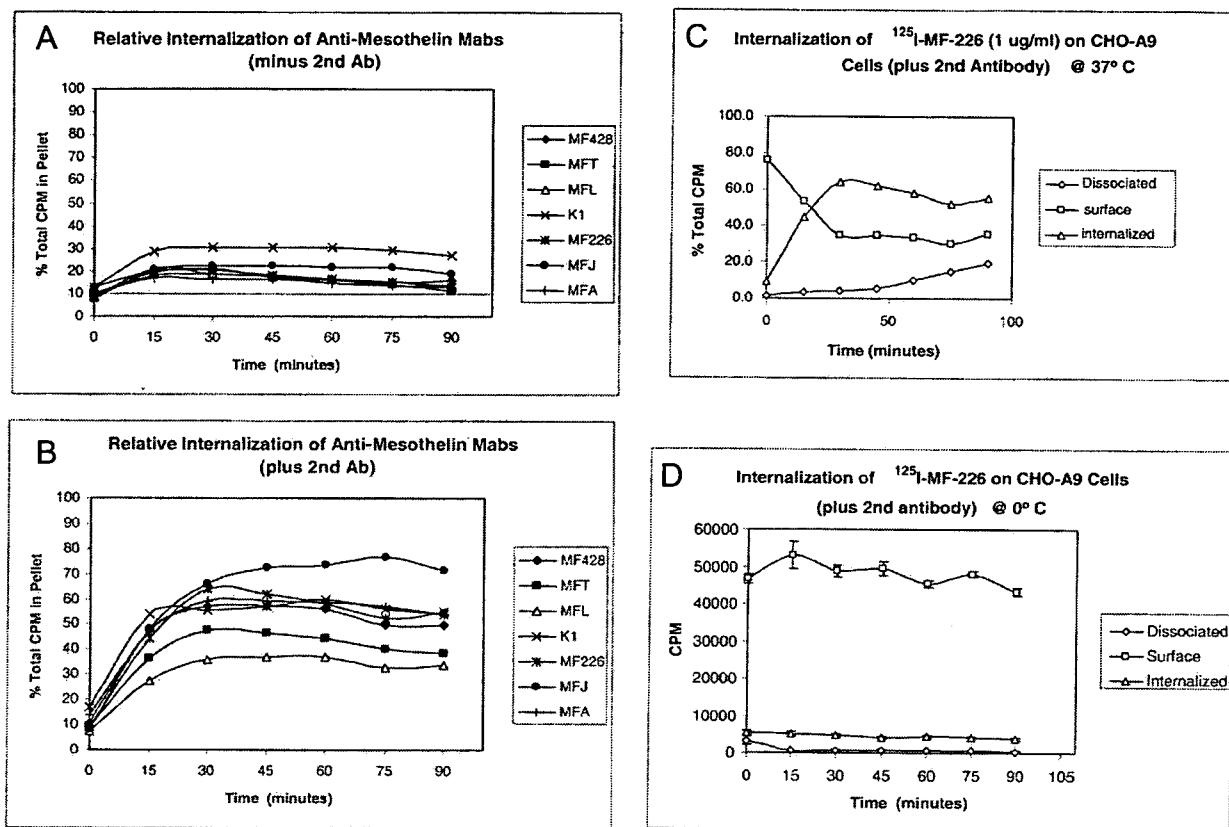
Table 7: Sequences of the antibodies

Antibody	HCDR1 SEQ ID	HCDR2 SEQ ID	HCDR3 SEQ ID	LCDR1 SEQ ID	LCDR2 SEQ ID	LCDR3 SEQ ID	VH SEQ ID	VL SEQ ID	VH Protein	VL Protein	VH Nucleotide	VL Nucleotide	VL SEQ ID
MF-J	1	31	67	99	129	160	198	241	284	284	284	284	327
MOR 07265	1	32	67	99	129	161	199	242	285	285	285	285	328
MOR 06631	1	32	67	99	129	160	200	243	286	286	286	286	329
MOR 06669	1	33	67	99	129	160	201	244	287	287	287	287	330
MOR 07111	1	31	67	99	129	162	202	245	288	288	288	288	331
MOR 06640	1	31	67	99	129	161	203	246	289	289	289	289	332
MOR 06642	1	31	67	99	129	163	204	247	290	290	290	290	333
MOR 06643	2	34	68	100	130	164	205	248	291	291	291	291	334
MF-226	3	35	69	101	131	165	206	249	292	292	292	292	335
MOR 06626	3	36	69	101	131	165	207	250	293	293	293	293	336
MOR 06635	1	37	67	99	129	160	208	251	294	294	294	294	337
MOR 06638	3	35	69	101	131	166	209	252	295	295	295	295	338



Antibody	HCDR1	HCDR2	HCDR3	LCDR1	LCDR2	LCDR3	VH	VL	VH	VL
	SEQ ID	Protein	Protein	Nucleotide	Nucleotide					
							SEQ ID	SEQ ID	SEQ ID	SEQ ID
MF-A	4	38	70	102	132	167	210	253	296	339
MOR 06657	4	38	70	102	132	168	211	254	297	340
MF-T	5	39	71	103	133	169	212	255	298	341
MF-L	2	34	68	100	130	170	213	256	299	342
MF-1	6	40	72	104	134	171	214	257	300	343
MF-5	7	41	73	105	135	172	215	258	301	344
MF-8	8	42	74	106	136	173	216	259	302	345
MF-24	9	43	75	107	137	174	217	260	303	346
MF-25	10	44	76	108	138	175	218	261	304	347
MF-27	1	45	77	109	139	176	219	262	305	348
MF-73	11	46	78	110	140	177	220	263	306	349
MF-78	12	47	79	111	141	178	221	264	307	350
MF-84	13	48	80	112	142	179	222	265	308	351
MF-101	14	49	81	113	143	180	223	266	309	352
MF-230	15	50	82	114	144	181	224	267	310	353


Antibody	HCDR1	HCDR2	HCDR3	LCDR1	LCDR2	LCDR3	VH	VL	VH	VL
	SEQ ID	Protein	Protein	Nucleotide	Nucleotide					
MF-236	16	51	83	115	145	182	225	268	311	354
MF-252	17	52	84	116	146	183	226	269	312	355
MF-275	17	53	85	117	147	184	227	270	313	356
MF-423	18	54	86	118	148	185	228	271	314	357
MF-427	19	55	87	119	149	186	229	272	315	358
MF-428	20	56	88	120	150	187	230	273	316	359
MF-C	21	57	89	121	151	188	231	274	317	360
MF-I	22	58	90	102	152	189	232	275	318	361
MF-M	23	59	91	122	153	190	233	276	319	362
MF-P	24	60	92	123	154	191	234	277	320	363
MF-Q	25	61	93	124	155	192	235	278	321	364
MF-S	26	62	94	125	156	193	236	279	322	365
MF-U	27	63	95	126	157	194	237	280	323	366
MF-V	28	64	96	127	158	195	238	281	324	367
MF-W	29	65	97	102	159	196	239	282	325	368
MF-Y	30	66	98	128	155	197	240	283	326	369


CLAIMS


1. An isolated human or humanized antibody or functional fragment thereof comprising an antigen-binding region that is specific for Mesothelin (SEQ ID NO:370), wherein said antibody or functional fragment thereof exhibits invariant binding of Mesothelin.
2. An isolated antigen-binding region of an antibody according to claim 1 or a functional fragment thereof.
3. An isolated antigen-binding region according to claim 2, which comprises a CDR region as depicted in Table 7.
4. An isolated antigen-binding region according to claim 2, which comprises a heavy chain or light chain amino acid sequence selected from the group consisting of the
 - (i) SEQ ID NO's depicted in table 7; and
 - (ii) a sequence having at least 60 percent sequence identity in the CDR regions with the CDR regions depicted in SEQ ID NO's depicted in table 7.
5. An isolated antibody to according to claim 1, which is an IgG.
6. An isolated antigen-binding region according to claim 2, comprising one or more of the Sequences as depicted in table 7.
7. An isolated functional fragment according to claim 2, which is a Fab or scFv antibody fragment.
8. An isolated nucleic acid sequence that encodes an antigen-binding region of a human antibody according to claim 1 or functional fragment thereof.

9. A nucleic acid sequence encoding a variable heavy chain of an isolated antibody or functional fragment thereof, which comprises (i) a sequence selected from the group consisting of SEQ ID NOS as depicted in table 7 or (ii) a nucleic acid sequence that hybridizes under high stringency conditions to the complementary strand of SEQ ID NO as depicted in table 7, wherein said antibody or functional fragment thereof is specific for an epitope of Mesothelin.
10. A vector comprising a nucleic acid sequence according to any one of claim 9.
11. An isolated cell comprising a vector according to claim 10.
12. An isolated cell according to claim 11, wherein said cell is bacterial or a mammalian cell.
13. A pharmaceutical composition comprising an antibody or functional fragment according to claim 1, and a pharmaceutically acceptable carrier or excipient therefore.
14. A method for treating a disorder or condition associated with the undesired presence of mesothelin, comprising administering to a subject in need thereof an effective amount of the pharmaceutical composition according to claim 13.
15. A human antibody according to claim 1, wherein the human antibody is a synthetic human antibody.

Figure 1 / 4**Figure 1**

Figure 2 / 4**Figure 2**

Figure 3 / 4**Figure 3**

Figure 4 / 4**Figure 4**

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2008/009756

A. CLASSIFICATION OF SUBJECT MATTER
INV. C07K16/30 A61K39/395 A61P35/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07K A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BIOSIS, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2006/204506 A1 (EBEL, WOLFGANG [US] ET AL) 14 September 2006 (2006-09-14) the whole document	1,2,5,7, 8,13,14
Y	-----	3,4,6, 9-12,15
X	WO 2006/124641 A (US GOVERNMENT [US]; PASTAN IRA H [US]; ONDA MASANORI [US]) 23 November 2006 (2006-11-23) page 4 – page 59; figure 3	1,2,5,7, 8,13,14
Y	-----	3,4,6, 9-12,15
X	US 6 809 184 B1 (PASTAN IRA H [US] ET AL) 26 October 2004 (2004-10-26) the whole document	1,2,5,7, 8,13,14
Y	-----	3,4,6, 9-12,15
		-/-

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
2 March 2009	08/04/2009
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Pérez-Mato, Isabel

INTERNATIONAL SEARCH REPORT

International application No PCT/EP2008/009756

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	ONDA MASANORI ET AL: "New monoclonal antibodies to mesothelin useful for immunohistochemistry, fluorescence-activated cell sorting, Western blotting, and ELISA" CLINICAL CANCER RESEARCH, THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 11, no. 16, 15 August 2005 (2005-08-15), pages 5840-5846, XP002408962 ISSN: 1078-0432 the whole document	3, 4, 6
Y	CHANG K ET AL: "Molecular cloning of mesothelin, a differentiation antigen present on mesothelium, mesotheliomas, and ovarian cancer" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE, WASHINGTON, DC.; US, vol. 93, 9 January 1996 (1996-01-09), pages 136-140, XP002038954 ISSN: 0027-8424 the whole document	3, 4, 6
Y	WO 97/08320 A (MORPHOSYS PROTEINOPTIMIERUNG [DE]; KNAPPIK ACHIM [DE]; PACK PETER [DE]) 6 March 1997 (1997-03-06) the whole document	3, 4, 6, 15
Y	WO 94/29451 A (CELLTECH LTD [GB]; MORGAN SUSAN ADRIENNE [GB]; EMTAGE JOHN SPENCER [GB]) 22 December 1994 (1994-12-22) the whole document	3, 4, 6, 15
Y	WO 2006/130458 A (AMGEN FREMONT INC [US]; ASTRAZENECA AB [SE]; ASTRAZENECA UK LTD [GB];) 7 December 2006 (2006-12-07) page 34, paragraph 145 - page 37, paragraph 146; sequence 18	3, 4, 9-12
A	HASSAN ET AL: "Mesothelin targeted cancer immunotherapy" EUROPEAN JOURNAL OF CANCER, PERGAMON PRESS, OXFORD, GB, vol. 44, no. 1, 22 October 2007 (2007-10-22), pages 46-53, XP022392314 ISSN: 0959-8049 the whole document	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2008/009756

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 2006204506	A1	14-09-2006	NONE			
WO 2006124641	A	23-11-2006	AU CA EP US	2006247565 A1 2607305 A1 1885758 A2 2009047211 A1		23-11-2006 23-11-2006 13-02-2008 19-02-2009
US 6809184	B1	26-10-2004	US	2008261245 A1 2005214304 A1		23-10-2008 29-09-2005
WO 9708320	A	06-03-1997	AT AU AU CA DE DE DK DK EP ES JP PT US	219517 T 725609 B2 6874596 A 2229043 A1 69621940 D1 69621940 T2 1143006 T3 859841 T3 0859841 A1 2176484 T3 2001519643 T 859841 T 6300064 B1		15-07-2002 12-10-2000 19-03-1997 06-03-1997 25-07-2002 16-01-2003 14-07-2008 09-09-2002 26-08-1998 01-12-2002 23-10-2001 29-11-2002 09-10-2001
WO 9429451	A	22-12-1994	AT AU AU CA DE DE EP JP JP US	208820 T 694926 B2 6934294 A 2163344 A1 69429095 D1 69429095 T2 0715653 A1 3653093 B2 8511421 T 6180377 B1		15-11-2001 06-08-1998 03-01-1995 22-12-1994 20-12-2001 12-09-2002 12-06-1996 25-05-2005 03-12-1996 30-01-2001
WO 2006130458	A	07-12-2006	AR AU CA CN EP JP KR UY	053514 A1 2006252733 A1 2610234 A1 101282993 A 1891113 A2 2008541758 T 20080031001 A 29573 A1		09-05-2007 07-12-2006 07-12-2006 08-10-2008 27-02-2008 27-11-2008 07-04-2008 29-12-2006