Oversættelse af europæisk patentskrift

Patent- og Varemærkestyrelsen

Int.Cl.: A 61 K 31/498 (2006.01) A 61 K 9/00 (2006.01) A 61 K 9/06 (2006.01)

Oversættelsen bekendtgjort den: 2017-06-19

Dato for Den Europæiske Patentmyndigheds bekendtgørelse om meddelelse af patentet: 2017-04-19

Europæisk ansøgning nr.: 11710199.8

Europæisk indleveringsdag: 2011-03-25

Den europæiske ansøgnings publiceringsdag: 2013-02-06

International ansøgning nr.: EP2011054596

International publikationsnr.: WO2011117377

Prioritet: 2010-03-26 US 282754 P

Desigenerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Patenthaver: Galderma Research & Development, 2400 Route des Colles, Les Templiers, 06410 Biot, Frankrig

Opfinder: LEONI, Matthew James, 1 Rockhill Dr., Hampton, NJ 08827, USA
GRAEBER, Michael, 30103 Palm Court, Lawrenceville, NJ08648, USA
LOESCHE, Christian, 1 Place des Cines, F-06560 Valbonne, Frankrig
FREIDENREICH, Philip, 347 Michael Road, Yardley, PA 19067, USA
LIU, Yin, 19 Reed Dr. North, Princeton Junction, New Jersey, NJ 08550, USA

Fuldmaægtig i Danmark: NORDIC PATENT SERVICE A/S, Bredgade 30, 1260 København K, Danmark

Bemærkelse: SAMMENSÆTNINGER OMFATTENDE BRIMONIDIN TIL BEHANDLING AF ERYTE

Fremdragne publikationer:
WO-A1-2009/082452
WO-A1-2011/053487
WO-A2-2005/115395
WO-A2-2010/136585
BACKGROUND OF THE INVENTION

Erythema is a skin condition characterized by redness of the skin. It occurs with any skin injury, infection, or inflammation. It can also occur as a reaction to medications, illness or emotions. It can further occur for reasons currently unknown. Erythema is difficult to treat. Currently available treatments for erythema mainly treat the underlying diseases and avoid known triggers. These treatments are of limited effectiveness, particularly for erythema with unknown causes.

Brimonidine, a selective α2-adrenergic agonist, has been used as either a monotherapy or an adjunctive therapy to lower intraocular pressure (IOP) in the treatment of glaucoma and ocular hypertension (OHT) since its approval in 1996. The most common side effects associated with brimonidine therapy are dry mouth, fatigue/drowsiness, headache, mild hyperemia, blurred vision and foreign body sensation. Hypertension, palpitations and syncope have been reported by less than 3% patients in clinical trials involving brimonidine ophthalmic treatment. See McGie, Journal of the Pharmacy Society of Wisconsin, May/June 2001, at World Wide Web: psww.org/professional/pharmaco/brimonidine.pdf, and references therein. Results from the dose-ranging study in patients with glaucoma or ocular hypertension showed that although 0.5% (ww) had higher efficacy in the early phase of treatment, the 0.5% (ww) and 0.2% (ww) had similar efficacy after two weeks of treatment, and that 0.5% (ww) had more systemic and ocular side effects than 0.2% (ww). See, e.g., Walters, Survey of Ophthalmology, 1996, 41: S19-S28. Ophthalmic formulations containing 0.2% (ww) brimonidine have been used for chronic applications to treat glaucoma and ocular hypertension, while that containing 0.5% (ww) brimonidine has been only used for acute therapy for the prevention of postoperative intraocular pressure spikes. In order to reduce a variety of ocular and systemic side-effects associated with the ophthalmic application of 0.2% (ww) brimonidine, ophthalmic formulations containing lower concentrations of brimonidine, e.g., 0.15% (ww) or 0.1% (ww), have been subsequently developed and used for chronic ophthalmic applications.

Brimonidine has been reported to be useful in treating erythema caused by rosacea. See, e.g., U.S. Ser. No. 10/853,585 and US 2006/0171974 to DeJovin et al. To ensure the safety and avoid unacceptable side effects, a previous clinical study used 0.2% (ww) brimonidine tartrate as the “high” dosage for treating erythema. See US 2006/0061020 to Theobald et al. WO 2005/115396 discloses topical formulations comprising brimonidine or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable topical carrier, for the topical treatment or prevention of inflammatory skin disorders including, amongst others, erythema multifforme and erythema nodosum.

In the present invention, it has been surprisingly discovered that topical administration of brimonidine to a skin area affected by erythema or a related symptom resulted in significantly less systemic exposure to brimonidine than topical ophthalmic application of brimonidine. It has been found that although systemic exposure increased with the applied dose of brimonidine, statistical analysis showed that the increase in systemic exposure (C_{max}) was not dose proportional, e.g., the increase in the mean C_{max} was much less than the increase in the dose. It has also been discovered that, unlike the topical ophthalmic application of brimonidine, topical administration of higher than 0.2% (ww) brimonidine to a skin area affected by erythema or a related symptom resulted in increased efficacy without observable loss of effectiveness over time. No unacceptable drug related adverse events was observed with the treatment of higher concentration of brimonidine tested.

Accordingly, a higher concentration of brimonidine, namely 0.5% (ww), can now be used in compositions for use in the safe and effective treatment of erythema.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a topical composition comprising, relative to the total weight of the composition, 0.5% brimonidine or a pharmaceutically acceptable salt thereof; 0.20% to 4.0% gelling agent; 5.0% to 30.0% at least one polyol; and a pharmaceutically acceptable carrier, for use in the treatment of erythema in a subject, wherein said composition is to be topically administered to a skin area affected by the erythema. The topical administration of the composition effects a serum or plasma profile of brimonidine having a mean C_{max} of about 54 ± 26 pg/mL or less and a mean AUC_{0-24h} of about 568 ± 277 pg hr/mL or less.
In particular embodiment of the present invention the topical composition and instructions for topically administering the composition to a skin area affected by the erythema are provided as a unified packaged product.

In a preferred embodiment, the erythema is erythema of rosacea.

Other aspects, features and advantages of the invention will be apparent from the following disclosure, including the detailed description of the invention and its preferred embodiments and the appended claims.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are according to the invention, as well as embodiments which are not within the scope of the present invention.

The drawings:

Figure 1 illustrates composite success on Day 1, Day 15 and Day 29 after the initial treatment, using last observation carried forward (LOCF) approach in the intent to treat (ITT) population;

Figure 2 illustrates CEA success on Day 1, Day 15 and Day 29 after the initial treatment, using LOCF approach in the ITT population; and

Figure 3 illustrates PSA-5 success on Day 1, Day 15 and Day 29 after the initial treatment using LOCF approach in the ITT population.

DETAILED DESCRIPTION OF THE INVENTION

Discussion of documents, acts, materials, devices, articles, or the like, which have been included in the present specification is for the purpose of providing context for the present invention. Such discussion is not an admission that any or all of these matters form part of the prior art with respect to any inventions disclosed or claimed.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention pertains. Otherwise, certain terms used herein have the meanings as set in the specification. It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise.

As used herein, "erythema" is intended to encompass any type or classification of abnormal skin redness associated with or resulting from rosacea, e.g., erythema in a patient with rosacea. A major symptom of rosacea is erythema, which is a skin disorder that generally affects the cheeks, nose, chin, and forehead of a patient.

The term "erythema" encompasses different degrees or grades of erythema, from mild to severe.

For example, erythema can be rated by a clinician based on Clinician’s Erythema Assessment Score (CEA) on a scale from 0 to 4, with 0 being clear skin with no signs of erythema; 1 being almost clear, slight redness; 2 being mild erythema, definite redness; 3 being moderate redness; and 4 being severe redness.

Erythema can also be rated by a patient based on Patient's Self Assessment (PSA, also called PSA-5 herein) on a scale from 0 to 4, with 0 being no redness; 1 being very mild redness; 2 being mild redness; 3 being moderate redness and 4 being severe redness.

In view of the present disclosure, a skin area that is affected by erythema can be identified using any diagnostic signs or means known in the art, and can be treated by the employment of topical compositions for such use according to embodiments of the present invention.
[0020] The efficacy of the treatment can be measured using method known in the art. For example, the efficacy can be measured by the grades of improvement as evaluated by CEA, PSA or the combination of CEA and PSA, and the duration of the improvement.

[0021] As used herein, the term "brimonidine" refers to the compound (5-bromo-quinoxalin-6-y)-(4,5-dihydro-1H-imidazol-2-yl)-amine having the structure of formula (I):

![Formula (I)](image)

and any pharmaceutically acceptable salt of the compound, including, but not limited to, brimonidine tartrate.

[0022] The phrase "pharmaceutically acceptable salt(s)", as used herein, means those salts of the compound of interest that are safe and effective for topical use in mammals and that possess the desired biological activity. Pharmaceutically acceptable salts include salts of acidic or basic groups present in the specified compound. Pharmaceutically acceptable acid addition salts include, but are not limited to, hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, geninsulfate, fumarate, gluconate, glucarate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluene sulfonate and pamoate (i.e., 1,1'-methylenedioxy-2-hydroxy-3-naphthoate) salts. Pharmaceutically acceptable salts may be formed with various amino acids. Suitable base salts include, but are not limited to, aluminum, calcium, lithium, magnesium, potassium, sodium, zinc, and diethanolamine salts. For a review on pharmaceutically acceptable salts see BERGE ET AL., 66 J. PHARM. SCI. 1-19 (1977).

[0023] The term "topically administrable composition," a "topical composition," or a "topical formulation," as used herein, means any formulation or composition which is pharmaceutically and/or cosmetically acceptable for topical delivery of the specified compounds according to embodiments of the invention.

[0024] The term "topically administrable composition" as used herein, also encompasses locally applied and locally acting formulations such as formulations for use with implants, injections, or patches.

[0025] The choice of topically administrable composition will depend on several factors, including, but not limited to, the nature of the symptoms to be treated or prevented, the physiochemical characteristics of the particular compound to be administered and of other excipients present, their stability in the formulation, the aesthetics of any given formulation, available manufacturing equipment, and cost constraints.

[0026] As used herein, the term "composition" is intended to encompass a product comprising the specified ingredient in the specified amount, as well as any product which results, directly or indirectly, from combinations of the specified ingredient in the specified amount.

[0027] As used herein, the term "subject" means any animal, preferably a mammal, most preferably a human, to whom will be or has been administered topical formulations for use according to embodiments of the invention.

[0028] As used herein, the term "instructions" when used in the context of a packaged product includes a publication, a recording, a diagram or any other medium of expression which can be used to communicate the usefulness of the packaged product for its designated use. The instructions can, for example, be affixed to or included within a container for the packaged product.

[0029] As used herein, the term "treatment" or "treating" refers to an amelioration, prophylaxis, or reversal of erythema, for example, by lessening or delaying the onset of the redness of the skin affected by the erythema.

[0030] As used herein, a "safe and effective amount of brimonidine" means the amount of brimonidine that is effective to treat erythema associated therewith, without causing unacceptable drug related adverse events, when administered to a subject.

[0031] As used herein, the phrase " unacceptable drug related adverse events," "unacceptable adverse drug events," and "unacceptable adverse drug reaction," shall all mean harm or undesired outcome associated with or caused by a proposed use of
a drug, and the harm or undesired outcome reaches such a severity that a regulatory agency deems the drug unacceptable for the proposed use.

[0032] It has been established that topical administration of a safe and effective amount of brimonidine, in the form of a topical composition comprising 0.5% by weight of brimonidine, to a skin area affected by erythema, provides effective treatment of erythema, without causing unacceptable drug related adverse events. It was discovered that topical administration of a topical composition comprising increasing concentration of brimonidine to a skin area affected by erythema resulted in a clear dosage responsive increase in the efficacy and an increase in the systemic exposure. However, statistical analysis showed that the increase in systemic exposure (C_{max}) was not dose proportional, e.g., the increase in mean C_{max} was much less than the increase in dose. It has also been discovered that, unlike the topical ophthalmic application, in topical administration to an affected skin area a higher concentration of brimonidine resulted in increased efficacy without observable loss of efficacy over time. No unacceptable adverse event was observed with the treatment of higher concentration of brimonidine tested. Topical skin treatments of erythema with all concentrations and regimens tested resulted in significantly lower systemic exposure to brimonidine than the treatment with eye drops applied as recommended in the label of the ophthalmic products.

[0033] Such superior clinical activities of the higher concentrations of brimonidine have not been previously reported. The foregoing is surprising and unexpected, particularly in view of the previously reported efficacy and safety profiles of brimonidine in ophthalmic applications, where a significant loss of effectiveness over time was seen with the brimonidine 0.5% (w/w) formulation such that the chronic use of much lower concentrations of brimonidine, e.g., 0.1% or 0.15% by weight, is preferred, because the lower concentrations provide improved tolerability while maintaining IOP-lowering efficacy.

[0034] Accordingly, embodiments of the present invention relate to a topical composition comprising, relative to the total weight of the composition, 0.5% brimonidine or a pharmaceutically acceptable salt thereof, 0.20% to 4.0% gelling agent, 5.0% to 30.0% at least one polyol, and a pharmaceutically acceptable carrier, for use in the treatment of erythema in a subject, wherein said composition is to be topically administered to a skin area affected by the erythema. The topical administration effects a serum or plasma profile of brimonidine having a mean C_{max} of about 54 ± 28 pg/mL or less and a mean AUC_{0-24h} of about 566 ± 277 pg.hr/mL or less. The mean C_{max} and the mean AUC_{0-24h} correspond to the serum or plasma profile of brimonidine after ophthalmic treatment with 0.2% (w/w) brimonidine tartrate eye drops as recommended in the label of the ophthalmic product.

[0035] Upon topically administering the topical formulation for use according to the present invention to the affected skin area, the onset of a noticeable effect, i.e., at least 1-grade improvement of the erythema, is first observed. The noticeable effect is then progressed to maximum improvement, which includes 2-grade of improvement of the erythema that lasts for a sustained period of time. The maximum improvement then declines to noticeable effect, which then disappears. The grades of improvement of the erythema can be evaluated by Clinician’s Erythema Assessment Score (CEA), a Patient’s Self Assessment (PSA), or a combination of CEA and PSA.

[0036] The topical administration of a topical composition for use according to an embodiment of the present invention to a skin area affected by erythema results in significantly more effective treatment of the erythema than a vehicle control for reduction of facial erythema associated with rosacea as measured by a 12 hour success profile evaluated on both CEA and PSA scales, without causing any unacceptable adverse effect.

[0037] In one case, the 12 hour success profile comprises at least 1-grade improvement of the erythema.

[0038] The topical administration of a topical composition for use according to an embodiment of the present invention to a skin area affected by erythema resulted in significantly more reduction of facial erythema associated with rosacea compared to a vehicle control as measured by a 12 hour success profile evaluated on both CEA and PSA scales, without causing any unacceptable adverse effect.

[0039] In one case, the 12 hour success profile comprises a noticeable effect of 1-grade improvement of the erythema and about 1 hour to about 8 hours of a 2-grade improvement of the erythema. In some cases, the 2-grade improvement lasts, for example, at least about 6 hours, at least about 5 hours, at least about 4 hours, at least about 3 hours, at least about 2 hours or at least about 1 hour, depending on the applied dose, the particular subject, the severity and complications of erythema being treated, etc.

[0040] In a preferred case, the 12 hour success profile comprises a noticeable effect of 1-grade improvement of the erythema or the symptom and about 2 hours to about 7 hours of a 2-grade improvement of the erythema or the symptom.
In another preferred embodiment, the 12 hour success profile comprises a noticeable effect of 1-grade improvement of the erythema and about 3 hours to about 6 hours of a 2-grade improvement of the erythema.

In yet another preferred case, the 12 hour success profile comprises a noticeable effect of 1-grade improvement of the erythema and about 2 hours to about 5 hours of a 2-grade improvement of the erythema.

In a preferred embodiment, the erythema is erythema of rosacea.

As noted herein above, the topicaly administrable composition comprises 0.5% by weight of brimonidine, such as brimonidine tartrate.

In a preferred embodiment, the topical composition comprises 0.5% by weight of brimonidine tartrate.

To treat erythema, in view of the present disclosure, the topicaly administrable compositions for use according to the present invention can be topically applied directly to the affected area in any conventional manner known in the art, e.g., by dropper, applicator stick, or cotton swab, as a mist via an aerosol applicator, via an intradermal or transdermal patch, or by simply spreading a formulation of the invention onto the affected area with fingers, a sponge, a pad, or wipes. Generally, the amount of a topical formulation of the invention applied to the affected skin area ranges from about 0.0001 g/cm² of skin surface area to about 0.05 g/cm², preferably, 0.002 g/cm² to about 0.005 g/cm² of skin surface area. Typically, one to four applications per day are recommended during the term of treatment.

According to a preferred embodiment of the present invention, the topical composition is to be topically applied to the affected skin area once daily.

The topical composition for use according to the present invention can be used in conjunction with one or more other treatments and medications for erythema, such as the medications used to treat the underlying disease that causes erythema, antihistamines to control itching, antibiotics, corticosteroids, intravenous immunoglobulins, acetaminophen, etc.

The other medicament or treatment can be administered to the subject simultaneously with, or in a sequence and within a time interval of, the administration of brimonidine, such that the active ingredients or agents can act together to treat erythema. For example, the other medicament or treatment and brimonidine can be administered in the same or separate formulations at the same or different times, i.e., before or after. Any suitable route of administration can be employed to deliver the additional treatment or medication.

In one embodiment of the present invention the topical composition and instructions for topically administering the composition to a skin area affected by the erythema are provided as a unified packaged product.

The topical composition may be contained within one suitable container, such as a dropper, a jar, or a tube with a suitable small orifice size, such as an extended tip tube, made of any pharmaceutically suitable material. The topical formulations for use according to embodiments of the present invention can be filled and packaged into a plastic squeeze bottle or tube. Suitable container-closure systems for packaging topical formulations for use according to the present invention are commercially available for example, from Wheaton Plastic Products, 1101 Wheaton Avenue, Millville, N.J. 08332. Optionally, an applicator can be provided in or attached to the container, or separately from the container.

The instructions may, for example, be a pamphlet or package label. The instructions explain how to administer topical formulations underlying the present invention, in an amount and for a period of time sufficient to provide a safe and effective treatment of erythema. Preferably, the instructions include, for example, the dosage and administration instructions, the topical formulation’s composition, the clinical pharmacology, drug resistance, pharmacokinetics, absorption, bioavailability, and contraindications.

The topically administrable compositions are prepared by mixing a pharmaceutically acceptable carrier with the brimonidine according to known methods in the art, for example, methods provided by standard reference texts such as, REMINGTON: THE SCIENCE AND PRACTICE OF PHARMACY 1577-1591, 1672-1673, 866-885(Alfonso R. Gennaro ed. 19th ed. 1995); Ghosh, T. K.; et al. TRANSDERMAL AND TOPICAL DRUG DELIVERY SYSTEMS (1997).

Suitable gelling agents known in the art, including those used in the two-phase or single-phase gel systems, can be used in the present invention. Some examples of suitable gelling agents are disclosed in REMINGTON: THE SCIENCE AND PRACTICE
OF PHARMACY 1517-1518 (Alfonso R. Gennaro ed. 19th ed. 1995). The gelling agents used in embodiments of the present invention, include, but are not limited to, one or more hydrophilic and hydroalcoholic gelling agents used in the cosmetic and pharmaceutical industries. Preferably, the hydrophilic or hydroalcoholic gelling agent comprises "CARBOPOL®" (B.F. Goodrich, Cleveland, Ohio), "HYPAN®" (Kingston Technologies, Dayton, N.J.), "NATROSOL®" (Aqualon, Wilmington, Del.), "KLUCEL®" (Aqualon, Wilmington, Del.), or "STABILEZ®" (ISP Technologies, Wayne, N.J.). The preferred compositional weight percent range for "CARBOPOL®" is between about 0.5% to about 2%, while the preferred weight percent range for "NATROSOL®" and "KLUCEL®" is between about 0.5% to about 4%. The preferred compositional weight percent range for both "HYPAN®" and "STABILEZ®" is between 0.5% to about 4%. Other preferred gelling agents include hydroxyethylcellulose, cellulose gum, MVE/MA decadiene crosspolymer, PVMA copolymer, glycerine polyacrylate, or a combination thereof.

[0055] Examples of carbomers that can be used in the topical compositions underlying the present invention include, but are not limited to, Carbomer 910, 934P, 940, 941, 980 and 1342, and Carbopol® 974P and Carbopol® 980. Preferably, the carbomer is Carbomer 934P or Carbopol® 974P, and Carbopol® 980.

[0056] According to embodiments of the present invention, the amount of the carbomer in the composition is about 0.5%, 0.6%, 0.7%, 0.8%, 0.85%, 0.95%, 1.05%, 1.15%, 1.25%, 1.35%, 1.45%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9% or 2.0% (w/w).

[0057] Polyol gel formulations with various ingredients solubilized therein have been used to minimize irritation when applied to the skin of a subject, while ensuring bioavailability of the active agent in the formulation. See Other III et al, "Gels and Jellies," pp. 1327-1344 of Encyclopedia of Pharmaceutical Technology, vol. 3 (ed. by Swarbrick, et al, pub. by Marcel Dekker, 2002); or Pena, "Gel Dosage Forms: Theory, Formulation, and Processing," pp. 381-388 of Topical Drug Delivery Formulations, (ed. by Osborne et al., pub. by Marcel Dekker, Inc., 1990). Polysols in gel formulations can serve one or more functions such as solubilizing agents, moisturizers, emollients, skin humectant, skin-penetration agents, etc. Suitable polysols that can be used in embodiments of the present invention include, but are not limited to, glycerine, propylene glycol, dipropylene glycol, hexylene glycol, butylene glycol, and liquid polyethylene glycols, such as polyethylene glycol 200 to 600.

[0058] According to embodiments of the present invention, the amount of the total polysols in the composition is about 5.0% to 30.0% (w/w), for example, about 5.0%, 5.5%, 6.0%, 6.5%, 7.0%, 7.5%, 8.0%, 8.5%, 9.0%, 9.5%, 10.0%, 10.5%, 11.0%, 11.5%, 12.0%, 12.5%, 13.0%, 13.5%, 14.0%, 14.5%, 15.0%, 17%, 20%, 25% or 30% (w/w).

[0059] Preferably, the topical gel composition comprises a first polyol and a second polyol, such as propylene glycol and glycerine, respectively.

[0060] According to embodiments of the present invention, the amount of each of the first and second polyols in the composition is independently about 4 to 15%, such as 4.5% to 6.5% (w/w), for example, 4.5%, 5.0%, 5.5%, 6.0% or 6.5% (w/w).

[0061] The pH of the topical formulations for use according to the present invention are preferably within a physiologically acceptable pH, e.g., within the range of about 4 to about 8, preferably, of about 6 to about 7.5, and more preferably about 4.5 to 6.5. To stabilize the pH, preferably, an effective amount of a buffer is included. In one embodiment, the buffering agent is present in the aqueous topical formulation in an amount of from about 0.05 to about 1 weight percent of the formulation.

[0062] The topical gel composition underlying the present invention can include one or more other ingredients, such as a protective agent, a cosmetic agent, an adsorbent, a preservative, an antioxidant, a surfactant, a skin-penetration agent, local anesthetics, analgesics etc.

[0063] In a preferred embodiment, a topical gel composition for use according to embodiments of the invention further comprises water dispersible form of titanium dioxide (TiO2), preferably at an amount that is sufficient to mask the color of bromoindone or another colored ingredient in the formulation, but would not cause irritation to the skin. TiO2 may cause mild irritation and reddening to the eyes, thus eye contact with the TiO2-containing topically administrable composition should be avoided. Titanium dioxide imparts a whiteness to the topically administrable composition and helps to increase the opacity and reduce the transparency of the composition. Titanium dioxide absorbs, reflects, or scatters light (including ultraviolet radiation in light), which can help protect products from deterioration. Titanium dioxide can also be used as a sunscreen to protect the user from the harmful effects of ultraviolet radiation that is part of sunlight.

[0064] According to embodiments of the present invention, the amount of water dispersible form of titanium dioxide in the composition is about 0.04 to 0.2%, such as 0.04%, 0.0425%, 0.0525%, 0.0625%, 0.0725%, 0.0825%, 0.09%, 0.10%, 0.15%, or 0.20% (w/w).
[0065] Suitable preservatives include, but are not limited to, quaternary ammonium compounds, such as benzalkonium chloride, benzenonium chloride, cetrimide, dequalinium chloride, and cetlypyridinium chloride; alcoholic agents, for example, chlorobutanol, phenylethyl alcohol, and benzyl alcohol; parabens such as methylparaben, ethylparaben, propylparaben, and butylparaben; antibacterial esters, for example, esters of parahydroxybenzoic acid; and other anti-microbial agents such as chlorhexidine, chlorocresol, benzoic acid, polymyxin, and phenoxethanol. Preferably, the preservative is selected from the group consisting of sodium benzoate, phenoxyethanol, benzyl alcohol, methylparaben, imidazolidinyl urea and diazolidinyl urea.

[0066] In addition to brimonidine, the topically administrable composition for use according to embodiments of the present invention can optionally include one or more other pharmaceutically active ingredients, including, but not limited to, medications used to treat the underlying disease that causes erythema, antihistamines to control itching, antibiotics, corticosteroids, intravenous immunoglobulins, acetaminophen, etc.

[0067] This invention will be better understood by reference to the non-limiting examples that follow, but those skilled in the art will readily appreciate that the examples are only illustrative of the invention defined in the claims which follow thereafter.

Example 1

Gel Topical Formulations

[0068] To the extent that the topical formulations comprise 0.5% (w/w) brimonidine, this example illustrates gel topical formulations that underly the present invention.

[0069] A first group of gel formulations is described in Table 1 below.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>% (w/w)</th>
<th>% (w/w)</th>
<th>% (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brimonidine tartrate</td>
<td>0.3 - 0.5%</td>
<td>0.6 - 3%</td>
<td>3 - 10%</td>
</tr>
<tr>
<td>Methylparaben NF</td>
<td>0.15%</td>
<td>0.20%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Propylparaben NF</td>
<td>0.03%</td>
<td>0.02%</td>
<td>0.04%</td>
</tr>
<tr>
<td>Hydroxyethylcellulose NF</td>
<td>1.0%</td>
<td>1.25%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Butylene glycol 1,3</td>
<td>3.0%</td>
<td>6.0%</td>
<td>18.0%</td>
</tr>
<tr>
<td>Glycerine</td>
<td>2.0%</td>
<td>4.0%</td>
<td>12.0%</td>
</tr>
<tr>
<td>Disodium Edetate USP</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Purified Water, USP</td>
<td>QS</td>
<td>QS</td>
<td>QS</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

[0070] The pH of the formulation is adjusted to about 4.5 to 7.0.

[0071] A second group of gel formulations is described in Table 2 below.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>% (w/w)</th>
<th>% (w/w)</th>
<th>% (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brimonidine tartrate</td>
<td>0.3 - 0.6%</td>
<td>0.6 - 3.0%</td>
<td>3.0 - 10%</td>
</tr>
<tr>
<td>Methylparaben</td>
<td>0.20%</td>
<td>0.20%</td>
<td>0.20%</td>
</tr>
<tr>
<td>Propylparaben</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>KLUCEL®</td>
<td>2.0%</td>
<td>2.5%</td>
<td>1.0%</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>3%</td>
<td>6%</td>
<td>15%</td>
</tr>
<tr>
<td>Glycerine, USP</td>
<td>3%</td>
<td>6%</td>
<td>15%</td>
</tr>
<tr>
<td>10% Titanium dioxide</td>
<td>0.5%</td>
<td>0.6%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Purified Water, USP</td>
<td>QS</td>
<td>QS</td>
<td>QS</td>
</tr>
<tr>
<td>Ingredients</td>
<td>% (w/w)</td>
<td>% (w/w)</td>
<td>% (w/w)</td>
</tr>
<tr>
<td>------------------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

[0072] The ingredients are mixed together and aqueous sodium hydroxide is slowly added to the mixture until a pH of about 4.5 to 6.5 is reached and the gel is formed.

[0073] A third group of gel formulations is described in Table 3 below.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>% (w/w)</th>
<th>% (w/w)</th>
<th>% (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brimonidine tartrate</td>
<td>0.3 - 0.6%</td>
<td>0.6 - 3.0%</td>
<td>3.0 - 10%</td>
</tr>
<tr>
<td>Carbomer 934P</td>
<td>1.25%</td>
<td>1.0%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Methy/paraben</td>
<td>0.2%</td>
<td>0.15%</td>
<td>0.20%</td>
</tr>
<tr>
<td>Phenoxyethanol</td>
<td>0.4%</td>
<td>0.35%</td>
<td>0.4%</td>
</tr>
<tr>
<td>Glycerol</td>
<td>5.5%</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>Kowet titanium dioxide</td>
<td>0.0625%</td>
<td>0.0725%</td>
<td>0.0825%</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>5.5%</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>DI Water</td>
<td>QS</td>
<td>QS</td>
<td>QS</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

[0074] The ingredients are mixed together and aqueous sodium hydroxide is slowly added to the mixture until a pH of about 4.5 to 6.5 is reached and the gel is formed.

[0075] A fourth group of gel formulations is described in Table 4 below.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>% (w/w)</th>
<th>% (w/w)</th>
<th>% (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brimonidine tartrate</td>
<td>0.3 - 0.6%</td>
<td>0.6 - 3.0%</td>
<td>3.0 - 10%</td>
</tr>
<tr>
<td>Methy/paraben</td>
<td>0.15%</td>
<td>0.125%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Propylene glycol</td>
<td>0.05%</td>
<td>0.05%</td>
<td>0.06%</td>
</tr>
<tr>
<td>Carbopol® 980</td>
<td>1.0%</td>
<td>0.8%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Glycerin</td>
<td>5.5%</td>
<td>10%</td>
<td>15%</td>
</tr>
<tr>
<td>10% Titanium dioxide</td>
<td>0.575%</td>
<td>0.675%</td>
<td>0.775%</td>
</tr>
<tr>
<td>Polyethylene glycol</td>
<td>4.5%</td>
<td>8%</td>
<td>12%</td>
</tr>
<tr>
<td>Water</td>
<td>QS</td>
<td>QS</td>
<td>QS</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

[0076] The ingredients are mixed together and stirred. Triethanolamine is added until a pH of about 5.5 to 7.0 is attained.

Example 2

(Only compositions comprising 0.5% (w/w) brimonidine tartrate underly present invention)

Comparative Bioavailability and Pharmacokinetics Study of Brimonidine Compositions

[0077] This study was a randomized, evaluator-blinded, intra-individual comparative pharmacokinetic study of brimonidine
tartrate, ophthalmic solution (0.2%) and topical gel (0.07%, 0.18% and 0.50%) applied under maximal use conditions for 29 days in subjects with moderate to severe erythema associated with rosacea. Major entrance criteria included clinical diagnosis of moderate to severe facial erythema associated with rosacea, CEA score ≥3, and IOP level 11-21 mmHg. Intra-subject comparison of topical to ophthalmic exposure following one day treatment with brimonidine tartrate ophthalmic solution 0.2% was performed.

[0078] A total of 102 subjects were randomized: 24, 26, 25, and 27 subjects in 0.5% Gel OD, 0.18% Gel BID, 0.18% Gel QD, and 0.07% Gel BID, respectively. On the Day 1 visit, one drop of brimonidine tartrate ophthalmic solution 0.2% was administered to each eye every 8 hours over a 24 hour period. After a 2-day wash-out period, one gram of topical gel (0.07%, 0.18%, or 0.50% of brimonidine tartrate) was applied once (QD) or twice daily (BID) to the face of subjects for 4 weeks.

[0079] Blood samples for complete PK profiling were taken during the 24-hour ocular treatment (study Day 1) and during the first day of topical application (study Day 4), fifteen days of topical application (study Day 18) and after the last topical application up to 72 hours post-dose (study Day 32). Additional blood samples were collected before application (Day 10, Day 24). Brimonidine plasma concentrations were determined by using a validated LC-MS/MS method with a lower limit of quantification (LOQ) of 10 pg/mL.

[0080] The PK parameters for brimonidine were calculated using standard non-compartmental method and C_{max}, AUC_{0-24hr} were analyzed statistically using log-transformed data. For both the differences between times administration routes and between treatment groups, the limits of the intervals were back-transformed into exponential to obtain 90% confidence intervals (90% CI) of the ratios of geometric means on the original scale. The statistical analysis was performed using all C_{max} (BLQ values being replaced by the LOQ) and using only quantifiable AUC_{0-24hr}.

[0081] PK results demonstrated that:

1. (1) Ocular treatment: Administration of brimonidine tartrate 0.2% by ophthalmic route resulted in quantifiable exposure (>10 pg/mL) in all patients receiving TID treatment. The pharmacokinetic (PK) parameters of the ophthalmic solution have a mean C_{max} of 54 ± 28 pg/mL (range: 16 - 134 pg/mL) and a mean AUC_{0-24hr} of 586 ± 277 pg hr/mL (range: 124 - 1490 pg hr/mL). These were consistent with the known data of brimonidine tartrate 0.2% (w/w) ophthalmic solution, e.g., NOA:21-262, 0.2% Brimonidine Purite Multiple dose TID, C_{max} 65 ± 38 pg/mL.

2. (2) Topical treatments: Daily topical application of brimonidine Gel for 29 days resulted in quantifiable (>10 pg/mL) systemic exposure in 24%, 48%, 66% and 75% of subjects receiving brimonidine Gel 0.07 % BID, 0.18 % QD, 0.18 % BID or 0.5% QD, respectively. At the end of the treatment period, the mean (± SD) C_{max} were 13 ± 9 pg/mL, 17 ± 20 pg/mL, 17 ± 10 pg/mL, 25 ± 24 pg/mL for brimonidine Gel 0.07 % BID, 0.18 % QD, 0.18 % BID or 0.5% QD, respectively. Quantifiable AUC_{0-24hr} were 172 ± 87 pg hr/mL, 183 ± 113 pg hr/mL, 267 ± 119 pg hr/mL, 364 ± 216 pg hr/mL for brimonidine Gel 0.07 % BID, 0.18 % QD, 0.18 % BID or 0.5% QD, respectively.

[0082] The effect of multiple dose of brimonidine gel on PK profile (Time effect: Day 4/Day 18/Day 32) was assessed for each topical treatment groups. Systemic exposures of the first day of topical application were comparable to those observed after 29 days topical applications in all treatment groups, thus suggesting that there is no drug accumulation throughout the treatment duration (i.e. 4 weeks) whatever the dose and the dose regimen. Whatever the dose and dose regimen tested, the Ocular/Topical ratios calculated over the entire topical treatment period (Day 4, Day 18 and Day 32) was significantly lower than 1.

[0083] After topical application of brimonidine gel, systemic exposure increases with applied dose. However, statistical analysis showed that systemic exposure (C_{max}) is not dose proportional. The mean C_{max} increased lower than dose proportionality.

[0084] The topical systemic exposure (expressed as C_{max} or AUC_{0-24hr}) from the skin treatment was compared to the one obtained after ocular treatment. See Table 5.

Table 5: statistical comparison of the ocular and topical treatments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CD07805/47 Gel 0.5% QD Estimate (90% CI)</th>
<th>CD07805/47 Gel 0.18% BID Estimate (90% CI)</th>
<th>CD07805/47 Gel 0.18% QD Estimate (90% CI)</th>
<th>CD07805/47 Gel 0.07% BID Estimate (90% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{max}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4/Day 1</td>
<td>0.3 (0.3, 0.3)</td>
<td>0.3 (0.2, 0.3)</td>
<td>0.2 (0.2, 0.3)</td>
<td>0.2 (0.2, 0.2)</td>
</tr>
<tr>
<td>Parameter</td>
<td>CD07805/47 Gel 0.5% QD Estimate (90% CI)</td>
<td>CD07805/47 Gel 0.18% BID Estimate (90% CI)</td>
<td>CD07805/47 Gel 0.18% QD Estimate (90% CI)</td>
<td>CD07805/47 Gel 0.07% BID Estimate (90% CI)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 18/Day 1</td>
<td>0.6 (0.5, 0.7)</td>
<td>0.3 (0.3, 0.4)</td>
<td>0.2 (0.2, 0.3)</td>
<td>0.2 (0.2, 0.2)</td>
</tr>
<tr>
<td>Day 32/Day 1</td>
<td>0.4 (0.3, 0.4)</td>
<td>0.3 (0.3, 0.4)</td>
<td>0.3 (0.2, 0.3)</td>
<td>0.2 (0.2, 0.3)</td>
</tr>
<tr>
<td>Quantifiable AUC0-24hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Day 4/Day 1</td>
<td>0.6 (0.4, 0.7)</td>
<td>0.4 (0.3, 0.5)</td>
<td>0.3 (0.2, 0.4)</td>
<td>0.1 (0.1, 0.3)</td>
</tr>
<tr>
<td>Day 18/Day 1</td>
<td>0.7 (0.6, 0.9)</td>
<td>0.5 (0.4, 0.6)</td>
<td>0.3 (0.2, 0.4)</td>
<td>0.5 (0.2, 0.8)</td>
</tr>
<tr>
<td>Day 32/Day 1</td>
<td>0.5 (0.4, 0.7)</td>
<td>0.5 (0.4, 0.6)</td>
<td>0.3 (0.2, 0.4)</td>
<td>0.4 (0.3, 0.7)</td>
</tr>
</tbody>
</table>

(a) should be taken with care due to the limited number of quantifiable AUC0-24hr (2 to 6) N.B.: Day 4 → first topical administration; Day 18 → 15th topical administration; Day 32 → 29th and last topical administration.

[0085] In all the dosages and dose regimens tested the Ocular/Topical ratios calculated over the entire duration of the topical treatment period (Day 4, Day 18 and Day 32) were significantly lower than 1. The C_{max} mean ratio was 0.2 for 0.07 % BID group, ranged from 0.2 to 0.3 for 0.18 % QD and BID groups and ranged from 0.3 to 0.6 for 0.5 % QD group. For C_{max}, the upper limit of the 90 % confidence interval did not include 0.8 whatever the dose and dose regimen tested. The highest ratio was observed in the 0.5 % QD group (mean ratio 0.6, 90 % CI [0.5-0.7]) after 15 days of application, but not confirmed at the end of the 29-day of topical treatment (mean ratio 0.4, 90 % CI [0.3-0.4]). The same tendency was observed with the quantifiable AUC0-24hr. The clinical study results demonstrated that the systemic exposure obtained after topical treatment with all concentrations and regimens tested in the study is significantly lower compared to the systemic exposure obtained with the eye drops applied as recommended in the label of the ophthalmic products.

[0086] In conclusion, quantifiable PK profiles (at least C_{max}) were observed in all treatment groups. It has been found that although systemic exposure increased with the applied dose of brimonidine, statistical analysis showed that the increase in systemic exposure (C_{max}) was not dose proportional, e.g., the increase in the mean C_{max} was much less than the increase in the dose. No evidence for systemic accumulation was observed.

[0087] All evaluated concentrations and regimens were well tolerated and safe. No clinically meaningful reductions in mean IOP, vital signs or routine laboratory parameters were observed with any of the topical gel treatment groups. Increasing drug concentration or regimen had no effect on the incidence of related cardiac/vascular AEs. There is no identifiable relationship between any PK parameter and the incidence or severity of any AEs related to the topical gel. There were no SAEs reported during the treatment period with the topical gel for skin application (DAY 4 through study completion). Two SAEs were reported during the ophthalmic solution treatment period (DAYS 1-3) in two subjects, with one SAE (Acute Hypotensive Event) considered related to the ophthalmic solution. Both subjects with SAEs were discontinued from the study prior to any exposure to the topical gel.

[0088] The study results demonstrated that the systemic exposure obtained after topical treatment of the affected skin areas with all concentrations of brimonidine and regimens tested is significantly lower compared to the systemic exposure obtained with the eye drops (0.2% by weight brimonidine tartrate) applied as recommended in the label of the ophthalmic products.

[0089] Based on results from this comparative bioavailability and pharmacokinetics study, concentrations of brimonidine higher than 0.2% (w/w) can be used for topical administration to an affected skin area for safe and effective treatment of a skin disorder.

Example 3

(Only compositions comprising 0.5% (w/w) brimonidine tartrate underly present invention)
Clinical Study on the Effectiveness and Safety of Brimonidine Tartrate Gel Compositions

[0090] This was a 4-week treatment with 4-week follow-up, randomized, double-blind, parallel-group, vehicle-controlled, multicenter study investigating the efficacy and safety of a topical gel composition containing 0.5% brimonidine tartrate (Gel 0.5%) applied topically once daily (QD) and a topical gel composition containing 0.18% brimonidine tartrate (Gel 0.18%) applied topically once daily (QD) or twice daily (BID) compared to Vehicle Gel applied topically once daily (QD) or twice daily (BID), to affected skin areas of subjects with moderate to severe facial erythema associated with rosacea.

[0091] Major entrance criteria included clinical diagnosis of moderate to severe facial erythema associated with Rosacea, CEA score ≥3 and PSA-5 score ≥3, presence of no more than 2 facial lesions, and IOP level at least 10 mmHg.

[0092] Qualified subjects were randomized in a 1:1:1:1 ratio (block size of 5) to one of the five treatment arms (0.5% QD, 0.18% BID, 0.18% QD, Vehicle BID, Vehicle QD).

[0093] A total of 269 subjects from 17 clinical sites were randomized to Topical Gel or Vehicle Gel: 53, 54, 54, 53, and 55 subjects in the 0.5% QD, 0.18% BID, 0.18% QD, Vehicle BID, and Vehicle QD arms, respectively. All 269 subjects were included in the ITT and Safety population, and 237 subjects were included in the PP population.

[0094] CEA and PSA evaluation data were collected at each clinic visit at Hours 3, 6, 9, and 12 after study drug application. Data collected at 30 minutes after study drug application comprised the secondary endpoints of CEA Initial Effect and PSA Initial Effect. Subject-reported efficacy data were collected at clinic visits and on non-clinic days during the treatment period. Safety were assessed throughout the study.

[0095] The primary endpoint, Composite Success, is defined as a 2-grade improvement on both CEA and PSA-5 measured at Hours 3, 6, 9 and 12 on Day 29 after the treatment. Statistical analysis was performed to compare each active treatment (0.5% QD, 0.18% BID and QD) vs. the corresponding Vehicle QD or Vehicle BID, respectively. Additional analyses for Composite Success on early treatment visits Day 15 and Day 1 were performed to further investigate the early treatment effect.

[0096] Maximal drug effect peaked between approximately 3 to 6 hours after dosing. On Day 29, statistically significant difference between 0.5% QD vs. Vehicle QD was observed (p<0.001). Consistently, the same superiority of 0.5% QD vs. Vehicle QD was observed on Day 15 (p<0.001) and Day 1 (p<0.001). The statistical results based on the ITT population (LOCF approach) were confirmed in the population point (PP) population and three sensitivity analyses (i.e. imputing missing data by assigning failure, success, and average data, respectively).

[0097] As shown in Fig. 1, superior treatment effect was clearly demonstrated in 0.5% QD, followed by 0.18% BID and QD. Consistently, 0.5% QD showed strong and robust effect as measured by Composite Success throughout the 12 hour duration, starting on Day 1 and continued till Day 29. Therefore, no evidence of tachyphylaxis was observed. The magnitude of the treatment effects were general similar between 0.18% BID and 0.18% QD. The lower vehicle effect in the Vehicle QD regimen resulted in better statistical outcome for 0.18% QD vs. Vehicle QD comparison.

[0098] In addition to the analyses on Composite Success, which is defined jointly by two independent static assessments, CEA-Success and PSA-5 Success were also analyzed individually. The magnitudes of the CEA-Success (Figure 2) and PSA-5 (Figure 3) Success were greater in all treatment groups compared to Composite Success but the pattern of the relative effects was same as observed in Composite Success. Consistently, 0.5% QD showed the greatest effect for CEA Success and PSA-5 Success; 0.18% QD and BID showed numerically better effect compared to Vehicle QD and BID, respectively.

[0099] The conclusion based on Composite Success, CEA-Success and PSA-5 Success was supported by PSA-5 Diary data (i.e. the subjects’ daily recording of their facial redness) during the study.

[0100] The overall incidence of related adverse events (AEs) for the study was low. The number of related AEs was comparable between the treatment groups, and there was no significant difference in incidence of related adverse events between active and vehicle treatment arms. There was no significant increase in the number or severity of systemic or topical related AEs with increase in gel concentration or application frequency. No severe related AEs were reported during the study. There were no reported systemic cardiac AEs considered related to the study medication. No case of related facial flushing led to study discontinuation or interruption of daily treatment.
[0101] No clinically meaningful abnormal trends or shifts were observed in mean blood pressure (systolic and diastolic) or heart rate for any of the treatment groups during the treatment phase (Days 1, 15, and 29) or at the end of the follow-up period, and there was no observable difference in mean blood pressure or heart rate changes between active and vehicle arms. Increasing drug concentration or application frequency had no effect on the incidence of isolated vital sign abnormalities. There were no reported adverse events of acute hypotension, bradycardia, or syncope during the study. This clinical study demonstrated that Gel 0.5% QD possessed superior efficacy compared to the corresponding vehicle and Gel 0.18 % QD and BID treatments evaluated in the study (primary endpoint: Composite Success defined as a 2-grade improvement on both CEA and PSA-5 at Hours 3, 6, 9, and 12 on Day 29). The primary outcome was supported by the secondary endpoints. No unacceptable drug related adverse event was observed. Safety and tolerability of Gel 0.5% QD is favorable. No evidence of tachyphylaxis or rebound was found in the study.

[0102] Unlike ophthalmic applications of brimonidine, where the chronic use of lower concentration of brimonidine, e.g., 0.1% (w/w), provides improved tolerability while maintaining IOP-lowering efficacy, the present clinical studies unexpectedly discovered that higher concentrations of brimonidine provide significantly improved clinical efficacy in treating erythema, while not causing any observable change in patient safety and tolerability as compared to lower concentrations of brimonidine.

[0103] It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover the scope as defined by the appended claims.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US5129254A [0001]
- US5103550B2 [0004]
- US20080117197A1 [0004]
- US2009031027A1 [0004]
- WO200515395A1 [0004]

Non-patent literature cited in the description

- REMINGTON THE SCIENCE AND PRACTICE OF PHARMACY199500001577-15911672-1673868-885 [0053]
- GHOSH, T. K. et al.TRANSDERMAL AND TOPICAL DRUG DELIVERY SYSTEMS, 1997, [0053]
- REMINGTON THE SCIENCE AND PRACTICE OF PHARMACY199500001517-1518 [0054]
- Gel Dosage Forms: Theory, Formulation, and ProcessingPENA et al.Topical Drug Delivery FormulationsMarcel Dekker, inc.199000003861-388 [0057]
PATENTKRAV

1. Topisk sammensætning, der omfatter, i forhold til sammensætningens totale vægt,
 0,5 % brimonidin eller et farmaceutisk acceptabelt salt deraf;
 0,20 % til 4,0 % gelleringsmiddel;

5 5,0 % til 30,0 % af mindst én polyol;
 og en farmaceutisk acceptabel bærer,
 til anvendelse i behandlingen af erytem hos en person, hvor sammensætningen er
 beregnet til topisk påføring på et hudområde med erytem.

10 2. Sammensætning til anvendelse ifølge krav 1, hvor erytemet er rosacea.

3. Sammensætning til anvendelse ifølge krav 1, hvor mindst én supplerende behandling og
 medicinering for erytem skal administreres til personen.

15 4. Sammensætning til anvendelse ifølge krav 1, hvor den topiske sammensætning er
 beregnet til påføring på hudområdet én gang dagligt.

5. Sammensætning til anvendelse ifølge krav 1, hvor den topiske sammensætning omfatter
 0,5 % brimonidintartrat i forhold til sammensætningens totale vægt.

20 6. Sammensætning til anvendelse ifølge krav 1, hvor den topiske sammensætning omfatter
 0,50 % til 2,0 % carbomer i forhold til sammensætningens totale vægt.

7. Sammensætning til anvendelse ifølge krav 1, hvor den topiske sammensætning endvidere
 omfatter, i forhold til sammensætningens totale vægt, 0,04 % til 0,08 % af en vanddispergerbar
 form af titandioxid.

8. Sammensætning til anvendelse ifølge krav 1, hvor den topiske sammensætning endvidere
 omfatter et konserveringsmiddel, der er udvalgt fra gruppen bestående af natriumbenzoat,
phenoxyethanol, benzylalkohol, methylparaben, imidazolidinylurea og diazolidinylurea.

30 9. Sammensætning til anvendelse ifølge krav 1, hvor den topiske sammensætning omfatter
 mindst én af glycerin og propyleneglycol.
10. Sammensætning til anvendelse ifølge krav 1, hvor sammensætningen og instruktioner til topisk påføring af sammensætningen på et hudområde med erytem er tilvejebragt som et samlet emballeret produkt.