(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 10352344 B
(45) 授权公告日 2014.06.18

(21) 申请号 201310186382.7
(22) 申请日 2013.05.20
(73) 专利权人 华北电力大学
 地址 102206 北京市昌平区朱辛庄北农路2号
(72) 发明人 何理 张嘉琪 孙士超 卢宏铭
(74) 专利代理机构 北京众合诚成知识产权代理有限公司 11246
 代理人 陈波

(51) Int. Cl.
 B00C 1/08 (2006.01)

(56) 对比文件
 CN 101507969 A, 2009.08.19, 全文.
 CN 102441564 A, 2012.05.09, 全文.
 CN 102284474 B, 2013.02.13, 全文.
 CN 103008334 A, 2013.04.03, 全文.

赵强等《应用可渗透反应墙技术原位修复

(54) 发明名称
 一种电动强化的土壤原位淋洗修复装置和方法

(57) 摘要
 本发明公开了属于环保技术领域的一种电动
 强化土壤原位淋洗修复装置和方法。本发明装置
 包括直流电源、电极室、电极、PRB、电极液PH调整
 等。电极更换装置、电极液添加装置、加热装置、
 淋洗液喷头、酸碱调节液喷头、多通道蠕动泵、
 自动控制仪、电极液储罐、电极液处理池、直列泵、
 单通道蠕动泵、流量计、定时控制装置、淋洗液储罐、
 单通道蠕动泵、酸碱调节液储罐、土壤PH测定仪，
 装置连接布置如图1。本发明通过电动强化淋洗技术，
 设备加热装置优化淋洗修复，安装PRB加速修复速度，
 自动化系统和电极液循环系统，增加的修复
 过程的自动化程度和资源重复利用率。使得修复
 过程速度更快，效果更好，花费更少。
1. 一种电动强化土壤原位淋洗修复装置，其特征在于，所述装置包括如下：

直流电源(1)分别与阳极电极(3-1)和阴极电极(3-2)相连，阳极电极(3-1)置于阳极室(2-1)，阴极电极(3-2)置于阴极室(2-2)；第一自动控制装置(12)通过多通道蠕动泵(11)分别与阳极电极液抽取管(6-1)和阴极电极液抽取管(6-2)相连，阳极电极液抽取管(6-1)和阴极电极液抽取管(6-2)分别置于阳极室(2-1)和阴极室(2-2)；电极液储罐(13)和电极液处理池(14)分别通过管道与第一自动控制装置(12)相连；同时电极液处理池(14)通过管道和直接泵(15)与电极液储罐(13)相连；阳极室电极液pH测定仪(5-1)和阴极室电极液pH测定仪(5-2)分别插入阳极室、阴极室，通过导线连接第一自动控制装置(12)；在污染区域均匀安装可渗滤反应墙(4)，加热管网(7)通过管道与换热器(8)相连；淋洗液喷头(9)均匀布置于污染区域上方，通过管道依次与单通道蠕动泵(16)、流量计(17)、定时控制装置(18)和淋洗液储罐(19)相连；酸碱调节液喷头(10)均匀布置于污染区域上方，酸液储罐(21)、碱液储罐(22)分别通过管道与第二自动控制装置(24)相连，再经由单通道蠕动泵(20)连入酸碱调节液喷头(10)；土壤pH测定仪(23)均匀布置于污染区域，通过导线与第二自动控制装置(24)相连。

2. 利用权利要求1所述装置进行土壤修复的方法，其特征在于，具体步骤如下：

(1) 在污染区域两端垂直于地下水总流向安装阳极室(2-1)和阴极室(2-2)，阳极室(2-1)安装于污染区域地下水总流向上游，目的是在直流电源(1)开启后使电场场强方向与地下水总流向一致；

(2) 在污染区域内的两电极室之间均匀安装可渗滤反应墙(4)；

(3) 在污染区域纵向布置加热管网(7)；调节土壤目标温度至40~60℃，在加热管网(7)中灌注导热油，在换热器(8)处加热所导热油的油温保持高于所需要调节的土壤的目标温度10~15℃；

(4) 将配置好的淋洗液通过淋洗液喷头(9)喷淋到污染区域，所需淋洗液的总体积控制为土壤体积的6倍，设定淋洗液喷头(9)速度为2ml/min；所述淋洗液为生物表面活性剂；

(5) 配制电极液，将电极液放入电极液储罐(13)；在酸碱液储罐(21, 22)中添加相应的酸、碱液；

(6) 由定时控制装置(18)控制淋洗周期，依据现有污染物浓度和修复目标浓度，取以上两种浓度的中间值作为中间浓度，根据现有污染物浓度、中间浓度和修复目标浓度，将淋洗周期分为三个等级，即随着污染物浓度减小，淋洗周期分别设定为6小时、12小时和24小时；每个淋洗周期淋洗时间为5小时；

(7) 在污染区域布置土壤pH测定仪(23)，第二自动控制装置(24)控制酸液储罐(21)和碱液储罐(22)通过酸碱调节液喷头(10)将酸或碱喷淋于土壤中，使电极土壤pH值保持在8~10之间；

(8) 阳极室电极液pH测定仪(5-1)和阳极室电极液pH测定仪(5-2)测定电极液的pH，考察电极液是否饱和，通过第一自动控制装置(12)将饱和电极液通过阳极电极液抽取管(6-1)或阴极电极液抽取管(6-2)抽出注入电极液处理池(14)，后注入新的电极液，回收的电极液混合后，稍加处理即可重新作为电极液由单通道蠕动泵(15)运送至电极液储罐(13)。

3. 根据权利要求2所述的方法，其特征在于，步骤(3)中所述导热油为烷基苯型合成导
热油。

4. 根据权利要求2所述的方法，其特征在于，步骤(4)所述生物表面活性剂为体积浓度1.5%的鼠李糖脂。

5. 根据权利要求2所述的方法，其特征在于，步骤(5)所述电极液为硫酸钠和碳酸钠混合溶液，其中钠摩尔浓度为0.025mol/L。

6. 根据权利要求2所述的方法，其特征在于，步骤(5)所述酸性为体积分数为5%的HCl溶液，碱液为质量分数为1%的NaOH溶液。
说明书

一种电动强化的土壤原位淋洗修复装置和方法

技术领域

本发明属于环保技术领域，特别涉及一种电动强化的土壤原位淋洗修复装置和方法。

背景技术

由于农业、工业的大力发展，人们大量的使用农药、化和其他工厂等排放了大量的污染物进入到土壤和地下水中。土壤和地下水是人类赖以生存的资源，其中的污染物也会通过食物链和饮用水源，进入到人体中。又因为土壤和地下水不像地表水一样便于集中处理，因此对于土壤和地下水的处理，以原位处理为最佳。

土壤固持金属的机制可分为两大类：一是以离子态吸附在土壤组分的表面；二是形成金属化合物的沉淀。现阶段的土壤环境中很少存在着单一污染物，无机物和有机物的复合污染物对人类的健康和生态的安全造成了一定的威胁，已经引起人们的关注。土壤淋洗利用流体去除土壤污染物，它可以是原位修复，也可以是异位修复；淋洗液可以是水、化学溶剂或其他可能把污染物从土壤中淋洗出的流体，甚至可能是气体。土壤原位淋洗，不需要将污染土壤全部挖出运到异地处理，减少了运输费用，也避免了挖掘和运输过程中造成的污染物迁移。电动力修复基本原理是在被污染土壤两端加上低压直流电场形成电势梯度，在电场电渗和电迁移的作用，将污染物（如重金属或有机污染物）迁移到电极室，进一步处理电解液从而使污染物最终得以去除。

发明内容

本发明主要围绕用表面活性剂溶液作为淋洗液而开发，表面活性剂能增加有机物的水溶性，提高了污染物的去除率。生物表面活性剂具有低成本，易降解，表面活性大的特点，作为一种生物代谢产物，不会对土壤造成二次污染，过剩的活性剂也减少淋洗后对土壤造成的营养流失。同时在实际淋洗过程中，还要注意一些技术条件，以使淋洗效果达到最佳，淋洗液的浓度、淋洗速度、淋洗液总量、环境温度等。该技术为淋洗和电动力联合处理技术，因此需要综合考虑两种技术，选择双方都合适的条件作为最终反应条件，如土壤pH值等。此外，针对每种技术特有的技术要求也需注意。本发明的核心即为，结合多种修复技术，并综合考虑得到最佳的反应条件。

发明内容

为了治理一种同时处理重金属和有机物复合污染的土壤，本发明提出了一种电动强化的土壤原位淋洗修复装置和方法。

一种电动强化土壤原位淋洗修复装置，所述装置包括如下：

1. 直流电源 1 分别与阳极电极 3-1 和阴极电极 3-2 相连，阳极电极 3-1 置于阳极室 2-1，阴极电极 3-2 置于阴极室 2-2；
2. 第一自动控制装置 12 通过多通道蠕动泵 11 分别与阳极电极液抽提管 6-1 和阴极电极液抽提管 6-2 相连，阳极电极液抽提管 6-1 和阴极电极液抽提管 6-2 分别置于阳极室 2-1 和阴极室 2-2；
3. 电极液储罐 13 和电极液处理池 14 分别通过管道与第一自动控制装置 12 相连；
4. 同时电极液处理池 14 通过管道和直列泵 15 与电极液
储罐 13 相连;阳极室电极液 pH 测定仪 5-1 和阴极室电极液 pH 测定仪 5-2 分别插入阳、阴极室,通过导线连入第一自动控制系统 12;在污染区域均匀安装可渗透反应墙(Permeable Reactive Barrier, PRB) 4, 加热管网 7 通过管道与换热器 8 相连;淋洗液喷头 9 均匀布置于污染区域上方, 通过管道依次与单通道蠕动泵 16、流量计 17、定时控制装置 18 和淋洗液储罐 19 相连;酸碱调节液喷头 10 均匀布置于污染区域上方, 酸液储罐 21、碱液储罐 22 分别通过管道与第二自动控制系统 24 相连, 再经由单通道蠕动泵 20 连入酸碱调节液喷头 10;土壤 pH 测定仪 23 均匀布置于污染区域, 通过导线与第二自动控制系统 24 相连。

利用上述装置进行土壤修复的方法, 具体步骤如下:

1. 在污染区域两端垂直于地下水总流方向安装阳极室 2-1 和阴极室 2-2, 阳极室 2-1 安装于污染区域地下水总流上游, 目的是在直流电源 1 开启后使电场所强方向与地下水总流向一致;

2. 在污染区域内的两极室之间均匀安装可渗透反应墙 4;

3. 在污染区域纵向布置加热管网 7; 调节土壤目标温度至 40~60℃, 在加热管网 7 中灌注导热油, 在换热器 8 处加热使导热油的油温保持高于所需要调节的土壤的目标温度 10~15℃;

4. 将配置好的淋洗液通过淋洗液喷头 9 喷淋进污染区域, 所需淋洗液的总体积控制为土壤体积的 6 倍, 设定淋洗液喷头 9 速度为 2ml/min;

5. 配制电极液, 将电极液放入电极液储罐 13; 在酸碱液储罐 21, 22 中添加相应的酸、碱液;

6. 由定时控制装置 18 控制淋洗周期, 依据现有污染物浓度和修复目标浓度, 取以上两种浓度的中间值作为中间浓度, 根据现有污染物浓度、中间浓度和修复目标浓度, 将淋洗周期分为三个等级, 即随着污染物浓度减小, 淋洗周期分别设定为 6 小时、12 小时和 24 小时; 每个淋洗周期淋洗时间为 5 小时;

7. 在污染区域布置土壤 pH 测定仪 23, 第二自动控制系统 24 会控制酸液储罐 21 和碱液储罐 22 通过酸碱调节液喷头 10 将酸或碱喷淋至土壤中, 使电极土 pH 值保持在 8~10 之间;

8. 阳极室电极液 pH 测定仪 5-1 和阴极室电极液 pH 测定仪 5-2 测定电极液的 pH, 考察电极液是否饱和, 通过第一自动控制系统 12 将饱和电极液通过阳极电极液抽提管 6-1 或阴极电极液抽提管 6-2 抽出注入电极液处理池 14, 后注入新的电极液, 回收的电极液混合后, 稍加处理即可重新作为电极液由单通道蠕动泵 15 运送至电极液储罐 13。

步骤(3) 中所述导热油为烷基苯型合成导热油。

步骤(4) 中所述淋洗液为生物表面活性剂, 其为体积浓度 1.5% 的鼠李糖脂。

步骤(5) 中所述电极液为氢氧化钠和碳酸钠混合溶液, 其中钠摩尔浓度为 0.025mol/L。

步骤(5) 中所述酸液为体积分数为 5% 的 HCl 溶液, 碱液为质量分数为 1% 的 NaOH 溶液。

本发明的增益效果为: 极室之间的污染区域安装 PRB, 使得修复速度大大提高; 污染区域安装安装加热装置, 大大增加了去除率, 特别是在北方一些寒冷地区, 该技术使得去除效果大大增加; 电动力强化淋洗技术可同时处理重金属和有机物混合污染的土壤及地下水,
PRB 技术进一步结合使得修复速度也大大提升了。pH 测定仪和自动控制装置的联合使用，大大减少了控制人员的需求量，电极液的循环使用也减少了经济费用；电动力和 PRB 技术的结合使用是该装置能够同时原位处理土壤和地下水中的重金属和有机污染物。

附图说明
[0022] 图 1 是本发明电动强化土壤原位淋洗修复装置的结构示意图；
[0023] 其中各标号分别代表：
[0024] 1- 直流电源，2-1- 阳极室，2-2- 阴极室，3-1- 阳极电极，3-2- 阴极电极，4-PRB，
 5-1 阳极室电极液 pH 测定仪，5-2- 阴极室电极液 pH 测定仪，6-1- 阳极电极液抽提管，
 6-2- 阴极电极液抽提管，7- 加热管，8- 恒温器，9- 淋洗液喷头，10- 酸碱调节液喷头，
 11- 多通道蠕动泵，12- 第一自动控制系统，13- 电极液储罐，14- 电极液处理池，15- 直列
 管，16- 单通道蠕动泵，17- 流量计，18- 定时控制系统，19- 淋洗液储罐，20- 单通道蠕动泵，
 21- 酸液储罐，22- 碱液储罐，23- 土壤 pH 测定仪，24- 第二自动控制系统。

具体实施方式
[0025] 实施例 1
[0026] 实验用土采集自北京电力大学和北京农学院校园中的 20~40cm 表层深土壤。用木
 棒粗细，再将土壤样品置于 60℃的马弗炉中烘烤 12h 以烘干水分，用土壤振动机将所用土
 壤过 8 目后再经过 20 目不锈钢标准土壤筛。污染物以铅和多氯联苯为例，配置 Pb 浓度
 为 500mg/L，多氯联苯浓度为 1000mg/L。将土样放入 30cm×10cm×10cm 的有机玻璃箱中。
 机玻璃箱两边有水槽，通过蠕动泵人工模拟地下水流动状，保持入水水位高度为 50cm，出
 水水位 49cm。
[0028] 采用电动强化土壤原位淋洗修复方法如图 1 所示装置：直流电源 1 分别与阳极电
 极 3-1 和阴极电极 3-2 相连，阳极电极 3-1 置于阳极室 2-1，阴极电极 3-2 置于阴极室 2-2；
 第一自动控制系统 12 通过多通道蠕动泵 11 分别与阳极电极液抽提管 6-1 和阴极电极液抽
 提管 6-2 相连，阳极电极液抽提管 6-1 和阴极电极液抽提管 6-2 分别置于阳极室 2-1 和
 阴极室 2-2；电极液储罐 13 和电极液处理池 14 分别通过管道与第一自动控制系统 12 相连；
 同时电极液处理池 14 通过管道和直列管 15 与电极液储罐 13 相连；阳极室电极液 pH 测定
 仪 5-1 和阴极室电极液 pH 测定仪 5-2 分别插入阳、阴极室，通过导线连入第一自动控制装
 置 12。在污染区域均匀安装可渗透反应墙（Permeable Reactive Barrier，PRB），加热管
 网 7 通过管道与恒温器 8 相连；淋洗液喷头 9 均匀布置于污染区域上方，通过管道依次与单
 通道蠕动泵 16、流量计 17、定时控制系统 18 和淋洗液储罐 19 相连；酸碱调节液喷头 10 均
 匀布置于污染区域上方，酸液储罐 21、碱液储罐 22 分别通过管道与第二自动控制系统 24 相
 连，再经由单通道蠕动泵 20 连入酸碱调节液喷头 10；土壤 pH 测定仪 23 均匀布置于污染区
 域，通过导线与第二自动控制系统 24 相连。
[0029] 按照上述装置的连接方式，在污染区域纵向安装加热管 7，为使土壤目标温度保
 持在 40~60℃，加热管网高温保持在 50~75℃（本处使用烷基苯型合成导热油）。将配置好
 体积浓度 1.5%的水和蒸馏的淋洗液（生物表面活性剂）通过淋洗液喷头 9 喷淋到污染区域，
所需淋洗液的总体积控制为土壤体积的 6 倍，设定淋洗液喷头速度为 2mL/min，喷头位置为有机玻璃箱纵向中心线的 5cm、15cm、25cm 处。配制电极液，组成为钠摩尔浓度 0.025mol/L 的硫酸钠和碳酸钠混合溶液，注入电极室和电极液储罐。在污染区域布置土壤 pH 测定仪 23，使电极土壤 pH 值保持在 8-10 之间，当 pH 值小于该范围时，第二自动控制装置 24 会控制将电液储罐 22 中的碱液通过酸碱调节液喷头 10 喷淋至土壤中，中和至合适的 pH 范围，反之则连通酸液储罐 21。在酸碱液储罐 21、22 中添加相应的酸碱性溶液，酸液选用体积分数为 5% 的 HCl 溶液，碱液选用质量分数为 1% 的 NaOH 溶液。由淋洗定时控制装置 18 控制淋洗周期，每个淋洗周期淋洗时间为 5 小时，淋洗周期分别设定为 6 小时、12 小时和 24 小时，每周期的运行次数分别为 3 次、3 次和 4 次。阳、阴极电极室内的电液 pH 测定仪 5-1，5-2 分别测定其电液的 pH，从而考察电液是否饱和，连接自动控制装置 24，装置自动控制将饱和电液抽出注入电液处理池 14，后注入新的电液，回收的电液混合后，稍加处理即可重新作为电液液由单通道蠕动泵运送至电极液储罐 13。整个系统运行 124 小时后，土壤中铅的去除率达 95%，多氯联苯的去除率达 99%。
图 1