02/07440 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
24 January 2002 (24.01.2002)

PCT

(10) International Publication Number

WO 02/07440 A2

(51) International Patent Classification’: HO04N 7/173

(21) International Application Number: PCT/EP01/07531

(22) International Filing Date: 2 July 2001 (02.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/218,507 15 July 2000 (15.07.2000) US

(71) Applicants and

(72) Inventors: COSTANZO, Filippo [IT/US]; 225 Montana
Avenue #304, Santa Monica, CA 90403 (US). RONCOL-
INI, Saverio [IT/IT]; Circonvallazione Gianicolense, 100,
1-00152 Rome (IT). ROSSI, Antonio [IT/IT]; Via Elio Vit-
torini, 103, 1-00144 Rome (IT).

(74) Agents: STEINFL, Alessandro et al.; Ladas & Parry,
Dachauerstrasse 37, 80335 Munich (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: AUDIO-VIDEO DATA SWITCHING AND VIEWING SYSTEM

12 12 12

FV1i FV2 FVN

—

15
K
GUI
14
y I
GUI <
| MANAGER
A
VIDEO o1
WINDOW
Y
/ .
50 | STREAMING |
CLIENT r
18
ﬂ
17

|
|
|
|
|
|
|
|
|
|
T
I
1
!
|
]
1
|
1
|

16
s ‘ FEED
DISTRIBUTOR
13
30 ~19
Y
STREAMING
SERVER |

(57) Abstract: A computer system and method providing for viewing and switching of audio-video data. The system comprises:
a plurality of audio/video sources containing information referring to an event; a streaming server (11), streaming the contents of
a first audio signal and a first video signal from the audio and video sources to a user; a feed distributor (13) controllably feeding
the first audio signal and first video signal to the streaming server (11); and a user-operated control unit (14) communicating with
the feed distributor (13) and controlling operation of the feed distributor (13), so as to instruct the feed distributor (13) to switch
between audio or video. Switching between audio signals occurs without altering the video signals and switching between video

signals occurs without altering the audio signals.

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

AUDIO-VIDEO DATA SWITCHING AND VIEWING SYSTEM

FIELD OF THE INVENTION

The present invention relates to webcast streaming of audio-visual events.
More specifically, the invention relates to an audio-video data switching and
viewing system which allows viewing and smooth remote switching from one

video signal to another or from one audio signal to another.

BACKGROUND OF THE INVENTION

Prior art

According to the webcast streaming technology, a client-server connection is
established, where the server transmits multiple streams or files to each client.
Each stream or file relates to a different point of view. Each stream or file is
output either from stored files or from live encoded feeds, for example by

means of encoding stations.

Figure 1 shows an exemplary embodiment of such prior art system. Products
embodying such technology are, for example, produced by the company
iMove Inc., and shown at the website address http:/ /www.imoveinc.com. A
streaming server, 1 located on the server side receives audio-visual

information from. a number of different audio-visual files or streams

* connected to the source of information, such as an audio file FA and video

files FV1.. FVn, all indicated with 2 in the Figure.

The audio-visual content of the number n of files 2 (three in the example) is
streamed from the server to the client over a connection 3. The connection 3 is
an Internet connection. As a consequence, it can assemble different network
technologies, such as Ethernet, Frame Relay, ATM switch, CDN, satellite
uplink and downlink, DS1, D2, DS3 (or the corresponding European E1, E2,
E3), fiber, modem, ISDN, xDSL and so on. All these technologies use the IP

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

protocol and are interconnected by routers, bridges and gateways. Assuming
that the maximum available bandwidth for the connection is b, the maximum

bandwidth for each streamed file will be b/3.

On the client side, a streaming client software 4 provides for the interpretation
of the received streams. One of the streams is shown on the screen of the
client in a current view. For example, the contents relating to the video file
FV2 can be shown, as indicated by the box 5, represented in solid lines and
relating to the “current view(2)”, namely the view relating to the contents of
Fva.

As soon as the viewer wants to switch on a different point of view, he will
send a command to the GUI (graphic user interface) 6, for example by means
of a pointing device (not showr'i‘ in the Figure), and from the GUI 6 to the
streaming client 4. As a result, the audio-visual content shown on the screen
will from now onrelate for example to the contents of FV1, indicated by the

box 7, represented in dotted lines.

A problem of the prior art shown in Figure 1 is that the required bandwidth is
directly proportional to the number of cameras (different points of view)
adopted. Therefore, a high bandwidth is required in order to obtain an audio-

visual content of a good quality.

In order to solve such problem, a different session for each view could be
established. This means that only a single audio-visual content at the time
would be streamed and, each time a client deéires to switch from one view to
another, the streaming server 1 would pick a different file and retransmit it to
the client. Such technology is, for example, adopted in the “BigBrother” series,
when transmitted over the Internet. See, for example,
http:// Www.endemol.com or http://www.cbs.com/primetime/bigbrother.
While this solution allows a larger bandwidth, the switching delay is

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

unacceptable for the user. In fact, according to the usual way of streaming
signals, a first step of the streaming process is that of buffering data on the
client computer. Then, after a predetermined amount of time, the data are
shown on the screen of the client while, at the same time, ﬂ1e remaining data
are being transferred over the connection. This means that, each time a
swifching occurs, a considerable amount of time would be spent in buffering
again the audio-visual data of the following stream, with a delay which
would be unacceptable for most kind of commercial applications and which
would result in an interruption of both the audio and the visual content of the

signal transmitted on the screen.

SUMMARY OF THE INVENTION

The present invention solves the prior art problems cited above, by allowing
each user to remote controlling: between different cameras, thus creating a
customized show with a seamless switching and optimal use of bandwidth.
More specifically, when switching among different points of view, the system
according to the present invention is such that neither audio nor video
interruptions occur, and the new view replaces the old one with a perfect
transition. :
According to a first aspect of the present invention, a computer system for
viewing and switching of audio-video data is provided, comprising: a
plurality of audio and video sources containing information referring to an
event; a streaming server, streaming the contents of a first audio signal and a
first video signal from the audio and video sources to a user; a feed
distributor, connected between the audio and video sources and the
streaming server, the feed distributor controllably feeding the first audio
signal and first video signal to the streaming server; ahd a user-operated
control unit communicating with the feed distributor and controlling
operation of the feed distributor, .so as to instruct the feed distributor to

switch between audio or video whereby, upon switching, the feed distributor

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

respectively feeds to the streaming server a second audio signal which is
different from the first audio signal without altering the first video signal, or
feeds to the streaming server a second video signal which is different from the

first video signal without altering the first audio signal.

According to a second aspect of the present invention, a computer-operated
method for viewing and switching of audio-video data is provided,
comprising the stieps of: providing a plurality of audio and video sources
containing inforniation referring to an event; streaming contents of a first
audio signal and a first video signal from the audio and video sources to a
user; controlling the streaming of the first audio signal and first video signal,
so as to switch .between audio or video, respectively streaming, upon
switching, either a second audio s‘,ignal which is different from the first audio

signal without altering the first video signal, or a second video signal which is

. different from the first video signal without altering the first audio signal.

Advantageous embodiments of the present invention are claimed in the

attached dependent claims.

The present invention overcomes the problems of the prior art in several

.. aspects: first, the bandwidth is not wasted as done with prior art systems. The

- Internet connection carries, at every time, only one video stream and one

audio stream. As a consequence, a virtually unlimited number of different
points of view can be used. Second, the audio signal is not interrupted during
switching. Third, there is a smooth video transition on the screen of the user

between different points of view.

In accordance with the present invention, there is no need to establish a new

session over a new connection each time a switching of point of view occurs.

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

The present invention is particularly advantageous in a system requiring a
high number of cameras, like for example from 30 to 50 cameras. Such high
number of cameras shooting an event, provides the user with a sort of a
virtually infinite camera, the cameras being arranged with the correct parallax
in a matrix fashion. In this case, a system like the system described in Figure 1
cannot be implemented. By contrast, this case is well suited to the system
according to the| present invention, where the occupied bandwidth is
independent from the number of different cameras.
; .

Other features and advantages of the invention will become apparent to one |
skilled in the art ﬁpon examination of the following drawings and detailed
description. It is intended that all such additional features and advantages be

included herein within the scope of the invention, as is defined by the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be understood in better detail with reference to the
attached drawingsj, where:

Figure 1 shows a prior art system, already described above;

Figure 2 is a schematic diagram of the system according to the present
invention; and

Figure 3 describes in greater detail the diagram shown in Figure 2.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Figure 2 shows a ;schematic diagram of the system according to the present
invention. According to the present invention, the streaming server 11 on the
server side is not directly connected to the audio-visual sources 12. In
particular, a feed. distributor 13 is present, connected between the audio-
visual files 12 and the streaming server 11. The feed distributor 13 receives
instructions from the GUI manager 14 located on the client side. The GUI

manager 14 receives inputs from an active GUI 15, also located on the client

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

side. The GUI manager 14 on the client side is distinct from the streaming
client software 17 for processing the audio-video data streamed from the -
server. The streamed contents are shown on the client screen inside a video
window 50. The GUI manager 14 is a user—operated” control unit. The
instructions from the GUI manager 14 to the feed distributor 13 are
transmitted along"a connection 16. A client proxy 21 and a server stub 30 are
also shown, located between the GUI manager 14 and the feed distributor 13,
and will be later described in better detail,
\
As also explained later, the feed distributor 13 could be implemented either

on a computer which is separate from the computer containing the streaming

server, or on the computer containing the streaming server. In the preferred

embodiment of the present application, the streaming server and the feed

distributor are on the same computer.

A first embodiment of the present invention provides transmitting only a
single stream of audio-visual data (coming for example from the video file
FV1 and also comprising the audio file FA) along a connection 18 between the
streaming server 11 and the streaming client 17. A second embodiment could
provide a main stream of audio-visual data output on a main window of the
user, and a plurality of accessory streams output on secondary windows
(thumbnails), wherein the accessory streams have an extremely reduced
bandwidth occupation and wherein the audio-visual contents of the main

window can be switched by the user according to the present invention.

During operation, as soon as the user wishes to change from é first point of
view to a second point of view, switching for example from the video file FV1
to the video file FV2, the active GUI 15 instructs the GUI manager 14, which in
turn instructs the.feed distributor 13 on the server side to switch between
video files. Upon receipt of such instructions, the feed distributor 13 selects
the video file VF2 and transmits this file to the streaming server 11. During

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

the switching of points of view, the audio file -which is usually interleaved
with the video file during the streaming operation- is not altered. Thus, no
audio switching occurs when changing view from one camera to another.
Moreover, according to a preferred embodiment of the présent invention, the
video switching between points of view occurs in a smooth manner.
Differently from what disclosed in the prior art of Figure 1, here, a switching
command by the user causes a switch on the server side, so that the streaming
server 11 streams a signal which is different from the signal which was
streamed before ﬁle switching command. Further, differently from what
disclosed in the prior art like the Internet transmission of the BigBrother™
format, switching occurs on the video signal without need for the audio signal
to be affected. Still further, as it will be clear from the following detailed
description, switching can also occur on the audio signal without need for the

video signal to be affected.

In the present specification, the output of the audio and video sources 12 will
be usually called “audio file” and “video file”. However, also a live encoded
feed output is possible. The person skilled in the art will recognize that the
particular kind of output from the sources 12 is not essential to the present
invention, so that sometimes also the generic term “audio signal” and “video

signal” will be used.

The present invention will now be disclosed with reference to Figure 3, which
describes in greater detail the diagram shown in Figure 2. First, the general
operation of the system according to the present invention will be described
with reference to three main events: 1) Request of event parameters; 2)
Streaming; and 3) Switching. Subsequently, the software procedures adopted
by the system according to the present invention will be described in a more

detailed manner.

10

15

20

" 25

30

WO 02/07440 PCT/EP01/07531

Request of event barameters

The GUI managér 14 comprises a software procedure 22, called interface
builder. A first task of the interface builder 22 is that of building a graphical
representation of the event parameters, by requesting such parameters to the
server. The request of parameters to the server is effected through a remote
procedure call (RPC), using a client proxy 21. A client proxy, known as such,
is a software object encapsulating remote procedure calls. The client proxy 21
communicates with a server stub 30, located on the server side. A server stub
is known as suchand its function is substantially specular to that of a client
proxy. The evenf; parameters requested by the interface builder 22 are
accessed by the theatre descriptor 28. The theatre descriptor 28 is a software
object activated b):r the request of the interface builder 22, which operates by
reading event information from a database on the server (not shown in the

figures) and returning the event i)arameters to the client.

Streaming
As soon as the event parameters are returned to the client, the interface

builder 22 requests the server to start streaming, the initial point of view being
a predefined point of view of the event. In this respect, the interface builder 22
activates a further software procedure 26 on the server side, called session
manager. The session manager 26 first reads the audio and video files to be
streamed, by creating a stream reading procedure 40, called stream reader.
The stream reader 40 receives the outputs of the audio-video files 12 and
preloads audio and video samples from each point of view in corresponding
vectors. Once the audio and video samples are ready to be streamed to the
client, the session: manager 26 generates a stream producer 34. The stream
producer 34 is a software procedure responsible for performing a streaming
session on the server side. More specifically, the stream producer 34 has the
task of establishing a persistent connection with the client, sending stream
global parameters to the client, and then sending tlie audio and video samples

to the client.

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

On the client side, the interface builder 22 creates a stream consumer 36 and a
stream renderer 37. The stream consumer 36 will receive samples from the
stream producer 34, while the stream renderer 37 will reﬁder both the audio
and the video streams. The GUI manager 14 also comprises an interface
renderer 24, for rendering the user interface. More specifically, the interface
renderer 24 provides an abstraction layer which takes care of details such as
the operating system, the windowing interface, and the container application,
like for example a Web browser. Should this be the case, the user could
receive multimedia and interactive information inside the browser window at
the same time as he is receiving the streaming data. The interface renderer 24
receives instructions to render the specific user interface by means of a local

method call.

Switching

As a consequence of what described above, the user can enjoy the event on
the video window 50. The user can now switch from the current point of view
to a different point of view by interacting, for example with the click of a
mouse button, with active icons representing alternative points of view. These
icons are shown as elements I1 . . . In in the GUI 15 of Figure 3. As soon as the
user sends a switching request, a method of the user event manager 23 is
activated. The user event manager 23 is a software object which is operating
system dependent. The switching request is sent from the user event manager
23 to the server session manager 26, and from thé server session manager 26
to the stream reader 40. The stream reader 40 does not alter the streaming of
the audio samples along connection 19, but activates the streaming of a
different video sample, corresponding to the requested point of view. In order
to minimize the Jloss of quality when switching between video files, the
switching preferably occurs when a key frame of the video samples

corresponding to the requested point of view is encountered, as later

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

explained in better detail. As soon as such key frame is encountered, the new

point of view is streamed to the client.

Consequently, even when switching between different ‘points of view, the
bandwidth of the 5treaming connection operated by the present invention, i.e.
the network connesction 18 between the stream producer 34 on the server side
and the stream consumer 36 on the client side, is the average bandwidth of a
single audio/video stream, and not the cumulative bandwidth of the n
audio/video streains, one for each point of view, as in the prior art systems of

Figure 1.

The preferred embodiment of the present invention considers the case in
which a single aﬁdio file and a plurality of video files, each video file
representing a distinct point of view, are provided. However, different
embodiments arezalso possible where a single video file and a plurality of
audio files, each ;udio file representing a different point of listening or a
different audio soﬁrce, are provided. Finally, also an embodiment with plural
audio files and plﬁral video files is possible. In the case of a single video file
and a plurality of audio files, switching between audio files will occur without
altering the streamed video file. In the case of multiple video files and
multiple audio files, switching will occur either on video files without altering
the streamed audip file, or on audio files without altering the streamed video
file. Should also £he audio frames be provided with a key-fraﬁ\e technology,
the audio switclﬁng preferably occurs when an audio key frame is

encountered.

The system according to the present invention is a distributed application. A
first way of implementing the system according to the invention provides for
personal computers on the client side and two server stations on the server
side, the first server station comprising the streaming server 11 and the

second server sta;tion comprising the feed distributor 13. A second way

10

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

provides for personal computers on the client side and one server station on
the server side, the latter comprising both the streaming server 11 and the
feed distributor 13. In this, way installation and maintenance of the system are
easier and the coillmunication time (latency) between the streaming server
and the streaming distributor is reduced. A third way provides for both the
client and the server residing on the same machine. A first example of this last
embodiment is when the contents are distributed by means of a medium like
a CD-ROM, where the use of a single machine is preferred. A second example
is when the contents are distributed in a place like an opera theatre, where
each spectator is provided with an interactive terminal, used nowadays to
allow the spectator to choose the captioning for the performance he is viewing
in that moment, as adopted, for example, by the Metropolitan Theatre in New

York. In that case, each spectator would be provided with a simple graphic

interface (thin client), and the bulk of the system would reside on a single

machine, for example a multiprocessor server with a Unix™ operating system.
By managing different cameras, the spectator could use the present invention

like some sort of “electronic opera glass”.

The preferred embodiment of the present invention is described with
reference to a single server computer and to a single client operating in a
Windows™ environment, where the single client is representative of n
different clients which can be connected to the server. The client computer
can, for example, be a Pentium III™, 128 MB RAM, with a Windows 98™
operating system. The server computer can, for example, be a Pentium III™, W
512 MB RAM, with a Windows 2000 Server™ operating system. Visualization
can occur on a computer monitor, a television set connected to a computer, a
projection TV or ivisualization peripherals such as the PC Glasstron™ by
Sony.

Data streaming services can adopt a unicasting model or a multicasting

model. In the unicasting model, every recipient is sent his own stream of data.

i1

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

A unique session is established between the unique IP address of the server
and the unique IP address of the client. In the multicasting model, one single
stream of data reaches the various users through routers. There is a single
broadcast IP address for the server, which is used as a source of data for the
different IP addresses of the various clients. However, in the current
implementation over the Internet, routers first ignore and then discard
multicast packets.;Typically, routers are not configured to forward multicast
packets. As a consequence, the present invention preferably embodies a
unicasting model. Moreover, the waste of bandwidth of the unicast method,
i.e. multiple copies of the same data one for each client, is here an advantage

because each client can personalize his or her own show.

Advantageously, in the present invention, a particular user can control the
switching between points of view or between listening points for a number of
other user. Further, it is also possible for switching commands to be
preprogrammed, so that a switching between points of view or listening

points occurs automatically, unless differently operated by the user.

The operation of the system according to the present invention will be now

described in greater detail.

Request of event parameters

As soon as a client application is started, a specific event is requested. This
request can, for example, occur through a specific command line argument.
From the point of view of the client application, an event is preferably

described by the following event parameters:

1) A number n of different points of view of the event;
2) Textual description of each point of view;
3) Logic identifier of each point of view, which is unique and preferably

locally defined;

12

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

4) Size (width and"‘height) of the main window visualizing the current point
of view; N

5) Stream bandwidth;

6) Duration of the event; and

7) Default (initial) point of view.

These parameters are used by the client application to build the user interface
for the requested event. More specifically, the client application should build:
a) the correctly siZéd window 50 for the stream rendering, in accordance with
parameter 4) above;

b) the n active (clickable) icons I1. . In of the GUI 15, each corresponding to a
different point of view, in accordance with parameter 1) above. Each of the
icons I1 .. In will be correctly labeled in accordance with parameter 2) above;
and

¢) a time indicator, which indicates the time elapsed compared to the total
time, in accordance with parameter 6) above.

Parameters 3), 5), and 7) will be stored for future use, later described in better

detail.

As already explained above, the interface builder 22 is a software object
whose task is that of building the above parameters. A C++ language
definition of the interface builder 22 (CInterfaceBuilder) is, for example, the

following:

class ClnterfaceBuilder {
public: '

void BuildInterface(long int eventld);

b

Throughout the present specification, the C++ programming language will be

used to describe the functions, procedures and routines according to the

13

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

present invention. Of course other programming languages could be used,

like for example C,]ava,APascal, or Basic.

In order to build the above parameters on the client side, the interface builder
22 will request such parameters to the server, by means of a remote procedure
call (RPC). A remote procedure call is sometimes also known as remote
function call or remote subroutine call and uses the client/server model.
More specifically, a remote procedure call is a protocol used by a program
located in a first computer to request a service from a program located in a
second computer :in a network, without the need to take into account the
specific network used. The requesting program is a client and the service-
providing program is the server. Like a regular or local proéedure call, a
remote procedure call is a synchronous operation requiring the requesting
program to be suspended until the results of the remote procedure are

returned.

In the preferred embodiment of the present invention, the remote procedure
call is comprised in the client proxy 21 on the client side. A proxy is an
interface-specific object that provides the “parameter marshaling” and the
communication required to a client, in order to call an application object
running in a different execution environment, such as on a different thread or
in another process or computer. The proxy is located on the client side and
communicates with a corresponding stub located within the application object
being called. The term “parameter marshaling” indicates the process of
packaging, sending, and unpackaging interface method parameters across

thread or process boundaries.

For a generic description of SOAP (Simple Object Access Protocol) binding of
request-response remote procedure call operation over the HTTP protocol,
reference can be made to http://msdn.microsoft.com/xml/general/wsdl.asp.

A generic SOAP client (“MSSOAP.SoapClient”) is provided on

14

10

15

20

25

30

35

WO 02/07440 PCT/EP01/07531
http://msdn.microsoft.com/codelsample.asp?uri=lmsdn-ﬁle31027/001/580/msdncompositedoc.xmI.
The SOAP client, when used through its high-level API (Application
Programming Interface, with reference to RPC-oriented operations) is a fully
functional example, in the Windows™ environment, of a client proxy like the

client proxy 21 of the present application.

A C++ language definition of the client proxy 21 (CClientProxy) can, for

example, be the following:

class CClientProxy {l
public:
CClientProxy(std::string serverConnectionString);

void GetEventParameters(long int eventld, std::string& eventParameters);
void EstablishVirtualConnection(long int eventId, long inté& sessionld);
void Play (long int sessionld, long int povld, std::string& connectionString);
void SwitchPOV (long sessionld, long povId);

b

where serverConnectionString is a string used to bind an instance of

CClientProxy to a specific RPC server.

It is assumed that the procedure Interface Builder 22 encapsulates a pointer to
an object of the C++ class CClientProxy. The client application creates this
object during the initialization thereof and passes this object to the Interface
Builder 22 as a comstructor parameter, according, for example, to the

following class, where the term class is intended in its C++ meaning:

class CInterfaceBuilder {

public:

CInterfaceBuilder(CClientProxy* clientProxy) :
mClientProxy(clientProxy) {}

private:
CClientProxy* mClientProxy;

};'

15

10

15

20

25

30

35

WO 02/07440 PCT/EP01/07531

The request by the interface builder 22 of the event parameters to the server
using the client proxy 21 is syntactically equivalent to a regular (local) method

call:

void CInterfaceBuilder::BuildInterface(long int eventId) {
stdustring eventParameters;
mClientProxy->GetEventParameters(eventld, eventParameters);

where the method
void GetEventParameters(long eventld, std::string& eventParameters);

is a remote method exposed by the server.

The remote procedure call details are encapsulated in the server stub 30 on
the server side. A server stub is an interface-specific object that provides the
“parameter marshaling” and communication required for an application
object to receive calls from a client running in a different execution
environment, such as oﬁ a different thread or in another process or computer.
The stub is located with the application object and communicates with a
corresponding proxy located within the client effecting the call. For a

descripion of a server stub, reference is made again to
http://msdn.microsoft.com/code/sample.asp?url=/msdn- files/027/001/580/msdncompositedoc.xml,

where a SOAP server (listener) is provided, which wraps COM (Component

Object Model) objects exposing their methods to remote callers, such as

" MSSOAP.SoapClient. The object described in the cited reference is an

example, in the Windows™ environment, of the server stub 30.

The Theatre Descriptor 28 is a software object activated by the remote method

call GetEventParameters of the interface builder 22, above described.

16

10

15

20

25

30

35

40

WO 02/07440 PCT/EP01/07531

class CTheatreDescriptor {

public:

void GetEventParameters(long int eventld, std:stringé& eventParameters);
void GetServerEventParameters(long int eventld, std:string& audioFilepath,
std::vector<std:string>& videoFilepaths, std::vector<long>& povlds);

; ¢

The Theatre Descfiptor 28 reads event information from a RDBMS (Relational
Database Management System), using the brimary key eventld, and returns
the event parameters to the interface builder 22. An XML string expressing
the operation of the Theatre Descriptor 28 is for example the following:

<EVENT_PARAMETERS>
<POINTS_OF._VIEW_NUMBER>3</POINTS_OF VIEW_NUMBER>
<DEFAULT_POINT_OF_VIEW_ ID>1</DEFAULT_POINT_OF_VIEW_ID>
<POINTS_OF_VIEW>
<POINT_OF _VIEW>
<DESCRIPTION>Front</DESCRIPTION>
<LOGIC_ID>1</LOGIC_ID>
</POINT_OF_VIEW>
<POINT_OF_VIEW>
<DESCRIPTION>Left</DESCRIPTION>
<LOGIC_ID>2</LOGIC_ID>
</POINT_OF_VIEW>
<POINT_OF_VIEW>
<DESCRIPTION>Right</DESCRIPTION>
. <LOGIC_ID>3</LOGIC_ID>
</POINT_OF_VIEW>
</POINTS_OF_VIEW>
<MAIN_WINDOW>
<WIDTH>320</WIDTH>
<HEIGHT>240</HEIGHT>
</MAIN_WINDOW>
<BANDWIDTH._KBPS>300</BANDWIDTH_KBPS>
) <DURATION_SEC>3600</DURATION_SEC>
</EVENT_PARAMETERS>

As soon as the remote procedure call is returned to the interface builder 22,
the interface builder 22 parses the XML string and stores the event
parameters. XML parsing techniques are known per se. A known software

product adopting such techniques is, for example, Microsoft XML Parser™,

17

10

15

20

25

30

35

40

45

WO 02/07440 PCT/EP01/07531

The Interface Renderer 24

The interface builder 22 instructs the interface renderer 24 to render the

specific user interface by means of a local method call, for example:

class CInterfaceRenderer {

public:

ClnterfaceRenderer() {}

void RenderInterface(std::string& GUIInterfaceDescription);

|5
void CInterfaceBuilder::BuildInterface(long int eventId) {

ClInterfaceRenderer* mInterfaceRenderer;

}

;;(.)id ClnterfaceBuilder::Buildnterface(long int eventId) {
l(‘).r'lg int iniliélPointOfV iew;
// store events parameters

// generates abstract graphical user interface definition string (an XML string)
std::string GUIInterfaceDescription;

minterfaceRenderer = new CInterfaceRenderer;
mlnterfaceRenderer—>RenderInterface(GUHnterfaceDescrip tion);

The string GUllnterfaceDescription of the above local method call is an
abstract definition of the GUL A definition in XML language of the GUI is for
t .

example the folloWing:

<GUI_INTERFACE>
<VIDEO_WINDOW>
<X>10</X>
<Y>10</Y>
<WIDTH>320</WIDTH>
<HEIGHT>240</HEIGHT>
</VIDEO_WINDOW>
<I[CON_WINDOW>
<X>100</X>
<Y>10</Y>
<CAFRTION>Front</CAPTION>
<POINT_OF_VIEW_ID>1</POINT_OF_VIEW_ID>
</ICON_WINDOW>
<ICON_WINDOW>

18

10

15

20

25

30

35

40

WO 02/07440 PCT/EP01/07531

<X>150</X>
<Y>10</Y>
<CAPTION>Left</CAPTION>
<POINT_OF_VIEW_ID>2</POINT_OF_VIEW_ID>
</ICON_WINDOW>
<ICON_WINDOW>
<X>200</X>
<Y>10</Y>
<CAPTION>Right</CAPTION>
<POINT_OF_VIEW_ID>3</POINT_OF_VIEW_ID>
</ICON_WINDOW>
<TIME_INDICATOR>
<X>300</X>
<Y>10</Y>
<FONT_FACE>Times</FONT_FACE>
<FONT_SIZE>12
<FONT_STYLE>Bold
<TOTAL_DURATION_SEC>3600</TOTAL_DURATION_SEC>
</TIME_INDICATOR>
</GULIN' TERFACE>,:'

The interface renderer 24 uses the services provided by the operating system,
the windowing interface or the container application to render the correct

user interface.

Detailed descriptian of the streaming operation

As already explaihed above, the interface builder 22, on return of the local
method call BuﬂdInterface, requests start of streaming. The initial point of
view is the defau]’é point of view above defined. Usually, RPC-oriented SOAP
over HTTP connections are not persistent. As a consequence, the interface
builder 22 must first establish a virtual persistent session with the server. This

can be done by means of the following remote method call:

long int gSessionId;
void CInterfaceBuﬂde;'::BujldInterface (long int eventId) {

mClientProxf—>EstablishV1‘rtualSession(eventId, gSessionld);

The method

19

10

15

20

25

30

35

40

45

WO 02/07440 PCT/EP01/07531

void EstablishVirtualSession(long int eventId, long int& sessionId);

is a remote method exposed by the server. Such method activates the server
session manager 26. More particularly, the server session manager 26 is a
software object which generates a globally unique session identifier and stores
this session identifier in an associative map for quick retrieval. The session
identifier represents the key of the associative map. The value of the
associative map is an object of the class CSessionData, partially defined, for

example, as follows:

class CSessionData {

public:

CSessionData(long int eventld) :
mEventld(eventld) {}

long int GetEventId() {return mEventId;}

private: ,
long int mEventld;

b

.class CServerSessionManager {
public:

void BstablishVirtualSession(long int eventld, long int& sessionId);
void Play(long int sessionId, long int povld, std::stringé& connectionString);
void SwitchPOV (long'int sessionld, long int povid);

private:

CTheatreDescriptor* mTheatreDescriptor;

std:map<long int, CSessionData*> mSessions;
)7

void CServerSessionManager::EstablishVirtualSession(long int eventld, long inté& sessionld) {
/ / generate globally unique identifier and store in sessionId
CSessionData* session = new CSessionData(eventlId);
mSessions [sessionld] = session;

It can be assumed, without loss of generality, that mTheatreDescriptor is a
pointer to an instance of the Theatre Descriptor 28. On the client side,
i .

gSessionld is a global variable which is accessible from all application objects.

20

10

15

20

25

30

35

40

WO 02/07440 PCT/EP01/07531

The interface builder 22 can perform streaming by means, for example, of the

following remote procedure call:

void ClnterfaceBuilder::BuildInterface(long int eventId) {
std::string connectionString;

mClientProxy->Play(gSessionld, initialPointOfView, connectionString);

where
void Play (long int sessionld, long int povld, std::string& connectionString);

is a remote method exposed by the server which activates the server session
manager 26. The session data are encapsulated in a CSessionData object, and
are retrieved from the session identifier sessionID through the following

exemplary use of the associative map of the session identifier:

void CServerSessionManager::Play(long int sessionld, long int povld, std:string&
connectionString) {

CSessionData* callerSessionData = mSessions [sessionld];
long int eventld = callerSessionData->GetEventId();
long int defaultPovld;
std::vector<long> povlds;
stdustring . audioFilepath;
std::vector<std:string> videoFilepaths;
mTheatreDescriptor->GetServerEventParameters(eventld, audioFilepath,
" videoFilepaths, povIds);
}]
where the method .

void GetServerEventParameters (long eventld, std::string& audioFilepath,
std::vector<std::string>& videoFilepaths, std:vector<long>& povIds);

21

10

15

20

25

30

35

WO 02/07440 PCT/EP01/07531

is a method of the theatre descriptor 28 (CTheatreDescriptor) not exposed to

remote callers.

On return, the seﬁer session manager 26 knows the path of the file containing
the audio samples and the path of each file containing the video samples. In
the preferred embodiment of the present invention, each video file refers to a
different point of view. The video file paths are stored in the STL (Standard
Template Library) vector videoFilepaths. The logic identifiers of the points of
view, which are the saﬁe as those returned from the theatre descriptor 28 to
the client by GetEventParameters, are stored in the above defined STL vector
povlds. ‘

A standard template library (STL) is a C++ library which uses templates to
provide users with an easy access to powerful generic routines. The STL is

now part of the C++ standard.

At this point, the server session manager 26 creates an instance of the above
described software object stream reader 40 and instructs the stream reader 40
to read the files returned from GetServerEventParameters. A partial C++

definition of the crlia‘sfs CStreamReader is, for example, the following:

class CStreamReader {

public: '

CStreamReader(std::stringé& audioFilepath, std::vector<std::string>& videoFilepaths,
std;:vector<long>& povlds, long initialPovId) ;

7
The following is a continuation of the implementation of the “Play” method of

the server session manager 26:

void CServerSessionManager::Play(long int sessionld, long int povId, std:s tring&
connectionString) {

CStreamReader* streamReader = new CStreamReader(audioFilepath,

videoFilepaths, povlds, povid); .
callerSessionData->SetStreamReader(streamReader);

22

10

15

20

25

30

35

WO 02/07440 PCT/EP01/07531

CSessionData will encapsulate the stream reader 40 of its session according to

the following definitions:

class CSessionData {
public:

void SetStreamReader(CStreamReader* streamReader) {mStreamReader = streamReader;}
CStreamReader* GetStreamReader() {return mStreamReadet;}

private:
CStreamReader* mStreamReader;

b

Logic structure of audio/video files and streaming prerequisites

A typical audio/ video file intended for streaming comprises a continuous
succession of samples. Each sample is either a video sample or an audio
sample. Generally: speaking, both audio and video samples are compressed.

Each sample is univocally defined by sample attributes, like for example:

1) Sample stream id
2) Sample time
3) Sample duration
4) Sample size

5) Whether the sample is a key frame or not

Each sample contains compressed raw sample data. A sample stream id
identifies the sample stream. For example, a sample stream id equal to 1 can
identify a video stream, and a sample stream id equal to 2 can identify an

audio stream.

In each stream samples are stored by time order. Moreover, in the
audio/video file, .video samples are interleaved with audio samples. The

actual interleaving sequence is determined at the time of compression,

23

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

according to explicit choices which relate to performance and optimal
rendering considerations. A one-to-one interleaving (audio-video-audio-video
...y will be assuméd throughout the present application. The person skilled in
the art will, of course, recognize also different interleaving sequences suitable
for the purposes of the present application. According to the preferred one-to-
one interleaving sequence, the content an audio/video file can be represented

as follows:

[1] Video Sample 1
[2] Audio Sample 1
[3] Video Sample 2
[4] Audio Sample 2
[5] Video Sample 3
[6] Audio Sample 3

[2x - 1] Video sample x
[2x] Audio sample x

The timestamp of each sample depends on video parameters, mainly on the
number of frames per second (fps) of the video stream. If a video stream
contains 25 frames per second, each video sample has a timestamp that is a
multiple of 40 ms. Audio samples are timed in a corresponding manner, in
order to obtain interleaving. With reference to the above example, the

following is obtained:

[1] Video Sample 1 -> 0 ms
[2] Audio Sample 1-> 0 ms
[3] Video Sample 2 -> 40 ms
[4] Audio Sample 2 -> 40 ms
[5] Video Sample 3 -> 80 ms

24

10

15

20

25

30

35

WO 02/07440 PCT/EP01/07531

[6] Audio Sample 3 -> 80 ms

and so on.

A C++ representation of a generic sample can for example be the following:

struct generic_sample {

long int sampleStreamId;
long int sampleTime;

long int sampleDuration;
long int sampleSize;

bool isKeyFrame;
void* sampleRawData;

A generic stream can be represented as a STL vector of samples:

i

i
h
|

std::vector<gener1'c_sanip1e> videoStream;
std::vector<generic_sample> audioStream;

Once a stable network connection has been established, a streaming session
on the server side comprises the following steps:

1) Sending of global parameters to the client, such as:

a) duration of the media;

b) number of streams (two, in the preferred embodiment of the present
invention);

¢) stream id and type for each stream (for example 1 for the video stream and
2 for the audio stream);

d) attributes of the video stream: for example, width, height, fps and codec;
and

e) attributes of the audio stream: for example, sampling parameters (e.g. 22
KHz/16 bit/stereo) and codec.

2) Iteration through each element of the sample vector and send sample

attributes and sample raw data to the client.

25

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

As soon as the last iteration is terminated, the connection is closed.

Streaming of audio/video samples from server to client

At the application layer, data are sent by the server and received by the client
in accordance with one of a plurality of known application-level protocols.
For example, data are sent in a binary mode for optimum performance.
Alternatively, data; are packaged to compensate for different byte-ordering on
the client side. |

At the transport layer, data can be sent using reliable (with error checking) or
unreliable (without error checking) protocols. For example, TCP (Transfer
Control Protocol) is a reliable protocol, while UDP (User Datagram Protocol)
is an unreliable protocol. Most streaming servers allow the client to choose
between unreliable (and intrinsica}ly faster, due to less overhead) and reliable
transport protocols. In the case of unreliable protocols, the loss of stream
samples due to thé absence of an error checking feature is compensated by the
client with Varioué algorithms related to the optimal rendering of streams on
the client side. Such algorithms are known to the person skilled in the art and
will not be described here in detail. In the following, the TCP (transfer control
protocol) will be used, without loss of generality. For a more detailed
discussion of the TCP protocol, reference is made to “TCP/IP Iustrated,
Volume 17, W. Richard Stevens ~ The Protocols ~ Addison-Wesley Publishing
Company - 10 Printing ~ July, 1997, in particulaf with reference to the
following fields: Network Layering, TCP, UDP, TCP connection establishment
and termination, TCP interactive data flow, TCP bulk data flow, and TCP

timeout and retransmission.

With reference to the exact timing of the transmission of the samples, the
main goal of the streaming technology is that of having the sample on the
client side when needed. With reference to a generic video sample N and
relative to the sampleTime of the first video sample, which can be set to zero

without loss of generality, this can be expressed in C++ with the instruction

26

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

VideoStream[N].sampleTime

Two additional factors have to be considered:

1) The server cannot push samples at the maximum available rate. Otherwise,
the server could overrun the client, even during the buffering stage; and

2) The client should buffer in advance (pre-buffer) a proper number of
samples. Otherwise, sudden drops of the instantaneous network bandwidth
could cause delays in the availability of the samples. With the term delay, the
fact that the sampleTime of a currently available sample could be less than the

elapsed rendering time is meant.

A combined clieht/sei'ver data sending algorithm suitable for the purposes of
the present invention comprises the following steps:

Step 1 -> Deliver a first amount of samples, corresponding to the number of
samples requested for pre-buffering, at the maximum available rate;

Step 2 -> Deliver the remaining samples at a rate which (on average) keeps
the client buffer full.

The second step can be performed by means of a variety of methods. For
example, the client could delay acknowledgement of the samples to prevent
buffer overrun, or could explicitly request the next sample or samples. The
request is part of the application-level protocol. In the preferred embodiment
of the present inventioh, it will be assumed that the client delays the
acknowledgement of the samples “as needed”. More specifically, no delay is
present during the pre-buffering step, and adaptive delay is used during the
second step, to prevent overrun of the subsequent samples while maintaining
the buffer full, on average. With this assumption, a C++ implementation of

the second step can be as follows:

long IVideo =0;
long TAudio=0;

27

10

15

20

25

30

35

40

WO 02/07440 PCT/EP01/07531

while (IVideo < videoStream.size()) {
SendToClient(videoStream[IVideo++]);
SendToClient(audioStream[IAudio++]);

}

where the method

|
|

void SendToCﬁent(ééneric;éample curSample);

is a procedure which sends a sample from the server to the client according to
an application-level protocol using TCP as the transport layer protocol,
wherein the client governs the timing of the procedure calls by means of

delayed acknowledges.

The stream reader 40
A more detailed C++ definition of the stream reader 40 is the following:

class CStreamReader {

public:

void SetRequestedPov(long povld) {mRequestedPov = povld;}

long GetSamplesNumber() {return mAudioStream.size();}
generic_sample GetCurrentSample();

private: "

bool

mLastSamplelsVideo;

long ' : mRequestedPov;
long mCurrentPov;
long . mCurSample;
std::map<long, std::vector<generic_sample> > mVideoStreams;
std::vector<generic_sample> mAudioStream;

b

More specifically, it is assumed that the stream reader 40 (CStreamReader)
preloads audio samples in a STL vector (mAudioStream), and preloads video
samples from each point of view in STL vectors. These vectors (in a number of
n, one for each. point of view) are stored as values in a STL map
(mVideoStreams) whose keys are the logic identifier of the points of view. The

current point of view is stored in the data member mCurrentPov. The current

28

10

15

20

25

30

35

WO 02/07440 PCT/EP01/07531

sample is stored in the data member mCurSample. The initial value of
mCurSample is 0. The details of preloading the samples from the files will not
be described in detail in the present application because methods to fill
memory structures from input file streams (the term stré;m being used here

in the STL meaning) are well known to the person skilled in the art.

The current audio/video samples are obtained from the files FA and FV1..
FVN 12 (see Figure 3) by means of the method GetCurrentSample. An
implementation of the method GetCurrentSample of CStreamReader is the

following:

generic_sample CStreamReader::GetCurrentSample() {
generic_sample currentSample;
if (mLastSamplelsVideo) {
/ / outputs audio o
/ /accesses current sample
currentSample = mAudioStream[mCurSample];
mLastSamplelsVideo = false;

else{ = |

/ /outputs video.

/ /selects correct stream in map using requested point of view as the key
/ /then accesses current sample

currentSample = (mVideoStreams[mRequested Pov])[mCurSample];
mLastSamplelsVideo = true;

}

mCurSample++;
return currentSample;

} ,
It is assumed that in the CStreamReader constructor the data member

mLastSampleIsVi@eo has been initially set to false, so that the first output
sample of the interleaved sequence is a video sample. The mRequestedPov

initialization will be described later.

Switching (server side)

The stream reader 40 (CStreamReader) comprises an access method
SetRequestedPov which allows switching of the point of view. In particular,

once the value of the variable mRequestedPov of CStreamReader has been

29

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

modified by means of the access method SetRequestedPov, the method
GetCurrentSample of CStreamReader begins (on the following calls) to output
video samples of the new point of view to the streaming server 11. It has to be
noted that the output of audio samples is unaffected by this method. As a |

consequence, the switching of point of view has no audible effect.

With reference to the quality of the video after switching, the following
should be considered. A video frame is usually both statically and

dynamically compressed. Static compression is obtained by use of methods

deriving from static image compression. With dynamic compression, a

differential compression of each sample with reference to the previous sample
is intended. As a consequence, a random switch would degrade rendering on
the client side. This is because the reconstruction of the full sample (known as
differential decoding) would féil, due to the unavailability of a correct
uncompressed base (i.e. previous) sample, because the actual previous sample
belongs to a different stream. However, it is common that a video stream also
comprises frames which are not differentially compressed. Such frames are
known as “static frames” or “key frames”. Usually, key frames are generated
to avoid unacceptable degradation in video quality. Key frame generation
follows both deterministic rules (for example, by generating a key frame
every n frames, like 1 key frame every 8 frames) and adaptive rules (for
example, by generating a key frame each time the encoder detects a sudden
change in the video content). Deterministic rules avoid drifts in video quality
caused by accumulation of small losses of video details through successive
differential compressions. Adaptive rules avoid instantaneous degradation of
video quality caused by intrinsic limits of differential encoding in presence of
sudden changes in video content from one frame to the following. Key frame
generation techniques, which depend on the encoder and the video source,
are well known to-the person skilled in the art. A detailed description of such

techniques is omitted, because known as such.

30

10

15

20

25

30

35

40

45

WO 02/07440 PCT/EP01/07531

In the preferred embodiment, the present invention allows a smooth video
switching without degradation of video quality by preferably ensuring that a
switch takes place when a key frame of a video frame sample is generated. In
this way, no loss of video quality occurs on the client side, since the client
does not need the correct base (i.e. previous) sample to render the sample.
Although Waiﬁngj for a key frame would cause a switch which, technically
speaking, is not instantaneous, the maximum delay, in case for example of
video frames having 1 key frame every 8 frames, would be that of about 0.3
seconds. In order to perform switching by means of the procedure stream
reader 40, the following is a preferred implementation of the above described

method GetCurrentSample():

generic_sample CStreamReader::GetCurrentSample() {
generic_sample currentSample;
if (mLastSamiplelsVideo) {
/ /outputs audio
/ / accesses current sample
currentSample = mAudioStream [mCurSample];
mLastSamplelsVideo = false;

}
else {
/ /outputs video.
if (mRequestedPov == mCurrentPov) {
// no switch requested

// selects correct stream in map using current point of view as the
key A
// then accesses current sample
currentSample = (mVideoStreams[mCurrentPov])[mCurSample];

else {
. // aswitch was requested
generic_sample newStreamSample;
// get current sample from new (requested) stream
newStreamSample =
(mVideoStreams[mRequestedPov])[mCurSample];
if (newStreamSample.isKeyFrame) {
// current sample in new (requested) stream is a key frame
// so streams can be seamlessly switched
mCurrentPov = mRequestedPov;
/[output key frame sample from new (requested) stream
currentSample = newStreamSample;
'}
else {
//continue output of previous stream
currentSample = '
mVideoStreams[mCurrentPov])[mCurSample);

31

10

15

20

25

30

35

WO 02/07440 PCT/EP01/07531

}
} .
mLastSamplelsVideo = true;
}

mCurSample++;
return currentSample;

It is here assumed that, when constructing CStreamReader, both the
mRequestedPov and the mCurrentPov data members are set to the value of
the identifier of the initial point of view, which is the parameter initialPovId

of the CStreamReader constructor.

In conclusion, the control unit 14 instructs the feed distributor 13 to switch
between a first video file énd a second video file when a key frame of the
second video file is encountered. In the case where the audio files are
differentially compressed before streaming and comprise key frames, the
control unit 14 can similaﬂy instruct the feed distributor (13) to switch
between a first audio file and a second audio file when a key frame of the

second audio file is encountered.

Detailed description of the method Play of the server session manager 26

The stream producer 34 is responsible for performing a streaming session on
the server side. More specifically, after having initialized a new instance of the
stream reader 40 and having stored the pointer to the stream reader 40 in
CSessionData for later retrieval, the server session manager 26 creates a new
instance of the software object stream producer 34, according to the following

exemplary code:

class CStreamProducer{

public: ‘

CStreamProducer(CStreamReader* streamReader) :
mStreamReader(streamReader) {}

std:stringé& BeginStreamingSession();

32

10

15

20

25

30

35

40

WO 02/07440 PCT/EP01/07531

private:
CStreamReader* mStreamReader;
static void ThreadStreamingSession(void* pParm);

b

void CServerSessionManager::Play(long int sessionId, long int povld, std:stringé&
connectionString) {

CStreamProducer* streamProducer = new CStreamProducer(streamReader);
ca]lerSessionData—>SetStreamProducer(sl:reamProducer);
connectionString = streamProducer->BeginStreamingSession();

}

CSessionData encapsulates the stream producer 34 in the following way:

class CSessionData { |
public: -

void SetStreamProducer(CStreamProducer* streamProducer) {mStreamProducer =
streamProducer;}

private:)
CStreamProducer* mStreamProducer;

aes
}.
1

The method BeginStreamingSession of CStreamProducer returns control to
the caller immediately after having created a new thread associated with the
execution of the static method ThreadStreamingSession, which controls the
streaming session.; Execution of threads per se is well known in the prior art
and will not be discussed in detail. The variable connectionString (which will
be passed by reference when returning to the client) contains the specific
connection string the client must use to connect to the stream producer 34. For
a TCP/IP connection, a connection stream is in the form protocol.//server-ip-

address-or-name:port-number.

Although the definition of the method CStreamProducer is operating system
specific and will be here described with reference to the Windows™
environment, the person skilled in the art will easily recognize those minor

changes that will allow the method to be executed in different environments.

33

10

15

20

25

30

35

WO 02/07440 PCT/EP01/07531

As already explained above, in a streaming session the stream producer 34
first establishes a persistent connection with the client, then sends stream
global parameters to the client, and finally sends samples to the client. The

loop for sending samples becomes the following;

void CStreamProducér::'IhreadStreanﬁngSession(void* pParm) {
/ / listen for client connection request

e

// establish connectio
// send stream global parameters

/ /send all samples

// We assume that "this" pointer was cast to a void pointer

// and passed as pParm during thread creation.

// For example in a Windows environment

// _beginthread(ThreadStreamingSession, NULL, static_cast<void*>(this));
CStreamProducer* thisPtr = static_cast<CStreamProducer*>(pParm);
for (long I = 0; I < thisPr->mStreamReader->GetSamplesNumber(); I++) {

SendToClient(thisPtr->mStreamReader->GetCurrentSample());
} -

As shown in the loop, the point of view whose samples are sent to the client is
determined by the value of the logic point of view identifier stored in the data

member mCurrentPov of the stream reader 40 (CStreamReader).

Routines that can be called from multiple programming threads without
unwanted interaction between the threads are known as thread-safe. By using

thread-safe routines, the risk that one thread will interfere and modify data

- elements of another thread is eliminated by circumventing potential data race

situations with coordinated access to shared data. It is possible to ensure that
a routine is thread-safe by making sure that concurrent threads use

synchronized algorithms that cooperate with each other.
According to the.present invention, an object of the class CStreamReader

should be thread-safe (this is, for example, mandatory when using C++), since

the critical variable (data member) of the class, mCurrentPov, is indirectly

34

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

accessed by two different threads, namely by methods of
CServerSessionManager and by CStreamProducer:ThreadStreamingSession,
which is executed in another thread. Access to the critical variable
mCurrentPov of CStreamReader must be synchronized using synchronization
objects. Thread-safe access to critical data through synchronization is well
known as such to the person skilled in the art and will not be here discussed

in detail.

Receiving audio/video samples on the client side

On the client side, on return of the remote method call mClientProxy.Play of
the interface builder 22, the interface builder 22 creates the software objects
“stream consumer” 36 and “stream renderer” 37. The stream consumer 36
receives the samples from the stream producer 35, while the stream renderer

37 renders the received samples.

The stream rendériﬁg operation is operating system dependent. The stream
renderer 37 operates by decompressing video samples and displaying video
samples (with proper timing according to the timestamps of the video
samples) as static raster images using the main video window created by the
interface builder 22. This video window is accessible to the stream renderer 37
by means, for example, of a global pointer to the main video window
initialized by the interface builder 22. The stream renderer 37 must be able to
decompress audio samples and play them (with proper timing according to
timestamps of audio samples) as audio chunks, using services from the

operating system, or from the multimedia API of the stream renderer itself.

The stream consumer 36: 1) implements the client side portion of the
streaming session; 2) is connected to the stream producer 34 by means of the
connection string defined above; 3) receives the global stream parameters; 4)

pre-buffers the content as needed; and 5) enters a loop to receive all samples

i

35

10

15

20

25

30

35

40

45

WO 02/07440 PCT/EP01/07531

from the stream producer 34, delaying acknowledges of the samples to

maintain the buffgf‘ full on average, as already explained above.

A C++ expression of the stream consumer 36 and of the stream renderer 37

cén be as follows:

class CStreamRenderer {
public:

void RenderSample(generic_sample curSample);
// implementation is operating system specific

7
class CStreamConsumer {

public: .
CStreamConsumer (CStreamRenderer* streamRenderer, std: istring& serverConnectionString)

mStreamRenderer(streamRendeter),
mServerConnectionString(serverConnec!ionSh'ing) {}

void BeginStreamingSession();

private:

CStreamRenderer* mStreamRenderer;
std::string mServerConnectionString;

static void ThreadStreamingSession(void* pParm);
b

;:i;lss CInterfaceBuilder { ‘

iz;xiivate:

CStreamConsumer* mStreamConsumer;
CStreamRenderer* mStreamRenderer;

|7
void ClnterfaceBuilder::Buildnterface(long int eventId) {
mStreamRenderer = new CStreamRenderer;

mStreamConsumer = new CStreamConsumer(mStreamRenderer, connectionString);
mStreamConsumer->BeginStreamingSession();

The method BeginStreamingSession of the stream consumer 36
(CStreamConsumer) returns control to the caller immediately after creating a

new thread associated with the execution of the static method

36

10

15

20

25

30

35

40

WO 02/07440 PCT/EP01/07531

ThreadStreamingSession, which takes care of the streaming session. For

example:

void CStreamConsumer::ThreadStreamingSession(void* pParm) {
// request connection to server

// establish connection
// get streams global parameters

/ / get all samples

// We assume that "this" pointer was cast to a void pointer

// and passed as pParm during thread creation.

// For example in a Windows environment

/[_beginthread(ThreadStreamingSession, NULL, static_cast<void*>(this));
CStreamConsumer* thisPtr = static_cast<CStreamConsumer*>(pParm);

generic_sample curSample;

while (ReceiveFromServer(curSample)) {
‘ thisPtr->mStreamRenderer—>RenderSample(curSample);
) -

The function

bool ReceiveFromServer(generic_sample& curSample);

is a function which receives a sample from the server according to an
application-level protocol which uses TCP as the transport layer protocol. The
client governs the tiniing of the procedure calls by means of delayed
acknowledges. The server indicates that no more samples are available using

the boolean return value of the function.

Although the definition of the method
CStreamConsumer:: ThreadStreamingSession is operating system specific and
will be here described with reference to the Windows™ environment, the
person skilled in the art will easily recognize those minor changes that will

allow the method to be executed in different environments.

37

10

15

20

25

30

35

WO 02/07440 PCT/EP01/07531

The stream consumer 36 implements pre-buffering using well-known

standard pre-buffering techniques, which will not be described in detail.

As soon as the client side application has ended initialization, the main event
lIoop is entered, which depends on the operating system. The stream
consumer 36 receives samples from the stream producer 34 on a different
execution thread. After each sample is received, the stream consumer 36 calls
the method RenderSample of the stream renderer 37 (CStreamRenderer),
which renders the sample.

!

/ ;
i !

Switching (clien{ éidé

The user can request a switch of current point of view by interacting, for
example, with the click of a mouse button, with the active icons II . . In
representing the alternative poiﬁts of view. As soon as the user requests a
switch of current point of view, an operating system (or windowing manager)
event is triggered. Details on the handling of mouse events are operating
system dependenfc. Without loss of generality, it will be assumed that the
appropriate event handler calls the method SwitchPOV of the user event
manager 23. The call is effected after decoding the requested point of view
logic id from the event parameters (the coordinates of the mouse click, from
which a unique icon can be determined) or from the context. In the latter case,
the called event handler could be a method of the window class encapsulating

the icon, the term class being here used in the C++ meaning. For example:

class CUserEventManager {

public: ‘

CUserEventManager(CClientProxy* clientProxy) :
mClientProxy(clientProxy) {}

void SwitchPOV (long povId);

private:
CClientProxy* mClientProxy;

7
void CUserEventManagér::SwitchPOV(long povid) {

{

38

10

15

20

25

30

35

WO 02/07440 PCT/EP01/07531

mClientProxy.SwitchPOV(gSessionld, povId);
}

The function

void SwitchPOV (long sessionld, long povId);

is a remote method exposed by the server, which activates the server session
manager 26, by identifying the client through the session id of the client, The
session id of the client is stored on the client side in the global variable

gSessionId above described.

The server session manager 26 (CServerSessionManager) retrieves the session
data (encapsulated in a CSessionData object) from the session identifier

sessionId, through the following exemplary use of the associative map:

void CServerSessionManag&::SwitchPOV (long int sessionld, long int povId) {
CSessionData* callerSessionData = mSessions[sessionld];
CStreamReader* streamReader = callerSessionData->GetStreamReader();
streamReader->SetRequestedPov(povId);
}
As shown above, setting data member mRequestedPov of the Stream Reader
40 (CStreamReadér) associated to session sessionld using its access member
SetRequestedPov causes a switch of the video stream returned by the stream
;
reader 40 (through its method GetCurrentSample) to the stream producer 34,
and consequently sent from the stream producer 34 to the stream consumer 36
on the client side. The switch occurs in method GetCurrentSample of Stream
Reader 40 (CStreamReader) preferably when a key frame in the video stream
containing the requested point of view is encountered.
In concluding the detailed description, it should be noted that it will be
obvious to those skilled in the art that many variations and modifications may
be made to the preferred embodiment without substantially departing from

the principles of the present invention. All such variations and modifications

39

WO 02/07440 PCT/EP01/07531

are intended to be included herein within the scope of the present invention,

as set forth in the following claims.

40

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

CLAIMS

1.
A computer system for viewing and switching of audio-video data,
comprising:

a plurality of audio and video sources confaining information referring
to an event; .

a streaming server (11), streaming the contents of a first audio signal
and a first video signal from the audio and video sources to a user;

a feed distr‘ibutor‘(ls), connected between the audio and video sources
(12) and the streéming server (11), the feed distributor (13) controllably
feeding the first audio signal and first video signal to the streaming server
(11); and

a user-operated control unit (14) communicating with the feed
distributor (13) and controlling oﬁeration of the feed distributor (13), so as to
instruct the feed distributor (13) to switch between audio or video whereby,
upon switching, the feed distributor (13) respectively feeds to the streaming
server (11) a second audio signal which is different from the first audio signal
without altering the first video signal, or feeds to the streaming server a
second video signal which is different from the first video signal without

altering the first audio signal.

2‘

The system of claim 1, wherein the user-operated control unit (14) is a remote

control unit.

3.

The system of claim 1 or 2, wherein the audio and video files are streamed

over a network.

41

10

15

20

25

WO 02/07440 PCT/EP01/07531

4,

The system of anyg one of the preceding claims, wherein the system is a client-
server system, the control unit (14) being located on the client side, and the
streaming server (11) and the feed distributor (13) being located on the server

side.

5‘
The system of claim 4, wherein the streaming server (11) and the feed

distributor (13) are located on the same machine.

6.
The system of claim 4, wherein the streaming server (11) and the feed

distributor (13) are located on different machines.

7.

The system of any one of the preceding claims 4-6, further comprising a
plurality of client applications, each client application comprising a client-
specific user-operated control unit (14) communicating with the feed
distributor (13) on the server side and controlling operation of the feed
distributor (13) on the server side separately from the other client

applications.

8.

The system of any one of the preceding claims 4-7, wherein the streaming
server (11) sends different streams to different clients, one audio file and one
video file being sent to each of said different clients, each of said different

clients switchably controlling said audio and video files independently from
the other clients. .

42

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

9.
The system of any one of the preceding claims, wherein the plurality of audio
and video files comprises a single audio file and a plurality of video files, each

video file corresponding to a different point of view of the event.

10.
The system of any one of the claims 1-8, wherein the plurality of audio and

video files comprises a single video file and a plurality of audio files.

11.

The system of claim 10, wherein each audio file corresponds to a different

listening point of the event.

12.
The system of claim 10, wherein each audio file corresponds to a different

audio source.

- 13,

The system of any one of the preceding claims, wherein video signals are
differentially compressed before streaming and comprise key frames, and
wherein the control unit (14) instructs the feed distributor (13) to switch
between the first video signal and the second video signal when a key frame

of the second video signal is encountered.

14.

The system of any one of the preceding claims 1-12, wherein audio signals are
differentially compressed before streaming and comprise key frames, and
wherein the control unit (14) instructs the feed distributor (13) to switch
between the first audio signal and the second audio signal when a key frame

of the second audio signal is encountered.

43

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

15.
The system of any one of the preceding claims, wherein the event is described

through event parameters.

16.
The system of claim 15, wherein the user-operated control unit (14) first
requests the event parameters to the feed distributor (13) and then instructs

the streaming server (11) to start streaming.

17.

The system of claim 15 or 16, wherein said parameters comprise:

1) A number of different points of view of the event;

2) A textual description of each point of view;

3) A unique logic i'dentifier, of eac}lx point of view;

4) A size of a main screen window visualizing a current point of view;
5) A stream bandwidth;

6) A duration of the event; and

7) An initial point of view.

18.

The system of claim 17, wherein the logic identifier of each point of view is
locally defined.

19.
The system of anyr one of the preceding claims, wherein:

the feed distributor (13) comprises a server session manager (26), a
theatre descriptor (28) and a stream reader (40);

the streaming server (11) comprises a stream producer (34); and

the user-operated control unit (14) comprises an interface builder (22).

44

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

20.

The computer syétem of any one of the preceding claims, wherein said
streaming server (11) streams additional audio and video signals, the
additional audio and video signals being output on secohdary windows of a
screen of the user, the secondary windows being different from a main
window of the screen of the user where said first audio signal and said first

video signal are output and on which switching occurs.

21.
The computer sys.fem of claim 20, wherein said additional audio and video
signals occupy a bandwidth which is extremely reduced when compared with

the bandwidth occupied by said first audio and video signal.

22,
The computer system of any one of the preceding claims, wherein said
plurality of video sources comprises a high number of cameras arranged in a

matrix fashion.

23.
The computer system of any one of the preceding claims, wherein a user

controls switching for a number of other users.

24.
The computer system of any one of the preceding claims, where switching

occurs in a preprogrammed way.

25.
A computer-operated method for viewing and switching of audio-video data,
comprising the steps of:

providing a plurality of audio and video sources containing

information referring to an event;

45

10

15

20

25

30

WO 02/07440 PCT/EP01/07531

_streaming contents of a first audio signal and a first video signal from

the audio and video sources to a user;
controlling the streaming of the first audio signal and first video signal,
so as to switch between audio or video, respectively streaming, upon
switching, either a second audio signal which is different from the first audio
signal without altering the first video signal, or a second video signal which is

different from the first video signal without altering the first audio signal.

26.
The method of claim 25, wherein the step of controlling is a step of remote

controlling.

27.
The method of claim 25 or 26, wherein the audio and video signals are

streamed over a network.

28.
The method of any one of the preceding claims 25-27, wherein the step of
controlling originates on a client side and the step of streaming originates on a

server side.

29.
The method of claim 28, wherein different streams are sent to different clients,
each of said different clients switchably controlling the audio and video files

independently from the other clients.

30.
The method of any one of the preceding claims 25-29, wherein the plurality of
audio and video files comprises a single audio file and a plurality of video

files, each video file corresponding to a different point of view of the event.

46

10

15

WO 02/07440 PCT/EP01/07531

31
The method of any one of the preceding claims 25-29, wherein the plurality of
audio and video files comprises a single video file and a plurality of audio

files, each audio file corresponding to a different listening point of the event.
32. |

The method of any one of the preceding claims 25-31, wherein video signals
are differentially compressed before streaming and comprise key frames, and
wherein the contrblling step switches between the first video signal and the
second video signal when a key frame of the second video signal is

encountered.

33.

The method of any one of the pfézce;ding claims 25-31, wherein audio signals
are differentially compressed before streaming and comprise key frames, and
wherein the controlling step switches between the first audio signal and the
second audio signal when a key frame of the second audio signal is

encountered.

47

PCT/EP01/07531

WO 02/07440

1/3

NA4

AN31O
ONINVIYLS

(@ MaAIA

14V HOIHd

I "Old

!

!

[

_

!

_

L e |

. \QJ_D
SENCER 7 T
ONIWVIHLS [TY T,/ >
e

f :

_

|

FAd v4d |

/ ’ !

¢ _

!

EETVER _

T A

IN3IHHNO

~ 1

AIN3MO

SUBSTITUTE SHEET (RULE 26)

PCT/EP01/07531

WO 02/07440

2/3

¢ 9Ol

A

Y

0s

)

MOGNIM
O3aIA

A

|
| /
Ll oA 8l
HIAHIS - _ J AN3MD
ONIWYIHLS * > ONINVIHLS
_
A [A
B~ 0¢ | 12
| Y
Holngid.isia _ - | u3DVYNYA
Q334 < <> Ino
op ! _ _
A4 _ 7 A
| bl
|
|
NAD | ¢ | end LA v | N
’ / ’ ’ [p,
2l 2l 2L 2l | e
_
|

SUBSTITUTE SHEET (RULE 26)

PCT/EP01/07531

WO 02/07440

3/3

145
l.li%..

d430NAaodd
WV3H1S

€ 'Old

|
|
F:ulﬂgﬂl.

L 6l

|

—

anis
H3NHIS

ﬁmM 82
: HOL1dIH0s3a m
_ o JYlvaHL | !
92
HIDVNY
_ d3avad | > NOISS3S |«
_ WYIH1S HIAHIS | |
I%l.mr >.l.|.|..||.-l|..l._
NAd [°| 2ad LA v4
7 7 ;7
zl Z1 zl zL

A A

A

0S
Y §

MOANIM
O3diA

A

HINNSNOD Y3Y3aN3Y
| WVIHLS Wv3Yls
L. T |
'z Lt
m e ve
m f——— B
<> baqung | fd3u3anay |
<—>{FOVAHILNI | JOVIHILNI [
AXOHd _ ¢ _
INTD| ! .
) HADYNYIN _
- _ IN3AZ H3SN _
LN
IS
veo L L
_ T
NI b @

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

