57017737 A2 | IV Y000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
24 February 2005 (24.02.2005)

(10) International Publication Number

WO 2005/017737 A2

(51) International Patent Classification’: GOG6F 3/06
(21) International Application Number:
PCT/US2004/026499

(22) International Filing Date: 13 August 2004 (13.08.2004)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/495,204
Not furnished

UsS
Us

14 August 2003 (14.08.2003)
13 August 2004 (13.08.2004)

(71) Applicant (for all designated States except US): COM-
PELLENT TECHNOLOGIES [US/US]; 12982 Valley
View Road, Eden Prairie, MN 55344 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SORAN, Philip,
E. [US/US]; 9501 Amesbury Lane, Eden Prairie, MN
55347 (US). GUIDER, John, P. [US/US]; 7 Catbird Lane,
North Oaks, MN 55127 (US). ASZMANN, Lawrence,
E. [US/US]; 5445 Shore Trail NE, Prior Lake, MN 55372

(74)

(81)

(84)

(US). KLEMM, Michael, J. [US/US]; 2301 Rivendell
Lane, Minnetonka, MN 55305 (US).

Agents: MIN, (Amy) Xu, S. et al.; Dorsey & Whitney
LLP, Intellectual Property Department, Suite 1500, 50
South Sixth Street, Minneapolis, MN 55402-1498 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
7ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: VIRTUAL DISK DRIVE SYSTEM AND METHOD

.@ 5 6

P&j& Foo |

CWaintrias Free 4s€
Masases foa asigment Pesel

[SA

(RAID10)

JRAID
(R4P L)

/ "

.@ﬂé

He

RAD
(Famwe)

(57) Abstract: A disk drive system and method capable of dynamically allocating data is provided. The disk drive system may
include a RAID subsystem having a pool of storage, for example a page pool of storage that maintains a free list of RAIDs, or a
matrix of disk storage blocks that maintain a null list of RAIDs, and a disk manager having at least one disk storage system controller.
& The RAID subsystem and disk manager dynamically allocate data across the pool of storage and a plurality of disk drives based
& on RAID-to-disk mapping. The RAID subsystem and disk manager determine whether additional disk drives are required, and a
notification is sent if the additional disk drives are required. Dynamic data allocation and data progression allow a user to acquire a
disk drive later in time when it is needed. Dynamic data allocation also allows efficient data storage of snapshots/point-in-time copies
of virtual volume pool of storage, instant data replay and data instant fusion for data backup, recovery etc., remote data storage, and

data progression, etc.



WO 2005/017737 A2 [N 0000 000 0000 AR

Published: For two-letter codes and other abbreviations, refer to the "Guid-
—  without international search report and to be republished — ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.



WO 2005/017737 PCT/US2004/026499

VIRTUAL DISK DRIVE SYSTEM AND METHOD

FIELD OF THE INVENTION

The present invention generally relates to a disk drive system and method,
and more particularly to a disk drive system having capabilities such as dynamic

5 data allocation and disk drive virtualization, etc.

BACKGROUND OF THE INVENTION

The existing disk drive systems have been designed in such a way that a
virtual volume data storage space is statically associated with physical disks with
specific size and location for storing data. These disk drive systems need to

10 know and monitor/control the exact location and size of the virtual volume of
data storage space in order to store data. In addition, the systems often need
bigger data storage space whereby more RAID devices are added. However,
often times these additional RAID devices are expensive and not required until
extra data storage space is actually needed.

15 Figure 14A illustrates a prior existing disk drive system having a virtual
volume data storage space associated with physical disks with specific size and
Jocation for storing, reading/writing, and/or recovering data. The disk drive
system statically allocates data based on the specific location and size of the
virtual volume of data storage space. As a result, emptied data storage space is

20 notused, and extra and sometimes expensive data storage devices, e.g. RAID

devices, are acquired in advance for storing, reading/writing, and/or recovering
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data in the system. These extra data storage space may not be needed and/or used
until later in time.

Therefore, there is a need for an improved disk drive system and method.
There is a further need for an efficient, dynamic data allocation and disk drive

space and time management system and method.

SUMMARY OF THE INVENTION

The present invention provides an improved disk drive system and
method capable of dynamically allocating data. The disk drive system may
include a RAID subsystem having a matrix of disk storage blocks and a disk
manager having at least one disk storage system controller. The RAID subsystem
and disk manager dynamically allocate data across the matrix of disk storage
blocks and a plurality of disk drives based on RAID-to-disk mapping. The RAID
subsystem and disk manager determine whether additional disk drives are
required, and a notification is sent if the additional disk drives are required.
Dynamic data allocation allows a user to acquire a disk drive later in time when it
is needed. Dynamic data allocation also allows efficient data storage of
snapshots/point-in-time copies of virtual volume matrix or pool of disk storage
blocks, instant data réplay and data instant fusion for data backup, recovery etc.,
remote data storage, and data progression, etc. Data progression also allows
deferral of a cheaper disk drive since it is purchased later in time.

In one embodiment, a matrix or pool of virtual volumes or disk storage

blocks is provided to associate with physical disks. The matrix or pool of virtual
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volumes or disk storage blocks is monitored/controlled dynamically by the
plurality of disk storage system controllers. In one embodiment, the size of each
virtual volume can be default or predefined by a user, and the location of each
virtual volume is default as null. The virtual volume is null until data is
allocated. The data can be allocated in any grid of the matrix or pool (e.g. a “dot”
in the grid once data is allocated in the grid). Once the data is deleted, the virtual
volume is again available as indicated to be “null”. Thus, extra data storage
space and sometimes expensive data storage devices, e.g. RAID devices, can be
acquired later in time on a need basis.

In one embodiment, a disk manager may manage a plurality of disk
storage system controllers, and a plurality of redundant disk storage system
controllers can be implemented to cover the failure of an operated disk storage
system controller.

In one embodiment, a RAID subsystemn includes a combination of at least
one of RAID types, such as RAID-0, RAID-1, RAID-5, and RAID-10. It will be
appreciated that other RAID types can be used in alternative RAID subsystems,
such as RAID-3, RAID-4, RAID-6, and RAID-7, etc.

The present invention also provides a dynamic data allocation method
which includes the steps of: providing a default size of a logical block or disk
storage block such that disk space of a RAID subsystem forms a matrix of disk
storage blocks; writing data and allocating the data in the matrix of the disk
storage blocks; determining occupancy rate of the disk space of the RAID

subsystem based on historical occupancy rate of the disk space of the RAID

-3-
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subsystem; determining whether additional disk drives are required; and sending
a notification to the RAID subsystem if the additional disk drives are required. In
one embodiment, the notification is sent via an email.

One of the advantages of the disk drive system of the present invention is
that the RAID subsystem is capable of employing RAID techniques across a
virtual number of disks. The remaining storage space is freely available.
Through monitoring storage space and determining occupancy rate of the storage
space of the RAID subsystem, a user does not have to acquire a large sum of
drives that are expensive but has no use at the time of purchase. Thus, adding
drives when they are actually needed to satisfy the increasing demand of the
storage space would significantly reduce the overall cost of the disk drives.
Meanwhile, the efficiency of the use of the drives is substantially improved.

Another advantage of the present invention is that the disk storage system
controller is universal to any computer file system, not just to a specific computer
file system.

The present invention also provides a method of data instant replay. In
one embodiment, the data instant replay method includes the steps of: providing a
default size of a logical block or disk storage block such that disk space of a
RAID subsystem forms a page pool of storage or a matrix of disk storage blocks;
automatically generating a snapshoi of volumes of the page pool of storage or a
snapshot of the matrix of disk storage blocks at predetermined time intervals; and

storing an address index of the snapshot or delta in the page pool of storage or the
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matrix of the disk storage blocks such that the snapshot or delta of the matrix of
the disk storage blocks can be instantly located via the stored address index.

The data instant replay method automatically generates snapshots of the
RAID subsystem at user defined time intervals, user configured dynamic time
stamps, for example, every few minutes or hours, etc., or time directed by the
server. In case of a system failure or virus attack, these time-stamped virtual
snapshots allow data instant replay and data instant recovery in a matter of a few
minutes or hours, etc. The technique is also referred to as instant replay fusion,
i.e. the data shortly before the crash or attack is fused in time, and the snapshots
stored before the crash or attack can be instantly used for future operation.

In one embodiment, the snapshots can be stored at a local RAID
subsystem or at a remote RAID subsystem so that if a major system crash occurs
due to, for example a terrorist attack, the integrity of the data is not affected, and
the data can be instantly recovered.

Another advantage of the data instant replay method is that the snapshots
can be used for testing while the system remains its operation. Live data can be
used for real-time testing.

The present invention also provides a system of data instant replay
including a RAID subsystem and a disk manager having at least one disk storage
system controller. In one embodiment, the RAID subsystem and disk manager
dynamically allocate data across disk space of a plurality of drives based on
RAID-to-disk mapping, wherein the disk space of the RAID subsystem forms a

matrix of disk storage blocks. The disk storage system controller automatically
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generates a snapshot of the matrix of disk storage blocks at predetermined time
intervals and stores an address index of the snapshot or delta in the matrix of the
disk storage blocks such that the snapshot or delta of the matrix of the disk
storage blocks can be instantly located via the stored address index.

In one embodiment, the disk storage system controller monitors frequency
of data use from the snapshots of the matrix of the disk storage blocks and applies
an aging rule such that the less frequently used or accessed data is moved to the
less expensive RAID subsystem. Similarly, when the data in the less expensive
RAID subsystem starts to be used more frequently, the controller moves the data
to the more expensive RAID subsystem. Accordingly, a user is able to choose a
desired RAID subsystem portfolio to meet its own storage needs. Therefore, the
cost of the disk drive system can be significantly reduced and dynamically
controlled by a user.

These and other features and advantages of the present invention will
become apparent to those skilled in the art from the following detailed
description, wherein it is shown and described illustrative embodiments of the
invention, including best modes contemplated for carrying out the invention. As
it will be realized, the invention is capable of modifications in various obvious
aspects, all without departing from the spirit and scope of the present invention.
Accordingly, the drawings and detailed description are to be regarded as

illustrative in nature and not restrictive.
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BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates one embodiment of a disk drive system in a computer
environment in accordance with the principles of the present invention.

Figure 2 illustrates one embodiment of a dynamic data allocation having a
page pool of storage for a RAID subsystem of a disk drive in accordance with the
principles of the present invention.

Figure 2A illustrates a conventional data allocation in a RAID subsystem
of a disk drive system.

Figure 2B illustrates a data allocation in a RAID subsystem of a disk drive
system in accordance with the principles of the present invention.

Figure 2C illustrates a dynamic data allocation method in accordance with
the principles of the present invention.

Figures 3A and 3B are schematic views of a snapshot of a disk storage
block of a RAID subsystem at a plurality of time-intervals in accordance with the
principles of the present invention.

Figure 3C illustrates a data instant replay method in accordance with the
principles of the present invention.

Figure 4 is a schematic view of a data instant fusion function by using
snapshots of disk storage blocks of a RAID subsystem in accordance with the
principles of the present invention.

Figure 5 is a schematic view of a local-remote data replication and instant

replay function by using snapshots of disk storage blocks of a RAID subsystem in

“accordance with the principles of the present invention.

PCT/US2004/026499
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Figure 6 illustrates a schematic view of a snapshot using the same RAID
interface to perform I/O and concatenating multiple RAID devices into a volume
in accordance with the principles of the present invention.

Figure 7 illustrates one embodiment of a snapshot structure in accordance
with the principles of the present invention.

Figure 8 illustrates one embodiment of a PITC life cycle in accordance
with the principles of the present invention.

Figure 9 illustrates one embodiment of a PITC table structure having a
multi-level index in accordance with the principles of the present invention.

Figure 10 illustrates one embodiment of recovery of a PITC table in
accordance with the principles of the present invention.

Figure 11 illustrates one embodiment of a write process having an owned
page sequence and a non-owned page sequence in accordance with the principles
of the present invention.

Figure 12 illustrates an exemplary snapshot operation in accordance with
the principles of the present invention.

Figure 13A illustrates a prior existing disk drive system having a virtual
volume data storage space associated with physical disks with specific size and
location for statically allocating data.

Figure 13B illustrates a volume logical block mapping in the prior

existing disk drive system of Figure 13A.
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Figure 14A illustrates one embodiment of a disk drive system having a
virtual volume matrix of disk storage blocks for dynamically allocating data in
the system in accordance with the principles of the present invention.

Figure 14B illustrates one embodiment of dynamic data allocation in the
virtual volume matrix of disk storage blocks as shown in Figure 14A.

Figure 14C illustrates a schematic view of a volume-RAID page
rem;;lpping of one embodiment of the virtual volume page pool of storage in
accordance with the principles of the present invention.

Figure 15 illustrates an example of three disk drives mapped to a plurality
of disk storage blocks of a RAID subsystem in accordance with the principles of
the present invention.

Figure 16 illustrates an example of remapping of the disk drive storage
blocks after adding a disk drive to three disk drives as shown in Figure 15.

Figure 17 illustrates one embodiment of accessible data pages in a data
progression operation in accordance with the principles of the present invention.

Figure 18 illustrates a flow chart of one embodiment of a data progression
process in accordance with the principles of the present invention.

Figure 19 illustrates one embodiment of compressed page layout in
accordance with the principles of the present invention.

Figure 20 illustrates one embodiment of data progression in a high level
disk drive system in accordance with the principles of the present invention.

Figure 21 illustrates one embodiment of external data flow in the

subsystem in accordance with the principles of the present invention.

-9.
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Figure 22 illustrates one embodiment of internal data flow in the
subsystem.

Figure 23 illustrates one embodiment of each subsystem independently
maintaining coherency.

Figure 24 illustrates one embodiment of a mixed RAID waterfall data
progression in accordance with the principles of the present invention.

Figure 25 illustrates one embodiment of multiple free lists of a page pool
of storage in accordance with the principles of the present invention.

Figure 26 illustrates one embodiment of a database example in
accordar.lce with the principles of the present invention.

Figure 27 illustrates one embodiment of a MRI image example in

accordance with the principles of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention provides an improved disk drive system and
method capable of dynamically allocating data. The disk drive system may
include a RAID subsystem having a page pool of storage that maintains a free list
of RAIDs or alternatively, a matrix of disk storage blocks, and a disk manager
having at least one disk storage system controller. The RAID subsystem and disk
manager dynamically allocate data across the page pool of storage or the matrix
of disk storage blocks and a plurality of disk drives based on RAID-to-disk
mapping. The RAID subsystem and disk manager determine whether additional
disk drives are required, and a notification is sent if the additional disk drives are

required. Dynamic data allocation allows a user to acquire a disk drive later in

-10-
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time when it is needed. Dynamic data allocation also allows efficient data
storage of snapshots/point-in-time copies of virtual volume matrix or pool of disk
storage blocks, instant data replay and data instant fusion for data backup,
recovery efc., remote data storage, and data progression, etc. Data progression
also allows deferral of a cheaper disk drive since it is purchased later in time.

Figure 1 illustrates one embodiment of a disk drive system 100 in a
computer environment 102 in accordance with the principles of the present
invention. As shown in Figure 1, the disk drive system 100 includes a RAID
subsystem 104 and a disk manager 106 having at least one disk storage system
controller (Figure 16). The RAID subsystem 104 and disk manager 106
dynamically allocate data across disk space of a plurality of disk drives 108 based
on RAID-to-disk mapping. In addition, the RAID subsystem 104 and disk
manager 106 are capable of determining whether additional disk drives are
required based on the data allocation across disk space. If the additional disk
drives are required, a notification is sent to a user so that additional disk space
may be added if desired.

The disk drive system 100 having a dynamic data allocation (or referred
to “disk drive virtualization™) in accordance with the principles of the present
invention is illustrated in Figure 2 in one embodiment and Figures 14A and 14B
in another embodiment. As shown in Figure 2, a disk storage system 110
includes a page pool of storage 112, i.e. a pool of data storage including a list of
data storage space that is free to store data. The page pool 112 maintains a free

list of RAID devices 114 and manages read/write assignments based on user’s

-11-
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requests. User’s requested data storage volumes 116 are sent to the page pool
112 to get storage space. Each volume can request same or different classes of
storage devices with same or different RAID levels, e.g. RAID 10, RAID 5,
RAID 0, etc.

5 Another embodiment of dynamic data allocation of the present invention
is shown in Figures 14A and 14B, where a disk storage system 1400 having a
plurality of disk storage system controllers 1402 and a matrix of disk storage
blocks 1404 controlled by the plurality of disk storage system controllers 1402
dynamically allocates data in the system in accordance with the principles of the

10  present invention. The matrix of virtual volumes or blocks 1404 is provided to
associate with physical disks. The matrix of virtual volumes or blocks 1404 is
monitored/controlled dynamically by the plurality of disk storage system
controllers 1402. In one embodiment, the size of each virtual volume 1404 can
be predefined, for example 2 Megabytes, and the location of each virtual volume

15 1404 is default as null. Each of the virtual volumes 1404 is null until data is
allocated. The data can be allocated in any grid of the matrix or pool (e.g. a “dot”
in the grid once data is allocated in the grid). Once the data is deleted, the virtual
volume 1404 is again available as indicated to be “null”. Thus, extra and
sometimes expensive data storage devices, e.g. RAID devices, can be acquired

20 later in time on a need basis.

Accordingly, the RAID subsystem is capable of employing RAID
techniques across a virtual number of disks. The rem;ining storage space is

freely available. Through monitoring storage space and determining occupancy

-12-
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rate of the storage space of the RAID subsystem, a user does not have to acquire
a large sum of drives that are expensive but has no use at the time of purchase.
Thus, adding drives when they are actually needed to satisfy the increasing
demand of the storage space would significantly reduce the overall cost of the
disk drives. Meanwhile, the efficiency of the use of the drives is substantially
improvéd.

Also, dynamic data allocation of the disk drive system of the present
invention allows efficient data storage of snapshots/point-in-time copies of virtual
volume page pool of storage or virtual volume matrix of disk storage blocks,
instant data replay and data instant fusion for data recovery and remote data
storage, and data progression.

The above features and advantages resulted from a dynamic data
allocation system and method and the implementation thereof in the disk drive

system 100 are discussed below in details:

Dynamic Data Allocation

Figure 2A illustrates a conventional data allocation in a RAID subsystem
of a disk drive system, whereby emptied data storage space is captive and not
capable of being allocated for data storage.

Figure 2B illustrates a data allocation in a RAID subsystem of a disk drive
system in accordance with the principles of the present invention, whereby
emptied data storage that is available for data storage is mixed together to form a

page pool, e.g. a single page pool in one embodiment of the present invention.
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Figure 2C illustrates a dynamic data allocation method 200 in accordance
with the principles of the present invention. The dynamic data allocation method
200 includes a step 202 of defining a default size of a logical block or disk
storage block such that disk space of a RAID subsystem forms a matrix of disk
storage blocks; and a step 204 of writing data and allocating the data in a disk
storage block of the matrix where the disk storage block indicates “null”. The
method further includes a step-206 of determining occupancy rate of the disk
space of the RAID subsystem based on historical occupancy rate of the disk
space of the RAID subsystem; and a step 208 of determining whether additional
disk drives are required and if so, sending a notification to the RAID subsystem.
In one embodiment, the notification is sent via an email. Further, the size of the
disk storage block can be set as a default and changeable by a user.

In one embodiment, dynamic data allocation, sometimes referred to as
“virtualization” or “disk space virtualization”, efficiently handles a large number
of read and write requests per second. The architecture may require the interrupt
handlers to call a cache subsystem directly. Dynamic data allocation may not
optimize requests as it does not queue them, but it may have a large number of
pending requests at a time.

Dynamic data allocation may also maintain data integrity and protect the
contents of the data for any controller failure. To do so, dynamic data allocation
writes state information to RAID device for reliable storage.

Dynamic data allocation may further maintain the order of read and write

requests and complete read or write requests in the exact order that the requests
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were received. Dynamic data allocation provides for maximum system
availability and supports remote replication of data to a different geographical
location.

In addition, dynamic data allocation provides recovery capabilities from
data corruption. Through snapshot, a user may view the state of a disk in the
past.

Dynamic data allocation manages RAID devices and provides a storage
abstraction to create and expand large devices.

Dynamic data allocation presents a virtual disk device to the servers; the
device is called a volume. To the server, the volume acts the same. It may return
different information for serial number, but the volumes behave essentially like a
disk drive. A volume provides a storage abstraction of multiple RAID devices to
create a larger dynamic volume device. A volume includes multiple RAID
devices, allowing for the efficient use of disk space.

Figure 21 illustrates a prior existing volume logical block mapping.
Figure 14C shows a volume-RAID page remapping of one embodiment of the
virtual volume page pool of storage in accordance with the principles of the
present invention. Each volume is broken into a set of pages, e.g. 1, 2, 3, etc,,
and each RAID is broken into a set of pages. The volume page size and the
RAID page size can be the same in one embodiment. Accordingly, one example
of the volume-RAID page remapping of the present invention is that page #1

using a RAID-2 is mapped to RAID page #1.
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Dynamic data allocation maintains data integrity of the volumes. Data is
written to the volumes and confirmed to the server. Data integrity covers various
controller configurations including stand alone and redundant through a
controller failure. Controller failure includes power failure, power cycle,
software exception, and hard reset. Dynamic data allocation generally does not
handle disk drive failures which are covered by RAID.

Dynamic data allocation provides the highest levels of data abstraction for
the controller. It accepts requests from the front end and ultimately uses RAID
devices to write the data to disks. '

Dynamic data allocation includes a number of internal subsystems:

* Cache — Smoothes read and write operations to a volume by providing
rapid response time to the server, and bundling writes to data plug-in.

* Configuration — Contains the methods to create, delete, retrieve, and
modify data allocation objects. Provides components to create a toolbox
for higher level system applications.

¢ Data Plug-In - Distributes volume read and write requests to various
subsystems depending on volume configuration.

* RAID Interface — Provides RAID device abstraction to create larger
volumes to the user and other dynamic data allocation subsystems.

* Copy/Mirror/Swap — Replicates volume data to local and remote volumes.
In one embodiment, it may only copy the blocks written by the server.

* Snapshot — Provides incremental volume recovery of data. It instantly

creates View Volumes of past volume states.
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* Proxy Volume - Implements request communication to a remote
destination volume to support the Remote Replication.

e Billing - Ability to charge users for allocated storage, activity,
performance, and recovery of data.

Dynamic data allocation also logs any errors and significant changes in
configuration.

Figure 21 illustrates one embodiment of external data flow in the
subsystem. External requests come from Front End. Requests include get
volume information, read and write. All requests have the volume ID. Volume
information is handled by the volume configuration subsystem. Read and write
requests include the LBA. Write requests also include the data.

Depending on volume configuration, dynamic data allocation passes a
request to a number of external layers. Remote replication passes requests to the
front end, destined for a remote destination volume. The RAID Interface passes
requests to RAID. Copy/mirror/swap passes requests back to dynamic data
allocation to a destination volume.

Figure 22 illustrates one embodiment of internal data flow in the
subsystem. The internal data flow starts with caching. Caching may place write
requests into the cache or pass the requests directly to data plug-in. The cache
supports direct DMA from front end HBA devices. Requests may be completed
quickly and responses returned to the server. .The data plug-in manager is the
center of request flow below the cache. For each volume, it calls registered

subsystem objects for each request.
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Dynamic data allocation subsystems that affect data integrity may require
support for controller coherency. As shown in Figure 23, each subsystem
independently maintains coherency. Coherency updates avoid copying data
blocks across the coherency link. Cache coherency may require copying data to

the peer controller.

Disk Storage System Controller

Figure 14A illustrates a disk storage system 1400 having a plurality of
disk storage system controllers 1402 and a matrix of disk storage blocks or virtual
volumes 1404 controlled by the plurélity of disk storage system controllers 1402
for dynamically allocating data in the system in accordance with the principles of
the present invention. Figure 14B illustrates one embodiment of dynamic data
allocation in the virtual volume matrix of disk storage blocks or virtual volumes
1404.

In one operation, the disk storage system 1400 automatically generates a
snapshot of the matrix of disk storage blocks or virtual volumes 1404 at
predetermined time intervals and stores an address index of the snapshot or delta
in the matrix of the disk storage blocks or virtual volumes 1404 such that the
snapshot or delta of the matrix of the disk storage blocks or virtual volumes 1404
can be instantly located via the stored address index.

Further in one operation, the disk storage system controller 1402 monitors
frequency of data use from the snapshots of the matrix of the disk storage blocks

1404 and applies an aging rule such that the less frequently used or accessed data
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is moved to the less expensive RAID subsystem. Similarly, when the data in the

less expensive RAID subsystem starts to be used more frequently, the controller

moves the data to the more expensive RAID subsystem. Accordingly, a user is

able to choose a desired RAID subsystem portfolio to meet its own storage needs.
5  Therefore, the cost of the disk drive system can be significantly reduced and

dynamically controlled by a user.

RAID-to-Disk Mappin

A RAID subsystem and disk manager dynamically allocate data across
disk space of a plurality of disk drives based on RAID-to-disk mapping. In one
10  embodiment, the RAID subsystem and disk manager determine whether
additional disk drives are required, and a notification is sent if the additional disk
drive is required.
Figure 15 illustrates an example of three disk drives 108 (Figure 1)
mapped to a plurality of disk storage blocks 1502-1512 in a RAID-5 subsystem
15 1500 in accordance with the principles of the present invention.
Figure 16 illustrates an example of remapping 1600 of the disk drive

storage blocks after adding a disk drive 1602 to three disk drives 108 as shown in

Figure 15.
Disk Manager
20 The disk manager 106, as shown in Figure 1, generally manages disks and

disk arrays, including grouping/resource pooling, abstraction of disk attributes,
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formatting, addition/subtraction of disks, and tracking of disk service times and
error rates. The disk manager 106 does not distinguish the differences between
various models of disks and presents a generic storage device for the RAID
component. The disk manager 106 also provides grouping capabilities which
facilitate the construction of RAID groups with specific characteristics such as

10,000 RPM disks, etc.

In one embodiment of the present invention, the disk manager 106 is at
least three-fold: abstraction, configuration, and I/O optimization. The disk
manager 106 presents “disks” to upper layers which could be, for example,
locally or remotely attached physical disk drives, or remotely attached disk

systems.

The common underlying characteristic is that any of these devices could
be the target of /O operations. The abstraction service provides a uniform data
path interface for the upper layers, particularly the RAID subsystem, and

provides a generic mechanism for the administrator to manage target devices.

The disk manager 106 of the present invention also provides disk
grouping capabilities to simplify administration and configuration. Disks can be
named, and placed into groups, which can also be named. Grouping is a
powerful feature which simplifies tasks such as migrating volumes from one
group of disks to another, dedicating a group of disks to a particular function,

specifying a group of disks as spares, etc.
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The disk manager also interfaces with devices, such as a SCSI device
subsystem which is responsible for detecting the presence of external devices.
The SCSI device subsystem is capable, at least for fiber channel/SCSI type
devices, of determining a subset of devices which are block-type target devices.

It is these devices which are managed and abstracted by the disk manager.

Further, the disk manager is responsible for responding to flow control
from a SCSI device layer. The disk manager has queuing capabilities, which
presents the opportunity to aggregate I/O requests as a method to optimize the
throughput of the disk drive system.

Furthermore, the disk manager of the present invention manages a
plurality of disk storage system controllers. Also, a plurality of redundant disk
storage system controllers can be implemented to cover the failure of an operated
disk storage system controller. The redundant disk storage system controllers are

also managed by the disk manager.

Disk Manager’s Relationship to the Other Subsystems

The disk manager interacts with several other subsystems. The RAID
subsystem is the major client of the services provided by the disk manager for
data path activities. The RAID subsystem uses the disk manager as the exclusive
path to disks for /O. The RAID system also listens for events from the disk
manager to determine the presence and operational status of disks. The RAID
subsystem also works with the disk manager to allocate extents for the

construction of RAID devices. Management control listens for disk events to
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learn the existence of disks and to learn of operational status changes. In one
embodiment of the present invention, the RAID subsystem 104 may include a
combination of at least one of RAID types, such as RAID-0, RAID-1, RAID-5,
and RAID-10. It will be appreciated that other RAID types can be used in

5  alternative RAID subsystems, such as RAID-3, RAID-4, RAID-6, and RAID-7,

etc.

In one embodiment of the present invention, the disk manager utilizes the
services of configuration access to store persistent configuration and present
transient read-only information such as statistics to the presentations layers. The

10 disk manager registers handlers with configuration access for access to these

parameters.

The disk manager also utilizes the services of the SCSI device layer to
learn of the existence and operational status of block devices, and has an /O path
to these block devices. The disk manager queries the SCSI device subsystem

15 about devices as a supporting method to uniquely identify disks.

Data Instant Replay and Data Instant Fusion

The present invention also provides a method of data instant replay and
data instant fusion. Figures 3A and 3B illustrate schematic views of a snapshot
of a disk storage block of a RAID subsystem at a plurality of time-intervals in

20  accordance with the principles of the present invention. Figure 3C illustrates a
data instant replay method 300 which includes a step 302 of defining a default

size of a logical block or disk storage block such that disk space of a RAID
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subsystem forms a page pool of storage or a matrix of disk storage blocks; a step
304 of automatically generating a snapshot of volumes of the page pool or a
snapshot of the matrix of disk storage blocks at predetermined time intervals; and
storing an address index of the snapshot or delta in the page pool of storage or the
matrix of the disk storage blocks such that the snapshot or delta of the matrix of
the disk storage blocks can be instantly located via the stored address index.

As shown in Figure 3B, at each predetermined time interval, e.gs5
minutes, such as T1 (12:00 PM), T2 (12:05 PM), T3 (12:10 PM), and T4 (12:15
PM), a snapshot of the page pool of storage or the matrix of disk storage blocks
are automatically generated. The address indexes of the snapshots or delta in the
page pool of storage or the matrix of the disk storage blocks are stored in the
page pool of storage or the matrix of the disk storage blocks such that the
snapshot or delta of the page pool of storage or the matrix of the disk storage
blocks can be instantly located via the stored address index.

Accordingly, the data instant replay method automatically generates
snapshots of the RAID subsystem at a user defined time intervals, user
configured dynamic time stamps, for example, every few minutes or hours, etc.,
or time directed by the server. In case of a system failure or virus attack, these
time-stamped virtual snapshots allow data instant replay and data instant recovery
in a matter of a few minutes or hours, etc. The technique is also referred to as
instant replay fusion, i.e. the data shortly before the crash or attack is fused in
time, and the snapshots stored before the crash or attack can be instantly used for

future operation.
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Figure 4 further illustrates a schematic view of a data instant fusion
function 400 by using multiple snapshots of disk storage blocks of a RAID
subsystem in accordance with the principles of the present invention. At T3,a
parallel chain T3’-T5’ of snapshots are generated, whereby data that are fused
and/or recovered by the fused data T3’ can be used to replace the to-be-fused data
at T4. Similarly, a plurality of parallel chains T3”, T4’’’ of snapshots can be
generated to replace the to-be-fused data at T4’-T5’ and T4”-T5”. In an
alternative embodiment, the snapshots at T4, T4’-T5’, T5” can still be stored in
the page pool or the matrix.

The snapshots can be stored at a local RAID subsystem or at a remote
RAID subsystem so that if a major system crash occurs due to, for example a
terrorist attack, the integrity of the data is not affected, and the data can be
instantly recovered. Figure 5 illustrates a schematic view of a local-remote data
replication and instant replay function 500 by using snapshots of disk storage
blocks of a RAID subsystem in accordance with the principles of the present
invention.

Remote replication performs the service of replicating volume data to a
remote system. It attempts to keep the local and remote volumes as closely
synchronized as possible. In one embodiment, the data of the remote volume
may not mirror a perfect copy of the data of the local volume. Network
connectivity and performance may cause the remote volume to be out of

synchronization with a local volume.
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Another feature of the data instant replay and data instant fusion method
is that the snapshots can be used for testing while the system remains its

operation. Live data can be used for real-time testing.

Snapshot and Point-in-Time Copies (PITC)

An example of data instant replay is to utilize snapshots of disk storage
blocks of a RAID subsystem in accordance with the principles of the present
invention. Snapshot records write operations to-a volume so that a view may be
created to see the contents of a volume in the past. Snapshot thus also supports
data recovery by creating views to a previous Point-in-Time Copy (PITC) of a
volume.

The core of a snapshot implements create, coalesce, management, and /O
operations of the snapshot. Snapshot monitors writes to a volume and creates
Point-in-Time Copies (PITC) for access through view volumes. It adds a Logical
Block Address (LBA) remapping layer to a data path within the virtualization
layer. This is another layer of virtual LBA mapping within the I/O path. The
PITC may not copy all volume information, and it may merely modify a table
that the remapping uses.

Snapshot tracks changes to volume data and provides the ibility to view
the volume data from a previous point-in-time. Snapshot performs this function
by maintaining a list of delta writes for each PITC.

Snapshot provides multiple methods for PITC profiles including:

application initiated, and time initiated. Snapshot provides the ability for the
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application to create PITC. The applications control the creation through the API
on the server, which is delivered to the snapshot API. Also, snapshot provides
the ability to create a time profile.

Snapshot may not implement a journaling system or recover all writes to a
volume. Snapshot may only keep the last write to a single address within a PITC
window. Snapshot'allows a user to create PITC that covers a defined short period
of time, such as minutes or hours, etc. To handle failures, snapshot writes all
information to disk. Snapshot maintains volume data page pointers containing
the delta writes. Since the tables provide the map to the volume data, and without
it the volume data is inaccessible, the table information must handle controller
failure cases.

View volume functions provide access to a PITC. View volume functions
may attach to any PITC within the volume, except the active PITC. Attaching to
a PITC is a relatively quick operation. Uses of view volume functions include
testing, training, backup, and recovery. The view volume functions allow write
operation and do not modify the underlying PITC it is based on.

In one embodiment, the snapshot is designed to optimize performance and
ease use at the expense of disk space:

¢ Snapshot provides speedy response time for user requests. User requests
include I/0, create a PITC, and create/delete a view volume. To achieve
this snapshot uses more disk space to store table information than the

minimum required. For /O, snapshot summarizes the current state of a

volume into a single table, so that all read and write requests may be
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satisfied by a single table. Snapshot reduces the impact on normal /O
operations as much as possible. Second, for view volume operations
snapshot uses the same table mechanism as the main volume data path.
Snapshot minimizes the amount of data copied. To do this, snapshot
maintains a table of pointers for each PITC. Snapshot copies and moves
pointers, but it does not move the data on the volume.

Snapshot manages the volume using fixed-size data-péges. Tracking
individual sectors may require massive amounts of memory for a single
reasonable sized volume. By using a data page larger than a sector certain
pages may contain a percentage of information directly duplicated from
another page.

Snapshot uses the data space on the volume to store the data-page tables.
The lookup tables are reproduced after a controller failure. The lookup
tables allocate pages and sub-divide them.

Snapshot handles controller failure by requiring that a volume using
snapshot operate on a single controller in one embodiment. This
embodiment requires no coherency. All changes to the volume are
recorded on disk or to reliable cache for recovery by a replacement
controller. Recovery from a controller failure requires that the snapshot
information be read from disk in one embodiment.

Snapshot uses the virtualization RAID interface to access the storage.

Snapshot may use multiple RAID devices as a single data space.

-7 -



WO 2005/017737 PCT/US2004/026499

10

15

20

* Snapshot supports ‘n’ PITC per volume and ‘m’ views per volume. The
limitation on ‘n’ and ‘m’ is a function of the disk space and memory of

the controller.

Volume and Volume Allocation/Layout

Snapshots add a LBA remapping layer to a volume. The remapping uses
the /O request LBA and the lookup table to convert the address to the data page.
As shown in Figure 6, a presented volume using snapshot behaves the same as a
volume without snapshot. It has a linear LBA space and handles /O requests.
Snapshot uses the RAID interface to perform I/O and includes multiple RAID
devices into a volume. In one embodiment, the size of the RAID devices for a
snapshot volume is not the size of the presented volume. The RAID devices
allow snapshot to expand the space for data pages within the volume.

A new volume, with snapshot enabled at the inception, only needs to
include space for the new data pages. Snapshot does not create a list of pages to
place in the bottom level PITC. The bottom level PITC is empty in this case. At
allocation, all PITC pages are on the free list. By creating a volume with
snapshot enabled at the inception, it may allocate less physical space than the
volume presents. Snapshot tracks the writes to the volume. In one embodiment
of the present invention, the NULL volume is not copied and/or stored in the
page pool or matrix, thereby increasing the efficiency of the use of the storage

space.
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In one embodiment, for both allocation schemes, PITC places a virtual
NULL volume at the bottom of the list. Reads to the NULL volume return
blocks of zero. The NULL volume handles the sectors not previously written by
the server. Writes to the NULL volume can not occur. The volume uses a NULL

5  volume for reads to unwritten sectors.

The number of free pages depends on the size of the volume, the number
of PITC, and the expected rate of data change. The system determines the
number of pages to allocate for a given volume. The number of data pages may
expand over time. Expansion may support a more rapid change in data than

10 expected, more PITC, or a larger volume. New pages are added to the free list.
The addition of pages to the free list may occur automatically.

Snapshot uses data pages to manage the volume space. Each data page
may include megabytes of data. Using the operating system tends to write a
number of sectors in the same area of a volume. Memory requirements also

15  dictate that snapshot uses pages to manage volumes. Maintaining a single 32-bit
pointer for each sector of a one-terabyte volume may require eight gigabytes of
RAM. Different volumes may have different page size.

Figure 7 illustrates one embodiment of a snapshot structure. Snapshot

adds a number of objects to the volume structure. Additional objects include the
20  PITC, a pointer to the active PITC, the data page free list, child view volumes,

and PITC coalesce objects.
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e Active PITC (AP) pointer is maintained by the volume. The AP handles
the mapping of read and writes requests to the vplume. The AP contains a
summary of the current location of all the data within the volume.

o The data pages free list tracks the available pages on the volume.

5 e The optional child view volumes provide access to the volume PITC. The
view volumes contain their own AP to record writes to the PITC, while
not modifying the underlying data. A volume may support multiple child
view volumes.

e Snapshot coalesce objects temporarily link two PITC for the purpose of

10 removing the previous PITC. Coalescing of PiTC involves moving the
ownership of data pages and freeing of data pages.

e A PITC contains a table and data pages for the pages written while the
PITC was active. The PITC contains a freeze time stamp at which point
the PITC stopped accepting write requests. The PITC also contains a

15 Time-to-Live value that determines at what time the PITC will coalesce.
Also, snapshot summarizes the data page pointers for the entire volume, at
the time a PITC is taken to provide predictable read and write performance. Other
solutions may require reads to examine multiple PITC to find the newest pointer.
These solutions require table caching algorithm but has worst-case performance.
20 Snapshot summarizing in the present invention also reduces the worst-
case memory usage of table. It may require that the entire table be loaded into

memory, but it may require only a single table loaded.
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The summary includes pages owned by the current PITC and may include
pages from all previous PITC. To determine which pages the PITC may write, it
tracks page ownership for each data page. It also tracks ownership for a coalesce
process. To handle this, the data page pointer includes the page index.

5 Figure 8 illustrates one embodiment of a PITC life cycle. Each PITC
goes through a number of following states before it is committed as read-only:

1. Create table — Upon creation, table is created.

2. Commit to disk — This generates the storage on the disk for the
PITC. By writing the table at this point, it guarantees that the required space to

10  store the table information is allocated before the PITC is taken. At the same
time, the PITC object is also committed to the disk.

3. Accept /O — It has become the active PITC (AP) — It now handles
reads and writes requests for the volume. This is the only state that accepts
writes requests to the table. The PITC generates an event that it is now active.

15 4, Commit the Table to Disk — The PITC is no longer the AP, and no
longer accepts additional pages. A new AP has taken over. After this point, the
table will not change unless it is removed during a coalesce operation. It is read-
only. At this point, the PITC generates an event that it is frozen and committed.
Any service may listen to the event.

20 3. Release table memory — Frees the memory that the table required.
This step also clears the log to state that all changes are written to disk.

The top-level PITC for a volume or a view volume is called the active

PITC (AP). The AP satisfies all read and write requests to the volume. The AP
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is the only PITC for the volume that may accept write requests. The AP contains
a summary of data page pointers for the entire volume.

The AP may be the destination, not the source, for a coalesce process.
Being the destination, the AP increases the number of owned pages, but it does
not change the view of the data.

For volume expansion, the AP immediately grows with the volume. The
new pages point to the NULL volume. Non-AP PITC does not require
modification for volume expansion.

Each PITC maintains a table to map an incoming LBA to a data page
pointer to the underlying volume. The table includes pointers to data pages. The
table needs to address more physical disk space than presented logical space.
Figure 9 illustrates one embodiment of a table structure having a multi-level
index. The structure decodes the volume LBA to a data-page pointer. Each level
decodes increasing less significant bits of the address as shown in Figure 9. The
structure of the table provides for fast lookup and the ability to expand the
volume. For fast lookup, the multi-level index structure keeps the table shallow
with multiple entries at each level. The index performs array lookups at each
level. To support volume expansion, the multi-level index structure allows for
the addition of another layer to support expansion. Volume expansion in this
case is the expansion of the LBA count presented to the upper layer,‘ and not the

actual amount of storage space allocated for the volume.

-32-



WO 2005/017737 PCT/US2004/026499

10

15

20

The multi-level index contains a summary of the entire volume data page
remapping. Each I;ITC contains a complete remapping list for the volume at the
point-in-time it is committed.

The multi-level index structure uses different entry types for the levels of
the table. The different entry types support the need to read the information from
the disk, as well as store it in memory. The bottom level entries may only
contain data page pointers. The top and middle level entries contain two arrays,
one for the LBA of the next level table entry, and a memory pointer to the table.

As the presented volume size expands, the size of previous PITC tables
does not need to increase, and the tables do not need to be modified. The
information in the table may not change, since it is read only, and the expand
process modifies the table by adding NULL page pointers to the end. Snapshot
does not directly present the tables from previous PITC to the user.

An VO operation asks the table to map an LBA to a data page pointer.
The I/O then multiplies the data page pointer times the data page size to get the
LBA of the underlying RAID. In one embodiment, data page size is a power of
two.

The table provides an API to remap LBA, add page, and coalesce table.
Snapshot uses the data pages to store the PITC object and the LBA
mapping tables. The tables directly access the RAID interface for I/O to its table
entries. The table minimizes modification when reading and writing the table to

the RAID device. Without modification, it becomes possible to read and write

the table information directly into table entry structures. This reduces copies
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needed for /O. Snapshot may use a change log to prevent the creation of hot-
spots on the disk. A hot-spot is a location that is used repeatedly to track updates
to the volume. The change log records updates to the PITC table, and the free list
for the volume. During recovery, snapshot uses the change log to re-create the
in-memory AP and free list. Figure 10 illustrates one embodiment of recovery of
a table, which demonstrates the relationship among the in-memory AP, the on-
disk AP, and the change log. It also shows the same relationship for the free list.
The in-memory AP table may be rebuilt from the on-disk AP table and the log.
For any controller failure, the AP is rebuilt by reading the on-disk AP and
applying the log changes to it. The change log uses different physical resources
depending on system configuration. For multiple-controller systems, the change
log relies on battery-backup cache memory for storage. Using cache memory
allows snapshot to reduce the number of table writes to disk while maintaining
data integrity. The change log replicates to a backup controller for recovery. For
single-controller systems, the change log writes all information to the disks. This
has the side-effect of creating a hot-spot on the disk at the log location. This
allows a number of changes to be written to a single device block.

Periodically, snapshot writes the PITC table and free list to disk, creating
a checkpoint in the log and clearing it. This period may vary depending on the
number of updates to the PITC. The coalesce process does not use the change
log.

Snapshot data page I/O may require requests fit within the data page

boundaries. If snapshot encounters an I/O request that spans the page boundaries
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it splits the request. It then passes the requests down to the request handlers. The
write and read sections assume that an I/O fits within the page boundaries. The
AP provides the LBA remapping to satisfy I/O requests.
The AP satisfies all write requests. Snapshot supports two different write
5  sequences for owned and non-owned pages. The different sequence allow for the
addition of pages to the table. Figure 11 illustrates one embodiment of a write
process having an owned page sequence and a non-owned page sequence.

For the owned page sequence, the process includes the following:

1) Find the table mapping; and

10 2) Page Owned Write — Remap the LBA and write the data to the
RAID interface.

A previously written page is the simple write request. Snapshot writes the
data to the page, overwriting the current contents. Only data pages owned by the
AP will be written. Pages owned by other PITC is read only.

15 For the non-owned page sequence, the process includes the following:

1) Find the table mapping;

2) Read previous Page — Perform a read to the data page such that the
write request and the read data make up the complete page. This is the start of
the copy on write process.

20 3) Combine the data — Put the data page read and the write request
payloads into a single contiguous block.

4) Free List Allocate — Get a new data page pointer from the free list.

S) Write the combined data to the new data page.
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6) Commit the new page information to the log.

7 Update the table — Change the LBA remapping in the table to
reflect the new data page pointer. The data page is now owned by the PITC.

Adding a page may require blocking read and write requests until the
page is added to the table. By writing the table updates to disk and keeping
multiple cached copies of the log, snapshot achieves controller coherency.

With respect to read requests, the AP fulfills all read requests. Using the
AP table the read request remaps the LBA to the LBA of the data page. It passes
the remapped LBA to the RAID interface to satisfy the request. A volume may
fulfill a read requests for a data page not previously written to the volume. These
pages are marked with the NULL Address (All one’s) in the PITC table.
Requests to this address are satisfied by the NULL volume and return a constant
data pattern. Pages owned by different PITC may satisfy a read request spanning
page boundaries. |

Snapshot uses a NULL volume to satisfy read requests to previously
unwritten data pages. It returns all zeroes for each sector read. It does not have a
RAID device or allocated space. It is anticipated that a block of all zeroes be
kept in memory to satisfy the data requirements for a read to the NULL volume.
All volumes share the NULL volume to satisfy read requests.

In one embodiment, a coalesce process removes a PITC and some of its
owned pages from the volume. Removing the PITC creates more available space

to track new differences. Coalescing compares two adjacent tables for
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differences and keeps only the newer differences. Coalescing occurs periodically
or manually according to user configuration.

The process may include two PITC, the source and destination. The rules
in one embodiment for eligible objects are as follows:

1) The source must be the previous PITC to the Destination -- the
source must be created before the destination.

2) A destination may not simultaneously be a source.

3) A source may not be referred to by multiple PITC. Multiple
references occur when a view volume is created from a PITC.

4) The destination may support multiple references.

5) The AP may be a destination, but not a source.

The coalesce process writes all changes to disk and requires no
coherency. If a controller fails, the volume recovers the PITC information from
disk and resumes the coalesce process.

The process marks two PITC for coalescing and includes the following
steps:

1) Source state set to coalesce source — the state is committed to disk
for controller failure recovery. At his point source may no longer be accessed as
its data pages may be invalid. The data pages may be returned to the free list, or
ownership is transferred to destination.

2) Destination state set to coalesce destination — the state is

committed to disk for controller failure recovery.
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3) Load and compare tables — the process moves data page pointers.
Freed data pages immediately are added to the free list.

4) Destination state set to normal — The process is complete.

5) Adjust the list — change the previous of the source next pointer to
the destination. This effectively removes the source from the list.

6) Free the source — return any data pages used for control
information to the free list.

The above process supports the combination of two PITC. It is
appreciated to a person skilled in the art that coalesce can be designed to remove
multiple PITC and create multiple sources in the single pass.

As shown in Figure 2, the page pool maintains a data page free list for use
by all volumes associated with the page pool. The free list manager uses data
pages from the page pool to commit the free list to permanent storage. Free list
updates come from a number of sources: the write process allocates pages, the
control page manager allocates pages, and the coalescing process returns pages.

The free list may maintain a trigger to automatically expand itself at a
certain threshold. The trigger uses the page pool expansion method to add pages
to the page pool. The automatic expansion could be a function of volume policy.
More important data volume would be allowed to expand while less important
volumes are forced to coalesce.

View volumes provide access to previous points-in-time and support
normal volume I/O operations. A PITC tracks the difference between PITC, and

the view volume allows the user to access the information contained within a
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PITC. A view volume branches from a PITC. View volumes support recovery,
test, backup operations, etc. View volume creation occurs nearly instantaneously
as it requires no data copies. The view volume may require its own AP to
support writes to the view volume.

A view taken from the current state of the volume the AP may be copied
from the current volume AP. Using the AP, the view volume allows write
operations to the view volume without modifying the underlying data. The OS
may require a file system or file rebuild to use the data. The view volume
allocates space from the parent volume for the AP and written data pages. The
view volume has no associated RAID device information. Deleting the view
volume frees the space back to the parent volume.

Figure 12 illustrates an exemplary snapshot operation showing the
transitions for a volume using snapshot. Figure 12 depicts a volume with ten
pages. Each state includes a Read Request Fulfillment list for the volume.
Shaded blocks indicate owned data page pointers.

The transition from the left of the figure (i.e. the initial state) to the
middle of the figure shows the a write to pages 3 and 8. The write to page 3
requires a change to PITC I (AP). PITC I follows the new page write processing
to add page 3 to the table. PITC reads unchanged information from page J and
uses the drive page B to store the page. All future writes to page 3 in this PITC
are handled without moving pages. The write to page 8 depicts the second case
for writing to a page. Since PITC I already contains page 8, PITC I writes over

that portion of the data in page 8. For this case, it exists on the drive page C.
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The transition from the middle of the figure to the right of the figure (i.e.
final state) shows the coalescing of PITC II and III. Snapshot coalescing
involves removing older pages, respectively, while maintaining all the changes
in both PITC. Both PITC contain pages 3 and 8. The process retains the newer
pages from PITC II and frees the pages from PITC 111, and it returns pages A and
D to the free list.

Snapshot allocates data pages from the page pool to store free list and
PITC table information. Control Page allocation sub-allocates the data pages to
match the sizes needed by the objects.

A volume contains a page pointer for the top of the control page
information. From this page all of the other information can be read.

Snapshot tracks the number of pages in-use at certain time intervals. This
allows snapshot to predict when the user needs to add more physical disk space to

the system to prevent snapshot from running out.

Data Progression

In one embodiment of the present invention, data progfession (DPj) is used
to move data gradually to storage space of appropriate cost. The present
invention allows a user to add drives when the drives are actually needed. This
would significantly reduce the overall cost of the disk drives.

Data progression moves non-recently accessed data and historical
snapshot data to less expensive storage. For non-recently accessed data, it

gradually reduces the cost of storage for any page that has not been recently

- 40 -



WO 2005/017737 PCT/US2004/026499

10

15

20

accessed. It may not move the data to the lowest cost storage immediately. For
historical snapshot data, it moves the read-only pages to more efficient storage
space, such as RAID 5, and to the least expensive storage if the page is no longer
accessible by a volume.

The other advantages of the data progression of the present invention
include maintaining fast I/O access to data currently being accessed, and reducing
the need to purchase fast but expensive disk drives.

In operation, data progression determines the cost of storage using the
cost of the physical media and the efficiency of RAID devices that are used for
data protection. Data progression also determines the storage efficiency and
moves the‘data accordingly. For example, data progression may convert RAID
10 to RAID 5 devices to more efficiently use the physical disk space.

Data progression defines accessible data as data that can be read or
written by a server at the current time. It uses the accessibility to determine the
class of storage a page should use. A page is read-only if it belongs to a
historical PITC. If the server has not updated the page in the most recent PITC,
the page is still accessible.

Figure 17 illustrates one embodiment of accessible data pages in a data
progression operation. The accessible data pages is broken down into the
following categories:

e Accessible Recently Accessed — These are the active pages the volume is

using the most.
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e Accessible Non-recently accessed — Read-write pages that have not been

recently used.

e Historical Accessible — Read-only pages that may be read by a volume --

Applies to snapshot volumes.

e Historical Non-Accessible — Read-only data pages that are not being

currently accessed by a volume -- Applies to snapshot volumes. Snapshot

maintains these pages for recovery purposes, and the pages are generally

placed on the lowest cost storage possible.

In Figure 17, three PITC with various owned pages for a snapshot volume

are illustrated. A dynamic capacity volume is represented solely by PITC C. All

of the pages are accessible and read-write. The pages may have different access

time.

The following table illustrates various storage devices in an order of

increasing efficiency or decreasing monetary expense. The list of storage devices

may also follow a general order of slower write I/O access. Data progression

computes efficiency of the logical protected space divided by the total physical

space of a RAID device.

Primary Read-Write Accessible
Storage with relatively good write
performance.

RAID S5 3 -Drive

66.6%

4 (2Read -2
Write)

Minimum efficiency gain over
RAID 10 while incurring the
RAID 5 write penalty.
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RAIDS 5-Drive 80% 4 (2Read -2 Great candidate for Read-only
Write) historical information. Good
candidate for non-recently
accessed writable pages.

RAIDS5 9-Drive 88.8% 4 (2Read -2 Great candidate for read-only
Write) historical information.
RAIDS 17- 94.1% 4 (2 Read -2 ‘Reduced gain for efficiency while
Drive Write) doubling the fault domain of a
RAID device.

RAID 5 efficiency increases as the number of drives in the stripe
increases. As the number of disks in a stripe increases, the fault domain
increases. The increasing the numbers of drives in a stripe also increases the
minimum number of disk necessary to create the RAID devices. In one
embodiment, data progression does not use a RAID 5 stripe size larger than 9
drives due to the increase in the fault domain size and the limited efficiency
increase. Data progression uses RAID 5 stripe sizes that are integer multiple of
the snapshot page size. This allows data progression to perform full-stripe writes
when moving pages to RAID 5 making the move more efficient. All RAID 5
configurations have the same write /O characteristic for data progression
purpose. For example, RAID 5 on an 2.5 inch FC disk may not effectively use
the performance of those disks well. To prevent this combination, data
progression needs to support the ability to prevent a RAID Type from running on
certain disk types. The configuration of data progression can also prevent the

system from using RAID 10 or RAID 5 space.
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The types of disks are shown in the following table:

2.5 Inch FC Great High Very Expensive

FC 15 KRPM  Good Medium Expensive

FC 10 KRPM  Good Good Reasonable
Price

SATA Fair Low Cheap/Less
Reliable

Data progression‘ includes the ability to automatically classify disk drives
5  that are relative to the drives within a system. The system examines a disk to

determine its performance relative to the other disks in the system. The faster
disks are classified in a higher value classification, and the slower disks are
classified in a lower value classification. As disks are added to the system, the
system automatically rebalances the value classifications of the disks. This

10  approach handles both the systems that never change and the systems that change
frequently as new disks are added. The automatic classification may place
multiple drive types within the same value classification. If the drives are

determined to be close enough in value, then they have the same value.

15 In one embodiment, a system contains the following drives:
High - 10K FC drive

Low - SATA drive



WO 2005/017737 PCT/US2004/026499

With the addition of a 15K FC drive, Data progression automatically
reclassifies the disks and demotes the 10K FC drive. This results in the following
classifications:

High - 15K FC drive
5 Medium - 10K FC drive
Low — SATA drive
In another embodiment, a system may have the following drive types:
High - 25K FC drive
Low - 15K FC drive
10 Accordingly, the 15K FC drive is classified as the lower value
classification, whereas the 15K FC drive is classified as the higher value
classification.
If a SATA drive is added to the system, Data progression automatically
reclassifies the disks. This results in the following classification:
15 High - 25K FC drive
Medium - 15K FC drive

Low — SATA drive

Data progression may include waterfall progression. Typically, waterfall
progression moves data to a less expensive resource only when the resource
20  becomes totally used. The waterfall progression effectively maximizes the use of
the most expensive system resources. It also minimizes the cost of the system.

Adding cheap disks to the lowest pool creates a larger pool at the bottom.
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The typical waterfall progression uses RAID 10 space and then a next of
RAID space, such as RAID 5 space. This forces the waterfall to go directly to
RAID 10 of the next class of disks. Alternatively, data progression may include
mixed RAID waterfall progression as shown in Figure 24. This alternative data
progression method solves the problem of maximizing disk space and
performance and allows storage to transform int§ a more efficient form in the
same disk class. This alternative method also supports the requirement that
RAID 10 and RAID 5 share the total resource of a disk class. This may require
configuring a fixéd percentage of disk space a RAID level may use for a class of
disks. Accordingly, the alternative data progression method maximizes the use of

expensive storage, while allowing room for another RAID class to coexist.

The mixed RAID waterfall also only moves pages to less expensive
storage when the storage is limited. A threshold value, such as a percentage of
the total disk space, limits the amount of storage of a certain RAID type. This
maximizes the use of the most expensive storage in the system. When a storage
approaches its limit, data progression automatically moves the pages to lower

cost storage. Data progression may provide a buffer for write spikes.

It is appreciated that the above waterfall methods may move pages
immediately to the lowest cost storage as in some cases, there may be a need in
moving historical and non-accessible pages onto less expensive storage in a
timely fashion. Historical pages may also be instantly moved to less expensive

storage.
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Figure 18 illustrates a flow chart of data progression process 1800. Data
progression continuously checks each page in the system for its access pattern
and storage cost to determine whether there are data pages to move. Data
progression may also determine if the storage has reached its maximum
allocation.

Data progression process determines if the page is accessible by any

volume. The process checks PITC for each volume attached to a history to

determine if the page is referenced. If the page is actively being used, the page

may be eligible for promotion or a slow; demotion. If the page is not accessible
by any volume, it is moved to the lowest cost storage available. Data progression
also factors in the time before a PITC expires. If snapshot schedules a PITC to
expire shortly, no pages progress. If the page pool is operating in an aggressive
mode, the pages may progress.

Data progression recent access detection needs to eliminate a burst of
activity from promoting a page. Data progression separates read and write access
tracking. This allows data progression to keep data on RAID 5 devices that are
accessible. Operations like a virus scan or reporting only read the data. Data
progression changes the qualifications of recent access when storage is running
low. This allows data progression to more aggressively demote pages. It also
helps fill the system from the bottom up when storage is running low.

Data progression may aggressively move data pages as system resources
become low. More disks or a change in configuration are still necessary for all of

these cases. Data progression lengthens the amount of time that the system may
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operate in a tight situation. Data progression attempts to keep the system
operational as long as possible. The time is when all of its storage classes are
out-of-space.

In the case where RAID 10 space is running low, and total available disk
space is running low, data progression may cannibalize RAID 10 disk space to
move to more efficient RAID 5. This increases the overall capacity of the system
at the price of write performance. More disks are still necessary. If a particular
storage class is completely used, data progression allows for borrowing on non-
acceptable pages to keep the system running. For example, if a volume is
configured to use RAID 10-FC for its accessible information, it may allocate
pages from RAID 5-FC or RAID 10-SATA until more RAID10-FC space is
available.

Data progression also supports compression to increase the perceived
capacity of the system. Compression may only be used for historical pages that
are not accessed, or as the storage of recovery information. Compression appears

as another class of storage near the bottom of storage costs.

As shown in Figure 25, the page pool essentially contains a free list and
device information. The page pool needs to support multiple free lists, enhanced
page allocation schemes, and the classification of free lists. The page pool
maintains a separate free list for each class of storage. The allocation schemes
allows a page to be allocated from one of many pools while setting minimum or
maximum allowed classes. The classification of free lists comes from the device

configuration. Each free list provides its own counters for statistics gathering and
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display. Each free list also provides the RAID device efficiency information for

the gathering of storage efficiency stats.

In one embodiment, the device list may require the additional ability to
track the cost of the storage class. The combination determines the class of the
storage. This would occur if the user would like more or less granularity with the

configured classes.

Figure 26 illustrates one embodiment of a high performance database
where all accessible data only resides on 2.5 FC drives, even if it is not recently
accessed. Non-accessible historical data is moved to RAID 5 fiber channel.

Figure 27 illustrates one embodiment of a MRI image volume where
accessible storage is SATA RAID 10 and RAID 5 for this dynamic volume. If
the image is not recently accessed, the image is moved to RAID 5. New writes
then go to RAID 10 initially.Figure 19 illustrates one embodiment of a
compressed page layout. Data progréssion implements compression by sub-
allocating fixed sized data pages. The sub-allocation information tracks the free
portions of the page, and the location of the allocated portions of the page. Data
progression may not predict the efficiency of compression and may handle
variable sized pages within its sub-allocation.

Compressed page may significantly impact CPU performance. For write
access, a compressed page would require the entire page be decompressed and
recompressed. Therefore, pages actively being accessed are not compressed, and
returned to their non-compressed state. Writes may be necessary in conditions

where storeage is extremely limited.
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The PITC remap table points to the sub-allocation information and is
marked to indicate the page that is compressed. Accessing a compressed page
may require a higher I/O count than a non-compressed page. The access may
require the reading of the sub-allocation information to retrieve the location of
the actual data. The compressed data may be read from the disk and
decompressed on the processor.

Data progression may require compression to be able to decompress parts
of the entire page. This allows data progression read access to only decompress
small portions of the page. The read-ahead feature of read cache may help with
the delays of compression. A single decompression may handle a number of
server I/O. Data progression marks pages that are not good candidates for
compression so that it does not continually attempt to compress a page.

Figure 20 illustrates one embodiment of data progression in a high level
disk drive system in accordance with the principles of the present invention.
Data Progression does not change the external behavior of a volume or the
operation of the data path. Data progression may require modification to a page
pool. The page pool essentially contains a free list and device information. The
page pool needs to support multiple free lists, enhanced page allocation schemes,
and the classification of free lists. The page pool maintains a separate free list for
each class of storage. The allocation schemes allows a page to be allocated from
one of many pools while setting minimum or maximum allowed classes. The
classification of free lists may come from the device configuration. Each free list

provides its own counters for statistics gathering and display. Each free list also
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provides the RAID device efficiency information for the gathering of storage
efficiency statistics.

The PITC identifies candidates for movement and blocks I/O to accessible
pages when they move. Data progression continually examines the PITC for
candidates. The accessibility of pages continually changes due to server /O, new
snapshot page updates, and view volume creation/deletion. Data progression also
continually checks volume configuration changes and summarize the current list
of page classes and counts. This allows data progression to evaluate the
summary aﬁd determine if there are possibly pages to be moved.

Each PITC presents a counter for the number of pages used for each class
of storage. Data progression uses this information to identify a PITC that makes
a good candidate to move pages when a threshold is reached.

RAID allocates a device from a set of disks based on the cost of the disks.
RAID also provides an API to retrieve the efficiency of a device or potential
device. It also needs to return information on the number of I/O required for a
write operation. Data progression may also require a RAID NULL to use third-
party RAID controllers as a part of data progression. RAID NULL may consume
an entire disk and merely act as a pass through layer.

Disk manager may also automatically determine and store the disk
classification. Automatically determining the disk classification may require
changes to SCSI Initiator.

From the above description and drawings, it will be understood by those

of ordinary skill in the art that the particular embodiments shown and described
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are for purposes of illustration only and are not intended to limit the scope of the
present invention. Those of ordinary skill in the art will recognize that the
present invention may be embodied in other specific forms without departing
from its spirit or essential characteristics. References to details of particular

5  embodiments are not intended to limit the scope of the invention.

-52-



WO 2005/017737 PCT/US2004/026499

10

15

20

CLAIMS

What is claimed is:
1. A disk drive system, capable of dynamically allocating data in a
pool of storage, comprising:
a RAID subsystem having the pool of storage; and
a disk manager having at least one disk storage system controller;
wherein the RAID subsystem and the disk manager dynamically
allocate data across the pool of storage and a plurality of disk drives based on

RAID-to-disk mapping.

2. The system of claim 1, wherein the RAID subsystem and the disk
manager determine whether additional disk drives are required, and a notification

is sent if the additional disk drives are required.

3. The system of claim 1, wherein the disk manager manages a

plurality of disk storage system controllers.

4. The system of claim 3, further comprising a plurality of redundant

disk storage system controllers to cover failure of an operated disk storage system

controller.
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5. The system of claim 1, wherein the RAID subsystem further
comprises a combination of at least one of RAID types, such as RAID-0, RAID-

1, RAID-5, and RAID-10.

6. The system of claim 5, further comprising RAID types including

RAID-3, RAID-4, RAID-6, and RAID-7.

7. The system of claim 1, wherein the pool of storage is a page pool

of storage that maintains a free list of RAIDs.

8. The system of claim 1, wherein the pool of storage is a matrix of

disk storage blocks that maintain a null list of RAIDs.

9. A method of dynamic data allocation, comprising the steps of:

defining a default size of disk space of a RAID subsystem which
forms a pool of storage;

writing data;

allocating the data in the pool of storage;

| determining occupancy rate of the disk space of the RAID

subsystem based on historical occupancy rate of the disk space of the RAID
subsystem;

determining whether additional disk drives are required; and
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sending a notification to the RAID subsystem if the additional disk

drives are required.

10.  The method of claim 9, further comprising sending notification via

an email.

11.  The method of claim 9, further comprising setting a size of the

disk storage block as a default and changeable by a user.

12. The method of claim 9, further comprising maintaining a free list
of RAIDs, wherein the pool of storage is a page pool of storage that maintains the

free list of RAIDs.

13.  The method of claim 9, further comprising maintaining a null list
of RAIDs, wherein the pool of storage is a matrix of disk storage blocks that

maintain the null list of RAIDs.

14. A method of data instant replay, comprising the steps of:
defining a default size of disk space of a RAID subsystem which
forms a pool of storage;
automatically generating a snapshot of the pool of storage at

predetermined time intervals; and
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storing an address index of the snapshot or delta in the pool of
storage such that the snapshot or delta of the pool of storage can be instantly

located via the stored address index.

15.  The method of claim 14, wherein the step of automatically
generating the snapshot of the RAID subsystem at the predetermined time
intervals includes automatically generating a snapshot of the RAID subsystem at

a user defined time interval.

16. The method of claim 15, wherein the time interval is in a range of

every few minutes to every few hours.

17.  The method of claim 14, wherein the snapshots are stored at a

local RAID subsystem.

18. The method of claim 14, wherein the snapshots are stored at a

remote RAID subsystem such that if a major system crash occurs, integrity of

data is not affected, and the data can be instantly recovered.

19.  The method of claim 14, wherein the pool of storage is a page

pool of storage that maintains a free list of RAIDs.
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20. The method of claim 14, wherein the pool of storage is a matrix of

disk storage blocks that maintain a null list of RAIDs.

21. A system of data instant replay, comprising:
5 a RAID subsystem having a pool of storage; and
a disk manager having at least one disk storage system controller;
wherein the RAID subsystem and the disk manager dynamically
allocate data across the pool of storage and a plurality of disk drives based on
RAID-to-disk mapping.
10
22.  The system of claim 21, further comprising a disk storage system
controller for automatically generating a snapshot of the pool of storage at
predetermined time intervals and storing an address index of the snapshot or delta
in the pool of storage such that the snapshot or delta of the pool of storage can be

15  instantly located via the stored address index.

23.  The system of claim 22, wherein the disk storage system controller
monitors frequency of data use from the snapshots of the pool of storage and
applies an aging rule such that the less frequently used or accessed data is moved

20  to the less expensive RAID subsystem.

24, The system of claim 23, wherein when data in the less expensive

RAID subsystem starts to be used more frequently, the controller moves the data
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to the more expensive RAID subsystem, thereby significantly reducing cost of

the disk drive system.

25.  The system of claim 21, wherein the pool of storage is a page pool

5  of storage that maintains a free list of RAIDs.

26. The system of claim 21, wherein the pool of storage is a matrix of

disk storage blocks that maintain a null list of RAIDs.
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Defining size of a logical block or disk
storage block such that disk space of a
RAID subsystem forms a page pool of

storage or a matrix of disk storage blocks

Writing data and allocating the data in
the page pool of storage or the matrix of

the disk storage blocks

Determining occupancy rate of the disk
space of the RAID subsystem based on
historical occupancy rate of the disk

space of the RAID subsystem

Determining whether an additional disk
drive is required. If so, a notification is
sent to the RAID subsystem,

then to the user
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