(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(21) 申请号 201410195357.X
(22) 申请日 2014.04.30
(71) 申请人 淮海工学院
地址 222005 江苏省连云港市新浦区苍梧路 59 号
(72) 发明人 王启发 王静文 沈梦瑶 程青芳

(51) Int. Cl.
C07C 237/46 (2006.01)
C07C 231/02 (2006.01)
C07C 231/12 (2006.01)

(54) 发明名称
一种合成磺普罗胺的新方法

(57) 摘要
本发明公开了一种合成磺普罗胺的新方法，包括下列步骤：步骤 1，将甲氧基乙酸与三光气反应后直接与 5-氨基-2,4,6-三碘环己酸酰氯一锅反应制得式 (II) 化合物 5-[(2-甲氧基)乙酰胺基]-2,4,6-三碘环己酸酰氯；步骤 2，式 (II) 化合物与 N-甲基-2,3-二羟基丙胺在固体催化剂 ZrO₂-Cr₂O₃作用下缩合得式 (III) 化合物 5-[(2-甲氧基)乙酰胺基]-3-(2,3-二羟基-N-甲基丙胺基甲酰基)-2,4,6-三碘环己酸酰氯；步骤 3，式 (III) 化合物与 2,3-二羟基丙胺在催化剂作用下缩合即制得式 (I) 化合物磺普罗胺。本发明提供的磺普罗胺的合成方法副产物少，产品质量易控制，纯度高，所用的试剂价廉，易得，步骤少，操作简单，总收率较高。适于工业化生产，为制备磺普罗胺提供了一条新的途径。
1. 一种如式 (I) 所示的碘普罗胺的合成新方法，其特征是：步骤 1，将甲氧基乙酸与三光气反应后直接与 5-氨基-2,4,6-三碘酰胺酰氯一锅反应制得式 (II) 化合物 5-[(2-甲氧基) 乙酰胺基]-2,4,6-三碘酰胺酰氯；步骤 2，在催化剂作用下将式 (II) 化合物与 N-甲基-2,3-二羟基丙胺缩合得式 (III) 化合物 5-[(2-甲氧基) 乙酰胺基]-3-(2,3-二羟基-N-甲基丙胺基甲酰基)-2,4,6-三碘酰胺酰氯；步骤 3，在催化剂作用下将式 (III) 化合物与 2,3-二羟基丙胺缩合即制得式 (I) 化合物碘普罗胺。所述反应式为：

2. 根据权利要求 1 所述的一种合成碘普罗胺的新方法，其特征在于：所述的步骤 (1) 中的反应以二氯甲烷为溶剂，廉价的甲氧基乙酸为起始原料，与三光气反应后蒸去溶剂不经分离纯化，直接与 5-氨基-2,4,6-三碘酰胺酰氯一锅反应制得式 (II) 化合物 5-[(2-甲氧基) 乙酰胺基]-2,4,6-三碘酰胺酰氯，原料廉价，易得，操作简单，收率高。

3. 根据权利要求 1 所述的一种合成碘普罗胺的新方法，其特征在于：步骤 (2) 中的催化剂为固体碱催化剂 ZrO₂·Cr₂O₃，其与 N-甲基-2,3-二羟基丙胺的摩尔比为 0.9 ~ 1.2。

4. 根据权利要求 1 所述的一种合成碘普罗胺的新方法，其特征在于：步骤 (2) 中的催化剂结构简单，易制备，且可直接循环使用 5 次以上，每重复使用 1 次，收率约下降 2%。

5. 根据权利要求 1 所述的一种合成碘普罗胺的新方法，其特征在于：步骤 (2) 中的催化剂能极大抑制二元对称副产物的生成。

6. 根据权利要求 1 所述的一种合成碘普罗胺的新方法，其特征在于：通过所述的步骤 (2) 得到的产品与四氢呋喃室温搅拌可进一步除去少量的二元对称副产物。

7. 所述的步骤 (3) 中的催化剂为碱金属或碱土金属的碳酸盐中的任意一种或几种的组合，其中优选碳酸钠，且其与式 (III) 化合物的摩尔比为 1 ~ 1.5。
说明书

一种合成碘普罗胺的新方法

技术领域

[0001] 本发明属于有机合成技术领域，具体涉及一种碘普罗胺的合成新方法。

背景技术

[0002] 碘普罗胺，化学名为N,N’-双(2,3-二羟基丙基)-2,4,6-三碘-5-[2-甲氧基乙酰胺基]-N-甲基-1,3-苯二甲酰胺，是由德国先灵葆雅公司研发的非离子型碘造影剂，1985年首次在德国上市，临床用于X线造影剂。碘普罗胺为非离子型碘造影剂，中文商品名为优维显或碘普胺，具有良好的安全性能与显像效果。目前该药被广泛地运用于血管造影、肾动脉造影、尿路造影、CT的对比增强检查，体腔显影等X线造影剂。作为水溶性造影剂，其水溶性大，黏度低，耐受性好，静脉注射毒性低，是一种较理想的CT增强扫描造影剂。

[0003] 对于碘普罗胺的合成，美国专利US4364921报道了三种合成方法，其中，以5-氨基-2,4,6-三碘酰胺酰氯为起始原料来合成的方法因工艺路线短，总收率高被认为是合成碘普罗胺最有效的方法。该工艺通过5-氨基-2,4,6-三碘酰胺酰氯与甲氧基乙酰胺反应，得到化合物B5-[(2-甲氧基乙酰胺基)-2,4,6-三碘酰胺酰氯]，化合物B在正丁胺等有机胺催化下与2,3-二羟基丙胺反应制得化合物C5-[(2-甲氧基乙酰胺基)-3-(2,3-二羟基丙胺基甲酰基)]-2,4,6-三碘苯甲酰氯，化合物C再与N-甲基-2,3-二羟基丙胺反应得到碘普罗胺。该工艺路线如下：

[0004]

在该工艺中，由于甲氧基乙酰胺酰氯性质活泼，不易运输和储存，价格昂贵；更大的缺点是由化合物B合成化合物C时，由于化合物B为二元对称酰氯，在以正丁胺等有机胺为催化剂的均相反应体系中存在竞争反应，从而产生大量的二元对称副产物5-[(2-甲氧基乙酰胺基)-1,3-双(2,3-二羟基丙胺基)-2,4,6-三碘酰胺酰胺]，化合物D的结构为：

[0005]

[0006]
所述的这个副产物 D 与主产物 C 很难分离，需使用大量有机溶剂的许多结晶和过滤等步骤来降低和除去这个副产物，因此，该工艺原料昂贵，步骤繁琐，成本高，收率低。

中国专利 CN102015624A 改进了除去副产物 D 的方法，是将得到的化合物 C 和副产物 D 的混合物与醋酸反应生成二酯 E，从而将副产物 D 与二酯 E 分离。二酯 E 与 N- 甲基 -2,3- 二羟基丙胺反应后得到的产物再在碱作用水解掉醋酸基得到碘普罗胺。

该工艺的方法能除去部分副产物 D，但于副产物 D 分子中也有 4 个羟基，也会与醋酸反应生成二酯和四酯等，这些酯仍然很难与二酯 E 分离，因此，除去二元对称副产物 D 的效果并不够理想。另外，还增加了两步反应，使工艺步骤繁琐，成本增加。

发明内容

本发明要解决的技术问题是克服现有制备碘普罗胺的技术中原料昂贵，易产生难以控制的杂质，生产成本高、操作复杂、不利于工业化大规模生产的缺陷，提供一种有效的制备碘普罗胺的方法，该方法原料易得，不易产生难以控制的杂质，反应条件温和、步骤简单、生产成本低，适合工业化生产。

本发明的技术方案概述如下：

步骤 (1)，将甲氧基乙酸与三光气反应后直接与 5- 氨基 -2,4,6- 三碘异酰酰氯一锅反应制得式 (II) 化合物 5-[(2- 甲氧基 ) 乙酰胺基 ]-2,4,6- 三碘酰酰酰氯 ; 步骤 (2)，式 (II) 化合物在催化剂作用下与 N- 甲基 -2,3- 二羟基丙胺缩合得到式 (III) 化合物 5-[(2- 甲氧基 ) 乙酰胺基 ]-3-2,3- 二羟基 -N- 甲基丙胺基甲酰氨 -2,4,6- 三碘苯甲酰酰氯 ; 步骤 (3)，式 (III) 化合物在催化剂作用下与 2,3- 二羟基丙胺缩合即制得式 (I) 化合物碘普罗胺。

合成路线为：
[0014] 步骤（1）中的反应以二氯甲烷为溶剂，廉价的甲氧基乙酸为起始原料，与三光气反应后蒸去溶剂不需分离纯化，直接与 5-氨基-2,4,6-三碘异酰酰氯一锅反应制得式（II）化合物 5-[(2-甲氧基)乙酰胺基]-2,4,6-三碘异酰酰氯，原料廉价、易得，操作非常简单，收率高。

[0015] 步骤（2）中的催化剂为固体碱催化剂 ZrO₂·Cr₂O₃，其与 N-甲基-2,3-二羟基丙胺的摩尔比为 0.9 ～ 1.2。

[0016] 该催化剂结构简单，用常规的实验方法很容易大量制备。反应后经过滤晾干后催化剂可直接循环使用 5 次以上，每重复使用 1 次，收率约下降 2%。

[0017] 由于该催化剂是粉状物，无机械强度低，不溶于有机溶剂中，使反应体系为非均相体系；还由于该催化剂易和上生成的二元对称副产物形成浆状物，抑制了进一步催化形成二元对称副产物的作用。因此，在步骤（2）中很少生成二元对称副产物。

[0018] 所述的步骤（2）中得到的产物通过与四氢呋喃室温搅拌可进一步除去少量的二元对称副产物。

[0019] 所述的步骤（2）中最合适的反应温度为 10℃～30℃。

[0020] 所述的步骤（3）中的催化剂为碱金属或碱土金属的碳酸盐中的任意一种或几种的组合，其中优选碳酸钠，且其与式（II）化合物的摩尔比为 1 ～ 1.5。

[0021] 本工艺的优点：副产物少，产品质量易控制，纯度高，所用的试剂价廉、易得，步骤少，操作简单，总收率较高。

具体实施方式

[0022] 下面结合实施具体实施例，进一步说明本发明。应理解，这些实施例仅用于说明本发明而未用于限制本发明的范围。

[0023] 实施例中所用的原料或试剂除特别说明之外，均市售可得。

[0024] 实施例 1 式（II）化合物 5-[(2-甲氧基)乙酰胺基]-2,4,6-三碘异酰酰氯的制备

[0025] 将 300mmol 甲氧基乙酸、110mmol 三光气和 300mL 二氯甲烷加入反应瓶中，于回流下搅拌 3h，减压蒸去溶剂，将反应瓶冷却到 15 ～ 20℃后将 200mmol15-氨基-2,4,6-三碘异酰酰氯和 150mL DMAC 加入，在此温度下继续搅拌 5h。将 700mL 二氯甲烷和 400mL 水加入，摇
拌0.5h。分出有机层，用饱和碳酸氢钠水溶液和蒸馏水分别洗涤有机层，用无水硫酸钠干燥后减压蒸去溶剂，得固体，收率90%。

【0026】实施例2式(III)化合物5-[(2-甲氧基)乙酰胺基]-3-(2,3-二羟基-N-甲基丙胺基甲酰基)-2,4,6-三磺苯甲酰氯的制备

【0027】将100mmol式(II)化合物、100mmol固体催化剂ZrO2-Cr2O3和200mLDMAC加入反应瓶中，将反应体系温度降为10～15℃，将90mmolN-甲基-2,3-二羟基丙胺慢慢滴入，滴完后在此温度下搅拌反应5h。将反应温度升至室温，过滤催化剂，催化剂晾干后可重复使用。减压蒸去溶剂，向残余物中加入400mL二氯甲烷，搅拌0.5h。过滤并收集析出的固体，向固体中加入300mL四氢呋喃，室温搅拌0.5h。过滤析出的固体，干燥得式(III)化合物，收率85%，用高压液相色谱纯度为98.5%。

【0028】实施例3式(I)化合物磷酸罗胺的制备

【0029】将100mmol式(III)化合物、120mmol碳酸钠、100mmol2,3-二羟基丙胺和150mLDMAC加入反应瓶中，室温搅拌2h，减压蒸去溶剂，向残余物中加入400mL水，用饱和氢氧化钠溶液调节至弱碱性后，依次用阳离子交换柱、阴离子交换柱洗脱。收集阴离子交换柱洗脱液，减压蒸去水，得白色固体，70℃下减压干燥得式(I)化合物，收率92%，用高压液相色谱纯度为99.7%。