
(19) United States
US 2006O164429A1

(12) Patent Application Publication (10) Pub. No.: US 2006/0164429 A1
Mantor et al. (43) Pub. Date: Jul. 27, 2006

(54) 3-D RENDERING TEXTURE CACHING
SCHEME

(76) Inventors: Michael Mantor, Orlando, FL (US);
John Austin Carey, Winter Springs, FL
(US); Ralph Clayton Taylor, Deland,
FL (US); Thomas A. Piazza, Granite
Bay, CA (US); Jeffrey D. Potter,
Winter Springs, FL (US); Angel E.
Socarras, Lake Mary, FL (US)

Correspondence Address:
BLAKELY SOKOLOFFTAYLOR & ZAFMAN
124OO WILSHIRE BOULEVARD
SEVENTH FLOOR
LOS ANGELES, CA 90025-1030 (US)

(21) Appl. No.: 11/344,030

(22) Filed: Jan. 30, 2006

Related U.S. Application Data

(63) Continuation of application No. 09/502.994, filed on
Feb. 11, 2000, now Pat. No. 7,050,063.

(60) Provisional application No. 60/119,681, filed on Feb.
11, 1999.

Publication Classification

(51) Int. Cl.
G09G 5/00 (2006.01)

g g

(52) U.S. Cl. .. 34.5/582

(57) ABSTRACT

A 3D rendering texture caching scheme that minimizes
external bandwidth requirements for texture and increases
the rate at which textured pixels are available. The texture
caching scheme efficiently pre-fetches data at the main
memory access granularity and stores it in cache memory.
The data in the main memory and texture cache memory is
organized in a manner to achieve large reuse of texels with
a minimum of cache memory to minimize cache misses. The
texture main memory stores a two dimensional array of
texels, each texel having an address and one of N identifiers.
The texture cache memory has addresses partitioned into N
banks, each bank containing texels transferred from the main
memory that have the corresponding identifier. A cache
controller determines which texels need to be transferred
from the texture main memory to the texture cache memory
and which texels are currently in the cache using a least most
recently used algorithm. By labeling the texture map blocks
(double quad words), a partitioning scheme is developed
which allow the cache controller structure to be very modu
lar and easily realized. The texture cache arbiter is used for
scheduling and controlling the actual transfer of texels from
the texture main memory into the texture cache memory and
controlling the outputting of texels for each pixel to an
interpolating filter from the cache memory.

US 2006/0164429 A1

@r

Patent Application Publication Jul. 27, 2006 Sheet 1 of 8

uloisÁS alpeo ainuxe.Lz ain??,

US 2006/0164429 A1

(09) Kuou@W 9?oeO Q.In?XOL

Patent Application Publication Jul. 27, 2006 Sheet 2 of 8

Patent Application Publication Jul. 27, 2006 Sheet 3 of 8 US 2006/0164429 A1

an acacao a

III | 9 ||

<C O < O <C | O <C O
H(e)--(E)--(e)--(E) a facara

Patent Application Publication Jul. 27, 2006 Sheet 4 of 8 US 2006/0164429 A1

Nalalala
. afaria

<-- Ul
g-a2 is a

g|
aaara

US 2006/0164429 A1 Patent Application Publication Jul. 27, 2006 Sheet 5 of 8

puOM pentO ?Iqnoq

Kloulow ºqoeO ?Inxo L 9 Qin?l?

US 2006/0164429 A1

US 2006/0164429 A1

88) IeSue IL

UI e IL (88) IeS

Patent Application Publication Jul. 27, 2006 Sheet 7 of 8

US 2006/0164429 A1

ZO I

00||

eaeSpoH edid

8 e5e)SpIOH edid oH

vese Spoh edid oH

Patent Application Publication Jul. 27, 2006 Sheet 8 of 8

US 2006/0164429 A1

3-D RENDERING TEXTURE CACHING SCHEME

0001. This application is a continuation of U.S. Ser. No.
09/502,994, filed on Feb. 11, 2000, entitled “3-D Rendering
Texture Caching Scheme', which is a non-provisional utility
application of U.S. Provisional Application No. 60/119,681
filed on Feb. 11, 1999.

BACKGROUND OF THE INVENTION

0002)
0003. The present invention generally relates to a Com
puter Graphics Processor (CGP) that has 3D rendering and
texturing capabilities and more particularly, to improve
ments in the method of rendering with application of texture
data. The invention will minimize the necessary external
bandwidth requirements for texture data and increase the
rate at which texture data is available for use in the CGP. The
invention also includes an apparatus for an implementation
of the methods described herein.

0004 2. Description of the Prior Art

1. Field of the Invention

0005 ACGP is commonly used for displaying images on
a display Screen that can be comprised of two dimensional
data and/or three dimensional graphical objects that are
rendered to a two dimensional Surface in memory. This
rendering is typically accomplished by breaking the previ
ously mentioned objects up into a series of polygons,
typically, triangles. At each vertex attribute values such as
color, lighting, fog, depth, etc. and texture coordinates are
assigned. By utilizing texture mapping in addition to
attribute interpolation Such as color, depth, lighting, fog,
etc., significant detail can be applied to each pixel of a
polygon to make them appear more realistic. The texture
map can combine a pattern or image with the interpolated
attributes of the polygon to produce a modified color per
pixel with the added detail of the texture map. For example,
given the outline of a featureless cube and a texture map
containing a wood-grain pattern, texture mapping can be
used to map the wood-grain pattern onto the cube. Typically,
a two-dimensional texture pattern is mapped or warped onto
a three-dimensional Surface. Perspective transformations are
used to calculate the addresses within the texture map of the
texels (pixels within the texture map) needed to render the
individual pixels of the primitive (triangle, Line, Point) on
the display screen. Once texture addresses have been cal
culated for each pixel to be rendered, the texture map which
is stored in a main memory are accessed, or fetched into a
cache on the CGP device. If the surface or triangle being
rendered with texture mapping is far from the viewpoint or
not perpendicular to the viewer, the projected pixel can
cover many texels in the texture map and severe aliasing of
the texture map data may occur. U.S. Pat. No. 4,727.365 to
Bunker et al. addresses this problem by pre-computing
multiple filtered copies of the texture map at successively
lower resolutions or levels of detail (LOD) to create an
image pyramid. These texture maps are organized in
memory as a three-dimensional array of texels indexed with
(U,V, LOD), where U is the horizontal coordinate and V is
the vertical coordinate within any map of the pyramid and
LOD selects the map within the pyramid. When a pixel is
projected into the finest LOD texture map, it may cover
many texels. The texture mapping techniques used will
compute a term labeled LOD. This LOD term is calculated
by log 2 of the ratio of some measure of projected pixel size

Jul. 27, 2006

relative to the texel size (of the finest map). This term is used
to select a pre-filtered map within the LOD pyramid to
minimize the time and/or hardware necessary for filtering
the map. This pre-filtered map selection will be affected by
the relative distances from the viewpoint to the object and
the angle between the object (triangle) normal and a bore
sight vector from the viewpoint to the object (triangle).
These relationships affect the relative size of the pixel
projection footprint into the texture map. The LOD selection
process will produce an integer part (used to select maps)
and fractional part (used to blend maps). High quality
texture mapping is obtained by performing a weighted
average interpolation Such as bilinear interpolation in the
map representing the integer LOD immediately above or
below the computed LOD for each pixel. In trilinear inter
polation, a linear interpolation using the fractional distance
between LOD's to perform a blend between the bilinear
interpolation results from both integer LODs above and
below the computed LOD to obtain the texture value for the
pixel.
0006 The problem with texture mapping systems that
accomplish the texture addressing and look-up in a brute
force method, is that the transfer of data between the various
processes require wide memory buses, multiple and/or
multi-ported memory Subsystems, and/or multiple dock
cycles to transfer the required data. Some of these systems
also are penalized with the time required to load the texture
maps or large chunks of the maps into a specialized memory
system prior to rendering of primitives that use it. Texture
mapping has been accomplished with special purpose
memory devices or a special purpose memory system that
can offer effective random access anywhere within a texture
map.

0007. The nature of texture mapping allows the texture
map coordinates to change in any direction, at any rate of
change while processing a triangle. This continual change of
address at any rate of change indicates that normally it
would be hard to cache texture memory with any efficiency
without a cache large enough to hold the entire texture map
with random access.

0008. In a line based rasterization system, pixels will be
rendered along the horizontal line of a triangle, while the
required texels from the texture map will follow some
diagonal line defined by the mapping of the texture on the
polygon and the position of the polygon in the screen. It is
this property that makes conventional caching schemes very
inefficient in line based systems, since there is very little data
coherency for a column or row based system.
0009. One such inefficient prior art system is disclosed in
U.S. Pat. No. 5,548,709. In this system, a static random
access memory cache is divided into two groups of parallel
LOD memories. Each of the two groups has four indepen
dent quads of memory. The four quads have independent
addressing so that each quad can walk in the scan direction
pre-fetching data that would be needed along the scan path.
While the data for recent texture maps are cached in order
to accelerate the reading of texels, the rate that texture
memory is accessed is still significantly too slow for the
speed required for today’s three-dimensional CGP.

SUMMARY OF THE INVENTION

0010. The present invention is a unique texture caching
scheme for a three-dimensional rendering system that capi

US 2006/0164429 A1

talizes on a span or area based polygon rasterization strategy
with texture data spatially stored in memory to create a
scenario where Successive pixels will use and reuse neigh
boring texels significantly. In addition, when prefiltered
texture mapping is used, as described in U.S. Pat. No.
4,727,365 to Bunker et al., the texel to pixel ratio will be
limited for any interpolation filtering (bilinear, trilinear,
etc.). This will cause overlapping samples to be reused more,
and thus, it will increase the effectiveness of local texel reuse
when employing the texture caching scheme of the present
invention.

0011 When processing successive pixels that are spa
tially related, the pixels will map to the same or neighboring
texels, enabling the inventive texture caching scheme to
store the least recently used cache lines to eliminate a
significant number of external memory read data operations.

0012. This new caching scheme will texture map at a
minimum, one pixel per dock at peak rates and can make use
of inexpensive external main memory devices. The mecha
nism efficiently pre-fetches data at the memory access
granularity from main memory and stores it in cache
memory. The organization of the cache is such that it
achieves a very large reuse of texels with a minimum of
cache memory. The novel caching technique of the present
invention achieves good caching coherency, minimizes
cache misses and utilizes inexpensive memory to achieve
high speed polygon texturing.

0013 The present invention contains the following fea
tures to obtain a significant reduction of the data fetch
operations that are necessary.

0014) a) Texture data is organized in memory to group
spatially related texels in the same unit of fetch and/or
memory page to maximize reuse of data and minimize
necessary internal storage, minimize the required fetching of
data and memory page change accesses penalties. A more
detailed description of this spatial tiling memory organiza
tion as set forth in provisional patent application entitled “A
Linear Surface Memory for Spatial Tiling Algorithm/
Mechanism', Ser. No. 60/080.270 filed on Apr. 1, 1998, the
entirety of which is incorporated herein by reference.

00.15 b) Texture data in memory is labeled and viewed in
a manner to illustrate mutual address exclusivity in order to:

0016 1. Steer each texture request (based on address
bits) to a set of segmented Least Recently Used (LRU)
controllers responsible for allocation within a given set
of cache lines.

0017 2. Separate the cache allocation process into
multiple small, fast, and easy to build LRU controllers
that compare and allocate per clock.

0018 3. Steer texture data based on address bits to
exclusive banks of cache to allow multiple neighboring
texel lookup per clock from single ported memories.

0.019 c) Area based rasterization order of screen pixels to
order neighboring pixels to be processed on consecutive
clocks while neighboring texels are still present in a small
cache to maximize reuse of data.

0020 d) Minimization of the texture data fetch granular
ity to the memory bus width to minimize speculative pre

Jul. 27, 2006

fetch penalties and maximize the use of limited local storage
for use and reuse of data stored.

0021 e) Utilize a least recently used replacement algo
rithm and controller that can maximize local reuse of data
because of spatial walking order before replacement.
0022 f) A small local texture cache that is organized in a
manner to improve the accessibility of texture data for
reading/writing and maximizing local reuse of data before
replacement.
0023 g) Storage of texture data in multi-purpose general
memory system that only requires data to be fetched when
necessary for texturing. This requires that the data can come
from a large variety of texture maps stored in the main
memory without any map pre-load penalties.
0024. The preferred embodiment of the present invention
can be realized when all of these ideas are coupled together
and optimized. Such a system will significantly minimize
the necessary external bandwidth requirements and increase
the rate at which texture data is available for use in the
texture mapping process.
0025 The present invention, by controlling and exploit
ing the relationships of texture data in main memory sig
nificantly increases the efficiency of a cache system. The
simplicity of the cache and controlling hardware necessary
for its operation, and the provision for fast read access for
multiple texels of data from the cache memory into an
interpolating filter make it realizable in silicon for texture
mapping. The present invention utilizes nine levels of (U. V.
LOD) address exclusivity in this scheme to segment and
simplify the cache and controlling hardware.
0026. In accordance with the memory organization
scheme of the present invention, when the texture data is
loaded into memory it is tiled so that both vertical and
horizontal texels are present in each fetch unit from the main
memory. Then the data in the two-dimensional array within
a fetch unit can be partitioned such that each texel is given
one of a number, N, of identifiers. The identifier of each texel
can be determined by the least significant bit of texel
addresses U and V. The texture cache memory is partitioned
such that it is organized into N banks, where each bank
contains texels transferred from the main memory that have
the corresponding identifier. In the preferred embodiment
using bilinear interpolation, the texture main memory
includes four identifiers and the texture cache memory is
partitioned into four banks. A unique organization technique
is provided so that for each pixel projected into a texture
map, the four surrounding texels will be one each of the four
identifiers. This will allow a one-clock access to get the
required set of four texels needed to perform bilinear inter
polation from the four-banked cache.
0027. A labeling scheme on a larger scale using one fetch
unit of multiple texels as a block each having a separate
identifier is also described. In the bilinear interpolation case,
the preferred embodiment will include four separate texel
block identifiers, where each block consists of one each of
the block identifier. The texture cache memory is partitioned
into a plurality of rows corresponding to a block texel
identifier. Each cache memory bank has at least one row
corresponding to each block identifier. In this embodiment,
this partitioning of data allows the cache controller to be
broken into four smaller controllers. In this case, the least

US 2006/0164429 A1

significant bits of U and V texture block addresses at the
fetch granularity are used to determine the type of texel
blocks needed. Once the particular texel block is deter
mined, the respective cache controller determines if the
block is in cache or is needed to be fetched from main
memory.

0028. The present invention provides a unique method of
viewing texture data in memory that is optimized for bilinear
interpolation filtering texture. The memory organization
scheme is extendable to handle trilinear interpolation or
multiple texture maps through a duplication of the cache
hardware. The tailored hierarchical texture cache scheme
greatly reduces memory accesses while holding cache
misses to a minimum. The scheme allows for minimal cache
storage requirements. The present invention maximizes
prefetching efficiency by the texel fetch granularity being
the same as memory bus width granularity.
0029. The segmentation of hardware created by the par
titioned view of texture data in memory exhibits extremely
balanced behavior. The block identifiers create checkerboard
pattern in memory that will be equally accessed for polygons
larger than one fetch block. By rasterizing in an area-based
method, each pixel will project to texels of one fetch block
type and then Successive pixels will map to texels of the next
block type prior to going back to the first type. With
horizontal and Vertical span rasterization movement, the
four block groups balance nicely. If the polygon is Smaller
than the fetch quantity, then the texture for the whole
polygon will fit into one cache entry and will only be fetched
once for the given polygon.

0030 The present invention includes multiple cache con
trollers that implement a one clock least recently used
algorithm for the efficient scheduling of texels to be mapped
onto the current pixel and issuing a fetch command for the
required data from the main memory.
0031. The cache memory control system of the present
invention also includes a cache read/write arbiter that effi
ciently transfers the data coming from main memory into the
texture cache. It also uses a look ahead mechanism to
schedule the data out of the cache memory to the interpo
lating filter relative to the data being loaded into the cache
in order to create a system that can Sustain the peak output
of one value per dock.
0032. The present invention also includes a multi-ported
cache for internal storage of texture data to be reused and
provides fast multiple-texel access per clock.

BRIEF DESCRIPTION OF THE DRAWINGS

0033 FIG. 1 is a block diagram of the basic components
of a Computer Graphics System containing a Computer
Graphic Processor (CGP).

0034 FIG. 2 is a block diagram of the texture cache
device of the present invention.
0035 FIG. 3 is a diagram showing the labeling of texels
within a texture map with four unique identifiers. It also
illustrates the mapping of a pixel into the texture map.
0.036 FIG. 4 is a diagram showing the organization of a
texture map in main memory by texel blocks and the
mapping of a pixel into the texture map.

Jul. 27, 2006

0037 FIG. 5 is a diagram depicting the memory orga
nization of the cache memory for texels transferred from the
main memory.
0038 FIG. 6 is a diagram showing the hierarchical cache
memory organization for a preferred embodiment having
four banks of memory and four texel blocks of main
memory.

0039 FIG. 7 is a schematic diagram of the cache con
troller of the present invention.
0040 FIG. 8 is a block diagram of the cache read/write
arbiter of the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0041 FIG. 1 illustrates a functional block diagram of a
computer display system. This system generally includes a
Central Processing Unit (CPU) 12, a bridge chipset 14, a
main memory 24, input devices 22, a display 18, a local
graphics memory 20, and a Computer Graphic Processor
(CGP) 16. The CGP16 determines the graphical information
to be sent to the display 18 based on inputs from the CPU
(12) and data in main memory (24) and local graphics
memory (20). The CPU (12) has access to data stored on
disk, networks, or CD-ROM, etc. and based on power on
sequences, programs booted at start up, and user inputs by
the input devices, the CPU (12) will determine the data
stream sent to the CGP (16). This data stream will be used
by the CGP (16) to create the desired image on the display
(18). The viewer is linked to the computer image generation
process through an input control device (22) Such as a
keyboard, mouse, joystick, etc.

0042. The CGP (16) described in this invention is large
and contains many functions, which includes three-dimen
sional rendering of polygons with texture and thus this
invention. For three-dimensional processing the CPU (12)
gets database information from one of its data inputs and
loads texture maps into main memory or local graphics
memory and then performs all preprocessing of database
information for the CGP (16). The CGP (16) then will
receive state data and triangle, line, or point (primitive)
information. From this input data the CGP (16) will deter
mine attribute data (such as diffuse red, green, blue colors,
alpha, fog, depth, texture coordinates, etc) for each pixel of
the primitive. The texture coordinate attributes and pixel
screen location is used to read texture, previous color and
depth information. All this data is then used to determine the
new color and depth of each pixel to be stored in either the
local graphics memory (20) or main memory (24). When all
the primitives have been rendered, the CPU (12) will sched
ule the resulting rendered scene to be displayed on the
display (18) if desired.
0043. The hardware for performing texture mapping is
contained within the CGP 16. When mip mapping or trilin
ear interpolation is enabled, the projected pixel size on the
texel map approaches a texel size of the properly selected
texture LOD. If the projected pixel increases or decreases in
size appreciably, the next level of detail texture resolution
map is used. This can be either a higher or lower map. The
system can be designed to guarantee that the projected pixel
size always remains less than one texel size. By maintaining
this relationship the system will result in texels very often

US 2006/0164429 A1

being reused in bilinear interpolation within each map level
for the pixels within a polygon. When using a span spatial
ordering approach to rendering groups of pixels within a
polygon, there will be created a texture coherency resulting
in multiple texel reuse.
0044) The three-dimensional texture caching scheme of
the present invention capitalizes on this reuse and locality of
the texture by organizing the main memory and cache
memory so that inexpensive memory devices can be used to
hold the texture maps and achieve fast and efficient access.
Cache size of about 256 bytes was found to be optimal for
most polygon texture rendering.
0045 Referring now to FIG. 2, there is shown a block
diagram of the three-dimensional texture caching system of
the present invention. The cache system 24 includes a cache
controller 26, a cache arbiter 28 and a texture cache memory
30. Also shown in FIG. 2 are a texture address calculator 32,
a texture main memory 34 and an interpolator 36. The
texture address calculator 32 calculates the texture memory
addresses (UV) for each pixel and also the specific LODs
from which the texture addresses are to be retrieved. The
cache controller 26 determines if the cache memory 30 will
contain the texture data for a given address or if it needs to
be fetched. It allocates space for new data to be fetched and
determines the location of the data required for each pixel to
pass tag data to the cache arbiter 28, which will be used to
schedule data entry and access from the cache memory 30.
The cache controller 26 also determines the order in which
data will be overwritten. Based on this determination, the
cache controller 26 fetches data from the texture main
memory 34 and transfers it into the appropriate addresses in
the texture cache memory 30 when that cache arbiter 28
determines the data located in that location is no longer in
use. In accordance with a preferred embodiment of the
present invention, the cache controller 26 is comprised of
four individual controllers 38, 40, 42 and 44, each of which
corresponds to the partitioning of data into four different
data groups in the texture main memory 34. This partitioning
of data also applies to the four memory banks in the texture
cache memory 30. The controllers 38, 40, 42, 44 regulate
and keep track of what is stored in the memory banks of the
cache memory 30. In the preferred embodiment, each of the
controllers contains four stages with each stage referencing
a double quad word in the respective cache memory bank.
The memory banks are organized into an array of W, X, Y
and Z. texel blocks, partitioned by A, B, C, and D texels in
each array. The cache arbiter 28 determines if it can write the
next data values into the cache without overwriting any data
that is still needed. Once the appropriate texture data is
determined to be present in the cache memory 30, the
controller outputs the appropriate texel data into the inter
polator 36 to perform the required interpolation such as
bilinear interpolation.

0046 FIG. 3 shows a texture map that is to be stored in
main memory 46 being partitioned by labeling or identifying
each texel with four different identifiers. As shown, texels
are labeled A, B, A, B etc. across every even row of the map
and likewise C, D, C, D etc. across every odd row of the
map. This organization results in an interesting relationship
when bilinear interpolation is performed. After mapping a
pixel into the texture map, the texture addresses to the texels
that Surround the mapped pixel result in a group of texels, no
matter what four are selected, that will always be consisting

Jul. 27, 2006

on one A, one B, one C, one D type of texel. This allows the
organization of texel types in cache memory to be in banks
so that all four texels that are needed for a pixel can be
accessed in one dock cycle. This is accomplished by putting
all A types in one bank, all B types in another bank, C types
in a third bank, and D types in a fourth bank. The mapping
of pixel 48 into texture map 46 is an example showing that
one of each texel type will be selected for bilinear interpo
lation.

0047 As can be seen in FIG. 3, a texture map in main
memory 46 contains an array of texels 50 having addresses
that arranged in rows and columns. Since there is a plurality
of even numbered rows and columns and a plurality of odd
numbered rows and columns of texels, each of the texels 50
have a per texel memory identifier A, B, C, D attached to
each address in accordance with the following criteria:
0048. The first identifier A being assigned to texels that
have addresses in both even rows and even columns;

0049. The second identifier B being assigned to texel that
have addresses in both even rows and odd columns;

0050. The third identifier C being assigned to texels that
have addresses in both odd rows and even columns and;

0051. The fourth identifier D being assigned to texels
having addresses in both odd rows and odd columns.
0052 The same organization technique can be applied on
a large scale to a group or block of texels. As shown in FIG.
4, each of these texel blocks 52 are comprised of a 2x4 group
of eight texels when sixteen bit texels are used. The blocks
52 are provided with four labels, W, X, Y, Z. Each of these
texel blocks 52 can then be cached into separate sections of
addresses within the cache memory and can be provided
with separate controllers for allocation and access.
0053. In accordance with the present invention, an opti
mal texture block size can be determlined to simplify cach
ing. From a topological point of view and from the random
nature of the alignment of texels and pixels, the following
relationship should be satisfied in order to maintain good
texture coherency. First, the texel block arrangement should
be compact such as a square or at most a two to one aspect
ratio rectangle. Second, the texel block size should be
compatible or multiples with the texture data transfer size
per dock. Third, the texture main memory array should be
organized so that it can be retrieved one block at a time from
a single page of memory to allow the use of inexpensive
memory devices. For example, if the bus width for transfer
of data from main memory to cache memory is 128 bits wide
per clock cycle, the number of transfers per request and the
texel depth (size in bits per single texel) determines the
organization. Iftexels are 8, 16 or 32 bits and the number of
transfers per request is 1 then the optimal block sizes are
4x4, 2x4, and 2x2 respectively. The texture main memory
array can be made from inexpensive memory devices
because the data is organized for continuous block transfer
per clock cycle.

0054 Bilinear interpolation requires up to four texels be
blended in order to render one pixel. If all the pixels in a
Small spatial square of the primitive are processed sequen
tially followed by the pixels by the next small spatial square,
the four texels required for each neighboring pixel have
tremendous overlap. This enables a small texture cache store

US 2006/0164429 A1

and reuse the most recently used texel data for neighboring
pixels over and over. This small texture cache allows the
reduction of random access data needed from external
memory from four texels per pixel to less than or equal one
texel per pixel. Bilinear interpolation requires more than one
texel to render a single pixel as shown in FIGS. 3 and 4. It
is possible, therefore, that the mapping of the pixel in the
texture map will cross multiple texture blocks as shown in
FIG. 4. This situation is accommodated by the present
invention by providing multiple numbers of texel blocks in
the cache memory without an overall increase in texture
block accesses. The partitioning in accordance with the
present invention provides for both easy access using a
minimum amount of decoding logic and retains enough
memory in the cache for minimizing cache misses. Using the
texel block caching scheme of the present invention with
bilinear interpolation the worst case condition is shown in
FIG. 4 in which the pixel 56 covers four texels A, B, C, D
and fourtexel blocks W, X, Y and Z. Note: the condition that
requires all four blocks to be fetched can only happen at the
start of a primitive, in all other sequences, the neighboring
pixel processed prior to this one would have required part of
the data to be fetched.

0055 As shown in FIG. 5, when texture data is moved
from texture main memory to texture cache memory, the
texels 50 undergo a conversion or reorganization. They are
stored in the texture main memory array so that a double
quad word contained in texel block 52 can be accessed and
sent across the bus 64. The texture cache memory storage
requires a reorganization of the elements so that they are
stored in a form necessary for access per clock cycle in the
bilinear texture interpolator. This is achieved by storing the
texels of the double quad word in four cache memory banks
56, 58, 60, 62. A double quad word is made up of an even
and an odd part. The A texels of double quad word 52 are
stored in bank A, the B texels are stored in bank B, the C
texels are stored in bank C and the D texels are stored in
bank D.

0056. As shown in FIG. 6, the double quad words that are
accessed and transferred from texture main memory are
loaded into one of 16 different tag locations in the texture
cache memory. The cache memory storage organization is
indexed by three parameters, which are:
0057) 1. W, X, Y and Z:
0.058 2. Tag 0, tag 1, tag 2, and tag 3; and
0059) 3. A, B, C, and D.
0060. The texture cache memory 64 and cache controller
work together as memory storage and address decoder,
respectively. When the cache controller is presented with a
U, V and LOD it responds with the proper tags where the
proper A, B, C, and D texels can be retrieved from in the
cache memory 64. This retrieval process can happen per
clock since the data has been pre-fetched and is residing in
the texture cache memory. The cache controller uses the
texture addresse=s most significant bits to determine its
location and hit, miss information, while the selection of the
unique location of the A, B, C, and D types, and the partition
block descriptor W, X, Y, Z is determined from the least
significant bits.
0061 FIG. 6 shows the implementation preferred for use
with bilinear interpolation, in which there are four banks of

Jul. 27, 2006

memory, 56,58, 60, 62, one for each A, B, C, and D texels.
There are four rows of data corresponding to the four cache
controllers labeled W, X, Y, and Z. Each row has four
Sub-rows identified by tags 0, 1, 2, and 3. Each tagged
Sub-row has an odd and even Sub-row associated with it.
This brings the total number of texels stored in cache
memory to 128 16-bit texels.

0062 Each cache controller provides the mapping from
U, V, and LOD to the proper tag location for access to
necessary A, B, C, and D texels=. This is performed by the
four stages in each cache controller.

0063. When the cache is properly index by the cache
arbiter 28 in FIG. 2, it returns four texels one each of A, B,
C, and D.

0064. The cache controller system is made up of four
separate controllers one for each the W, X, Y and Z partition.
Each one of these controllers contains four stages. With each
stage referencing a double quad word in the cache memory
bank. The banks are organized into an array of W, X, Y, and
Z partitioned by A, B, C, and D texels. The controllers
regulate and keep track of what is stored in the cache
memory banks. There is a separate cache controller for each
of the W, X, Y, and Z partitions. The description of each of
the four controllers is the same, so only one need be
described.

0065 FIG. 7 shows one such controller 66. The control
ler 66 is made up of stages 68, numbered 1 through 4. A
single stage stores the most significant bits of the U and V
address necessary to determine a single quad word. Along
with this information is the LOD map that is being accessed.
A tag 70 for each stage is used to locate where in the cache
memory that the single quad word is being Stored. All tags
70, and U, V, and LOD information 72 move among the four
stages 68 as new pixels are rendered with the texels stored
in the cache.

0066. The controller 66 uses a flush signal 74 when all the
controllers are to be cleared. This happens during startup or
when a polygon with a different texture map is rendered. All
data is made invalid (valid flag 76 is set to 0). Each time a
valid set of address data (U, V, and LOD) enters the cache
controller (CC) input unit 78, it is checked against each one
of the stages 70 starting with stage 1 and ending with stage
4. The CC 66 incorporates a least recently used algorithm.
The best way to explain how this algorithm works is to work
through a series of operational scenarios.

0067. The least recently used algorithm=’s main objec
tive is to keep information around as long as possible so that
it may be reused by future pixels. At the same time new
storage must be freed up to allow for new pixel rendering
texel requirements. The left most stage 68, stage 1, is the
position in the CC 66 where the most recently used texel is
located. The right most stage 68, stage 4, is where the least
most recently used texel is located.

0068 What follows is a series of scenarios to show the
operation of the CC 66.

0069. 1. Initialize the CC 66. Here, the flush line 74 is
set and each stage 1 through 4 dears its contents. The
stages 68 are loaded with their default tags 70: stage
1-0(00), stage 2-1 (01), stage 3-2(10), and stage 4-3(11).

US 2006/0164429 A1

0070) 2. Load information into CC 66. The first set of
parameters; U, V, and LOD enters the CC input 78 and
they are sent down the line 80 to each stage 68. All
stages are checked and contain invalid flags so no hits
will be reported. Stage 1 is loaded with the parameters
and the tag does not move. Next the tag from stage 1
leaves the CC 66 on line 84 and sent to the cache arbiter
and fetch logic. Since no hit flags were set, a request is
issued by the fetch logic for the corresponding double
quad word from texture main memory to be put into the
tag location in the cache memory.

0071 3. Load another piece of Information into CC 66.
In this process the CC 66 has information in stage 1 and
the rest of the stages are marked invalid. The param
eters come out from the CC input 78 and are checked
against the first stage, stage 1. If this matches the tag
stays put, the hit flag is set which prevents data from
being retrieved from the texture main memory array. If
the parameters do not match then the information has to
be shuffled. Stage 1 responds by Hit 1 being equally
false (i.e. there is no match in Stage 1) and, therefore,
move to the next stage. Stage 2 is checked next. The
checking of Stage 2 has three possible outcomes. They
are a) the invalid flag is on, b) the parameters match, c)
the parameters do not match. If case a) is true, the
information from stage 1 is moved to stage 2 including
the tag. Next the parameters from CC input 78 are
loaded into stage 1 and the tag in stage 2 is moved into
stage 1. The double quad word is retrieved from the
texture main memory array because no hit flags are set
and put into the cache memory at stage 1's tag location.
This retrieval happens after the parameters are shuffled.
If case b) is true, the same thing happens as in case a)
but this time no double quad word is retrieved from the
texture main memory array, since a hit occurred and the
double quad word is already at the tag location. If case
c) is true the next stage, stage 3 is checked to see if one
of the same conditions a), b) or c) are true. The same
action happens as that for stage 2 with the exception
that when the data is moved, all information including
the tags are moved from stage 1 to stage 2, from stage
2 to stage 3. But only the tag from stage 3 is moved to
stage 1 and rest of the parameters are loaded from the
CC input 78. This process always puts the most
recently requested data at the front of the chain and the
least most recently used data at the end.

0072 4. CC 66 is full with valid data at each stage, and
new information is loaded in CC 66. This case is similar
to the above cases where the data is shuffled and if no
hit is found then a new double quad word is retrieved
and the least most recently used data (oldest data) in
stage 4 is scheduled to be overwritten in the cache. The
action is first check stage 1, next 2, next 3 and last stage
4. Since the information was not found and all valid
flags are set, data in stage 4 must be cleared or
overwritten. First all the stages move their data one
stage to the right and the tag in stage 4 is moved to stage
1 where it is joined with the new parameters in CC
input 78. This action has replaced the oldest tag with
new data and moved it to the front to become the
newest or most recently used data. A request is sent out
to the texture main memory array to retrieve the

Jul. 27, 2006

corresponding new double quad word and it is put into
the stage 1 tag's location. Previously this tag location
was stored in stage 4.

0073. These scenarios show the operation of the least
most recently used cache algorithm. The CC 66 contains a
tag and parameter data (U, V, and LOD). This data is used
to write and read the texel information in the cache memory.
0074) Gate 86 is needed to feedback the tag stored in the
stage where U, V & LOD are found to match or the least
recently used stage, i.e. the last stage. Element 88 provides
for the right shift of all data, U, V, & LOD and tags from
Stage 1 to 2. Stage 2 to 3 and Stage 3 to 4 where necessary.
Element 90 is a not gate that inverts the hit signal. Hold 1.
2, 3, 4 are the transfer controls. Hit 1, 2, 3, 4 indicates if U,
V., & LOD were found in the associated stages.
0075 FIG. 8 is a block diagram of the cache arbiter 92.
The cache arbiter 92 controls the loading through write
control 102 and accessing through read control 100 of the
cache memory 30 based on the pixel texturing requirements.
These pixels reside in the pipeline. The read FIFO 94
provides a stream of pixels that are needed to be texture
mapped. Stored in FIFO 94 is enough information to tell
what texels are needed for each pixel and which controllers
sections W, X, Y, and Z of the cache need to be loaded prior
to the processing of the current pixel.

0076) The read fifo 94 has enough depth to hide the
latency of the texture access from main memory. Enough
stages of pipelining within the cache arbiter 92 are provided
so that texture data per pixel can be loaded sequentially
ahead of when the pixel actually reads texture data from the
cache. As the data for a given pixel enters the arbiter 92, all
fetch or read data requests to move data into the cache are
completed unless there is a conflict with cache locations for
pixels with pending read request that are still in the pipeline.
In the event of a conflict, the loading of the data is stalled
until the pixels in front of the current load are sent to the
interpolator process and the conflict over the cache location
has been removed. Also, if the data necessary for the pixel
to be sent to texture interpolation process has not been
loaded into the cache when the pixel has reached the last
pipe stage, it will be held there until all the data needed has
been loaded into the cache.

0077. There are two kinds of hold pipes in the arbiter 92.
The first type is the normal hold pipe stages 96. They are
initially entered as texel read request are made. The initial
stages can be simplified because a conflict is not possible for
at least n clocks, where n is the number of stages with in the
cache controller. A cache controller would have to miss
(n+1) consecutive compares before it can reallocate a given
cache location. Next, the data enters the hot pipe stages 98.
In the hot pipe stages 98, it is determined if a cache slot tag
is available in the proper cache (W, X, Y and Z) for the
arriving texels. If so, the corresponding pipe stage is updated
to indicate the needed data was written to the cache, and the
texel data is stored in the cache memory at the available tag
location specified by the controller. If no space is available
(still in use) it is the responsibility of the hot pipe stage 98
to stall the storage of the texel and a texel loading clock time
is missed.

0078 Since it can take eight dock cycles in a worst case
to load all the data necessary for one pixel, a conflict may

US 2006/0164429 A1

cause a missed pixel processing clock cycle. This can only
happen in Very special cases; e.g. starting up a new polygon,
when the LOD changes on a polygon or when in a non-LOD
mode.

0079 Through an exhaustive series of simulations it has
been shown that very few dock cycles are missed and the
process seldom requires clock delays. Most of the time the
data is already in the cache waiting to be used. This fact is
due to the nature of the texture and pixel coherency.
0080 While it is apparent that the invention herein dis
closed is well defined to fulfill the objectives previously
stated, it will be appreciated that numerous modifications
and embodiments may be devised by those skilled in the art,
and it is intended that the appended claims cover all Such
modifications and embodiments as fall within the true spirit
and scope of the present invention.

1. A computer graphics processor system having the
capability of mapping texture onto a three dimensional
object in a scene being displayed, the system comprising:

a texture address calculator for generating texel addresses
for a list of primitives being processed;

a texture main memory containing an array of texels, each
texel having an address and one of N identifiers:

a texture cache memory having addresses partitioned into
N banks, each bank containing texels transferred from
said main memory that have the corresponding identi
fier.

a texture cache controller for determining and requesting
the necessary transfer of texels from said texture main
memory addresses to said texture cache memory
addresses; and

a texture cache arbiter for Scheduling controlling the
actual transfer of texels from said texture main memory
into the texture cache memory and controlling the
outputting of texels for each pixel to a interpolating
filter from the cache memory.

2. The system of claim 1, wherein the system further
includes a texture addressing scheme for organizing the
array of texels in main memory to group spatially related
texels in one memory page.

3. The system of claim 2, wherein the system further
includes a span based polygon rasterization scheme so
neighboring pixels of a primitive will be processed sequen
tially.

4. The system of claim 3, wherein the texture mapping
capability includes storing pre-filtered texture maps at dif
ferent resolutions and bilinear interpolation texture filtering.

5. The system of claim 2, wherein said texture main
memory contains an array of texels having addresses
arranged in rows and columns, there being a plurality of
even numbered rows and columns and a plurality of odd
numbered rows and columns of texels, said texels having a
per texel cache memory identifier attached to each address
in accordance with the following criteria: a first identifier
being assigned to texels that have addresses in both even
rows and even columns of said main memory; a second
identifier being assigned to texels that have addresses in both
even rows and odd columns of said main memory, a third
identifier being assigned to texels that have addresses in both
odd rows and even columns of said main memory, and a

Jul. 27, 2006

fourth identifier being assigned to texels having addresses in
both odd rows and odd columns of said main memory.

6. The system of claim 5, wherein said texture cache
memory is arranged in four banks of memory in accordance
with the following criteria: a first bank containing texels
having the first identifier, a second bank containing texels
having the second identifier; a third bank containing texels
having the third identifier, and a fourth bank containing
texels having the fourth identifier.

7. The system of claim 1, wherein N is equal to four and
said texture main memory is organized into a plurality of
texel blocks each having one of four block texel cache
memory identifier in accordance with the following criteria:
each texel block consisting of at least one group of four
contiguous texels, the texels in each group consisting of one
of each of the per texel cache memory identifiers, and
wherein said texture cache memory being partitioned into a
plurality of rows corresponding to said plurality of block
texel cache memory identifiers, each cache memory bank
having at least one row corresponding to each of the four
block texel cache memory identifiers.

8. The system of claim 1, wherein said cache controller
includes N Stages.

9. The system of claim 7, wherein said cache controller
includes four stages, each stage controlling the transfer of
texels for one of the four block texel cache memory iden
tifiers.

10. The system of claim 9, wherein the cache controller
transfers texture data at the main memory access granularity.

11. The system of claim 10, wherein each of said four
stages is a least recently used controller coupled in Succes
sion thereby transferring texels according to a least recently
used replacement algorithm.

12. The system of claim 11, wherein the cache controller
pre-fetches necessary neighboring texels from main memory
for the bilinear texture filtering.

13. The system of claim 9, wherein the texture cache
memory is a multi-ported cache memory enabling multiple
texel accesses per clock.

14. The system of claim 1, wherein the cache read/write
arbiter is coupled between said cache controller and said
texture cache memory for determining which texels in the
cache memory can be overwritten when new texels are
determined to be transferred to said cache memory by said
cache controller.

15. The system of claim 14, wherein said cache read/write
arbiter transferS data according to a look-ahead algorithm to
hide read and write access clocks between sequential pixels.

16. The system of claim 7, wherein said texel blocks in
said main memory each consist of a double quad word of
data.

17. The system of claim 7, wherein each row of said cache
memory consisting of four Sub-rows of data, each Sub-row
consisting of a pair of an even Sub-row and an odd Sub-row,
each double quad word being stored in one pair of said even
and odd Sub-row of said cache memory.

18. A method of controlling the transfer of texture data
between a texture main memory and a texture cache memory
while maintaining the most recently used data in the texture
cache memory comprising the steps of

(a) receiving texture addresses for a first pixel, checking
if the addresses match the addresses in a first stage of
a multi-stage cache controller and doing one of the
following, (1) loading the addresses in the first stage if

US 2006/0164429 A1

there is no valid address in the first stage (2) reloading
the addresses in the first stage if a match is found or (3)
moving to a second stage if no match is found;

(b) if step (a)(1) is true transferring the corresponding
texture data from main memory into cache memory
with a first tag:

(c) if step (a)(2) is true, making no transfer of texture data
because data has already been transferred;

(d) if step (a)(3) is true, checking if the addresses match
the addresses in the second stage and doing one of the
following (1)if there is no addresses in the second stage
moving the addresses from the first stage to the second
stage and loading the addresses into the first stage (2)
if a match is found moving the addresses from the first
stage to the second stage and loading the addresses into
the first stage (3) moving to a third stage if no match is
found;

(e) if step (d)(1) is true transferring corresponding texture
data from the main memory into the cache memory
with a second tag:

Jul. 27, 2006

(f) if step (d)(2) is true making no transfer of texture data
because data has already been transferred;

(g) if step (d)(3) is true, repeating step (d) for Subsequent
stages and using Subsequent tags where necessary, until
a last stage been checked or until a match has been
found;

(h) if the last stage has been checked and no match found
loading the addresses into the first stage and moving the
stored addresses to the next stage in sequence and
overwriting the addresses from the last stage; and

(i) if step (h) is true transferring corresponding texture
data from the main memory into cache memory with
the tag of the last stage addresses;

() wherein when addresses are loaded into the first stage
the tag assigned will be either the tag of the last stage
or the tag within the stage that was hit.

