发明名称
装卸机构和内窥镜

摘要
本发明提供装卸机构和内窥镜，其能够容易且顺畅地进行装卸，装卸机构具有凸状和凹状的卡合部(66a、66b)，凸状和凹状的卡合部分别设置于第一和第二联轴器(64a、64b)，并分别在第一和第二轴部(62a、62b)的径向上延伸，凸状的卡合部(66a)能够沿凹状的卡合部(66b)的长度方向，相对于凹状的卡合部可滑动地插拔。凸状和凹状的卡合部分别具有基准位置，基准位置，凸状和凹状的卡合部的长度方向分别与第一和第二本体部的装卸方向一致并可相互插拔。装卸机构还具有引导机构(74、80a、80b)，引导机构与第一和第二本体部的装配或拆卸联动地对一个卡合部(66a)进行引导，从而使一个卡合部配置在基准位置上。
1. 一种装卸机构，其特征在于，该装卸机构具备：
 第一本体部；
 第一轴部，该第一轴部具有前端部和基端部，上述第一轴部的基端
 部能够以上述第一轴部的中心轴为旋转轴旋转地支承在上述第一本体部
 上；
 第一联轴器，其设置于上述第一轴部的前端部；
 凹状的卡合部，该卡合部设置于上述第一联轴器，沿上述第一轴部
 的径向延伸；
 可与上述第一本体部装卸的第二本体部；
 第二轴部，该第二轴部具有前端部和基端部，上述第二轴部的基端
 部能够以上述第二轴部的中心轴为旋转轴旋转地支承在上述第二本体部
 上；
 第二联轴器，其设置于上述第二轴部的前端部；以及
 凸状的卡合部，该卡合部设置于上述第二联轴器，沿上述第二轴部
 的径向延伸，
 上述凸状的卡合部能够沿着上述凹状的卡合部的长度方向相对于上
 述凹状的卡合部可滑动地插拔，
 上述凸状和凹状的卡合部分别具有基准位置，在该基准位置，上述
 凸状和凹状的卡合部的长度方向分别与上述第一和第二本体部的装卸方
 向一致并可相互插拔，
 上述装卸机构还具备引导机构，该引导机构与上述第一和第二本体
 部的装配或拆卸联动地对一个卡合部进行引导，以使上述一个卡合部配
 置在上述基准位置上。

2. 根据权利要求 1 所述的装卸机构，其特征在于，
 上述引导机构具有：引导部，其形成在上述一个卡合部上；以及引
 导承受部，其设置在设有另一个卡合部的另一个本体部上，对上述引导
 部进行引导。
3. 根据权利要求 2 所述的装卸机构，其特征在于，
上述引导机构在装配上述第一和第二本体部时，对上述一个卡合部进行引导。

4. 根据权利要求 3 所述的装卸机构，其特征在于，
上述凸状的卡合部具有：在上述凸状的卡合部位于基准位置的情况下配置在上述第一本体部的装配方向的后端侧的宽幅部；以及配置在前端侧且宽度比上述宽幅部的宽度窄的窄幅部。

5. 根据权利要求 3 所述的装卸机构，其特征在于，
上述引导部在上述一个卡合部中形成在下述一侧，即，在上述一个卡合部位于基准位置的情况下配置在设有上述一个卡合部的本体部的装配方向的后端侧的一侧。

6. 根据权利要求 2 所述的装卸机构，其特征在于，
上述引导机构在拆卸上述第一和第二本体部时对上述一个卡合部进行引导。

7. 根据权利要求 6 所述的装卸机构，其特征在于，
上述引导承受部在上述第一或第二本体部的拆卸方向上，配置在比上述另一个卡合部更靠近前端侧的位置，
在上述另一个卡合部与上述引导承受部之间，形成有上述引导部可沿上述引导承受部移动的空间部。

8. 根据权利要求 1 所述的装卸机构，其特征在于，
一个联轴器被设置为，能够相对于设有上述一个联轴器的一个轴部在径向滑动，

所述装卸机构还具备密封部件，该密封部件设置在上述一个联轴器与设有上述一个联轴器的一个本体部之间，围绕上述一个轴部，并与上述一个联轴器和上述一个本体部中的至少一方可滑动地进行面接触。

9. 根据权利要求 8 所述的装卸机构，其特征在于，
上述密封部件设置于上述一个联轴器的外周部。

10. 根据权利要求 1 所述的装卸机构，其特征在于，
一个联轴器的硬度大于另一个联轴器的硬度。
11、根据权利要求 10 所述的装卸机构，其特征在于，上述一个联轴器和上述另一个联轴器的材料互不相同。

12、根据权利要求 10 所述的装卸机构，其特征在于，上述一个联轴器和上述另一个联轴器的表面处理互不相同。

13、一种内窥镜，其特征在于，该内窥镜具备可相互装卸的驱动单元和插入部，并设有权利要求 1 至 9 中的任一项所述的装卸机构，上述驱动单元具有使一个轴部旋转的驱动部，上述插入部具有通过另一个轴部的旋转而进行弯曲动作的弯曲部。

14、一种内窥镜，其特征在于，该内窥镜具备可相互装卸的驱动单元和插入部，并设有权利要求 10 至 12 中的任一项所述的装卸机构，上述驱动单元具有使一个轴部旋转的驱动部和上述一个联轴器，上述插入部具有通过另一个轴部的旋转而进行弯曲动作的弯曲部和上述另一个联轴器。
装卸机构和内窥镜

技术领域
本发明涉及装卸机构和具备该装卸机构的内窥镜，该装卸机构具有伴随主动侧本体和从动侧本体的装卸而相互连接、分离的主动侧联轴器和从动侧联轴器。

背景技术
以往，使用具有伴随主动侧本体和从动侧本体的装卸而相互连接、分离的主动侧联轴器和从动侧联轴器的装卸机构。
例如，专利文献1和2中公开了具有这种装卸机构的内窥镜。这些内窥镜具有可相互装卸的电动机单元和插入部。在电动机单元中，在主动侧轴部的前端部上同轴地连接有圆板形的主动侧联轴器。另一方面，在用于插入体腔内的细长的插入部中，在其前端部，在从动侧轴部的前端部上同轴地连接有圆板形的从动侧联轴器，在该插入部的前端部配设有通过从动侧轴部的旋转而进行弯曲动作的弯曲部。
在专利文献1的装卸机构中，在主动侧联轴器的末端面上，沿主动侧轴部的径向延伸有卡合凹部，在从动侧联轴器的末端面上，沿从动侧轴部的径向延伸有卡合凸部，卡合凸部能够沿卡合凹部的长度方向可滑动地相对于卡合凹部插拔。通过相对于卡合凹部插拔卡合凸部，从而主动侧联轴器和从动侧联轴器相互连接、分离。
在专利文献2的装卸机构中，在主动侧和从动侧联轴器的末端面上，分别沿周向依次配设有卡合凹部和卡合凸部。并且，在插入部的从动侧联轴器的预设的卡合凸部的末端面上设置有销，在电动机单元上配设有效引导件。在装配电动机单元和插入部的情况下，在使主动侧联轴器和从动侧联轴器以相互面对的方式移动时，从动侧联轴器的销由电动机单元的销引导件进行引导，从动侧联轴器的卡合凹部和卡合凸部与主
动侧联轴器的卡合凸部和卡合凹部面对面配置，进而通过操作卡合/分离按钮，主动侧联轴器沿轴向从动侧联轴器移动，主动侧联轴器和从动侧联轴器连接起来。另一方面，在拆卸电动机单元和插入部的情况下，通过操作卡合/分离按钮，主动侧联轴器沿轴向从动侧联轴器移动，主动侧联轴器和从动侧联轴器分离。

专利文献 1：日本特开 2002-224016 号公报
专利文献 2：国际公开第 2006/59721 号小册子

在专利文献 1 的装卸机构中，在装卸电动机单元和插入部的情况下，需要将卡合凹部和卡合凸部配置在它们的长度方向与装卸方向一致且可相互插拔的基准位置后，进而在装配时将卡合凹部和卡合凸部相互对位，同时进行卡合凹部和卡合凸部的插拔，电动机单元和插入部的装卸变得麻烦。

在专利文献 2 的装卸机构中，在装卸电动机单元和插入部时，需要操作卡合/分离按钮，使主动侧联轴器和从动侧联轴器相互在轴向移动，另外，在拆卸时，需要调节从动侧联轴器的旋转位置以使从动侧联轴器的销能够通过销引导件，电动机单元和插入部的装卸变得麻烦。

发明内容

本发明是着眼于上述课题而完成的，其目的在于，提供能够容易且顺畅地进行装卸的装卸机构。

在本发明的第一实施方式中，装卸机构的特征在于，该装卸机构具备：第一本体部；第一轴部，该第一轴部具有前端部和基端部，上述第一轴部的基端部能够以上述第一轴部的中心轴为旋转地支承在上述第一本体部上；第一联轴器，其设置于上述第一轴部的前端部；凸状的卡合部，该卡合部设置于上述第一联轴器，沿上述第一轴部的径向延伸；可与上述第一本体部装卸的第二本体部；第二轴部，该第二轴部具有前端部和基端部，上述第二轴部的基端部能够以上述第二轴部的中心轴为中心旋转地支承在上述第二本体部上；第二联轴器，其设置于上述第二轴部的前端部；以及凹状的卡合部，该卡合部设置于上述第二联轴器，
沿上述第二实施部的径向延伸，上述凹状的卡合部能够沿着上述凹状的卡合部的长度方向相对于上述凹状的卡合部可滑动地插拔，上述凹状和凹状的卡合部分别具有基位位置，该基位位置，上述凹状和凹状的卡合部的长度方向分别与上述第一和第二本体部的装拆方向一致并可相互插拔，上述装拆机构还具备引导机构，该引导机构与上述第一和第二本体部的装拆或拆卸联动地对一个卡合部进行引导，以使上述一个卡合部配置在上述基位位置上。

在本发明的第二实施方式中，装拆机构的特征在于，上述引导机构具有：引导部，其形成在上述一个卡合部上；以及引导承受部，其设置在设有另一个卡合部的另一个本体部上，对上述引导部进行引导。

在本发明的第三实施方式中，装拆机构的特征在于，上述引导机构在装配上述第一和第二本体部时，对上述一个卡合部进行引导。

在本发明的第四实施方式中，装拆机构的特征在于，上述凹状的卡合部具有：在上述凹状的卡合部位于基位位置的情况下配置在上述第一本体部的装配方向的后端侧的宽度部；以及配置在前端侧且宽度比上述宽度部的宽度窄的窄幅部。

在本发明的第五实施方式中，装拆机构的特征在于，上述引导部在上述一个卡合部中形成在下述一侧，即，在上述一个卡合部位于基位位置的情况下配置在设有上述一个卡合部的本体部的装配方向的后端侧的一侧。

在本发明的第六实施方式中，装拆机构的特征在于，上述引导机构在拆卸上述第一和第二本体部时对上述一个卡合部进行引导。

在本发明的第七实施方式中，装拆机构的特征在于，上述引导承受部在上述第一或第二本体部的拆卸方向上，配置在比上述另一个卡合部更靠近前端侧的位置，在上述另一个卡合部与上述引导承受部之间，形成有上述引导部可沿上述引导承受部移动的空间部。

在本发明的第八实施方式中，装拆机构的特征在于，一个联轴器被设置为，能够相对于设有上述一个联轴器的一个轴部在径向滑动，所述装拆机构还具备密封部件，该密封部件设置在上述一个联轴器与设有上
述一个联轴器的一个本体部之间，围绕上述一个轴部，并与上述一个联轴器和上述一个本体部中的一下方向进行面接触。

在本发明的第九实施方式中，装卸机构的特征在于，上述密封部件设置于上述一个联轴器的外周部。

在本发明的第十实施方式中，装卸机构的特征在于，一个联轴器的硬度大于另一个联轴器的硬度。

在本发明的第十一实施方式中，装卸机构的特征在于，上述一个联轴器和上述另一个联轴器的材料互不相同。

在本发明的第十二实施方式中，装卸机构的特征在于，上述一个联轴器和上述另一个联轴器的表面处理互不相同。

在本发明的第十三实施方式中，内容镜的特征在于，该内容镜具备可相互装卸的驱动单元和插入部，并设有上述装卸机构，上述驱动单元具有使一个轴部旋转的驱动部，上述插入部具有通过另一个轴部的旋转而进行弯曲动作的弯曲部。

在本发明的第十四实施方式中，内容镜的特征在于，该内容镜具有可相互装卸的驱动单元和插入部，并设有上述装卸机构，上述驱动单元具有使一个轴部旋转的驱动部和上述一个联轴器，上述插入部具有通过另一个轴部的旋转而进行弯曲动作的弯曲部和上述另一个联轴器。

在本发明的第一实施方式的装卸机构中，由于在相互装卸第一和第二本体部时，一个卡合部被引导至与装卸方向一致并适于插拔的基准位置，所以能够容易且顺畅地进行两卡合部的插拔。因此，可以容易且顺畅地进行第一和第二本体部的装卸。

在本发明的第二实施方式的装卸机构中，通过引导部和引导承受部对一个卡合部进行引导。

在本发明的第三实施方式的装卸机构中，在相互装配第一和第二本体部时，仅通过预先将另一个卡合部配置在基准位置上，就能够使一个卡合部自动地插入另一个卡合部中，能够容易且顺畅地进行两卡合部的插入。因此，可以容易且顺畅地进行第一和第二本体部的装配。

在本发明的第四实施方式的装卸机构中，由于凸状的卡合部的窄幅
部配置在第一本体的装配方向的前端侧，具有与凸状的卡合部的宽幅部对应的宽度的卡合凹部的一端侧配置在第二本体的装配方向的前端侧，所以，即使在一个卡合部偏离基准位置的情况下，也可以将凸状的卡合部插入凹状的卡合部中。

在本发明的第五实施方式的装卸机构中，由于在一个卡合部中，在配置于设有一个卡合部的本体部的装配方向的后端侧的一侧形成有引导部，所以在第一和第二联轴器相互充分地接近之后，通过引导承受部对引导部进行引导即可。因此，相对于另一本体部的装卸方向，能够使引导承受部与另一个卡合部充分接近配置，能够缩短装卸机构在装卸方向上的全长。

在本发明的第六实施方式的装卸机构中，由于在相互拆卸第一和第二本体部时，一个卡合部被引导至基准位置，并且另一个卡合部也与一个卡合部联动地被引导至基准位置，所以能够容易且顺畅地进行两卡合部的拔出。因此，能够容易且顺畅地进行第一和第二本体部的拆卸。

在本发明的第七实施方式的装卸机构中，在相互拆卸第一和第二本体部时，在另一个卡合部与引导承受部之间的空间部中，引导部能够沿引导承受部移动，从而防止引导部的移动被引导承受部妨碍而妨碍两卡合部的拔出。

在本发明的第八实施方式的装卸机构中，由于在联轴器和本体部之间设有密封部件，所以能够充分地缩短从本体部到联轴器的末端部的轴向长度，并且能够借助于密封部件的推行力，防止联轴器在旋转时摆动。

在本发明的第九实施方式的装卸机构中，由于密封部件设置于联轴器的外周部，所以能够进一步缩短从本体部到联轴器的末端部的轴向长度。

在本发明的第十实施方式的装卸机构中，通过使用使用频率高的一个本体部的联轴器的硬度大于另一个本体部的联轴器的硬度，从而能够延长作为装卸机构整体的寿命。

在本发明的第十一实施方式的装卸机构中，通过使用两联轴器的材料互不相同，从而使两联轴器的硬度互不相同。

在本发明的第十二实施方式的装卸机构中，通过使用两联轴器的表面
处理互不相同，从而使两联轴器的硬度互不相同。

在本发明的第十三实施方式的内窥镜中，能够容易且顺畅地装卸驱动单元和插入部。

在本发明的第十四实施方式的内窥镜中，通过使用频率高的驱动单元的联轴器的硬度大于插入部的联轴器的硬度，从而能够延长作为内窥镜整体的寿命。

附图说明
图 1 是表示本发明的第一实施方式的内窥镜系统的立体图。
图 2 是表示本发明的第一实施方式的电动机单元和插入部的立体图。
图 3 是表示本发明的第一实施方式的插拔机构的示意图。
图 4 是表示本发明的第一实施方式的插拔机构的插入的示意图。
图 5 是表示本发明的第一实施方式的插拔机构的拔出的示意图。
图 6 是表示与本发明的第一实施方式相对的比较例的插拔机构的拔出的示意图。
图 7 是表示本发明的第二实施方式的插拔部的立体图。
图 8 是表示本发明的第二实施方式的插拔机构的示意图。
图 9 是表示本发明的第二实施方式的插拔机构的插入的示意图。
图 10 是表示本发明的第二实施方式的插拔机构的拔出的示意图。
图 11 是表示本发明的第二实施方式的第一变形例的从动侧联轴器的立体图。
图 12 是表示本发明的第二实施方式的第二变形例的插拔部的立体图。
图 13 是表示本发明的第二实施方式的第二变形例的插拔机构的示意图。
图 14 是表示本发明的第二实施方式的第二变形例的插拔机构的插入的示意图。
图 15 是表示本发明的第二实施方式的第二变形例的插拔机构的拔
出的示意图。

图 16 是表示本发明的第三实施方式的联轴器机构的主动侧的纵剖面图。

图 17 是表示本发明的第三实施方式的联轴器机构的主动侧联轴器的俯视图。

图 18 是表示本发明的第四实施方式的联轴器机构的主动侧的纵剖面图。

图 19 是表示本发明的参考方式的电机的内部构造的图。

图 20 是沿图 19 中的 XX—XX 线剖开本发明的参考方式的电机单元来表示的剖面图。

图 21 是沿图 19 中的 XXI—XXI 线剖开本发明的参考方式的主动机构来表示的剖面图。

图 22 是表示本发明的参考方式的齿轮轴的支承构造的分解立体图。

图 23 是沿图 25 中的 XXIV—XXIV 线剖开本发明的参考方式的齿轮轴的支承构造来表示的剖面图。

图 24 是沿图 24 中的 XXV—XXV 线剖开本发明的参考方式的齿轮轴的支承构造来表示的剖面图。

符号说明

32：插入部；34：弯曲部；36：第一本体部（插拔部）；38：驱动单元（电机单元）；62a：第一轴部（从动轴部）；62b：第二轴部（主动轴部）；64a：第一联轴器（从动联轴器）；64b：第二联轴器（主动联轴器）；66a：凸状的卡合部（卡合凸部）；66b：凹状的卡合部（卡合凹部）；68：第二本体部（框架）；72a：窄幅部；72b：宽幅部；66a、80a、80b：引导机构（66a；74：引导部（66a：卡合凸部；74：引导销）；80a、80b：引导承受部（80a：插入引导面；80b：拔出引导面））；83：空间部；102：密封部件；110：驱动部。

具体实施方式

下面，参照附图对本发明的各实施方式进行说明。
图 1 至图 5 表示本发明的第一实施方式。
参照图 1 说明内窥镜系统的概要结构。

内窥镜系统的内窥镜 30 具有用于插入体腔内的细长的插入部 32。在插入部 32 的前端部配设有在上下左右四个方向进行弯曲动作的弯曲曲 34，在插入部 32 的前端部配设有插拔部 36。这里，在插拔部 36 中内置有角度机构，从角度机构延伸出的角度操作线贯穿插入部 32 并连接在弯曲部 34 的前端部上。通过角度机构来进退操作角度操作线，由此弯曲部 34 进行弯曲动作。作为角度操作线，使用上下方向弯曲操作用的一对角度操作线和左右方向弯曲操作用的一对角度操作线。并且，插拔部 36 插拔自如地插入作为驱动单元的电动机单元 38 中。在电动机单元 38 中内置有用于使角度机构动作的作为驱动部的电动机部。电动机单元 38 被保持装置 50 保持为能移动能固定并且能够以自身的中心轴为中心旋转。另外，电动机单元 38 经由通用软线 52 与视频处理器 54 连接，在视频处理器 54 上经由视频线 56 连接有由操作人员进行保持操作的操作部 58。在操作部 58 上配设有用于弯曲操作弯曲部 34 的操作开关 60。即，通过对操作部 58 的操作开关 60 进行操作，驱动电动机单元 38 的电动机部，使角度机构动作来进退操作角度操作线，从而使能够使弯曲部 34 向期望的方向弯曲。

参照图 2，对作为第二本体部的电动机单元 38 和作为第一本体部的插入部 32 的联轴器机构进行说明。

插入部 32 的插拔部 36 具有沿插入部 32 的长度方向延伸的矩形柱状。在插拔部 36 的一侧壁和与其对置的另一侧壁上，分别与侧壁正交地贯通配置有作为第一轴部的从动侧轴部 62a。从动侧轴部 62a 的基端部与插拔部 36 中内置的角度机构连接，从动侧轴部 62a 能够以自身的中心轴为中心进行旋转。通过使从动侧轴部 62a 旋转，来驱动角度机构，从而使进退操作角度操作线。作为第一联轴器的圆板形的从动侧联轴器 64a 与从动侧轴部 62a 的前端部同轴连接。在从动侧联轴器 64a 的末端面，沿从动侧轴部 62a 的径向延伸有作为凸状的卡合部的卡合凸部 66a。

另一方面，通过电动机单元 38 的矩形状的框架 68 的内腔形成有
供插入部 32 的插拔部 36 沿其长度方向进行插拔的插拔孔 70。在与已插入的插拔部 36 的一侧壁和另一侧壁分别对置的框架 68 的一侧壁和另一侧壁上，分别与侧壁正交地贯通配置有作为第二轴轴的主动侧轴轴 62b。主动侧轴轴 62b 的基端部经由齿轮部与电动机部连接，主动侧轴轴 62b 能够以自身的中心轴为轴心旋转。作为第二联轴器的圆板形的主动侧联轴器 64b 与主动侧轴轴 62b 的前端部同轴连接。在主动侧联轴器 64b 的末端面，沿主动侧轴轴 62b 的径向延伸有作为凹状的卡合部的卡合凹部 66b。

从动侧联轴器 64a 的卡合凸部 66a 相对于主动侧联轴器 64b 的卡合凹部 66b，可沿卡合凹部 66b 的长度方向滑动地插拔。通过将卡合凸部 66a 插入卡合凹部 66b 中，从而将主动侧联轴器 64a 和从动侧联轴器 64a 连接起来，可以将主动侧轴轴 62b 的旋转传递到从动侧轴轴 62a。另一方面，通过将卡合凸部 66a 从卡合凹部 66b 中拔出，从而使主动侧联轴器 64a 和从动侧联轴器 64a 分离。

另外，一方的主动侧轴轴 62b、主动侧联轴器 64b、从动侧联轴器 64a、从动侧轴轴 62a 用于上下方向的弯曲操作，另一方用于左右方向的弯曲操作，但是两者的结构是相同的。

并且，主动侧联轴器 64b 的硬度大于从动侧联轴器 64a 的硬度。例如，主动侧联轴器 64b 由高硬度的钢形成，从动侧联轴器 64a 由低硬度的钢形成。也可以利用不锈钢形成主动侧联轴器 64b、利用铝形成从动侧联轴器 64a 等而使两联轴器 64b、64a 的材料相互不同，从而在硬度上产生差异。另外，也可以利用表面实施了氮化处理的不锈钢形成主动侧联轴器 64b、利用表面处理过的不锈钢形成从动侧联轴器 64a 等而使相同材料的两联轴器 64b、64a 的表面处理相互不同，从而在硬度上产生差异。

参照图 2 和图 3 说明在相对于电动机单元 38 插拔插入部 32 时，对从动侧联轴器 64a 的卡合凸部 66a 进行引导的引导机构。

如上所述，插入部 32 的插拔部 36 可相对于电动机单元 38 的插拔孔 70 沿其长度方向进行插拔。此处，设插拔部 36 的长度方向、朝长度方向基端侧的方向、朝长度方向末端侧的方向分别为插拔部 36 的装卸方向 S、
装配方向 SI、拆卸方向 SP。另外，设插拔孔 70 的长度方向、朝长度方向末端侧的方向、朝长度方向基准侧的方向分别为电动机单元 38 的装卸方向 T、装配方向 TI、拆卸方向 TP。

从动侧联轴器 64a 的卡合凸部 66a 和主动侧联轴器 64b 的卡合凹部 66b 分别具有基准位置，在该基准位置，卡合凸部 66a 和卡合凹部 66b 的长度方向分别与插拔部 36 和电动机单元 38 的装卸方向 S、T 一致且可相互插拔。在卡合凸部 66a 位于基准位置的情况下，弯曲部 34 的弯曲量设定为零，通过使卡合凸部 66a 向一个方向或者另一个方向旋转，从而弯曲部 34 向上方或下方，或者向右方或左方弯曲。并且，在卡合凹部 66b 位于基准位置的情况下，电动机单元 38 的电动机部的旋转量设定为零。

从动侧联轴器 64a 的卡合凸部 66a 沿从动侧联轴器 64a 的直径整体延伸。在卡合凸部 66a 中，在卡合凸部 66a 位于基准位置的情况下配置在插拔部 36 的装配方向 SI 的前端侧的一侧的宽度 Wf 小于配置在后端侧的一侧的宽度 Wb，形成窄幅部 72a 和宽幅部 72b。另一方面，主动侧联轴器 64b 的卡合凹部 66b 沿主动侧联轴器 64b 的直径整体延伸，具有与卡合凸部 66a 的形状相对应的形状，在卡合凹部 66b 中也形成有窄幅部 72a 和宽幅部 72b。

在从动侧联轴器 64a 的卡合凸部 66a 的末端面上，在卡合凸部 66a 位于基准位置的情况下配置在插拔部 36 的装配方向 SI 的后端侧（拆卸方向 SP 的前端侧）的端部上，突出设置有作为引导部的引导销 74。另一方面，在主动侧联轴器 64b 的卡合凹部 66b 的底面上，在卡合凹部 66b 位于基准位置的情况下配置在电动机单元 38 的装配方向 TI 的前端侧（拆卸方向 TP 的后端侧）的端部上，从主动侧联轴器 64b 的外周面向中心延伸设置有收纳引导销 74 的凹状的收纳部 76。

在电动机单元 38 的内壁上突出设置有一对引导部件 78，一对引导部件 78 相对于主动侧联轴器 64b 的卡合凹部 66b 配置在电动机单元 38 的装配方向 TI 的前端侧（拆卸方向 TP 的后端侧），以位于基准位置上的卡合凹部 66b 的中心线为基准成为线对称。引导部件 78 的末端面配置为比卡合凹部 66b 的底面更靠基准侧，从而引导部件 78 不与卡合凸部 66a
相干涉。在一对引导部件 78 上，在电动机单元 38 的装配方向 TI 的前端侧，分别形成有从前端侧向后端侧以接近上述中心线的方式倾斜的作为引导承受部的一对插入引导面 80a。另一方面，在一对引导部件 78 上，在电动机单元 38 的拆卸方向 TP 的前端侧分别形成有从前端侧向后端侧以接近上述中心线的方式倾斜的作为引导承受部的一对拔出引导面 80b。另外，主动侧联轴器 64b 的外周面与拔出引导面 80b 之间的距离大于引导销 74 的直径。在插入引导面 80a 与拔出引导面 80b 之间，在一对引导部件 78 之间形成有具有比引导销 74 的直径稍大的宽度的间隙部 82。

接着，对在相对于电动机单元 38 插拔插入部 32 时的主动侧联轴器 64b 与从动侧联轴器 64a 的连接、分离动作进行说明。

参照图 4 对将插入部 32 的插拔部 36 插入电动机单元 38 中的情况进行说明。

在插入前，电动机单元 38 的电动机部的旋转量大致为零，主动侧联轴器 64b 的卡合凹部 66b 基本位于基准位置。另一方面，插入部 32 的弯 曲部 34 为完全的直线状的情况较少，通常稍微弯曲，从动侧联轴器 64a 的卡合凸部 66a 与弯曲部 34 的弯曲量对应，位于从基准位置旋转了若干角度的位置。并且，即使在弯曲部 34 为完全的直线状的情况下，由于部件精度的影响，卡合凸部 66a 有时也并不是完全地配置于基准位置上。当将插入部 32 的插拔部 36 插入电动机单元 38 时，卡合凸部 66a 不与引导部件 78 干涉地被插入，突出设置在卡合凸部 66a 上的引导销 74 与插入引导面 80a 抵接。当进一步将插拔部 36 插入电动机单元 38 时，引导销 74 在插入引导面 80a 上滑动并被其引导，从动侧联轴器 64a 旋转，卡合凸部 66a 向基准位置旋转。此处，由于卡合凸部 66a 的窄幅部 72a 配置在插拔部 36 的装配方向 SI 的前端侧，卡合凹部 66b 的宽幅部 72b 配置在电动机单元 38 的装配方向 TI 的前端侧，所以在卡合凸部 66a 被配置到基准位置之前，卡合凸部 66a 被向卡合凹部 66b 中插入。当进一步将插拔部 36 插入电动机单元 38 时，在引导销 74 到达一对引导部件 78 之间的间隙部 82 的时候，卡合凸部 66a 成为基准位置，卡合凸部 66a 沿着卡合凹部 66b 的长度方向继续向卡合凹部 66b 中插入。当卡合凸部 66a
完全被插入到卡合凹部 66b 中时，引导销 74 被插入并收纳在收纳部 76 中。

参照图 5，对从电动机单元 38 中拔出插入部 32 的插拔部 36 的情况进行说明。

在拔出前，电动机单元 38 的电动机部的旋转量被操作为零，但是有时也残留有若干的旋转量，在该情况下，电动机单元 38 的主动侧联轴器 64b 的卡合凹部 66b 和插入部 32 的从动侧联轴器 64a 的卡合凸部 66a 与电动机单元 38 的旋转量对应，位于从基准位置旋转了若干角度的位置上。并且，即使在电动机部的旋转量为零的情况下，由于控制精度以及部件精度的影响，有时卡合凹部 66b 和卡合凸部 66a 也没有完全地配置在基准位置上。当从电动机单元 38 中拔出插入部 32 的插拔部 36 时，卡合凸部 66a 从卡合凹部 66b 中拔出，卡合凸部 66a 的引导销 74 抵接于拔出引导面 80b 上。当进一步从电动机单元 38 中拔出插拔部 36 时，引导销 74 在拔出引导面 80b 上滑动并被其引导，从动侧联轴器 64a 旋转，卡合凸部 66a 向基准位置旋转。此处，由于拔出引导面 80b 与主动侧联轴器 64b 的外周面之间的距离比引导销 74 的直径大，所以在它们之间的空间部 83 中，引导销 74 能够沿着拔出引导面 80b 移动。当进一步从电动机单元 38 中拔出插拔部 36 时，在引导销 74 到达一对引导部件 78 之间的间隙部 82 的时候，卡合凸部 66a 成为基准位置，接着，卡合凸部 66a 从卡合凹部 66b 中被拔出来。通过卡合凹部 66a 向基准位置的旋转，卡合凹部 66b 向基准位置旋转。因此，在从电动机单元 38 中拔出插拔部 36 之后，电动机单元 38 的电动机部的旋转量大致为零，插入部 32 的弯曲部 34 成为大致直线状。

因此，本实施方式的插拔机构具有如下效果。

在此实施方式的插拔机构中，在相对于电动机单元 38 拔拔插入部 32 的插拔部 36 时，由于插拔部 36 的从动侧联轴器 64a 的卡合凸部 66a 被引导到与装卸方向一致并适于拔拔的基准位置上，所以在插入时，仅通过预先将电动机单元 38 的主动侧联轴器 64b 的卡合凹部 66b 配置在大致基准位置上，卡合凸部 66a 就会自动地插入卡合凹部 66b 中，在拔出
时，由于卡合凹部 66b 与卡合凸部 66a 联动地也被引导到基准位置上，
所以能够容易且顺畅地相对于卡合凹部 66b 插拔卡合凸部 66a。因此，能
够容易且顺畅地相对于电动机单元 38 插拔插拔部 36。

并且，卡合凸部 66a 的窄幅部 72a 配置在插拔部 36 的装配方向 SI
的前端侧，卡合凹部 66b 的宽幅部 72b 配置在电动机单元 38 的装配方向
TI 的前端侧，因此，即使在卡合凸部 66a 从基准位置偏离的情况下，也
能够将卡合凸部 66a 插入卡合凹部 66b 中。

另外，在卡合凸部 66a 中，由于在配置于插拔部 36 的装配方向 SI
的后端侧的一侧配设有引导销 74，所以在从动侧联轴器 64a 充分地接近
了主动侧联轴器 64b 之后，由插入引导面 80a 对引导销 74 进行引导即可。
因此，能够将插入引导面 80a 配置为与卡合凹部 66b 充分地接近，能够
缩短插拔机构在装卸方向上的全长。

此外，由于主动侧联轴器 64b 的外周面与拔出引导面 80b 之间的距
离比引导销 74 的直径大，所以在从电动机单元 38 中拔出插拔部 36 时，
在主动侧联轴器 64b 的外周面与拔出引导面 80b 之间的空间部 83 中，引
导销 74 能够沿着拔出引导面 80b 移动，从而能够防止引导销 74 的移动
被拔出引导面 80b 妨碍而妨碍卡合凸部 66a 从卡合凹部 66b 中拔出。即，
参照图 6，在拔出引导面 80b 与主动侧联轴器 64b 的外周面之间的距离小
于引导销 74 的直径的情况下，引导销 74 不能在它们之间的空间部 83 中
移动，从而无法从卡合凹部 66b 中将卡合凸部 66a 拔出。

另外，在内窥镜系统中，相对于一个电动机单元 38 使用与病历对应的
各种插入部 32，主动侧联轴器 64b 的使用频率比从动侧联轴器 64a 的
使用频率多，但是由于主动侧联轴器 64b 的硬度比从动侧联轴器 64a 的
硬度高，所以作为内窥镜整体的寿命延长。

图 7 至图 10 表示本发明的第二实施方式。

参照图 7 和图 8，本实施方式的卡合凸部 66a 和卡合凹部 66b 具有与
第一实施方式的卡合凸部 66a 和卡合凹部 66b 相同的形状，但是在卡合
凸部 66a 和卡合凹部 66b 中不设置引导销 74 和收纳部 76，而是卡合凸部
66a 自身形成引导部，该引导部由插入引导面 80a 和拔出引导面 80b 引导。
即，引导部件 78 的末端面配置在卡合凹部 66b 的底面与开口面之间，引导部件 78 只与卡合凸部 66a 干涉。并且，在插入引导面 80a 与拔出引导面 80b 之间，在一对引导部件 78 之间形成有间隙部 82，该间隙部 82 具有比卡合凸部 66a 的宽幅部 72b 稍大的宽度。此外，在主动侧联轴器 64b 的外周面与插拔引导面 80b 之间形成有空间部 83，当从卡合凹部 66b 中拔出卡合凸部 66a 时，该空间部 83 使得在插拔部 36 的拆卸方向 SP 的前端侧配置的卡合凸部 66a 的宽幅部 72b 的端部侧不被拔出引导面 80b 妨碍而能够移动。

参照图 9，在将插入部 32 的插拔部 36 插入电动机单元 38 中的情况下，在插拔部 36 的装配方向 SI 的前端侧配置的卡合凸部 66a 的窄幅部 72a 由插入引导面 80a 引导，卡合凸部 66a 向基准位置旋转。此处，对于一对引导部件 78 之间的间隙部 82 具有比卡合凸部 66a 的宽幅部 72b 稍大的宽度，所以在卡合凸部 66a 完全配置在基准位置上之前，卡合凸部 66a 的窄幅部 72a 插入间隙部 82 中，在间隙部 82 与主动侧联轴器 64b 之间的距离在电动机单元 38 的装配方向 T 上比窄幅部 72a 的长度短的情况下，与第一实施方式同样，在卡合凸部 66a 被完全配置在基准位置上之前，卡合凸部 66a 插入卡合凹部 66b 中。

参照图 10，在从电动机单元 38 中将插入部 32 的插拔部 36 拔出的情况下，在拔出部 36 的拆卸方向 SP 的前端侧配置的卡合凸部 66a 的宽幅部 72b 抵接在拔出引导面 80b 上，在主动侧联轴器 64b 的外周面与拔出引导面 80b 之间的空间部 83 中，卡合凸部 66a 由拔出引导面 80b 引导而进行转动，从而卡合凸部 66a 向基准位置旋转。

因此，本实施方式的插拔机构具有如下效果。

在本实施方式的插拔机构中，通过插入引导面 80a 和拔出引导面 80b 对卡合凸部 66a 自身进行引导，不需要为了引导卡合凸部 66a 的追加部件和加工，使插拔机构的结构简单化，可以实现制造的简化，故障产生的降低以及成本的降低。

图 11 表示本发明的第二实施方式的第一变形例。

在本变形例中，在从动侧联轴器 64a 的末端面上，在直径方向的两
端部分别突出设置有圆柱状的细径突起部 67a（外径 Wf）和直径比该细径突起部 67a 的直径大的粗径突起部 67b（外径 Wb），由这些细径突起部 67a 和粗径突起部 67b 形成卡合凸部 66a。这样，沿轴轴的径向延伸的卡合凸部不限于连续的卡合凸部。在卡合凸部 66a 位于基准位置的情况下，细径突起部 67a 配置在插拔部 36 的装配方向 SI 的前端侧，粗径突起部 67b 配置在后端侧。本变形例的插拔结构的插拔时的动作与第二实施方式相同。

图 12 至图 15 表示本发明的第二实施方式的第二变形例。

参照图 12 和图 13，在本变形例中，相对于卡合凸部 66a 的长度方向，与宽幅部 72b 的长度 Lb 相比，窄幅部 72a 的长度 Lf 充分短。

参照图 14，由于在将插入部 32 的插拔部 36 插入电动机单元 38 的情况下，在插拔部 36 的装配方向的前端侧配置的窄幅部 72a 的长度充分短，所以窄幅部 72a 不与插入引导面 80a 抵接，在插拔部 36 的装配方向 SI 的前端侧配置的宽幅部 72b 抵接于插入引导面 80a 上并被其引导，从而卡合凸部 66a 向基准位置旋转。即，在本变形例中，由宽幅部 72b 形成引导部，与第一实施方式同样，在卡合凸部 66a 中，在配置于插拔部 36 的装配方向 SI 的前端侧的一侧形成有引导部。

参照图 15，插拔机构在拔出时的动作与第二实施方式相同。

图 16 和图 17 表示本发明的第三实施方式。

参照图 16 和图 17 对联轴器结构的防滴构造进行说明。

如上所述，在主动侧联轴器 64b 的末端面上，沿主动侧联轴器 64b 的直径方向整体延伸设置有卡合凹部 66b。在卡合凹部 66b 的底面上，与卡合凹部 66b 的长度方向正交地在主动侧联轴器 64b 的直径方向上延伸设置有保持凹部 90。在卡合凹部 66b 的底面上，沿整体覆设有罩 92，在罩 92 与保持凹部 90 之间形成有保持部 94。在保持凹部 90 中，沿保持凹部 90 的长度方向，在主动侧联轴器 64b 的直径方向上延伸设置有贯穿槽 88。贯穿槽 88 使保持凹部 90 和在主动侧联轴器 64b 的前端面上延伸设置的滑动凹部 86 之间贯通。滑动凹部 86 与卡合凹部 66b 的长度方向正交地在主动侧联轴器 64b 的直径方向上延伸。
另一方面，如上所述，主动侧轴部 62b 以自身的中心轴为中心，可
旋转地支承在电动机单元 38 的框架 68 上。在主动侧轴部 62b 的前端面
上，在主动侧轴部 62b 的直径方向上延伸设置有滑动凹部 84。滑动凹部
84 的长度方向与滑动凹部 86 的长度方向一致，滑动凹部 84 以可沿滑动
凹部 86 的长度方向滑动的方式通过间隙配合嵌入滑动凹部 86 中。滑动
凹部 86 在长度方向上的长度是滑动凸部 84 的长度方向上的长度加上主
动侧联轴器 64b 相对于主动侧轴部 62b 的中心轴的偏心允许长度的二倍
后的长度。

在滑动凸部 84 的末端面上沿轴向贯穿设置有保持孔 96。保持部件
98 的棒状部分的前端侧可沿轴向滑动地插入该保持孔 96 中。保持部件
98 的棒状部分的末端侧从滑动凹部 86 朝向保持凹部 90 贯穿于贯穿槽
88 中。棒状部分可沿贯穿槽 88 的长度方向滑动，以使其不妨碍滑动凸部
84 在滑动凹部 86 中的滑动。在保持部件 98 的棒状部分的末端部，与棒状
部分正交地连接有板状部分。该板状部分保持在保持凹部 90 与罩 92 之
间的保持部 94 上，作为主动侧联轴器 64b 的防脱部而发挥功能。另外，
板状部分可沿保持部 94 的长度方向滑动，以使其不妨碍滑动凸部 84 在
滑动凹部 86 中的滑动。

在电动机单元 38 的框架 68 上，与主动侧联轴器 64b 面对地延伸设
置有以主动侧轴部 62b 为中心的圆环状的密封槽部 100。圆环状的面接触
型密封部件 102 嵌入密封槽部 100 中。即，密封部件 102 压缩配设在框
架 68 与主动侧联轴器 64b 的基端面之间，与框架 68 与主动侧联轴器 64b
的基端面进行面接触，并且在主动侧联轴器 64b 的基端面上产生轴向向外
的推斥力。使用 O 形圈、V 形圈等作为密封部件 102。另外，密封部
件 102 的内径比主动侧轴部 62b 的滑动凹部 86 的径向（短轴方向）的长
度加上主动侧联轴器 64b 的偏心允许长度的二倍后的长度大，密封部件
102 的外径比主动侧联轴器 64b 的径向（短轴方向）的长度减去主动侧联
轴器 64b 的偏心允许长度的二倍后的长度小。

因此，本实施方式的插拔机构具有如下效果。

在本实施方式的插拔机构中，由于在主动侧联轴器 64b 与框架 68 之
间配设有密封部件 102，所以特别是与在主动侧轴部 62b 与框架 68 之间配设密封部件 102 的情况进行比较，可以使从框架 68 到主动侧联轴器 64b 的末端面的轴向长度充分短。并且，特别是由于主动侧轴部 62b 的滑动凸部 84 与主动侧联轴器 64b 的滑动凹部 86 间隙配合，所以主动侧联轴器 64b 容易以滑动凸部 84 的长轴为中心摆动，但是由于密封部件 102 在主动侧联轴器 64b 的基端面上产生轴向向外的推斥力，所以可抑制摆动，从而主动侧联轴器 64b 可稳定地旋转。

图 18 表示本发明的第四实施方式。

在本实施方式的主动侧联轴器 64b 中，在基端部的外周面，在整周延伸设置有密封槽部 100，在密封槽部 100 中嵌入接合有圆环状的密封部件 102。密封部件 102 的功能与第三实施方式相同。通过这种结构，可以使从框架 68 到主动侧联轴器 64b 的末端面的轴向长度进一步变短。

图 19 至图 25 表示本发明的参考方式。

参照图 19 至图 25 对电动机单元 38 的主动机构进行说明。

参照图 19 和图 20，在电动机单元 38 的基端侧配设有装配了各种元件的基板 104。基板 104 的前端部经由散热橡胶 106 与框架 68 热连接，框架 68 作为基板 104 的散热部件发挥功能。并且，框架 68 具有如下所述的形状：在沿电动机单元 38 的装卸方向延伸的长方体中同轴地形成有圆柱状的插拔孔 70 的形状，在与框架 68 的长度方向正交的横截面中，在四角形成有切口形状的收纳空间 108。利用相对于中心轴 O 对称的一对收纳空间 108，上下方向弯曲操作的电动机部 110 与左右方向弯曲操作的电动机部 110 相对于框架 68 的中心轴 O 相互旋转对称地配设，利用另一对收纳空间 108，用于检测上下方向弯曲操作量的传感器部 112 和用于检测左右方向弯曲操作量的传感器部 112 相对于框架 68 的中心轴 O 相互旋转对称地配设。并且，电动机部 110 具有电动机 114 和编码器 116，电动机 114 经由齿轮部 118 与主动侧联轴器 64b 连接，在传感器部 112 的传感器 120 上连接有齿轮部 118 的传感器齿轮 122。上下方向弯曲操作的齿轮部 118 和左右方向弯曲操作的齿轮部 118 相对于框架 68 的中心轴 O 相互旋转对称地配设。
参照图 21，电动机部 110 的电动机 114 和主动侧联轴器 64b 经由齿轮部 118 连接。在齿轮部 118 的主动侧联轴器 64b 侧，借助直齿圆柱齿轮 124，支承在齿轮凸缘（gear flange）126 上的齿轮轴 128 旋转。

参照图 22 至图 24，齿轮凸缘 126 上贯通形成有圆柱状的轴承孔 130，通过用于规定轴承孔 130 的齿轮凸缘 126 的内周面来形成轴承面 132。

圆柱状的齿轮轴 128 同轴地贯穿于轴承孔 130 中，能够以自身的中心轴为中心旋转，通过齿轮轴 128 的外周面形成有相对于轴承面 132 滑动的滑动面 134。在齿轮轴 128 的前端侧，在整周延伸设置有用于限制齿轮轴 128 落入轴承孔 130 中的凸缘 136。在齿轮轴 128 上，沿中心轴贯通形成有螺纹孔 140，固定螺钉 138 的末端侧的螺纹部 138a 贯穿于该螺纹孔 140 中。在齿轮轴 128 的基端面上，关于齿轮轴 128 的中心轴对称地突出设置有一对齿轮轴爪式离合器（dog clutch）142，与中心轴正交的齿轮轴爪式离合器 142 的横截面形成与齿轮轴 128 的中心轴同轴的扇形状。由齿轮轴爪式离合器 142 的内侧的弧面形成与固定螺钉 138 的中间部的定心部 138b 嵌合的齿轮轴定心面 144。

另一方面，在直齿圆柱齿轮 124 上，与直齿圆柱齿轮 124 的中心轴对称地贯通形成有一对嵌合孔 146，与中心轴正交的嵌合孔 146 的横截面为与齿轮轴爪式离合器 142 的横截面相同的形状，形成与直齿圆柱齿轮 124 的中心轴同轴的扇形状。在一对嵌合孔 146 之间，与中心轴对称地突出设置有直齿圆柱齿轮爪式离合器 148，与直齿圆柱齿轮 124 的中心轴正交的直齿圆柱齿轮爪式离合器 148 的横截面形成与直齿圆柱齿轮 124 的中心轴同轴的扇形状。利用直齿圆柱齿轮爪式离合器 148 的内侧的弧面也形成与固定螺钉 138 的定心部 138b 的外周面嵌合的直齿圆柱齿轮定心面 150。

齿轮轴爪式离合器 142 嵌入直齿圆柱齿轮 124 的嵌合孔 146 中，齿轮轴爪式离合器 142 与直齿圆柱齿轮爪式离合器 148 相互卡合。

固定螺钉 138 的头部 138c 卡定在直齿圆柱齿轮爪式离合器 148 的基端面上，固定螺钉 138 的定心部 138b 与直齿圆柱齿轮定心面 150 和齿轮
轴定心面 144 嵌合，固定螺钉 138 的螺纹部 138a 贯穿于齿轮轴 128 的螺纹孔 140 中，并从齿轮轴 128 突出。

因此，本实施方式的电动机单元 38 具有如下效果。

在本实施方式的电动机单元 38 中，由于在与框架 68 的长度方向正交的横截面中，在四角形成有切口形状的收纳空间 108，所以空间得到了有效利用，可以使电动机单元 38 小型化。

并且，相对于框架 68 的中心轴 O，上下方向弯曲操作用的主动机构和左右方向弯曲操作用的主动机构相互旋转对称地配置，因此，电动机单元 38 的重心配置在中心轴上。在电动机单元 38 的重心偏离中心轴的情况下，在对装配在电动机单元 38 中的插入部 32 进行旋转操作时变得难以进行稳定的操作，但是在本实施方式中，可防止这种情况。

另外，由于在齿轮轴 128 上形成有用于限制其落入轴承孔 130 中的凸缘 136，所以，即使在齿轮轴 128 上担负有向基端侧的外力的情况下，齿轮轴 128 也不会落入轴承孔 130 中而向基端侧按压直齿圆柱齿轮 124，能够防止直齿圆柱齿轮 124 与其他齿轮干涉而引起旋转不良。特别是在齿轮轴 128 和直齿圆柱齿轮 124 为一体的情况下，直齿圆柱齿轮 124 不会向基端侧移动，可显著地发挥凸缘 136 的效果。
图 22

图 23
图 24