Title: PROCESS FOR THE PREPARATION OF BETAINES

Abstract: Betaines of formula R,N'-Q-COO' (I), wherein R is Cl₃₄ alkyl and Q is Cl₃₄ alkanediyl, optionally substituted with hydroxy, are prepared in one step by adding an ω-halocarboxylate of formula X-Q-COO' (II), wherein Q is as defined above. R' is Cl₃₄ alkyl and X is chlorine, bromine or iodine, to an aqueous solution containing a tertiary amine of formula R,N (H). Wherein R is as defined above and a base selected from alkali hydroxides and alkaline earth hydroxides. The process is particularly suited to the production of L-carnitine.
Process for the Preparation of Betaines

The invention relates to a process for the production of betaines of formula

$$R_3N^+Q\text{-COO}^-$$ \hspace{1cm} (I),

wherein R is C$_{1-4}$ alkyl and Q is C$_{1-4}$ alkanediyl, optionally substituted with hydroxy.

More specifically, the invention relates to a process for the production of carnitine. Carnitine (I, $R = CH_3$, $Q = -(CH_2)_3$), and in particular the L-enantiomer of carnitine, is a vitamin-like substance that plays an important role in fatty acid metabolism.

L-Carnitine can be produced by biotechnological or chemical processes. US 4 708 936 and US 5 187 093 describe the production of L-carnitine by microbial biotransformation of butyrobetaine (I, $R = CH_3$, $Q = -(CH_2)_3$). Several chemical processes involve the optical resolution of DL-carnitine. Other chemical processes are based on the asymmetric hydrogenation of γ-trimethylammonioacetacetales to L-carnitine esters (EP 0 375 417 A2), or the asymmetric hydrogenation of γ-chloroacetacetales to $L-\gamma$-chloro-β-hydroxybutyrates which, in a subsequent step, are reacted with trimethylamine to the corresponding carnitine esters (US 4 895 979). In both cases the L-carnitine esters are subjected to acid hydrolysis to yield a salt of L-carnitine (e.g. L-carnitine hydrochloride) which in turn has to be converted (e.g. by ion exchange) into the free betaine form of L-carnitine. These processes are relatively tedious and result in the formation of large amounts of salt byproducts which have to be disposed of.

JP-A-60-161952 discloses the production of carnitine from γ-chloro-β-hydroxybutyric acid or the methyl or propyl ester of γ-chloro-β-hydroxybutyric acid and trimethylamine in the presence of an alkali hydroxide. The reaction vessel is charged with the acid or ester and trimethylamine and alkali hydroxide are added either consecutively or as a mixture. The reported yields of carnitine are between 44% and 75%.

It is an object of the present invention to provide an improved chemical process for the production of L-carnitine and related betaines which gives the desired products in high yield and does not require a separate hydrolysis step.

According to the invention, this object has been achieved by the process of claim 1.

It has been found that the yield and purity of the desired product can be significantly improved if the ω-halocarboxylate is added to the solution of the amine and the base, instead of adding the amine and the base to the ω-halocarboxylate. This is somewhat surprising since one might
expect that side reactions (e.g., elimination instead of substitution) could predominate if an excess of base is present during the reaction.

According to the invention, an ω-halocarboxylate of formula

\[XQCOOR' \] (II),

wherein \(Q \) is \(\text{C}_{1-4} \) alkanediyl, \(R' \) is \(\text{C}_{1-4} \) alkyl and \(X \) is chlorine, bromine or iodine, is reacted with a tertiary amine of formula

\[R_3N \] (III),

wherein \(R \) is \(\text{C}_{1-4} \) alkyl,

by adding the ω-halocarboxylate (II) to an aqueous solution containing the tertiary amine (III) and a base selected from alkali hydroxides and alkaline earth hydroxides, to obtain a betaine of formula

\[R_3N^+ QCOO^- \] (I),

wherein \(Q \) and \(R \) are as defined above.

The reaction can be conducted at relatively low temperatures and without elevated pressure.

Advantageously, the ω-halocarboxylate is added slowly to an agitated aqueous solution containing the tertiary amine and the base. The time of addition is typically between 15 min and 6 h, preferably about 3 h. The reaction temperature is preferably between the freezing point of the aqueous reaction mixture and \(+25 \, ^\circ\text{C}\). More preferably, the reaction temperature is \(+10 \, ^\circ\text{C}\) or less, still more preferably \(+6 \, ^\circ\text{C}\) or less and most preferably \(+3 \, ^\circ\text{C}\) or less.

The tertiary amine and the base are preferably used in an amount of 1 to 3 equivalents each, based on the amount of ω-halocarboxylate. More preferably, the base is used in an amount of 1 to 2 equivalents and most preferably 1.5 equivalents or less.

In a preferred embodiment, the substituents \(R \) are methyl groups.

In another preferred embodiment, \(Q \) is 2-hydroxypropane-1,3-diyl \((-\text{CH}_2\text{-CHOH-CH}_2-)\) and the betaine produced is carnitine. More preferably, the betaine is \(\text{L-carnitine} \).
The halogen X in the ω-halocarboxylate (II) is preferably chlorine.

The substituent R' in the ω-halocarboxylate (II) is preferably methyl or ethyl.

The base is preferably sodium hydroxide or potassium hydroxide.

The betaine can be isolated and purified using methods known in the art. The alcohol R'OH formed in the reaction and excess tertiary amine R₃N as well as part of the water used as solvent can be removed by distillation, preferably under reduced pressure. The excess amine may be recovered and recycled.

The salt byproduct is preferably removed by electrodialysis, advantageously after removing the volatile components as described above. Depending on the moiety Q in the ω-halocarboxylate starting material, some dehydrohalogenation (elimination of hydrogen halide), elimination of water, and/or hydrolysis instead of substitution may take place as a side reaction. In particular, when a γ-chloro-β-hydroxybutyrate is used as starting material, some γ-hydroxycrotonic acid will be formed by elimination of water and hydrolysis of the chloro function. This (non-betaine) byproduct is also removed by electrodialysis. The betaine (I) can be isolated by conventional methods, e.g. by distilling off the water from the diluate obtained after electrodialysis.

The process of the invention can be performed batchwise or continuously, e.g. in a continuous stirred-tank reactor or a cascade of continuous stirred-tank reactors.

The following non-limiting examples illustrate the process of the invention. With the exception of the yields, all percentages are given in weight percent, unless otherwise specified.

Example 1
L-Carnitine (I, R = CH₃, Q = -CH₂CHOH-CH₂)

Sodium hydroxide (17.6 g, 0.44 mol, ca. 2 eq.) was dissolved in water (240 g). Aqueous trimethylamine (25%, 61.3 g, ca. 1.2 eq.) was added with cooling. The resulting mixture was cooled to 0°C and ethyl (R)-4-chloro-3-hydroxybutyrate (content 100%, 36 g, 0.216 mol) was added dropwise within 3 h to the stirred reaction mixture. After one additional hour at 0°C the reaction mixture was warmed to +20°C and analyzed by HPLC

Yield: 80% L-carnitine
Example 2
L-Carnitine

The procedure of Example 1 was repeated using 1.2 equivalents of sodium hydroxide and 2.5 equivalents of trimethylamine. L-Carnitine was obtained in essentially the same yield (81%).

Example 3
L-Carnitine

Water (1777 g), aqueous sodium hydroxide (50%, 203.7 g, 1.5 eq.) and aqueous trimethylamine (25%, 807 g, 2.0 eq.) were mixed and stirred at 0 °C. Ethyl (R)-4-chloro-3-hydroxybutyrate (content 91.7%, 307.9 g) was added dropwise during 3 h and the procedure was continued as described in Example 1.
Yield: 89% L-Carnitine

Example 4
L-Carnitine (continuous process)

An aqueous solution of sodium hydroxide (3.9%) and trimethylamine (5.7%) was fed into the first stirred tank of a cascade of five 250 mL continuous stirred-tank reactors while ethyl (R)-4-chloro-3-hydroxybutyrate was fed in equal amounts into the first four reactors. The mean residence time in each reactor was approx. 1 h and both trimethylamine and sodium hydroxide were used in an amount of 1.0 eq., based on the total amount of ethyl (R)-4-chloro-3-hydroxybutyrate. The temperature of all reactors was maintained at 0 °C. Once a steady state had been established, the yield of L-carnitine was 80-83%

Comparative Example 1
L-Carnitine

Ethyl (R)-4-chloro-3-hydroxybutyrate (content: 95.5%, 30.0 g, 0.172 mol) was stirred at 0°C while a mixture of trimethylamine (25% aqueous solution, 90.7 g, 0.383 mol), sodium hydroxide (content: 98.5%, 7.82 g, 0.193 mol) and deionized water (136 g) was added dropwise during 2 h. After an additional hour the L-carnitine content of the reaction mixture was determined by HPLC: 7.35%, corresponding to 70% yield. The reaction mixture was concentrated in vacuo and analyzed by 1H NMR. It was found to contain some γ-hydroxycrotonic acid and an unidentified olefinic byproduct.
Example 5
L-Carnitine

Sodium hydroxide (156.1 g, 3.9 mol, 1.4 eq) was dissolved in water (370 g). Aqueous trimethylamine (25%, 649.5 g, 1.0 eq) was added with cooling. The resulting mixture was cooled to 0°C and ethyl (4-)-4-chloro-3-hydroxybutyrate (content 91.5%, 500.0 g, 2.75 mol) was added dropwise within 3 h to the stirred reaction mixture. After one additional hour at 0 °C the reaction mixture was warmed to +20°C and analyzed by HPLC.
Yield: 85% L-Carnitine

Comparative Example 2
L-Carnitine

In a 250 mL reactor, ethyl (4-)-4-chloro-3-hydroxybutyrate (content 94%, 12.00 g, 67.7 mmol) was stirred with water (75.04 g) and cooled to 0 °C. Aqueous trimethylamine (25%, 17.71 g, 1.1 eq.) was added at once at 0 °C, followed by dropwise addition of aqueous sodium hydroxide (25%, 15.30 g, 1.4 eq.) within 3 h. After another 1 h at 0 °C the reaction mixture was allowed to warm to 20 °C and analyzed by HPLC.
Yield: 76% L-Carnitine (HPLC/IC)

Comparative Example 3
L-Carnitine

The procedure of Comparative Example 2 was repeated with the exception that the aqueous sodium hydroxide was added at once, followed by dropwise addition of the aqueous trimethylamine within 3 h.
Yield: 75% L-Carnitine (HPLC/IC)

Comparative Example 4
L-Carnitine

The procedure of Comparative Example 2 was repeated with the exception that the aqueous trimethylamine and the aqueous sodium hydroxide were added separately but simultaneously within 3 h.
Yield: 77% L-Carnitine (HPLC/IC)
Claims

1. A process for the production of a betaine of formula

\[R_3N^\bullet\cdot Q-COO^- \]

(I),

wherein \(R \) is \(C_{1-4}\) alkyl and \(Q \) is \(C_{1-4}\) alkanediyl, optionally substituted with hydroxy, by reacting, in aqueous solution, an \(\omega \)-halocarboxylate of formula

\[X-Q-COOR' \]

(II),

wherein \(Q \) is as defined above, \(R' \) is \(C_{1-4}\) alkyl and \(X \) is chlorine, bromine or iodine, with a tertiary amine of formula

\[R_3N \]

(III),

wherein \(R \) is as defined above

and a base selected from alkali hydroxides and alkaline earth hydroxides, characterized in that the \(\omega \)-halocarboxylate (II) is added to an aqueous solution comprising the tertiary amine (III) and the base.

2. The process of claim 1, wherein the reaction is conducted at a temperature between the freezing point of the reaction mixture and +25 °C.

3. The process of claim 2, wherein the reaction is conducted a temperature of no more than +10 °C.

4. The process of any of claims 1 to 3, wherein the tertiary amine (III) and the base are used in an amount of 1.0 to 3 equivalents each, based on the amount of \(\omega \)-halocarboxylate.

5. The process of any of claims 1 to 4, wherein \(R \) is methyl.

6. The process of any of claims 1 to 5, wherein \(Q \) is 2-hydroxypropane-1,3-diyl and the betaine (I) is carnitine.

7. The process of claim 6, wherein the betaine (I) is L-carnitine.
8. The process of any of claims 1 to 7, wherein X is chlorine.

9. The process of any of claims 1 to 8, wherein R’ is methyl or ethyl.

10. The process of any of claims 1 to 9, wherein the base is sodium hydroxide or potassium hydroxide.

11. The process of any of claims 1 to 10, wherein the betaine (I) is purified by electrodialysis.
INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2008/009650

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07C227/08

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, CHEMABS Data, BEILSTEIN Data, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate of the relevant passages</th>
<th>Relevant to claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DATABASE WPI Week 198540 Thames Scientific, London, GB; AN 1985-246175 XP002470890</td>
<td>1-11</td>
</tr>
<tr>
<td></td>
<td>− & JP 60 161953 A (DENKI KAGAKU KOGYO KK) 23 August 1985 (1985-08-23) cited in the application abstract</td>
<td></td>
</tr>
</tbody>
</table>

Further documents listed in the continuation of Box C

See patent family annex

Special categories of cited documents

- A: document defining the general state of the art which is not considered to be of particular relevance
- E: earlier document but published on or after the international filing date
- L: document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- O: document referring to an oral disclosure, use, exhibition or other means
- P: document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

10 February 2009

Date of mailing of the international search report

17/02/2009

Name and mailing address of the ISA/Authorized officer

European Patent Office, P B 581 B Patentlaan 2 NL-2280 HV Rijswijk Tel (+31-70) 340-2040 Fax (+31-70) 340-3016

Scheid, Günther

Form POT/ISA/210 (second sheet) (April 2008)
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>JP 60161953</td>
<td>23-08-1985</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 664374 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3681811 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 88586 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0195944 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 58779 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61199793 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 68901889 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0339764 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1211551 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1944040 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6078277 B</td>
</tr>
</tbody>
</table>