

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2018222777 B9

(54) Title
Novel VEGFR-2 targeting immunotherapy approach

(51) International Patent Classification(s)
C12N 1/36 (2006.01) **A61K 39/00** (2006.01)

(21) Application No: **2018222777** (22) Date of Filing: **2018.02.16**

(87) WIPO No: **WO18/149982**

(30) Priority Data

(31) Number
17156718.3 (32) Date
2017.02.17 (33) Country
EP

(43) Publication Date: **2018.08.23**
(44) Accepted Journal Date: **2024.02.01**
(48) Corrigenda Journal Date: **2024.02.22**

(71) Applicant(s)
Vaximm AG

(72) Inventor(s)
Lubenau, Heinz

(74) Agent / Attorney
Davies Collison Cave Pty Ltd, Level 15 1 Nicholson Street, MELBOURNE, VIC, 3000, AU

(56) Related Art
WO 2016/202459 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
23 August 2018 (23.08.2018)

(10) International Publication Number

WO 2018/149982 A1

(51) International Patent Classification:
C12N 1/36 (2006.01) *A61K 39/00* (2006.01)

(74) Agent: WALLINGER RICKER SCHLÖTTER TOST-MANN; Patent- und Rechtsanwälte, Partnerschaft mbB, Zweibrückenstraße 5-7, 80331 Munich (DE).

(21) International Application Number:
PCT/EP2018/053918

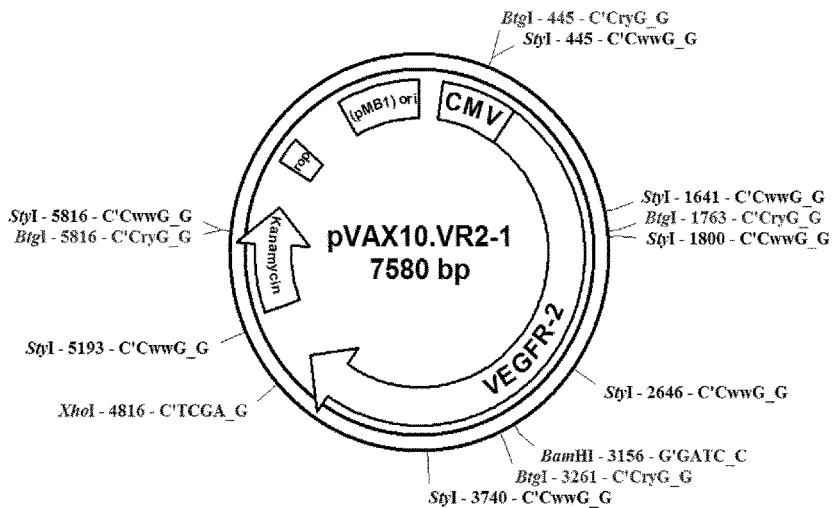
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date:
16 February 2018 (16.02.2018)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:
English

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,


(26) Publication Language:
English(30) Priority Data:
17156718.3 17 February 2017 (17.02.2017) EP

(71) Applicant: VAXIMM AG [CH/CH]; Hochbergerstrasse 60c, 4057 Basel (CH).

(72) Inventor: LUBENAU, Heinz; An der Eselshaut 12, 67435 Neustadt an der Weinstraße (DE).

(54) Title: NOVEL VEGFR-2 TARGETING IMMUNOTHERAPY APPROACH

Figure 9

(57) **Abstract:** [0081] The present invention relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein for use in cancer immunotherapy, wherein the cancer is characterized by VEGF receptor protein expressing cancer cells. The present invention further relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein for use in cancer immunotherapy, wherein the cancer is characterized by VEGF receptor protein expressing cancer cells, and wherein the cancer is selected from the group consisting of glioblastoma, carcinoid cancer, kidney cancer, particularly renal cell carcinoma, thyroid cancer, lung cancer, particularly Non-Small Cell Lung Cancer (NSCLC), breast cancer, ovarian cancer, prostate cancer, gastrointestinal cancer, particularly colorectal cancer, more particularly colon cancer, and skin cancer, particularly melanoma. The present invention further relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein for use in cancer immunotherapy in a patient comprising at least one VEGF receptor protein expressing cancer cell.

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*
- *with sequence listing part of description (Rule 5.2(a))*

NOVEL VEGFR-2 TARGETING IMMUNOTHERAPY APPROACH

FIELD OF THE INVENTION

[0001] The present invention relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein for use in cancer immunotherapy, wherein the cancer is characterized by VEGF receptor protein expressing cancer cells. The present invention further relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein for use in cancer immunotherapy, wherein the cancer is characterized by VEGF receptor protein expressing cancer cells, and wherein the cancer is selected from the group consisting of glioblastoma, carcinoid cancer, kidney cancer, particularly renal cell carcinoma, thyroid cancer, lung cancer, particularly Non-Small Cell Lung Cancer (NSCLC), breast cancer, ovarian cancer, prostate cancer, gastrointestinal cancer, particularly colorectal cancer, more particularly colon cancer, and skin cancer, particularly melanoma. The present invention further relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein for use in cancer immunotherapy in a patient comprising at least one VEGF receptor protein expressing cancer cell.

BACKGROUND OF THE INVENTION

[0002] Angiogenesis is a critical factor contributing to solid tumor growth and metastasis. Vascular endothelial growth factor receptor (VEGFR) 2 (also known as

KDR or Flk-1) is a high-affinity receptor for vascular endothelial growth factor (VEGF) and is thought to be the major mediator of angiogenesis in solid tumors, as it is implicated in all critical endothelial functions including proliferation, migration, and vessel formation. The tumor neovasculature is lined with endothelial cells that overexpress VEGFR-2 and are readily accessible via the blood stream. The genetic stability of these cells and their ability to support hundreds of tumor cells per endothelial cell make them a prime target for anti-cancer therapy, be it via antibodies, tyrosine kinase inhibitors, or vaccines (Augustin, Trends Pharmacol Sci 1998, 19:216–222). To date, the VEGF/VEGFR2 signaling pathway has been targeted in a number of anti-angiogenic therapy approaches. Compounds like bevacizumab and others, for example small molecules such as sunitinib and axitinib that specifically target the tumor neovasculature have shown efficacy in a range of tumor indications (Powles et al., Br J Cancer 2011, 104(5):741-5); Rini et al., Lancet 2011, 378:1931-1939).

[0003] WO 2014/005683 discloses an attenuated mutant strain of *Salmonella* comprising a recombinant DNA molecule encoding a VEGF receptor protein for use in cancer immunotherapy, particularly for use in the treatment of pancreatic cancer.

[0004] WO 2016/202459 discloses an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein, for use in the treatment of cancer, wherein the treatment further comprises the administration of at least one further anti-cancer agent.

[0005] WO 2013/09189 discloses a method for growing attenuated mutant *Salmonella typhi* strains lacking galactose epimerase activity and harboring a recombinant DNA molecule.

[0006] VEGF receptors have long been assumed to be restricted to the vasculature of malignancies, i.e. to the tumor stroma. Recent expression analyses, however, revealed the expression of vascular endothelial growth factor receptors, in particular VEGFR-2, on tumor cells themselves. Tumor-specific VEGF receptor expression was observed on cancer cells of various origins. This indicates that VEGF might have additional effects on tumorigenesis besides promoting neovascularization.

OBJECTS OF THE INVENTION

[0007] It is an object of the present invention to provide novel safe and efficient cancer immunotherapy approaches targeting VEGF receptors. Such novel therapy approaches would offer major advantages for improving the treatment options for cancer patients.

SUMMARY OF THE INVENTION

[0008] Recent expression analyses revealed the tumor-specific expression of vascular endothelial growth factor receptors, in particular VEGFR-2, on cancer cells of various origins. The biological role of tumor-specific VEGF receptor expression however remains unclear. Available data on the effect of VEGFR-2 expression on glioblastoma are highly controversial. Whereas Kessler et al (Oncotarget, 2015) have reported that expression of VEGFR-2 in glioma cells drives glioma cell proliferation and increases resistance of glioma cells to various chemotherapeutics, Lu et al. (Cancer Cell, 2012) have found that VEGF directly and negatively regulates tumor cell invasion via VEGFR-2.

[0009] The present invention is based on the surprising finding that a *Salmonella*-based DNA vaccine targeting a VEGF receptor is particularly efficient against tumors exhibiting tumor-specific VEGF receptor expression - optionally in addition to VEGF receptor expression in the tumor vasculature - as compared to tumors only exhibiting VEGF receptor expression in the tumor vasculature. Within the context of the present invention, the term "tumor-specific VEGF receptor expression" refers to expression of VEGF receptors on the tumor cells themselves as opposed to the tumor vasculature.

[0010] Thus, in a first aspect, the present invention relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein for use in cancer immunotherapy, wherein the cancer is characterized by VEGF receptor protein expressing cancer cells.

[0011] In a second aspect, the present invention relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein for use in cancer immunotherapy, wherein the cancer is characterized by VEGF receptor protein expressing cancer cells, and wherein the cancer is selected from the group consisting of glioblastoma, carcinoid cancer, kidney cancer, particularly renal cell carcinoma, thyroid cancer, lung cancer, particularly Non-Small Cell Lung Cancer (NSCLC), breast cancer, ovarian cancer, prostate cancer, gastrointestinal cancer, particularly colorectal cancer, more particularly colon cancer, and skin cancer, particularly melanoma.

[0012] In a third aspect, the present invention relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein for use in cancer

immunotherapy in a patient comprising at least one VEGF receptor protein expressing cancer cell.

[0013] In particular embodiments, the attenuated strain of *Salmonella* is of the species *Salmonella enterica*. Particularly, the attenuated strain of *Salmonella* is *Salmonella typhi* Ty21a.

[0014] In particular embodiments, the expression cassette is a eukaryotic expression cassette. Particularly, the expression cassette comprises a CMV promoter.

[0015] In particular embodiments, the VEGF receptor protein is VEGFR-2, particularly human VEGFR-2. Particularly, the VEGF receptor protein is selected from the group consisting of VEGFR-2 having the amino acid sequence as found in SEQ ID NO 1 and a protein that shares at least 80% sequence identity therewith. Particularly, the VEGF receptor protein has the amino acid sequence as found in SEQ ID NO 1.

[0016] In particular embodiments, the DNA molecule comprises the kanamycin antibiotic resistance gene, the pMB1 ori and a CMV promoter. In particular such embodiments, the DNA molecule comprises the DNA sequence as found in SEQ ID NO 2.

[0017] In particular embodiments, cancer immunotherapy is accompanied by chemotherapy, radiotherapy or biological cancer therapy. In particular such embodiments, the attenuated strain of *Salmonella* is administered before, during or after the chemotherapy or the radiotherapy treatment or the biological cancer therapy, or before and during the chemotherapy or the radiotherapy treatment or the biological cancer therapy.

[0018] In particular embodiments, the biological cancer therapy comprises administration of at least one further DNA vaccine encoding a tumor antigen and/or a tumor stroma antigen. In particular such embodiments, said at least one further DNA vaccine encoding a tumor antigen and/or a tumor stroma antigen is selected from at least one further attenuated strain of *Salmonella* comprising at least one copy of a further DNA molecule comprising a further expression cassette encoding a tumor antigen and/or a tumor stroma antigen. Particularly, said at least one further attenuated strain of *Salmonella* is *Salmonella typhi* Ty21a comprising a further eukaryotic expression cassette.

[0019] In particular embodiments, said tumor antigen encoded by said at least one further DNA vaccine is selected from the group consisting of human Wilms' Tumor Protein (WT1), human Mesothelin (MSLN), CEA and CMV pp65. Particularly, said tumor antigen encoded by said at least one further DNA vaccine is selected from the group consisting of human Wilms' Tumor Protein (WT1) having the amino acid sequence as found in SEQ ID NO 3 and a protein that shares at least about 80% sequence identity therewith, human Mesothelin (MSLN) having the amino acid sequence as found in SEQ ID NO 4 and a protein that shares at least about 80% sequence identity therewith, human CEA having the amino acid sequence as found in SEQ ID NO 5 and a protein that shares at least about 80% sequence identity therewith, CMV pp65 having the amino acid sequence as found in SEQ ID NO 6 and a protein that shares at least about 80% sequence identity therewith, CMV pp65 having the amino acid sequence as found in SEQ ID NO 7 and a protein that shares at least about 80% sequence identity therewith, and CMV pp65 having the amino acid sequence as found in SEQ ID NO 8 and a protein that shares at least about 80% sequence identity therewith. Particularly, human Wilms' Tumor Protein (WT1) has the amino acid sequence as found in SEQ ID NO 3, human Mesothelin (MSLN) has the amino acid sequence as found in SEQ ID NO 4, human CEA has the amino acid

sequence as found in SEQ ID NO 5, and CMV pp65 has the amino acid sequence as found in SEQ ID NO 6, SEQ ID NO 7 or SEQ ID NO 8. In particular embodiments, said tumor stroma antigen encoded by said at least one further DNA vaccine is selected from the group consisting of human fibroblast activation protein (FAP).

[0020] In particular embodiments, the attenuated strain of *Salmonella* is administered orally.

[0021] In particular embodiments, the single dose of the attenuated strain of *Salmonella* comprises from about 10^5 to about 10^{11} , particularly from about 10^6 to about 10^{10} , more particularly from about 10^6 to about 10^9 , more particularly from about 10^6 to about 10^8 , most particularly from about 10^6 to about 10^7 colony forming units (CFU).

[0022] In particular embodiments, the attenuated strain of *Salmonella* is for use in individualized cancer immunotherapy comprising the step of assessing the expression pattern of and/or the pre-immune response against at least one VEGF receptor protein, particularly of VEGFR-2 in a patient.

DETAILED DESCRIPTION OF THE INVENTION

[0023] In a first aspect, the present invention relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein, particularly VEGFR-2, for use in cancer immunotherapy, wherein the cancer is characterized by VEGF receptor protein, particularly VEGFR-2, expressing cancer cells.

[0024] Within the context of the present invention, the term “cancer which is characterized by VEGF receptor protein expressing cancer cells” refers to cancer indications characterized by the presence of cancer cells that express at least one VEGF receptor protein, particularly VEGFR-2, on mRNA and/or on protein level. In particular embodiments, the expression of at least one VEGF receptor protein, particularly VEGFR-2 on mRNA and/or protein level is increased as compared to non-cancerous cells of the same tissue type. For instance, the expression of at least one VEGF receptor protein, particularly VEGFR-2 may be increased as compared to non-cancerous cells of the same tissue type of the same patient. In other embodiments, the expression of at least one VEGF receptor protein, particularly VEGFR-2 may be increased as compared to the average expression in non-cancerous cells of the same tissue in a representative healthy subject population. Cancer indications that are characterized by VEGF receptor protein expression include, *inter alia*, glioblastoma, carcinoid cancer, kidney cancer, particularly renal cell carcinoma, pancreatic cancer, thyroid cancer, lung cancer, particularly Non-Small Cell Lung Cancer (NSCLC), breast cancer, ovarian cancer, prostate cancer, gastrointestinal cancer, particularly colorectal cancer, more particularly colon cancer, and skin cancer, particularly melanoma.

[0025] Thus, in a second aspect, the present invention relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein, particularly VEGFR-2, for use in cancer immunotherapy, wherein the cancer is characterized by VEGF receptor protein expressing cancer cells, particularly by VEGFR-2 expressing cancer cells, wherein the cancer is selected from the group consisting of glioblastoma, carcinoid cancer, kidney cancer, particularly renal cell carcinoma, thyroid cancer, lung cancer, particularly Non-Small Cell Lung Cancer (NSCLC), breast cancer, ovarian cancer,

prostate cancer, gastrointestinal cancer, particularly colorectal cancer, more particularly colon cancer, and skin cancer, particularly melanoma.

[0026] One particularly promising indication for VEGFR-2 targeting immunotherapy is glioblastoma. Glioblastoma shows extremely high tumor vascularization. Moreover, VEGFR-2 may be targeted on both the tumor vasculature and the tumor cells. About 20% to 50% of glioblastoma patients show tumor-specific VEGFR-2 expression, which is particularly observed at the invasion front. Furthermore, VEGFR-2 expression was observed in glioma-like stem cells. So far, the treatment options for glioblastoma remain unsatisfactory. For example, the monoclonal antibody avastin targeting VEGF only showed benefits in progression free survival, but not in overall survival.

[0027] In a third aspect, the present invention relates to an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding a VEGF receptor protein, particularly VEGFR-2, for use in cancer immunotherapy in a patient comprising at least one VEGF receptor protein expressing cancer cell, particularly at least one VEGFR-2 expressing cancer cell.

[0028] In particular embodiments of the present invention, the patient has been determined to have a cancer characterized by VEGF receptor protein expressing cancer cells or to have at least one VEGF receptor protein expressing cancer cell. In a first step, the patient's tumor-specific VEGF receptor protein expression, e.g. the tumor-specific expression of VEGFR-2, may be assessed on mRNA or protein level, preferably *in vitro*. For that purpose, tumor tissue samples (e.g., a biopsy) may for example either be stained by immunohistochemistry staining or they may undergo *in*

situ hybridization. Methods for the assessment of tumor-specific antigen expression are well known in the art.

[0029] According to the invention, the attenuated *Salmonella* strain functions as the bacterial carrier of the recombinant DNA molecule comprising an expression cassette encoding a VEGF receptor protein for the delivery of said recombinant DNA molecule into a target cell. Such a delivery vector comprising a DNA molecule encoding a heterologous antigen, such as a VEGF receptor protein, is termed DNA vaccine. Thus, the terms “DNA vaccine encoding” and “attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette encoding” are used interchangeably herein.

[0030] In the context of the present invention, the term “vaccine” refers to an agent which is able to induce an immune response in a subject upon administration. A vaccine can preferably prevent, ameliorate or treat a disease.

[0031] The live attenuated *Salmonella* strain according to the present invention stably carries a recombinant DNA molecule encoding a VEGF receptor protein. It can be used as a vehicle for the oral delivery of this recombinant DNA molecule.

[0032] Genetic immunization might be advantageous over conventional vaccination. The target DNA can be detected for a considerable period of time thus acting as a depot of the antigen. Sequence motifs in some plasmids, like GpC islands, are immunostimulatory and can function as adjuvants furthered by the immunostimulation due to LPS and other bacterial components.

[0033] Live attenuated *Salmonella* vectors produce their own immunomodulatory factors such as lipopolysaccharides (LPS) *in situ* which may constitute an advantage

over other forms of administration such as microencapsulation. Moreover, the mucosal vaccine according to the present invention has an intra-lymphatic mode of action, which proves to be of benefit. After ingestion of the attenuated vaccine according to the present invention, macrophages and other cells in Peyer's patches of the gut are invaded by the modified bacteria. The bacteria are taken up by these phagocytic cells. Due to their attenuating mutations, bacteria of the *S. typhi* Ty21 strain are not able to persist in these phagocytic cells but die at this time point. The recombinant DNA molecules are released and subsequently transferred into the cytosol of the phagocytic immune cells, either via a specific transport system or by endosomal leakage. Finally, the recombinant DNA molecules enter the nucleus, where they are transcribed, leading to massive VEGF receptor protein expression in the cytosol of the phagocytic cells. The infected cells undergo apoptosis, loaded with the VEGF receptor protein antigen, and are taken up and processed by the gut's immune system. The danger signals of the bacterial infection serve as a strong adjuvant in this process, leading to a strong target antigen specific CD8+T-cell and antibody response at the level of both systemic and mucosal compartments. The immune response peaks around ten days after vaccination. The lack of anti-carrier response allows boosting with the same vaccine over many times.

[0034] In the context of the present invention, the term "attenuated" refers to a bacterial strain of reduced virulence compared to the parental bacterial strain, not harboring the attenuating mutation. Attenuated bacterial strains have preferably lost their virulence but retained their ability to induce protective immunity. Attenuation can be accomplished by deletion of various genes, including virulence, regulatory, and metabolic genes. Attenuated bacteria may be found naturally or they may be produced artificially in the laboratory, for example by adaptation to a new medium or cell culture or they may be produced by recombinant DNA technology. Administration of about 10^{11} CFU of the attenuated strain of *Salmonella* according to the present

invention preferably causes Salmonellosis in less than 5%, more preferably less than 1%, most preferably less than 1% of subjects.

[0035] In the context of the present invention, the term “comprises” or “comprising” means “including, but not limited to”. The term is intended to be open-ended, to specify the presence of any stated features, elements, integers, steps or components, but not to preclude the presence or addition of one or more other features, elements, integers, steps, components or groups thereof. The term “comprising” thus includes the more restrictive terms “consisting of” and “essentially consisting of”. In one embodiment the term “comprising” as used throughout the application and in particular within the claims may be replaced by the term “consisting of”.

[0036] The DNA molecule comprising an expression cassette encoding a VEGF receptor protein is suitably a recombinant DNA molecule, i.e. an engineered DNA construct, preferably composed of DNA pieces of different origin. The DNA molecule can be a linear nucleic acid, or preferably, a circular DNA plasmid generated by introducing an open reading frame encoding a VEGF receptor protein into an expression vector plasmid.

[0037] In the context of the present invention, the term “expression cassette” refers to a nucleic acid unit comprising at least one open reading frame (ORF) under the control of regulatory sequences controlling its expression. Expression cassettes can preferably mediate transcription of the included open reading frame encoding an antigen, such as a VEGF receptor protein, in a target cell. Expression cassettes typically comprise a promoter, at least one open reading frame and a transcription termination signal.

[0038] In particular embodiments, the attenuated strain of *Salmonella* is of the species *Salmonella enterica*. Attenuated derivatives of *Salmonella enterica* are attractive vehicles for the delivery of heterologous antigens to the mammalian immune system, since *S. enterica* strains can potentially be delivered via mucosal routes of immunization, i.e. orally or nasally, which offers advantages of simplicity and safety compared to parenteral administration. Furthermore, *Salmonella* strains elicit strong humoral and cellular immune responses at the level of both systemic and mucosal compartments. Batch preparation costs are low and formulations of live bacterial vaccines are highly stable. Attenuation can be accomplished by deletion of various genes, including virulence, regulatory, and metabolic genes.

[0039] Several *Salmonella typhimurium* strains attenuated by *aro* mutations have been shown to be safe and effective delivery vehicles for heterologous antigens in animal models.

[0040] In particular embodiments, the attenuated strain of *Salmonella* and the at least one further attenuated strain of *Salmonella* are *Salmonella typhi* Ty21a. The live, attenuated *S. typhi* Ty21a strain is the active component of Typhoral L®, also known as Vivotif® (manufactured by Berna Biotech Ltd., a Crucell Company, Switzerland). It is currently the only licensed live oral vaccine against typhoid fever. This vaccine has been extensively tested and has proved to be safe regarding patient toxicity as well as transmission to third parties (Wahdan et al., J. Infectious Diseases 1982, 145:292-295). The vaccine is licensed in more than 40 countries and has been used in millions of individuals including thousands of children for prophylactic vaccination against typhoid fever. It has an unparalleled safety track record. There is no data available indicating that *S. typhi* Ty21a is able to enter the bloodstream systemically. The live attenuated *Salmonella typhi* Ty21a vaccine strain thus allows specific targeting of the immune system in the gut, while being safe and well-tolerated. The

Marketing Authorization number of Typhoral L® is PL 15747/0001 dated 16 December 1996. One dose of vaccine contains at least 2×10^9 viable *S. typhi* Ty21a colony forming units and at least 5×10^9 non-viable *S. typhi* Ty21a cells.

[0041] This well-tolerated, live oral vaccine against typhoid fever was derived by chemical mutagenesis of the wild-type virulent bacterial isolate *S. typhi* Ty2 and harbors a loss-of-function mutation in the *galE* gene resulting in its inability to metabolize galactose. The attenuated bacterial strain is also not able to reduce sulfate to sulfide which differentiates it from the wild-type *Salmonella typhi* Ty2 strain. With regard to its serological characteristics, the *Salmonella typhi* Ty21a strain contains the O9-antigen which is a polysaccharide of the outer membrane of the bacteria and lacks the O5-antigen which is in turn a characteristic component of *Salmonella typhimurium*. This serological characteristic supports the rationale for including the respective test in a panel of identity tests for batch release.

[0042] In particular embodiments, the expression cassette is a eukaryotic expression cassette. Particularly, the expression cassette comprises a CMV promoter. In the context of the present invention, the term "eukaryotic expression cassette" refers to an expression cassette which allows for expression of the open reading frame in a eukaryotic cell. It has been shown that the amount of heterologous antigen required to induce an adequate immune response may be toxic for the bacterium and may result in cell death, over-attenuation or loss of expression of the heterologous antigen. Using a eukaryotic expression cassette that is not expressed in the bacterial vector but only in the target cell may overcome this toxicity problem and the protein expressed typically exhibits a eukaryotic glycosylation pattern.

[0043] A eukaryotic expression cassette comprises regulatory sequences that are able to control the expression of an open reading frame in a eukaryotic cell,

preferably a promoter and a polyadenylation signal. Promoters and polyadenylation signals included in the recombinant DNA molecules comprised by the attenuated strain of *Salmonella* of the present invention are preferably selected to be functional within the cells of the subject to be immunized. Examples of suitable promoters, especially for the production of a DNA vaccine for humans, include but are not limited to promoters from Cytomegalovirus (CMV), such as the strong CMV immediate early promoter, Simian Virus 40 (SV40), Mouse Mammary Tumor Virus (MMTV), Human Immunodeficiency Virus (HIV), such as the HIV Long Terminal Repeat (LTR) promoter, Moloney virus, Epstein Barr Virus (EBV), and from Rous Sarcoma Virus (RSV), the synthetic CAG promoter composed of the CMV early enhancer element, the promoter, the first exon and the first intron of chicken beta-actin gene and the splice acceptor of the rabbit beta globin gene, as well as promoters from human genes such as human actin, human myosin, human hemoglobin, human muscle creatine, and human metallothionein. In a particular embodiment, the eukaryotic expression cassette contains the CMV promoter. In the context of the present invention, the term “CMV promoter” refers to the strong immediate-early cytomegalovirus promoter.

[0044] Examples of suitable polyadenylation signals, especially for the production of a DNA vaccine for humans, include but are not limited to the bovine growth hormone (BGH) polyadenylation site, SV40 polyadenylation signals and LTR polyadenylation signals. In a particular embodiment, the eukaryotic expression cassette included in the recombinant DNA molecule comprised by the attenuated strain of *Salmonella* of the present invention comprises the BGH polyadenylation site.

[0045] In addition to the regulatory elements required for expression of VEGF receptor proteins, like a promoter and a polyadenylation signal, other elements can also be included in the recombinant DNA molecule. Such additional elements include

enhancers. The enhancer can be, for example, the enhancer of human actin, human myosin, human hemoglobin, human muscle creatine and viral enhancers such as those from CMV, RSV and EBV.

[0046] Regulatory sequences and codons are generally species dependent, so in order to maximize protein production, the regulatory sequences and codons are preferably selected to be effective in the species to be immunized. The person skilled in the art can produce recombinant DNA molecules that are functional in a given subject species.

[0047] In particular embodiments, the VEGF receptor protein is VEGFR-2, particularly human VEGFR-2. Particularly, the VEGF receptor protein is selected from the group consisting of VEGFR-2 having the amino acid sequence as found in SEQ ID NO 1 and a protein that shares at least 80% sequence identity therewith. Particularly, the VEGF receptor protein has the amino acid sequence as found in SEQ ID NO 1.

[0048] In this context, the term “about” or “approximately” means within 80% to 120%, alternatively within 90% to 110%, including within 95% to 105% of a given value or range.

[0049] In the context of the present invention, the term “protein that shares at least about 80% sequence identity with a given protein, e.g., VEGFR-2 having the amino acid sequence as found in SEQ ID NO 1” refers to a protein that may differ in the amino acid sequence encoding the amino acid sequence of said reference protein, e.g., VEGFR-2 having the amino acid sequence of SEQ ID NO 1. The protein may be of natural origin, e.g. a mutant version of a wild-type protein, e.g. a mutant version of a wild type VEGFR-2, or a homolog of a different species, or an engineered protein, e.g., engineered VEGFR-2. It is known that the usage of codons is different between

species. Thus, when expressing a heterologous protein in a target cell, it may be necessary, or at least helpful, to adapt the nucleic acid sequence to the codon usage of the target cell. Methods for designing and constructing derivatives of a given protein are well known to anyone of ordinary skill in the art.

[0050] The protein that shares at least about 80% sequence identity with a given protein, e.g., VEGFR-2 having the amino acid sequence as found in SEQ ID NO 1, may contain one or more mutations comprising an addition, a deletion and/or a substitution of one or more amino acids in comparison to the reference protein, e.g., VEGFR-2 having the amino acid sequence of SEQ ID NO 1. According to the teaching of the present invention, said deleted, added and/or substituted amino acids may be consecutive amino acids or may be interspersed over the length of the amino acid sequence of the protein that shares at least about 80% sequence identity with a reference protein, e.g., VEGFR-2 having the amino acid sequence as found in SEQ ID NO 1. According to the teaching of the present invention, any number of amino acids may be added, deleted, and/or substitutes, as long as the amino acid sequence identity with the reference protein is at least about 80% and the mutated protein is immunogenic. Preferably, the immunogenicity of the protein which shares at least about 80% sequence identity with a given reference protein, e.g., VEGFR-2 having the amino acid sequence as found in SEQ ID NO 1, is reduced by less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5% or less than 1% compared to said reference protein, e.g., VEGFR-2 having the amino acid sequence as found in SEQ ID NO 1, as measured by ELISA. Methods for designing and constructing protein homologues and for testing such homologues for their immunogenic potential are well known to anyone of ordinary skill in the art. In particular embodiments, the amino acid sequence identity with the reference protein, e.g., VEGFR-2 having the amino acid sequence of SEQ ID NO 1 is at least about 80%, at least about 85%, at least about 90%, or most particularly at least about 95%.

Methods and algorithms for determining sequence identity including the comparison of a parental protein and its derivative having deletions, additions and/or substitutions relative to a parental sequence, are well known to the practitioner of ordinary skill in the art. On the DNA level, the nucleic acid sequences encoding the protein that shares at least about 80% sequence identity with a given reference protein, e.g., VEGFR-2 having the amino acid sequence as found in SEQ ID NO 1, may differ to a larger extent due to the degeneracy of the genetic code.

[0051] In particular embodiments, the DNA molecule comprises the kanamycin antibiotic resistance gene, the pMB1 ori and a CMV promoter. In particular embodiments, the recombinant DNA molecule is derived from commercially available pVAX1TM expression plasmid (Invitrogen, San Diego, California). This expression vector was modified by replacing the high copy pUC origin of replication by the low copy pMB1 origin of replication of pBR322. The low copy modification was made in order to reduce the metabolic burden and to render the construct more stable. The generated expression vector backbone was designated pVAX10.

[0052] In particular embodiments, the DNA molecule comprises the DNA sequence as found in SEQ ID NO 2 (vector backbone pVAX10).

[0053] Inserting the ORF encoding human VEGFR-2 having the amino acid sequence of SEQ ID NO 1 into the expression vector backbone via *Nhe*I/*Xho*I yielded the expression plasmid pVAX10.VR2-1 (WO 2013/091898). The expression plasmid pVAX10.VR2-1 is schematically depicted in Figure 9. The DNA vaccine comprising the attenuated *Salmonella* strain Ty21a harboring the expression plasmid pVAX10.VR2-1 is designated VXM01 (WO 2013/091898).

[0054] In particular embodiments, cancer immunotherapy is accompanied by chemotherapy, radiotherapy or biological cancer therapy. In particular such embodiments, the attenuated strain of *Salmonella* is administered before, during or after the chemotherapy or the radiotherapy treatment or the biological cancer therapy, or before and during the chemotherapy or the radiotherapy treatment or the biological cancer therapy. For cure of cancer, complete eradication of cancer stem cells may be essential. For maximal efficacy, a combination of different therapy approaches may be beneficial.

[0055] In the context of the present invention, the term “biological cancer therapy” refers to cancer therapy involving the use of living organisms including viruses, substances derived from living organisms or laboratory-produced versions of such substances. Some biological therapies for cancer aim at stimulating the body’s immune system to act against cancer cells (so called biological cancer immunotherapy). Biological cancer therapy approaches include the delivery of tumor antigens and tumor stroma antigens, e.g. by *Salmonella* based DNA vaccines, particularly *S. typhi* Ty21a based DNA vaccines, delivery of therapeutic antibodies as drugs, administration of immunostimulatory cytokines and administration of immune cells, including engineered T cells. Therapeutic antibodies include antibodies targeting tumor antigens or tumor stroma antigens.

[0056] In particular embodiments, the biological cancer therapy comprises administration of at least one further DNA vaccine (at least one further attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising an expression cassette) encoding a tumor antigen and/or a tumor stroma antigen. In particular such embodiments, said at least one further DNA vaccine encoding a tumor antigen and/or a tumor stroma antigen is selected from at least one further attenuated strain of *Salmonella* comprising at least one copy of a further DNA

molecule comprising a further expression cassette encoding a tumor antigen and/or a tumor stroma antigen. Particularly, said at least one further attenuated strain of *Salmonella* is *Salmonella typhi* Ty21a comprising a further eukaryotic expression cassette.

[0057] In particular embodiments, said tumor antigen encoded by said at least one further DNA vaccine is selected from the group consisting of human Wilms' Tumor Protein (WT1), human Mesothelin (MSLN), human CEA and CMV pp65. Particularly, said tumor antigen encoded by said at least one further DNA vaccine is selected from the group consisting of human Wilms' Tumor Protein (WT1) having the amino acid sequence as found in SEQ ID NO 3 and a protein that shares at least about 80% sequence identity therewith, human Mesothelin (MSLN) having the amino acid sequence as found in SEQ ID NO 4 and a protein that shares at least about 80% sequence identity therewith, human CEA having the amino acid sequence as found in SEQ ID NO 5 and a protein that shares at least about 80% sequence identity therewith, CMV pp65 having the amino acid sequence as found in SEQ ID NO 6 and a protein that shares at least about 80% sequence identity therewith, CMV pp65 having the amino acid sequence as found in SEQ ID NO 7 and a protein that shares at least about 80% sequence identity therewith, and CMV pp65 having the amino acid sequence as found in SEQ ID NO 8 and a protein that shares at least about 80% sequence identity therewith. Particularly, human Wilms' Tumor Protein (WT1) has the amino acid sequence as found in SEQ ID NO 3, human Mesothelin (MSLN) has the amino acid sequence as found in SEQ ID NO 4, human CEA has the amino acid sequence as found in SEQ ID NO 5, and CMV pp65 has the amino acid sequence as found in SEQ ID NO 6, SEQ ID NO 7 or SEQ ID NO 8. In particular embodiments, said tumor stroma antigen encoded by said at least one further DNA vaccine is selected from the group consisting of human fibroblast activation protein (FAP).

[0058] In particular embodiments, the attenuated strain of *Salmonella* encoding a VEGF receptor protein is administered prior to or simultaneously with the at least one further DNA vaccine encoding a tumor antigen and/or a tumor stroma antigen.

[0059] In the context of the present invention, the term “simultaneously with” means administration of the attenuated strain of *Salmonella* encoding a VEGF receptor protein and the at least one further DNA vaccine encoding a tumor antigen and/or a tumor stroma antigen on the same day, more particularly within 12 hours, more particularly within 2 hours.

[0060] In particular embodiments, administration of the attenuated *Salmonella* strain encoding a VEGF receptor protein and the at least one further DNA vaccine encoding a tumor antigen and/or a tumor stroma antigen occurs within eight consecutive weeks, more particularly within three to six consecutive weeks. The attenuated *Salmonella* strain encoding a VEGF receptor protein and the at least one further DNA vaccine encoding a tumor antigen or a tumor stroma antigen may be administered via the same route or via different routes. For example, in particular if the at least one further DNA vaccine is a further attenuated strain of *Salmonella*, it may be administered orally.

[0061] The single dose of the further attenuated strain of *Salmonella* may comprise from about 10^5 to about 10^{11} , particularly from about 10^6 to about 10^{10} , more particularly from about 10^6 to about 10^9 , more particularly from about 10^6 to about 10^8 , most particularly from about 10^6 to about 10^7 colony forming units (CFU).

[0062] Chemotherapeutic agents that may be used in combination with the attenuated mutant strain of *Salmonella* of the present invention may be, for example gemcitabine, amifostine (ethyol), cabazitaxel, carboplatin, oxaliplatin, cisplatin,

capecitabine, dacarbazine (DTIC), dactinomycin, docetaxel, mechlorethamine, streptozocin, cyclophosphamide, nimustine (ACNU), carmustine (BCNU), lomustine (CCNU), doxorubicin (adriamycin), doxorubicin lipo (doxil), folinic acid, gemcitabine (gemzar), daunorubicin, daunorubicin lipo (daunoxome), epirubicin, procarbazine, ketokonazole, mitomycin, cytarabine, etoposide, methotrexate, 5-fluorouracil (5-FU), vinblastine, vincristine, bleomycin, paclitaxel (taxol), docetaxel (taxotere), permetrexed, aldesleukin, asparaginase, busulfan, carboplatin, cladribine, camptothecin, CPT-11, 10-hydroxy-7-ethyl-camptothecin (SN38), dacarbazine, flouxuridine, fludarabine, hydroxyurea, ifosfamide, idarubicin, mesna, interferon alpha, interferon beta, irinotecan, mitoxantrone, topotecan, leuprolide, megestrol, melphalan, mercaptopurine, oxaliplatin, plicamycin, mitotane, pegaspargase, pentostatin, pipobroman, plicamycin, streptozocin, tamoxifen, teniposide, testolactone, thioguanine, thiotepa, uracil mustard, vinorelbine, chlorambucil, temozolomide and combinations thereof.

[0063] Most preferred chemotherapeutic agents according to the invention are cabazitaxel, carboplatin, oxaliplatin, cisplatin, cyclophosphamide, docetaxel, etoposide, gemcitabine, doxorubicin, lomustine, paclitaxel (taxol), irinotecan, vincristine, vinblastine, vinorelbine, folinic acid, 5-fluorouracil, bleomycin and temozolomide, especially gemcitabine.

[0064] In particular embodiments, cancer immunotherapy is accompanied by a combination of chemotherapy and radiotherapy. In particular such embodiments, chemotherapy comprises administration of temozolomide.

[0065] In particular embodiments, the attenuated strain of *Salmonella* is administered orally. Oral administration is simpler, safer and more comfortable than parenteral administration. However, it has to be noted that the attenuated strain of *Salmonella*

encoding a VEGF receptor protein may also be administered by any other suitable route. Preferably, a therapeutically effective dose is administered to the subject, and this dose depends on the particular application, the type of malignancy, the subject's weight, age, sex and state of health, the manner of administration and the formulation, etc. administration may be single or multiple, as required.

[0066] The attenuated strain of *Salmonella* encoding a VEGF receptor protein may be provided in the form of a solution, a suspension, a lyophilisate, an enteric coated capsule, or any other suitable form. Typically, the attenuated strain of *Salmonella* is formulated as drinking solution. This embodiment offers the advantage of improved patient compliance. Preferably, the drinking solution comprises means to neutralize gastric acids at least to a certain degree, i.e. to bring the pH of the gastric juice closer to a pH of 7. Preferably, the drinking solution is a buffered suspension comprising the attenuated strain of *Salmonella* encoding a VEGF receptor protein. In a particular embodiment, the buffered suspension is obtained by suspending the attenuated strain of *Salmonella* in a suitable buffer, preferably containing 2.6 g sodium hydrogen carbonate, 1.7 g L-ascorbic acid, 0.2 g lactose monohydrate and 100 ml of drinking water.

[0067] The attenuated strain of *Salmonella* encoding a VEGF receptor protein is surprisingly effective at relatively low doses. The efficacy of the attenuated strain of *Salmonella* encoding a VEGF receptor protein is particularly high in cancers with cancer-specific VEGF receptor protein expression. Administration of low doses of live bacterial vaccines minimizes the risk of excretion and thus of transmission to third parties.

[0068] In particular embodiments, the single dose of the attenuated strain of *Salmonella* encoding a VEGF receptor protein, particularly *Salmonella typhi* Ty21a

encoding human VEGFR-2, comprises from about 10^5 to about 10^{11} , particularly from about 10^6 to about 10^{10} , more particularly from about 10^6 to about 10^9 , more particularly from about 10^6 to about 10^8 , most particularly from about 10^6 to about 10^7 colony forming units (CFU).

[0069] In this context, the term “about” or “approximately” means within a factor of 3, alternatively within a factor of 2, including within a factor of 1.5 of a given value or range.

[0070] In particular embodiments, the attenuated strain of *Salmonella* is for use in individualized cancer immunotherapy comprising the step of assessing the expression pattern of and/or the pre-immune response against at least one VEGF receptor protein, particularly of VEGFR-2 in a patient. Alternatively the attenuated strain of *Salmonella* is for use in cancer immunotherapy in a patient wherein the patient has been determined to have a cancer characterized by VEGF receptor protein (e.g., VEGFR-2) expressing cancer cells or to have at least one VEGF receptor protein (e.g., VEGFR-2) expressing cancer cell, particularly by assessing the expression pattern of and/or the pre-immune response against at least one VEGF receptor protein, particularly of VEGFR-2. The patient's VEGF receptor protein expression and/or the patient's pre-immune responses against a VEGF receptor protein may be assessed in a first step for example by companion diagnostics. Methods for assessing the expression of a target gene, such as VEGFR-2, either on mRNA or on protein level are well known to any one of ordinary skill in the art. For instance, immunohistochemistry staining, flow cytometry methods or RNA sequencing, or alternative methods using labelling can be used to identify the level of target expression in the tumor. Similarly, methods for assessing a patient's pre-immune response against a given protein, such as VEGFR-2, are well known to any one of ordinary skill in the art. A patient's pre-existing VEGFR-2 specific T-cell pool

can be detected by e.g. ELISpot or multimer FACS analysis. High tumor-specific VEGFR-2 expression and/or the occurrence of pre-immune responses against VEGFR-2 are prognostic indicators for the predisposition of a patient to respond especially favorably to the treatment with the attenuated strain of *Salmonella* encoding VEGFR-2.

[0071] It may be favorable dependent on the occurrence of possible side effects, to include treatment with antibiotics or anti-inflammatory agents.

[0072] Should adverse events occur that resemble hypersensitivity reactions mediated by histamine, leukotrienes, or cytokines, treatment options for fever, anaphylaxis, blood pressure instability, bronchospasm, and dyspnoea are available. Treatment options in case of unwanted T-cell derived auto-aggression are derived from standard treatment schemes in acute and chronic graft vs. host disease applied after stem cell transplantation. Cyclosporin and glucocorticoids are proposed as treatment options.

[0073] In the unlikely case of systemic *Salmonella typhi* Ty21a type infection, appropriate antibiotic therapy is recommended, for example with fluoroquinolones including ciprofloxacin or ofloxacin. Bacterial infections of the gastrointestinal tract are to be treated with respective agents, such as rifaximin.

[0074] The attenuated strain of *Salmonella* encoding a VEGF receptor protein may be provided in a pharmaceutical composition. The pharmaceutical composition may be in the form of a solution, a suspension, an enteric coated capsule, a lyophilized powder or any other form suitable for the intended use.

[0075] The pharmaceutical composition may further comprise one or more pharmaceutically acceptable excipients.

[0076] In the context of the present invention, the term “excipient” refers to a natural or synthetic substance formulated alongside the active ingredient of a medication. Suitable excipients include antiadherents, binders, coatings, disintegrants, flavors, colors, lubricants, glidants, sorbents, preservatives and sweeteners.

[0077] In the context of the present invention, the term “pharmaceutically acceptable” refers to molecular entities and other ingredients of pharmaceutical compositions that are physiologically tolerable and do not typically produce untoward reactions when administered to a mammal (e.g., human). The term “pharmaceutically acceptable” may also mean approved by a regulatory agency of a Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in mammals, and, more particularly, in humans.

[0078] In particular embodiments, the pharmaceutical composition is provided as drinking solution. This embodiment offers the advantage of improved patient compliance and allows for rapid, feasible and affordable mass vaccination programs.

[0079] In particular, suitable drinking solutions comprise means to neutralize gastric acids to at least to a certain degree, i.e. to bring the pH of the gastric juice closer to a pH of 7. In a particular embodiment, the drinking solution is a buffered suspension obtained by suspending the attenuated strain of *Salmonella* according to the present invention in a suitable buffer, preferably in a buffer that neutralizes gastric acids to at least a certain degree, preferably in a buffer containing 2.6 g sodium hydrogen carbonate, 1.7 g L-ascorbic acid, 0.2 g lactose monohydrate and 100 ml of drinking water.

[0080] In particular embodiments, cancer immunotherapy comprises a single or multiple administrations of the attenuated strain of *Salmonella* encoding a VEGF receptor protein or a pharmaceutical composition comprising the same. The single dose of the administrations may be the same or different. In particular, cancer immunotherapy comprises 1, 2, 3, 4, 5 or 6 administrations of the attenuated strain of *Salmonella* encoding a VEGF receptor protein, preferably wherein the multiple administrations occur within three to six consecutive months.

SHORT DESCRIPTION OF FIGURES

Figure 1: Amino acid sequence of human VEGFR-2 (SEQ ID NO 1), which is encoded by VEGFR-2 cDNA contained in plasmid pVAX10.VR2-1

Figure 2: Nucleic acid sequence comprised in empty expression vector pVAX10 (sequence of expression vector pVAX10 without the portion of the multiple cloning site which is located between the restriction sites *Nhe*l and *Xho*l (SEQ ID NO 2).

Figure 3: Amino acid sequence of truncated (zinc-finder domain deleted) human WT-1 encoded by WT-1 cDNA contained in plasmid pVAX10.hWT1 (SEQ ID NO 3)

Figure 4: Amino acid sequence of human MSLN encoded by MSLN cDNA contained in plasmid pVAX10.hMSLN (SEQ ID NO 4)

Figure 5: Amino acid sequence of human CEA encoded by CEA cDNA contained in plasmid pVAX10.hCEA (SEQ ID NO 5)

Figure 6: Amino acid sequence of CMV pp65 encoded by CMV pp65 cDNA contained in plasmid pVAX10.CMVpp65_1 (SEQ ID NO 6)

Figure 7: Amino acid sequence of CMV pp65 encoded by CMV pp65 cDNA contained in plasmid pVAX10.CMVpp65_2 (SEQ ID NO 7)

Figure 8: Amino acid sequence of CMV pp65 encoded by CMV pp65 cDNA contained in plasmid pVAX10.CMVpp65_3 (SEQ ID NO 8)

Figure 9: Plasmid map of pVAX10.VR2-1

Figure 10: Brain MRI images of patient 2605

EXAMPLES

Example 1 VXM01 treatment of patients with operable recurrence of glioblastoma

The aim of this study was to examine safety, tolerability, immune and biomarker response to VEGFR-2 encoding DNA vaccine VXM01.

The study was conducted in patients with operable recurrence of a glioblastoma who have failed at least one standard treatment that must have included radiochemotherapy with temozolomide. All patients received DNA vaccine VXM01 as an add-on to their standard therapy.

The study consisted of a screening period, a treatment and observation period up to month 3, a tumor follow-up from month 3 to month 12 and a boosting treatment period between week 8 and week 48 during the tumor follow-up period. After study end, patients are followed up for up to 2 years.

The treatment and observation period included one oral administration of VXM01 each on day 1, 3, 5 and 7 and reoperation at 5 ± 1 weeks after inclusion. In the boosting treatment period VXM01 was administered in oral 4-weekly single boosting doses at weeks 8, 12, 16, 20, 24, 28, 32, 36, 40, 44 and 48.

VXM01 was administered orally at single doses of 10^6 and 10^7 colony forming units (CFU)/ml.

Five out of nine glioblastoma patients showed a favorable course of disease.

Patient 2605:

Patient 2605 is a 55-year-old female patient with recurrent glioblastoma WHO grade IV. Previous cancer treatment included a first operation of glioblastoma and a first line radiochemotherapy with Gy 60 followed by 75mg/m² temozolomide.

The patient was treated with VXM01 at a dose of 10⁶ CFU. VXM01 treatment was started with 4 initial administrations on study day 1, 3, 5 and 7 and continued after the routine operation on day 35 with 4-weekly boosting administrations starting on week 8. At week 10, lomustine/etoposide chemotherapy was started on top of VXM01.

The tumor reference target lesion at the screening visit was 25 x 10 mm. Tumor size development is summarized in Table 1:

Table 1:

Target Lesion	Tumor Diameter 1 [mm]	Tumor Diameter 2 [mm]
Baseline	25	10
Day 10	28	13
Day 21	27	13
Day 35	25	12
Week 12	0	0
Week 20	0	0
Week 36	0	0
Week 52	0	0
Week 60	0	0
Week 76	0	0

The respective MRI images at baseline and at day 35, week 12, week 20 and week 76 are depicted in Figure 10.

The tumor size tended to decrease between study day 10 and the routine operation on day 35 from 28 x 13 mm to 25 x 12 mm. According to RANO criteria, this was assessed as stable disease (SD). At week 12, 7 weeks after the routine reoperation on day 35, the assessment according the RANO criteria was progressive disease (PD) due to the occurrence of a new non-target lesion. After the operation, there was no visible "target lesion" on the MRI report week 12. Lomustine/etoposide chemotherapy was started on top of VXM01. At week 20 (i.e. 15 weeks after reoperation), the tumor was assessed as stable disease (SD) according to RANO criteria. At week 36, lomustine/etoposide chemotherapy was stopped and patient was continued to be treated with VXM01 every 4 weeks and treatment has not been stopped until filing of this application.

The Karnofsky Index was 100% on screening and 90% at week 12.

Immunohistochemistry staining of the primary tumor sample collected pre-study revealed that the tumor cells of this patient expressed VEGFR-2. In the recurrent tumor sample on day 35, after treatment with VXM01, the tumor cells were shown not to express VEGFR-2.

In tumor tissue immunohistochemistry CD8+ T-cells increased in the recurrent tumor after VXM01 treatment compared to primary tumor by factor 2.3.

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method of treating cancer, the method comprising administering to a patient in need thereof an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising a eukaryotic expression cassette encoding VEGFR-2, wherein the patient has been determined to have a cancer characterized by VEGFR-2 expressing cancer cells and wherein the attenuated strain of *Salmonella* is *Salmonella typhi* Ty21a.
2. The method according to claim 1, wherein the cancer is selected from the group consisting of glioblastoma, carcinoid cancer, kidney cancer, particularly renal cell carcinoma, thyroid cancer, lung cancer, particularly Non-Small Cell Lung Cancer (NSCLC), breast cancer, ovarian cancer, prostate cancer, gastrointestinal cancer, particularly colorectal cancer, more particularly colon cancer, and skin cancer, particularly melanoma.
3. A method of treating cancer, the method comprising administering to a patient in need thereof an attenuated strain of *Salmonella* comprising at least one copy of a DNA molecule comprising a eukaryotic expression cassette encoding VEGFR-2, wherein the patient has been determined to have at least one VEGFR-2 expressing cancer cell and wherein the attenuated strain of *Salmonella* is *Salmonella typhi* Ty21a.
4. The method according to any one of claims 1 to 3, wherein the VEGFR-2 is selected from the group consisting of a VEGFR-2 having the amino acid sequence as found in SEQ ID NO 1 and a protein that shares at least 80% sequence identity therewith.
5. The method according to claim 4, wherein the VEGF receptor protein comprises the amino acid sequence as found in SEQ ID NO 1.

6. The method according to any one of claims 1 to 5, wherein the DNA molecule comprises the kanamycin antibiotic resistance gene, the pMB1 ori and a CMV promoter.
7. The method according to claim 6, wherein the DNA molecule comprises the DNA sequence as found in SEQ ID NO 2.
8. The method according to any one of claims 1 to 7, further comprising treating the patient with a chemotherapy, radiotherapy or biological cancer therapy.
9. The method according to claim 8, wherein the biological cancer therapy comprises administration of at least one further DNA vaccine encoding a tumor antigen and/or a tumor stroma antigen.
10. The method according to claim 9, wherein the at least one further DNA vaccine is selected from at least one further attenuated strain of *Salmonella* comprising at least one copy of a further DNA molecule comprising a further expression cassette encoding a tumor antigen and/or a tumor stroma antigen, wherein said at least one further attenuated strain of *Salmonella* is *Salmonella typhi* Ty21a comprising a further eukaryotic expression cassette.
11. The method according to claim 10, wherein said tumor antigen encoded by said at least one further DNA vaccine is selected from the group consisting of human Wilms' Tumor Protein (WT1), human Mesothelin (MSLN), human CEA and CMV pp65.
12. The method according to claim 11, wherein said tumor antigen is selected from the group consisting of human Wilms' Tumor Protein (WT1) having the amino acid sequence as found in SEQ ID NO 3 and a protein that shares at least about 80% sequence identity therewith, human Mesothelin (MSLN) having the amino

acid sequence as found in SEQ ID NO 4 and a protein that shares at least about 80% sequence identity therewith, human CEA having the amino acid sequence as found in SEQ ID NO 5 and a protein that shares at least about 80% sequence identity therewith, CMV pp65 having the amino acid sequence as found in SEQ ID NO 6 and a protein that shares at least about 80% sequence identity therewith, CMV pp65 having the amino acid sequence as found in SEQ ID NO 7 and a protein that shares at least about 80% sequence identity therewith, and CMV pp65 having the amino acid sequence as found in SEQ ID NO 8 and a protein that shares at least about 80% sequence identity therewith.

13. The method according to any one of claims 1 to 12, wherein the attenuated strain of *Salmonella* is administered orally.
14. The method according to any one of claims 1 to 13, wherein the single dose of the attenuated strain of *Salmonella* comprises from about 10^6 to about 10^9 colony forming units (CFU).
15. The method according to claim 14, wherein the single dose of the attenuated strain of *Salmonella* comprises from about 10^6 to about 10^8 colony forming units (CFU).
16. The method according to any one of claims 1 to 15, further comprising the step of assessing in the patient the expression pattern of and/or the pre-immune response against at least VEGFR-2.
17. Use of an attenuated strain of *Salmonella* in the manufacture of a medicament for treating cancer in a patient in need thereof, wherein the attenuated strain of *Salmonella* comprises at least one copy of a DNA molecule comprising a eukaryotic expression cassette encoding VEGFR-2, wherein the patient has been determined to have a cancer characterized by VEGFR-2 expressing

cancer cells and wherein the attenuated strain of *Salmonella* is *Salmonella typhi* Ty21a.

18. Use of an attenuated strain of *Salmonella* in the manufacture of a medicament for treating cancer in a patient in need thereof, wherein the attenuated strain of *Salmonella* comprises at least one copy of a DNA molecule comprising a eukaryotic expression cassette encoding VEGFR-2, wherein the patient has been determined to have at least one VEGFR-2 expressing cancer cell and wherein the attenuated strain of *Salmonella* is *Salmonella typhi* Ty21a.

Figure 1

10	20	30	40	50	60
MQSKVLLAVA LWLCVETRAA SVGLPSVSLD LPRLSIQKDI LTIKANTTLQ ITCRGQRDLD					
70	80	90	100	110	120
WLWPNNQSGS EQRREVTECS DGLFCKTLTI PKVIGNDTGA YKCFYRETDL ASVIYVYVQD					
130	140	150	160	170	180
YRSPFIASVS DQHGVVYITE NKNKTVVIPC LGSISNLNVS LCARYPEKRF VPDGNRISWD					
190	200	210	220	230	240
SKKGFTIPSY MISYAGMVFC EAKINDESYQ SIMYIVVVVG YRIYDVVLSP SHGIELSVGE					
250	260	270	280	290	300
KLVLNCTART ELNVGIDFNW EYPSSKHQHK KLVNRDLKTQ SGSEMKKFLS TLTIDGVTRS					
310	320	330	340	350	360
DQGLYTCAAS SGLMTKKNST FVRVHEKPFV AFGSGMESLV EATVGERVRI PAKYLGYPBP					
370	380	390	400	410	420
EIKWYKNGIP LESNHTIKAG HVLTIMEVSE RDTGNYTVIL TNPISKEKQS HVVSLVYYVP					
430	440	450	460	470	480
PQIGEKLIS PVDSYQYGTT QTLTCTVYAI PPPHHIHWYW QLEEECANEP SQAVSVTNPY					
490	500	510	520	530	540
PCEEWRSED FQGGNKIEVN KNQFALIEGK NKTVSTLVIQ AANVSALYKC EAVNKVGRGE					
550	560	570	580	590	600
RVISFHVTRG PEITLQPDMQ PTEQESVSLW CTADRSTFEN LTWYKLGPQP LPIHVGELPT					
610	620	630	640	650	660
PVCKNLDLW KLNATMFSNS TNDILIMELK NASLQDQGDY VCLAQDRKTK KRHCVVRQLT					

Figure 1 (contd.)

670	680	690	700	710	720
VLERVAPITI GNLENQTTSI GESIEVSCTA SGNPPPQIMW FKDNETLVED SGIVLKDGNR.					
730	740	750	760	770	780
NLTIIRRVRKE DEGLYTCQAC SVLGCAKVEA FFIIEGAQEK TNLEIIILVG TAVIAMFFWL					
790	800	810	820	830	840
LLVIIILRTVK RANGGELKTG YLSIVMDPDE LPLDEHCERL PYDASKWEFP RDRLKLGKPL					
850	860	870	880	890	900
GRGAFGQVIE ADAFGIDKTA TCRTVAVKML KEGATHSEHR ALMSELKILI HIGHHLNVVN					
910	920	930	940	950	960
LLGACTKPGG PLMVIVEFCK FGNLSTYLRs KRNEFVPYKT KGARFRQGKD YVGAIPVDLK					
970	980	990	1000	1010	1020
RRLDSITSSQ SSASSGFVEE KSLSDVEEEE APEDLYKDFL TLEHLICYSF QVAKGMEFLA					
1030	1040	1050	1060	1070	1080
SRKCIHRDLA ARNILLSEKN VVKICDFGLA RDIYKDPDYV RKGDARLPLK WMAPETIFDR					
1090	1100	1110	1120	1130	1140
VYTIQSDVWS FGVLLWEIFS LGASPYPGVK IDEEFCRRLK EGTRMRAPDY TTPEMYQTML					
1150	1160	1170	1180	1190	1200
DCWHGEPSQR PTFSELVEHL GNLLQANAQQ DGKDYIVLPI SETLSMEEDS GLSLPTSPVS					
1210	1220	1230	1240	1250	1260
CMEEEEVCDF KFHYDNTAGI SQYLQNSKRK SRPVSVKTFE DIPLEEPEVK VIPDDNQTDs					
1270	1280	1290	1300	1310	1320
GMVLASEELK TLEDRTKLSP SFGGMVPSKS RESVASEGSN QTSGYQSGYH SDDTDTTVYS					

Figure 1 (contd.)

1330

1340

1350

SEEAELLKLI EIGVQTGSTA QILQPDGS TT LSSPPV

Figure 2

TGGGCTTTGCTGGCCTTGCTCACATGTTCTGACTCTCGCGATGTACGGGCCA
GATATACCGCGTTGACATTGATTATTGACTAGTTATTAAAGTAATCAATTACGGGGTC
ATTAGTTCATAGCCCATAATGGAGTTCCCGCGTTACATAACTACGGTAAATGGCCC
GCCTGGCTGACCGCCCAACGACCCCCGCCATTGACGTCATAATGACGTATGTT
CCATAGTAACGCCAATAGGGACTTCCATTGACGTCATAATGGGTGGACTATTACGGT
AAACTGCCCACTGGCAGTACATCAAGTGTATCATATGCCAAGTACGCCCTATTG
ACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCAGTACATGACCTTATGG
GACTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATG
CGGTTTGGCAGTACATCAATGGCGTGGATAGCGGTTGACTCACGGGGATTCC
AAGTCTCCACCCATTGACGTCATAATGGGAGTTGGCACCAAAATCAACGGG
ACTTCCAAAATGTCGTAACAACCTCCGCCCCATTGACGCAAATGGCGGTAGGCGT
GTACGGTGGGAGGTCTATATAAGCAGAGCTCTGGCTAACTAGAGAACCCACTGC
TTACTGGCTATCGAAATTAAACAGACTCACTATAGGGAGACCCAAGCTGGCTAGCC
TCGAGTCTAGAGGGCCGTTAAACCCGCTGATCAGCCTCGACTGTGCCCTAGT
TGCCAGCCATCTGTTGCCCCTCCCCGTGCCTCCTGACCCTGGAAGGTGC
CACTCCCACGTCCCTTCCTAATAAAATGAGGAAATTGCATCGCATTGTCTGAGTAG
GTGTCATTCTATTCTGGGGGGTGGGGCAGGACAGCAAGGGGGAGGATTG
GGAAGACAATAGCAGGCATGCTGGGATGCGGTGGCTATGGCTTACTGG
CGGTTTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGCGCCCTGGTAA
GGTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTCGCCCCAAGGATCTGAT
GGCGCAGGGGATCAAGCTCTGATCAAGAGACAGGATGAGGATCGTTCGCATGATT
GAACAAAGATGGATTGCACGCAGGTTCTCCGGCCGCTGGGTGGAGAGGCTATTG
GCTATGACTGGGACAACAGACAATCGGCTGCTCTGATGCCCGTGTCCGGCT
GTCAGCGCAGGGCGCCGGTTCTTTGTCAAGACCGACCTGTCCGGTGCCTG
AATGAACGTCAAGACGAGGCAGCGCGGCTATCGTGGCTGCCACGACGGCGTTC
CTTGCAGCTGTGCTGACGTTGTCAGTGAAGCGGGAAAGGGACTGGCTGCTATT
GGCGAAGTGCCGGGCAGGATCTCCTGTCATCTCACCTGCTCCTGCCAGAAA
GTATCCATCATGGCTGATGCAATGCCGGCTGCATACGCTTGATCCGGCTACCTG
CCCATTGACCAAGCGAAACATCGCATCGAGCGAGCACGTACTCGGATGGAA
GCCGGTCTGTCGATCAGGATGATCTGGACGAAGAGCATCAGGGCTCGGCCAG
CCGAACTGTTGCCAGGCTCAAGGCGAGCATGCCGACGGCGAGGATCTGCTG
GACCCATGGCGATGCCCTGCCGAATATCATGGTGGAAAATGCCGCTTCTG
GATTGACTGTGGCCGGCTGGGTGCGGGACCGCTATCAGGACATAGCGTT
GGCTACCGGTGATATTGCTGAAGAGCTGGCGCGAATGGCTGACCGCTTCTC
GTGCTTACGGTATGCCGCTCCGATTGCGAGCGCATCGCCTTCTATGCCCT
TGACGAGTTCTCTGAATTATTAAACGCTTACAATTGCTGATGCCGTATTTCT
ACGCATCTGTGCGGTATTCACACCGCATACAGGTGGACTTTGGGGAAATGTG
CGCGGAACCCCTATTGTTATTTCTAAATACATTCAAATATGTATCCGCTCATGA
GACAATAACCCGTATAATGCTCAATAATAGCACGTGCTAAACTCATTAAATT
TAAAAGGATCTAGGTGAAGATCCTTTGATAATCTCATGACCAAAATCCCTAACGT
GAGTTTCGTTCACTGAGCGTCAGACCCCCATCAGTGACCAAAACAGGAAAAAAC
GCCCTTAACATGGCCCGCTTATCAGAAGCCAGACATTAACGCTCTGGAGAAACT
CAACGAGCTGGACGCGGATGAACAGGCAGACATCTGTGAATCGCTCACGACCAC

Figure 2 (cont.)

GCTGATGAGCTTACCGCAGCTGCCTCGCGCTTCGGTATGACGGTGAAACCT
CTGACACATGCAGCTCCCGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGG
AGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTGGCGGGTGTGGGGCGCA
GCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCA
TCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATACCGCACAGATG
CGTAAGGAGAAAATACCGCATCAGGCGCTTCCGCTCGCTCACTGACTCGC
TGCCTCGGTCGGCTGCAGCGAGCGGTATCAGCTCACTCAAAGGCGGTAAT
ACGGTTATCCACAGAATCAGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCC
AGCAAAAGGCCAGGAACCGTAAAAGGCCGCGTTGCTGGCGTTTCCATAGGCTC
CGCCCCCCTGACGAGCATCACAAAATCGACGCTCAAGTCAGAGGTGGCGAAACC
CGACAGGACTATAAGATACCAGGCCTTCCCCCTGGAAGCTCCCTCGCGCTCT
CCTGTTCCGACCCCTGCCGCTTACCGGATACCTGTCCGCCTTCTCCCTCGGGAAG
CGTGGCGCTTCTCATAGCTCACGCTGTAGGTATCTCAGTTGGTGTAGGTCGTT
GCTCCAAGCTGGGCTGTGACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTT
ATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATGCCACTGG
CAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGA
GTTCTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTGGTATCTG
CGCTCTGCTGAAGCCAGTTACCTCGGAAAAAGAGTTGGTAGCTTGTACCGGCA
AACAAACCACCGCTGGTAGCGGTGGTTTGCAAGCAGCAGATTACGCGC
AGAAAAAAAGGATCTCAAGAAGATCCTTGATC

Figure 3

10 20 30 40 50 60
MGSDVRDLNA LLPAVPSLGG GGGCALPVSG AAQWAPVLD APPGASAYGS LGGPAPPPAP

70 80 90 100 110 120
PPPPPPPPHS FIKQEPSWGG AEPHEEQCLS AFTVHFSGQF TGTAGACRYG PFGPPPSQA

130 140 150 160 170 180
SSGQARMFPN APYLPSCLES QPAIRNQGYS TVTFDGTPSY GHTPSHHAAQ FPNHSFKHED

190 200 210 220 230 240
PMGQQGSLGE QQYSVPPPYY GCHTPTDSCT GSQALLRTP YSSDNLYQMT SQLECMTWNQ

250 260 270 280 290 300
MNLGATLKGV AAGSSSSVKW TEGQSNHSTG YESDNHTPI LCGAQYRIHT HGVFRGIQDV

310 320 330 340 350 360
RRVPGVAPTL VRSASETSEK RPFMCAYPGC NKRYFKLSHL QMHSRKHTGE KPYQCDFKDC

370
ERRFSRSDQL K

Figure 4

MALPTARPLLGSCTPALGSLLFLLSLGWVQPSRTLAGETGQEAAPLDGVLANPPNISSLS
PRQLLGFPVCAEVSGLSTERVRELAVALAQKNVKLSTEQLRCLAHRLSEPPEDLDALPLDLLL
FLNPDAFSGPQACTRFFSRITKANV DLLPRGAPERQRLLPAALACWGVRGSLLSEADVRAL
GGLACDLPGRFVAESAEVLLPRLVSCPGPLDQDQQEAARAALQGGGPPYGP PSTWSVST
MDALRGLLPVLGQPIIRSIPQGIVAAWRQRSSRDPSWRQPERTILRPRFRREVEKTACPSGK
KAREIDESIFYKKWELEACVDAALLATQMDRVNAIPFTYEQLDVLKHKLDELYPQGYPESVI
QHLGYLFLKMSPEDIRKWNVTSLETLKALLEVNKGHEMSPQAPRRPLPQVATLIDRFVKGR
GQLDKDTLDTLTAFYPGYLCLSPEELSSVPPSSIWAVRPQDLDTCDPRQLDVLYPKARLAF
QNMNGSEYFVKIQSFLGGAPTEDLKALSQQNVSMMDLATFMKLRTDAVLPLTVAEVQKLLGP
HVEGLKAEERHRPVRDWILRQRQDDLDLGLGLQGGIPNGYLVLDLSMQEALSGTPCLLGP
GPVLTVLALLLASTLA

Figure 5

MESPSAPPHRWCIPWQRLLL TASLLTFWNPPTAKLTIESPFNVAEGKEVLLVHNLP
QHLFGYSWYKGGERVDGNRQIIGYVIGTQQATPGPAYSGREIIYPNASLLIQNIIQNDTGFY
TLHVIKSDLVNEEATGQFRVYPELPKPSISSLNSKPVEDKDAVAFTCEPETQDATYLWW
VNNQSLPVSPRLQLSNGNRTLTFNVTRNDTASYKCETQNPVSARRSDSVILNVLYGPD
APTISPLNTSYRSGENNLSCHAASNPPAQYSWFVNQTFQQSTQELFIPNITVNNSGSY
TCQAHNSDTGLNRRTVTITVYAEPPKPFITSNNSNPVEDEDAVALTCEPEIQNTTYLW
WVNNQSLPVSPRLQLSNDNRTLTLSVTRNDVGPYECGIQNKLSDPVILNVLYGP
DDPTISPSYTYRPGVNLSSCHAASNPPAQYSWLIQDGNIQQHTQELFISNITEKNSGLY
TCQANNSASGHSRTTVKTITVSAELPKPSISSLNSKPVEDKDAVAFTCEPEAQNTTYLW
WVNGQSLPVSPRLQLSNGNRTLTFNVTRNDARAYVCGIQNSVSANRSDPVTLVLYG
PDTPPISSPPDSSYLSGANLNLSCHSASNPSPQYSWRINGIPQQHTQVLFIAKITPNNNGTY
ACFVSNLATGRNNNSIVKSITVSASGTSPGLSAGATVGIMIGVLGVVALI

Figure 6

MESRGRRCPEMISVLGPISGHVLKAVFSRGDTPVLPHETRLLQTGIHVRVSQPSLILVSQ
YTPDSTPCHRGDNQLQVQHTYFTGSEVENVSVNHNPTGRSICPSQEPMSIYVYALPL
KMLNIPSINVHHYPSAAERKHRHLPVADAVIHASKQMWQARLTSGLAWTRQQNQW
KEPDVYYTSAFVFPTKDVLRHVCAHELVCSENTRATKMQVIGDQYVKVYLESFCE
DVPSGKLFMHVTLGSDVEEDLTMTRNPQPFMRPHERNGFTVLCPKNMIIKPGKISHIML
DVAFTSHEHFGLLCPKSIPGLSISGNLLMNGQQIFLEVQAIRETVELRQYDPVAALFFFDI
DLLLQRGPQYSEHPTFTSQYRIQGKLEYRHTWDRHDEGAAQGDDDWTSGSDSDEEL
VTTERKTPRVTGGGAMAGASTSAGRKRKSASSATACTAGVMTRGRLKAESTVAPEED
TDEDSDNEIHNPNAVFTWPPWQAGILARNLVPMVATVQQQLKYQEFDANDIYRIFA
ELEGVWQPAAQPKRRRHRQDALPGPCIASTPKKHRC

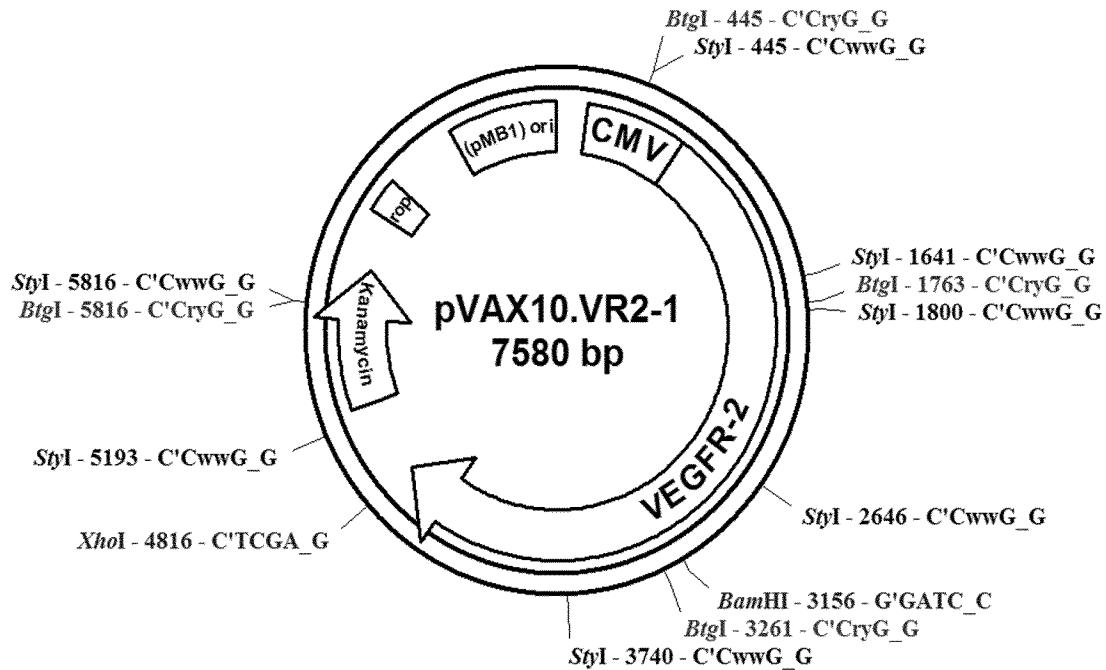
Figure 7

MESRGRRCPEMISVLGPISGHVLKAVFSRGDTPVLPHETRLLQTGIHVRVSQPSLILVSQ
YTPDSTPCHRGDNQLQVQHTYFTGSEVENVSVNHNPTGRSICPSQEPMSIYVYALPL
KMLNIPSINVHHYPSAAERKHRHLPVADAVIHASKQMWQARLTSGLAWRQQNQW
KEPDVYYTSAFVFPTKDVLRHVCAHELVCSENTRATKMQVIGDQYVKVYLESFCE
DVPSGKLFMHVTLGSDVEEDLTMTRNPQPFMRPHERNGFTVLCPKNMIIKPGKISHIML
DVAFTSHEHFGLLCPKSIPGLSISGNLLMNGQQIFLEVQAIRETVELRQYDPVAALFFFDI
DLLLQRGPQYSEHPTFTSQYRIQGKLEYRHTWDRHDEGAAQGDDDWTSGSDSDEEL
VTTERKTPRVTGGGAMAGASTSAGRNRKSASSATACTAGVMTRGRLKAESTVAPEED
TDEDSDNEIHNPNAVFTWPPWQAGILARNLVPMVATVQQQLKYQEFDANDIYRIFA
ELEGVWQPAAQPKRRRRHRQDALPGPCIASTPKKHG

Figure 8

MESRGRRCPEMISVLGPISGHVLKAVFSRGDTPVLPHETRLLQTGIHVRVSQPSLILVSQ
YTPDSTPCHRGDNQLQVQHTYFTGSEVENVSVNHNPTGRSICPSQEPMSIYVYALPL
KMLNIPSINVHHYPSAAERKHRHLPVADAVIHASKQMWQARLTSGLAWRQQNQW
KEPDVYYTSAFVFPTKDVLRHVCAHELVCSENTRATKMQVIGDQYVKVYLESFCE
DVPSGKLFMHVTLGSDVEEDLTMTRNPQPFMRPHERNGFTVLCPKNMIIKPGKISHIML
DVAFTSHEHFGLLCPKSIPGLSISGNLLMNGQQIFLEVQAIRETVELRQYDPVAALFFFID
DLLLQRGPQYSEHPTFTSQYRIQGKLEYRHTWDRHDEGAAQGDDDWTSGSDSDEEL
VTTERKTPRVTGGGAMAGASTSAGRNRKSASSATACTAGVMTRGRLKAESTVAPEED
TDEDSDNEIHNPNAVFTWPPWQAGILARNLVPMVATVQGQNLKYQEFFWDANDIYRIFA
ELEGVWQPAAQ

Figure 9



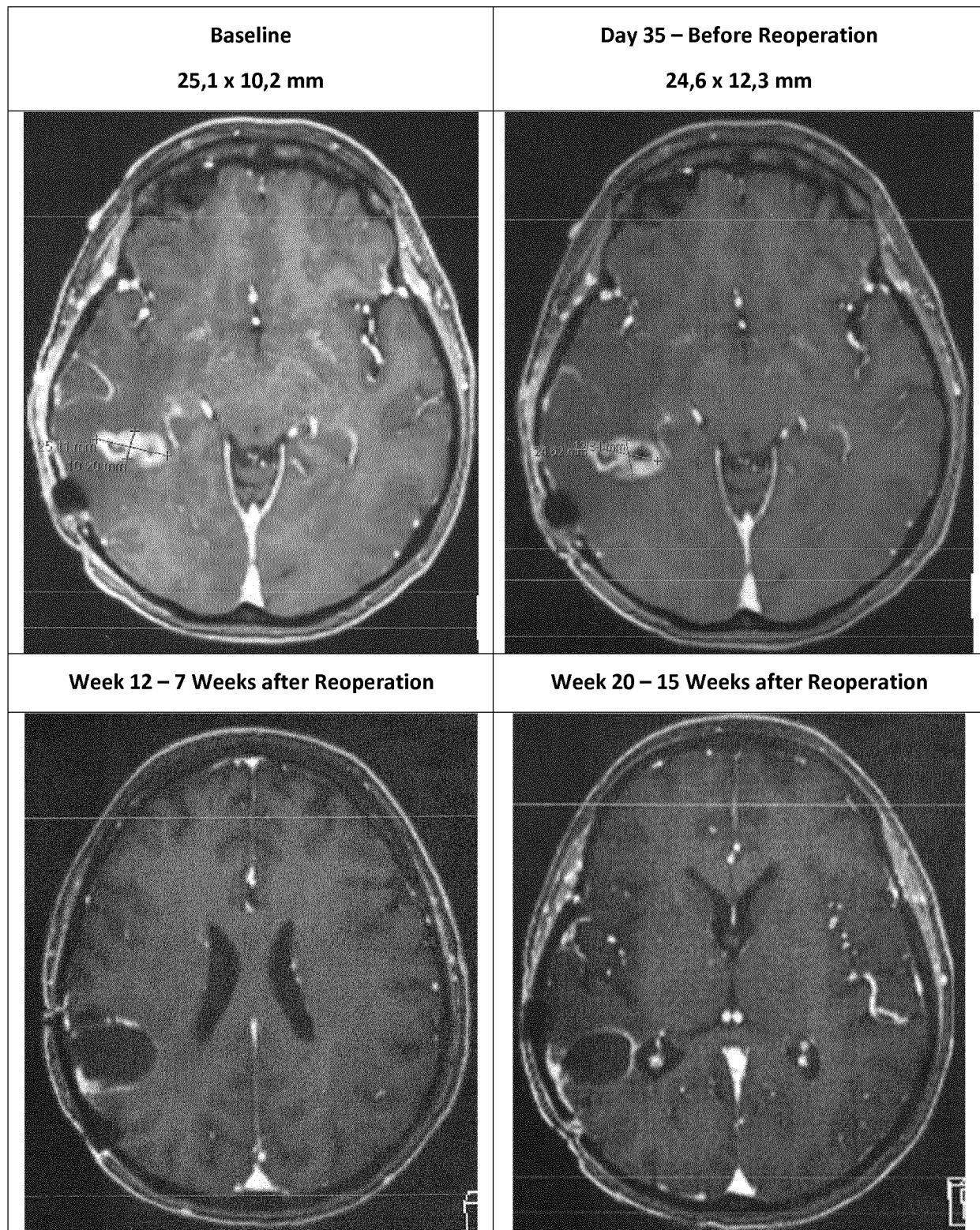
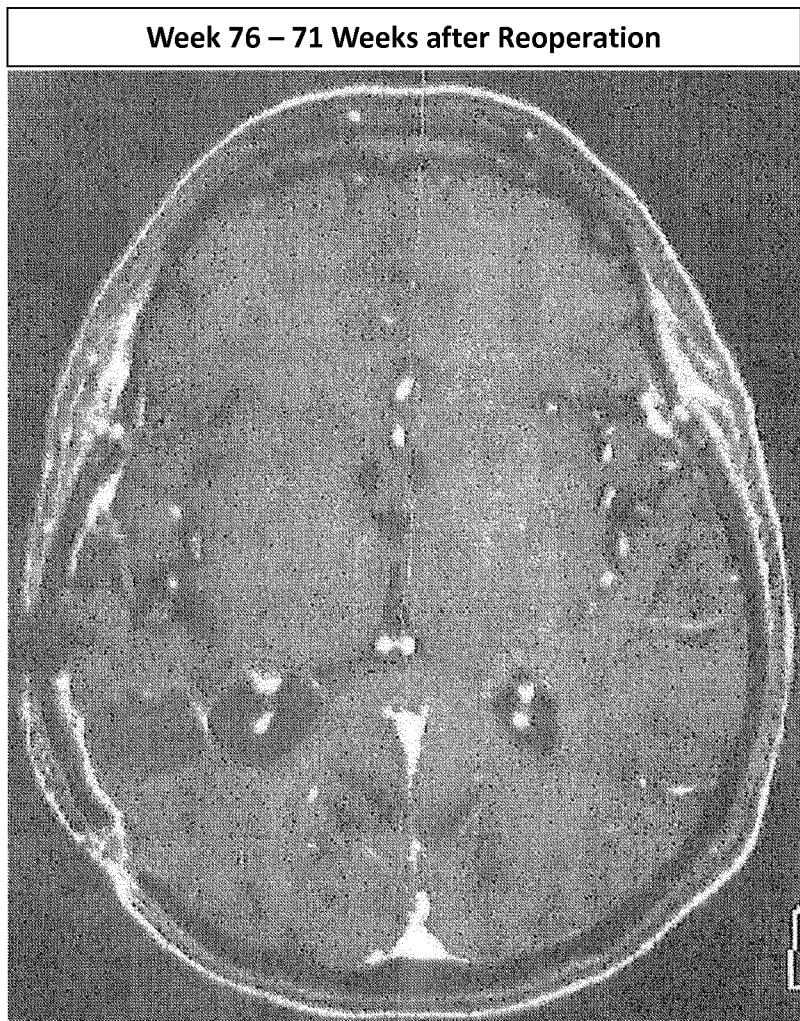


Figure 10

Figure 10 (contd.)

eolf-seql.txt

SEQUENCE LISTING

<110> Vaximm AG

<120> Novel VEGFR-2 targeting immunotherapy approach

<130> 113255P855PC

<150> EP17156718.3

<151> 2017-02-17

<160> 8

<170> BiSSAP 1.3.6

<210> 1

<211> 1356

<212> PRT

<213> Homo sapiens

<400> 1

Met Gln Ser Lys Val Leu Leu Ala Val Ala Leu Trp Leu Cys Val Glu
1 5 10 15
Thr Arg Ala Ala Ser Val Gly Leu Pro Ser Val Ser Leu Asp Leu Pro
20 25 30
Arg Leu Ser Ile Gln Lys Asp Ile Leu Thr Ile Lys Ala Asn Thr Thr
35 40 45
Leu Gln Ile Thr Cys Arg Gly Gln Arg Asp Leu Asp Trp Leu Trp Pro
50 55 60
Asn Asn Gln Ser Gly Ser Glu Gln Arg Val Glu Val Thr Glu Cys Ser
65 70 75 80
Asp Gly Leu Phe Cys Lys Thr Leu Thr Ile Pro Lys Val Ile Gly Asn
85 90 95
Asp Thr Gly Ala Tyr Lys Cys Phe Tyr Arg Glu Thr Asp Leu Ala Ser
100 105 110
Val Ile Tyr Val Tyr Val Gln Asp Tyr Arg Ser Pro Phe Ile Ala Ser
115 120 125
Val Ser Asp Gln His Gly Val Val Tyr Ile Thr Glu Asn Lys Asn Lys
130 135 140
Thr Val Val Ile Pro Cys Leu Gly Ser Ile Ser Asn Leu Asn Val Ser
145 150 155 160
Leu Cys Ala Arg Tyr Pro Glu Lys Arg Phe Val Pro Asp Gly Asn Arg
165 170 175
Ile Ser Trp Asp Ser Lys Lys Gly Phe Thr Ile Pro Ser Tyr Met Ile
180 185 190
Ser Tyr Ala Gly Met Val Phe Cys Glu Ala Lys Ile Asn Asp Glu Ser
195 200 205
Tyr Gln Ser Ile Met Tyr Ile Val Val Val Val Gly Tyr Arg Ile Tyr
210 215 220
Asp Val Val Leu Ser Pro Ser His Gly Ile Glu Leu Ser Val Gly Glu
225 230 235 240

eof-seql.txt

Lys Leu Val Leu Asn Cys Thr Ala Arg Thr Glu Leu Asn Val Gly Ile
245 250 255
Asp Phe Asn Trp Glu Tyr Pro Ser Ser Lys His Gln His Lys Lys Leu
260 265 270
Val Asn Arg Asp Leu Lys Thr Gln Ser Gly Ser Glu Met Lys Lys Phe
275 280 285
Leu Ser Thr Leu Thr Ile Asp Gly Val Thr Arg Ser Asp Gln Gly Leu
290 295 300
Tyr Thr Cys Ala Ala Ser Ser Gly Leu Met Thr Lys Lys Asn Ser Thr
305 310 315 320
Phe Val Arg Val His Glu Lys Pro Phe Val Ala Phe Gly Ser Gly Met
325 330 335
Glu Ser Leu Val Glu Ala Thr Val Gly Glu Arg Val Arg Ile Pro Ala
340 345 350
Lys Tyr Leu Gly Tyr Pro Pro Pro Glu Ile Lys Trp Tyr Lys Asn Gly
355 360 365
Ile Pro Leu Glu Ser Asn His Thr Ile Lys Ala Gly His Val Leu Thr
370 375 380
Ile Met Glu Val Ser Glu Arg Asp Thr Gly Asn Tyr Thr Val Ile Leu
385 390 395 400
Thr Asn Pro Ile Ser Lys Glu Lys Gln Ser His Val Val Ser Leu Val
405 410 415
Val Tyr Val Pro Pro Gln Ile Gly Glu Lys Ser Leu Ile Ser Pro Val
420 425 430
Asp Ser Tyr Gln Tyr Gly Thr Thr Gln Thr Leu Thr Cys Thr Val Tyr
435 440 445
Ala Ile Pro Pro Pro His His Ile His Trp Tyr Trp Gln Leu Glu Glu
450 455 460
Glu Cys Ala Asn Glu Pro Ser Gln Ala Val Ser Val Thr Asn Pro Tyr
465 470 475 480
Pro Cys Glu Glu Trp Arg Ser Val Glu Asp Phe Gln Gly Gly Asn Lys
485 490 495
Ile Glu Val Asn Lys Asn Gln Phe Ala Leu Ile Glu Gly Lys Asn Lys
500 505 510
Thr Val Ser Thr Leu Val Ile Gln Ala Ala Asn Val Ser Ala Leu Tyr
515 520 525
Lys Cys Glu Ala Val Asn Lys Val Gly Arg Gly Glu Arg Val Ile Ser
530 535 540
Phe His Val Thr Arg Gly Pro Glu Ile Thr Leu Gln Pro Asp Met Gln
545 550 555 560
Pro Thr Glu Gln Glu Ser Val Ser Leu Trp Cys Thr Ala Asp Arg Ser
565 570 575
Thr Phe Glu Asn Leu Thr Trp Tyr Lys Leu Gly Pro Gln Pro Leu Pro
580 585 590
Ile His Val Gly Glu Leu Pro Thr Pro Val Cys Lys Asn Leu Asp Thr
595 600 605
Leu Trp Lys Leu Asn Ala Thr Met Phe Ser Asn Ser Thr Asn Asp Ile
610 615 620
Leu Ile Met Glu Leu Lys Asn Ala Ser Leu Gln Asp Gln Gly Asp Tyr
625 630 635 640
Val Cys Leu Ala Gln Asp Arg Lys Thr Lys Lys Arg His Cys Val Val
645 650 655

eof-seql.txt

Arg Gln Leu Thr Val Leu Glu Arg Val Ala Pro Thr Ile Thr Gly Asn
660 665 670
Leu Glu Asn Gln Thr Thr Ser Ile Gly Glu Ser Ile Glu Val Ser Cys
675 680 685
Thr Ala Ser Gly Asn Pro Pro Gln Ile Met Trp Phe Lys Asp Asn
690 695 700
Glu Thr Leu Val Glu Asp Ser Gly Ile Val Leu Lys Asp Gly Asn Arg
705 710 715 720
Asn Leu Thr Ile Arg Arg Val Arg Lys Glu Asp Glu Gly Leu Tyr Thr
725 730 735
Cys Gln Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe
740 745 750
Ile Ile Glu Gly Ala Gln Glu Lys Thr Asn Leu Glu Ile Ile Ile Leu
755 760 765
Val Gly Thr Ala Val Ile Ala Met Phe Phe Trp Leu Leu Leu Val Ile
770 775 780
Ile Leu Arg Thr Val Lys Arg Ala Asn Gly Gly Glu Leu Lys Thr Gly
785 790 795 800
Tyr Leu Ser Ile Val Met Asp Pro Asp Glu Leu Pro Leu Asp Glu His
805 810 815
Cys Glu Arg Leu Pro Tyr Asp Ala Ser Lys Trp Glu Phe Pro Arg Asp
820 825 830
Arg Leu Lys Leu Gly Lys Pro Leu Gly Arg Gly Ala Phe Gly Gln Val
835 840 845
Ile Glu Ala Asp Ala Phe Gly Ile Asp Lys Thr Ala Thr Cys Arg Thr
850 855 860
Val Ala Val Lys Met Leu Lys Glu Gly Ala Thr His Ser Glu His Arg
865 870 875 880
Ala Leu Met Ser Glu Leu Lys Ile Leu Ile His Ile Gly His His Leu
885 890 895
Asn Val Val Asn Leu Leu Gly Ala Cys Thr Lys Pro Gly Gly Pro Leu
900 905 910
Met Val Ile Val Glu Phe Cys Lys Phe Gly Asn Leu Ser Thr Tyr Leu
915 920 925
Arg Ser Lys Arg Asn Glu Phe Val Pro Tyr Lys Thr Lys Gly Ala Arg
930 935 940
Phe Arg Gln Gly Lys Asp Tyr Val Gly Ala Ile Pro Val Asp Leu Lys
945 950 955 960
Arg Arg Leu Asp Ser Ile Thr Ser Ser Gln Ser Ser Ala Ser Ser Gly
965 970 975
Phe Val Glu Glu Lys Ser Leu Ser Asp Val Glu Glu Glu Ala Pro
980 985 990
Glu Asp Leu Tyr Lys Asp Phe Leu Thr Leu Glu His Leu Ile Cys Tyr
995 1000 1005
Ser Phe Gln Val Ala Lys Gly Met Glu Phe Leu Ala Ser Arg Lys Cys
1010 1015 1020
Ile His Arg Asp Leu Ala Ala Arg Asn Ile Leu Leu Ser Glu Lys Asn
1025 1030 1035 1040
Val Val Lys Ile Cys Asp Phe Gly Leu Ala Arg Asp Ile Tyr Lys Asp
1045 1050 1055
Pro Asp Tyr Val Arg Lys Gly Asp Ala Arg Leu Pro Leu Lys Trp Met
1060 1065 1070

eolf-seql.txt

Ala Pro Glu Thr Ile Phe Asp Arg Val Tyr Thr Ile Gln Ser Asp Val
 1075 1080 1085
 Trp Ser Phe Gly Val Leu Leu Trp Glu Ile Phe Ser Leu Gly Ala Ser
 1090 1095 1100
 Pro Tyr Pro Gly Val Lys Ile Asp Glu Glu Phe Cys Arg Arg Leu Lys
 1105 1110 1115 1120
 Glu Gly Thr Arg Met Arg Ala Pro Asp Tyr Thr Thr Pro Glu Met Tyr
 1125 1130 1135
 Gln Thr Met Leu Asp Cys Trp His Gly Glu Pro Ser Gln Arg Pro Thr
 1140 1145 1150
 Phe Ser Glu Leu Val Glu His Leu Gly Asn Leu Leu Gln Ala Asn Ala
 1155 1160 1165
 Gln Gln Asp Gly Lys Asp Tyr Ile Val Leu Pro Ile Ser Glu Thr Leu
 1170 1175 1180
 Ser Met Glu Glu Asp Ser Gly Leu Ser Leu Pro Thr Ser Pro Val Ser
 1185 1190 1195 1200
 Cys Met Glu Glu Glu Val Cys Asp Pro Lys Phe His Tyr Asp Asn
 1205 1210 1215
 Thr Ala Gly Ile Ser Gln Tyr Leu Gln Asn Ser Lys Arg Lys Ser Arg
 1220 1225 1230
 Pro Val Ser Val Lys Thr Phe Glu Asp Ile Pro Leu Glu Glu Pro Glu
 1235 1240 1245
 Val Lys Val Ile Pro Asp Asp Asn Gln Thr Asp Ser Gly Met Val Leu
 1250 1255 1260
 Ala Ser Glu Glu Leu Lys Thr Leu Glu Asp Arg Thr Lys Leu Ser Pro
 1265 1270 1275 1280
 Ser Phe Gly Gly Met Val Pro Ser Lys Ser Arg Glu Ser Val Ala Ser
 1285 1290 1295
 Glu Gly Ser Asn Gln Thr Ser Gly Tyr Gln Ser Gly Tyr His Ser Asp
 1300 1305 1310
 Asp Thr Asp Thr Thr Val Tyr Ser Ser Glu Glu Ala Glu Leu Leu Lys
 1315 1320 1325
 Leu Ile Glu Ile Gly Val Gln Thr Gly Ser Thr Ala Gln Ile Leu Gln
 1330 1335 1340
 Pro Asp Ser Gly Thr Thr Leu Ser Ser Pro Pro Val
 1345 1350 1355

<210> 2
<211> 3500
<212> DNA
<213> artificial sequence

<220>
<223> expression plasmid

```
<400> 2
tgggcTTTg ctggcTTTt gctcacatgt tcttgactct tcgcgatgt a cgggcccagat 60
atacgcgttg acattgatta ttgacttagtt attaatagta atcaattacg gggtcattag 120
ttcatagccc atatatggag ttccgcgtta cataacttac ggttaatggc ccgcctggct 180
```

eolf-seql.txt

gaccgccccaa	cgaccccccgc	ccattgacgt	caataatgac	gtatgttccc	atagtaacgc	240
caatagggac	tttccattga	cgtcaatggg	tggactattt	acggtaaact	gcccaactgg	300
cagtacatca	agtgtatcat	atgccaagta	cgcggcctat	tgacgtcaat	gacggtaaat	360
ggccgcctg	gcattatgcc	cagtacatga	ccttatggga	cttcctact	tggcagtaca	420
tctacgtatt	agtcatcgct	attaccatgg	tgatgcggtt	ttggcagtac	atcaatggc	480
gtggatagcg	gtttgactca	cggggatttc	caagtctcca	ccccattgac	gtcaatggga	540
gtttgtttg	gcacccaaat	caacgggact	ttccaaaatg	tcgtaacaac	tccgcggcat	600
tgacgcaaat	gggcggtagg	cgtgtacggt	gggaggtcta	tataaggcaga	gctctctggc	660
taactagaga	acccactgct	tactggctta	tcgaaattaa	tacgactcac	tatagggaga	720
cccaagctgg	ctagcctcga	gtctagaggg	cccggttaaa	cccgctgatc	agcctcgact	780
gtgccttcta	gttgccagcc	atctgttgtt	tgccctccc	ccgtgccttc	cttgaccctg	840
gaagggtgcca	ctcccactgt	ccttcctaa	taaaatgagg	aaattgcac	gcattgtctg	900
agtaggtgtc	attctattct	gggggggtggg	gtggggcagg	acagcaaggg	ggaggattgg	960
gaagacaata	gcaggcatgc	tggggatgcg	gtgggctcta	tggcttctac	tggcggttt	1020
tatggacagc	aagcgaaccg	gaattgccag	ctggggcgcc	ctctggtaag	gttgggaagc	1080
cctgcaaagt	aaactggatg	gctttctcgc	cgcctaggat	ctgatggcgc	aggggatcaa	1140
gctctgatca	agagacagga	tgaggatcgt	ttcgcacat	tgaacaagat	ggattgcacg	1200
caggttctcc	ggccgcttgg	gtggagagggc	tattcggcta	tgactggca	caacagacaa	1260
tcggctgctc	tgatgccgcc	gtgttccggc	tgtcagcgca	ggggcgcccc	gttcttttg	1320
tcaagaccga	cctgtccggt	gccctgaatg	aactgcaaga	cgaggcagcg	cggctatcgt	1380
ggctggccac	gacgggcgtt	ccttgcgca	ctgtgctcga	cgttgcact	gaagcggaa	1440
gggactggct	gctattgggc	gaagtgccgg	ggcaggatct	cctgtcatct	caccttgctc	1500
ctgcccagaa	agtatccatc	atggctgatg	caatgcggcg	gctgcatacg	cttgatccgg	1560
ctacctgccc	attcgaccac	caagcggaaac	atcgcatcga	gcgagcacgt	actcggatgg	1620
aagccggct	tgtcgatcag	gatgatctgg	acgaagagca	tcaggggctc	gcccggccg	1680
aactgttcgc	caggctcaag	gcgagcatgc	ccgacggcga	ggatctcg	gtgaccctatg	1740

eolf-seql.txt

gcgatgcctg cttgccgaat atcatggtgg aaaatggccg ctttctgga ttcatcgact	1800
gtggccggct gggtgtggcg gaccgctatc aggacatagc gttggctacc cgtgatattg	1860
ctgaagagct tggcggcgaa tgggctgacc gcttcctcgt gctttacggt atcgccgctc	1920
ccgattcgca gcgcatcgcc ttctatcgcc ttcttgacga gttcttctga attattaacg	1980
cttacaattt cctgatgcgg tattttctcc ttacgcatct gtgcggatt tcacaccgca	2040
tacaggtggc acttttcggg gaaatgtgcg cggaaccctt atttgtttat ttttctaaat	2100
acattcaaat atgtatccgc tcatgagaca ataaccctga taaatgcttc aataatagca	2160
cgtgctaaaa cttcattttt aattttaaag gatcttaggtg aagatccttt ttgataatct	2220
catgaccaaa atcccttaac gtgagtttc gttccactga gcgtcagacc cccatcagtg	2280
accaaacagg aaaaaaccgc ccttaacatg gcccgcctta tcagaagcca gacattaacg	2340
cttctggaga aactcaacga gctggacgacg gatgaacagg cagacatctg tgaatcgctt	2400
cacgaccacg ctgatgagct ttaccgcagc tgcctcgcc gtttcggta tgacggtaaa	2460
aacctctgac acatgcagct cccggagacg gtcacagctt gtctgttaagc ggatgccggg	2520
agcagacaag cccgtcaggg cgctcagcg ggtgttggcg ggtgtcgggg cgctcagccatg	2580
acccagtcac gtagcgatag cggagtgtat actggcttaa ctatgcggca tcagagcaga	2640
ttgtactgag agtgcaccat atgcgggtgtg aaataccgca cagatgcgtt aggagaaaat	2700
accgcacatcag gcgctttcc gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc	2760
tgcggcgagc ggtatcagct cactcaaagg cgtaatacg gttatccaca gaatcagggg	2820
ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac cgtaaaaagg	2880
ccgcgttgct ggcgttttc cataggctcc gccccctga cgagcatcac aaaaatcgac	2940
gctcaagtca gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg	3000
gaagctccct cgtgcgctct cctgttccga ccctgcccgt tacggatac ctgtccgcct	3060
ttctcccttc gggaaagcgtg gcgctttctc atagctcagc ctgttaggtat ctcagttcgg	3120
tgttaggtcgt tcgctccaag ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct	3180
gccccttatac cgtaactat cgtcttgagt ccaaccgggt aagacacgac ttatcgccac	3240
tggcagcagc cactggtaac aggattagca gagcgaggta tgttaggcggt gctacagagt	3300

eolf-seql.txt

tcttgaagtg gtggcctaac tacggctaca ctagaaggac agtatttggt atctgcgctc	3360
tgctgaagcc agttaccttc ggaaaaagag ttggtagctc ttgatccggc aaacaaacca	3420
ccgctggtag cggtggttt tttgttgca agcagcagat tacgcgcaga aaaaaaggat	3480
ctcaagaaga tcctttgatc	3500

<210> 3
 <211> 371
 <212> PRT
 <213> Homo sapiens

<400> 3	
Met Gly Ser Asp Val Arg Asp Leu Asn Ala Leu Leu Pro Ala Val Pro	
1 5 10 15	
Ser Leu Gly Gly Gly Gly Cys Ala Leu Pro Val Ser Gly Ala Ala	
20 25 30	
Gln Trp Ala Pro Val Leu Asp Phe Ala Pro Pro Gly Ala Ser Ala Tyr	
35 40 45	
Gly Ser Leu Gly Gly Pro Ala Pro Pro Ala Pro Pro Pro Pro Pro	
50 55 60	
Pro Pro Pro Pro His Ser Phe Ile Lys Gln Glu Pro Ser Trp Gly Gly	
65 70 75 80	
Ala Glu Pro His Glu Glu Gln Cys Leu Ser Ala Phe Thr Val His Phe	
85 90 95	
Ser Gly Gln Phe Thr Gly Thr Ala Gly Ala Cys Arg Tyr Gly Pro Phe	
100 105 110	
Gly Pro Pro Pro Pro Ser Gln Ala Ser Ser Gly Gln Ala Arg Met Phe	
115 120 125	
Pro Asn Ala Pro Tyr Leu Pro Ser Cys Leu Glu Ser Gln Pro Ala Ile	
130 135 140	
Arg Asn Gln Gly Tyr Ser Thr Val Thr Phe Asp Gly Thr Pro Ser Tyr	
145 150 155 160	
Gly His Thr Pro Ser His His Ala Ala Gln Phe Pro Asn His Ser Phe	
165 170 175	
Lys His Glu Asp Pro Met Gly Gln Gln Gly Ser Leu Gly Glu Gln Gln	
180 185 190	
Tyr Ser Val Pro Pro Pro Val Tyr Gly Cys His Thr Pro Thr Asp Ser	
195 200 205	
Cys Thr Gly Ser Gln Ala Leu Leu Leu Arg Thr Pro Tyr Ser Ser Asp	
210 215 220	
Asn Leu Tyr Gln Met Thr Ser Gln Leu Glu Cys Met Thr Trp Asn Gln	
225 230 235 240	
Met Asn Leu Gly Ala Thr Leu Lys Gly Val Ala Ala Gly Ser Ser Ser	
245 250 255	
Ser Val Lys Trp Thr Glu Gly Gln Ser Asn His Ser Thr Gly Tyr Glu	
260 265 270	
Ser Asp Asn His Thr Thr Pro Ile Leu Cys Gly Ala Gln Tyr Arg Ile	

eof-seql.txt

275	280	285
His Thr His Gly Val Phe Arg Gly Ile Gln Asp Val Arg Arg Val Pro		
290	295	300
Gly Val Ala Pro Thr Leu Val Arg Ser Ala Ser Glu Thr Ser Glu Lys		
305	310	315
Arg Pro Phe Met Cys Ala Tyr Pro Gly Cys Asn Lys Arg Tyr Phe Lys		
325	330	335
Leu Ser His Leu Gln Met His Ser Arg Lys His Thr Gly Glu Lys Pro		
340	345	350
Tyr Gln Cys Asp Phe Lys Asp Cys Glu Arg Arg Phe Ser Arg Ser Asp		
355	360	365
Gln Leu Lys		
370		

<210> 4
<211> 630
<212> PRT
<213> Homo sapiens

<400> 4

Met Ala Leu Pro Thr Ala Arg Pro Leu Leu Gly Ser Cys Gly Thr Pro		
1	5	10
Ala Leu Gly Ser Leu Leu Phe Leu Leu Phe Ser Leu Gly Trp Val Gln		
20	25	30
Pro Ser Arg Thr Leu Ala Gly Glu Thr Gly Gln Glu Ala Ala Pro Leu		
35	40	45
Asp Gly Val Leu Ala Asn Pro Pro Asn Ile Ser Ser Leu Ser Pro Arg		
50	55	60
Gln Leu Leu Gly Phe Pro Cys Ala Glu Val Ser Gly Leu Ser Thr Glu		
65	70	75
80		
Arg Val Arg Glu Leu Ala Val Ala Leu Ala Gln Lys Asn Val Lys Leu		
85	90	95
Ser Thr Glu Gln Leu Arg Cys Leu Ala His Arg Leu Ser Glu Pro Pro		
100	105	110
Glu Asp Leu Asp Ala Leu Pro Leu Asp Leu Leu Phe Leu Asn Pro		
115	120	125
Asp Ala Phe Ser Gly Pro Gln Ala Cys Thr Arg Phe Phe Ser Arg Ile		
130	135	140
Thr Lys Ala Asn Val Asp Leu Leu Pro Arg Gly Ala Pro Glu Arg Gln		
145	150	155
160		
Arg Leu Leu Pro Ala Ala Leu Ala Cys Trp Gly Val Arg Gly Ser Leu		
165	170	175
Leu Ser Glu Ala Asp Val Arg Ala Leu Gly Gly Leu Ala Cys Asp Leu		
180	185	190
Pro Gly Arg Phe Val Ala Glu Ser Ala Glu Val Leu Leu Pro Arg Leu		
195	200	205
Val Ser Cys Pro Gly Pro Leu Asp Gln Asp Gln Gln Glu Ala Ala Arg		
210	215	220
Ala Ala Leu Gln Gly Gly Pro Pro Tyr Gly Pro Pro Ser Thr Trp		
225	230	235
240		
Ser Val Ser Thr Met Asp Ala Leu Arg Gly Leu Leu Pro Val Leu Gly		

eofl-seql.txt

	245	250	255
Gln Pro Ile Ile Arg Ser Ile Pro Gln	Gly Ile Val Ala Ala Trp Arg		
260	265	270	
Gln Arg Ser Ser Arg Asp Pro Ser Trp Arg Gln Pro Glu Arg Thr Ile			
275	280	285	
Leu Arg Pro Arg Phe Arg Arg Glu Val Glu Lys Thr Ala Cys Pro Ser			
290	295	300	
Gly Lys Lys Ala Arg Glu Ile Asp Glu Ser Leu Ile Phe Tyr Lys Lys			
305	310	315	320
Trp Glu Leu Glu Ala Cys Val Asp Ala Ala Leu Leu Ala Thr Gln Met			
325	330	335	
Asp Arg Val Asn Ala Ile Pro Phe Thr Tyr Glu Gln Leu Asp Val Leu			
340	345	350	
Lys His Lys Leu Asp Glu Leu Tyr Pro Gln Gly Tyr Pro Glu Ser Val			
355	360	365	
Ile Gln His Leu Gly Tyr Leu Phe Leu Lys Met Ser Pro Glu Asp Ile			
370	375	380	
Arg Lys Trp Asn Val Thr Ser Leu Glu Thr Leu Lys Ala Leu Leu Glu			
385	390	395	400
Val Asn Lys Gly His Glu Met Ser Pro Gln Ala Pro Arg Arg Pro Leu			
405	410	415	
Pro Gln Val Ala Thr Leu Ile Asp Arg Phe Val Lys Gly Arg Gly Gln			
420	425	430	
Leu Asp Lys Asp Thr Leu Asp Thr Leu Thr Ala Phe Tyr Pro Gly Tyr			
435	440	445	
Leu Cys Ser Leu Ser Pro Glu Glu Leu Ser Ser Val Pro Pro Ser Ser			
450	455	460	
Ile Trp Ala Val Arg Pro Gln Asp Leu Asp Thr Cys Asp Pro Arg Gln			
465	470	475	480
Leu Asp Val Leu Tyr Pro Lys Ala Arg Leu Ala Phe Gln Asn Met Asn			
485	490	495	
Gly Ser Glu Tyr Phe Val Lys Ile Gln Ser Phe Leu Gly Gly Ala Pro			
500	505	510	
Thr Glu Asp Leu Lys Ala Leu Ser Gln Gln Asn Val Ser Met Asp Leu			
515	520	525	
Ala Thr Phe Met Lys Leu Arg Thr Asp Ala Val Leu Pro Leu Thr Val			
530	535	540	
Ala Glu Val Gln Lys Leu Leu Gly Pro His Val Glu Gly Leu Lys Ala			
545	550	555	560
Glu Glu Arg His Arg Pro Val Arg Asp Trp Ile Leu Arg Gln Arg Gln			
565	570	575	
Asp Asp Leu Asp Thr Leu Gly Leu Gly Leu Gln Gly Gly Ile Pro Asn			
580	585	590	
Gly Tyr Leu Val Leu Asp Leu Ser Met Gln Glu Ala Leu Ser Gly Thr			
595	600	605	
Pro Cys Leu Leu Gly Pro Gly Pro Val Leu Thr Val Leu Ala Leu Leu			
610	615	620	
Leu Ala Ser Thr Leu Ala			
625	630		

<210> 5

<211> 702

eolf-seql.txt

<212> PRT

<213> Homo sapiens

<400> 5
Met Glu Ser Pro Ser Ala Pro Pro His Arg Trp Cys Ile Pro Trp Gln
1 5 10 15
Arg Leu Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr
20 25 30
Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly
35 40 45
Lys Glu Val Leu Leu Val His Asn Leu Pro Gln His Leu Phe Gly
50 55 60
Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Arg Gln Ile Ile
65 70 75 80
Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Tyr Ser
85 90 95
Gly Arg Glu Ile Ile Tyr Pro Asn Ala Ser Leu Leu Ile Gln Asn Ile
100 105 110
Ile Gln Asn Asp Thr Gly Phe Tyr Thr Leu His Val Ile Lys Ser Asp
115 120 125
Leu Val Asn Glu Glu Ala Thr Gly Gln Phe Arg Val Tyr Pro Glu Leu
130 135 140
Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Lys Pro Val Glu Asp Lys
145 150 155 160
Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Thr Gln Asp Ala Thr Tyr
165 170 175
Leu Trp Trp Val Asn Asn Gln Ser Leu Pro Val Ser Pro Arg Leu Gln
180 185 190
Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Phe Asn Val Thr Arg Asn
195 200 205
Asp Thr Ala Ser Tyr Lys Cys Glu Thr Gln Asn Pro Val Ser Ala Arg
210 215 220
Arg Ser Asp Ser Val Ile Leu Asn Val Leu Tyr Gly Pro Asp Ala Pro
225 230 235 240
Thr Ile Ser Pro Leu Asn Thr Ser Tyr Arg Ser Gly Glu Asn Leu Asn
245 250 255
Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser Trp Phe
260 265 270
Val Asn Gly Thr Phe Gln Gln Ser Thr Gln Glu Leu Phe Ile Pro Asn
275 280 285
Ile Thr Val Asn Asn Ser Gly Ser Tyr Thr Cys Gln Ala His Asn Ser
290 295 300
Asp Thr Gly Leu Asn Arg Thr Thr Val Thr Thr Ile Thr Val Tyr Ala
305 310 315 320
Glu Pro Pro Lys Pro Phe Ile Thr Ser Asn Asn Ser Asn Pro Val Glu
325 330 335
Asp Glu Asp Ala Val Ala Leu Thr Cys Glu Pro Glu Ile Gln Asn Thr
340 345 350
Thr Tyr Leu Trp Trp Val Asn Asn Gln Ser Leu Pro Val Ser Pro Arg
355 360 365
Leu Gln Leu Ser Asn Asp Asn Arg Thr Leu Thr Leu Leu Ser Val Thr

eof-seql.txt

370	375	380
Arg Asn Asp Val Gly Pro Tyr Glu Cys Gly Ile Gln Asn Lys Leu Ser		
385	390	395
Val Asp His Ser Asp Pro Val Ile Leu Asn Val Leu Tyr Gly Pro Asp		400
405	410	415
Asp Pro Thr Ile Ser Pro Ser Tyr Thr Tyr Tyr Arg Pro Gly Val Asn		
420	425	430
Leu Ser Leu Ser Cys His Ala Ala Ser Asn Pro Pro Ala Gln Tyr Ser		
435	440	445
Trp Leu Ile Asp Gly Asn Ile Gln Gln His Thr Gln Glu Leu Phe Ile		
450	455	460
Ser Asn Ile Thr Glu Lys Asn Ser Gly Leu Tyr Thr Cys Gln Ala Asn		
465	470	475
Asn Ser Ala Ser Gly His Ser Arg Thr Thr Val Lys Thr Ile Thr Val		480
485	490	495
Ser Ala Glu Leu Pro Lys Pro Ser Ile Ser Ser Asn Asn Ser Lys Pro		
500	505	510
Val Glu Asp Lys Asp Ala Val Ala Phe Thr Cys Glu Pro Glu Ala Gln		
515	520	525
Asn Thr Thr Tyr Leu Trp Trp Val Asn Gly Gln Ser Leu Pro Val Ser		
530	535	540
Pro Arg Leu Gln Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Phe Asn		
545	550	555
Val Thr Arg Asn Asp Ala Arg Ala Tyr Val Cys Gly Ile Gln Asn Ser		
565	570	575
Val Ser Ala Asn Arg Ser Asp Pro Val Thr Leu Asp Val Leu Tyr Gly		
580	585	590
Pro Asp Thr Pro Ile Ile Ser Pro Pro Asp Ser Ser Tyr Leu Ser Gly		
595	600	605
Ala Asn Leu Asn Leu Ser Cys His Ser Ala Ser Asn Pro Ser Pro Gln		
610	615	620
Tyr Ser Trp Arg Ile Asn Gly Ile Pro Gln Gln His Thr Gln Val Leu		
625	630	635
Phe Ile Ala Lys Ile Thr Pro Asn Asn Asn Gly Thr Tyr Ala Cys Phe		
645	650	655
Val Ser Asn Leu Ala Thr Gly Arg Asn Asn Ser Ile Val Lys Ser Ile		
660	665	670
Thr Val Ser Ala Ser Gly Thr Ser Pro Gly Leu Ser Ala Gly Ala Thr		
675	680	685
Val Gly Ile Met Ile Gly Val Leu Val Gly Val Ala Leu Ile		
690	695	700

<210> 6

<211> 561

<212> PRT

<213> Cytomegalovirus

<400> 6

Met Glu Ser Arg Gly Arg Arg Cys Pro Glu Met Ile Ser Val Leu Gly

1 5 10 15

Pro Ile Ser Gly His Val Leu Lys Ala Val Phe Ser Arg Gly Asp Thr

eof-seql.txt

20	25	30
Pro Val Leu Pro His Glu Thr Arg Leu Leu Gln Thr Gly Ile His Val		
35	40	45
Arg Val Ser Gln Pro Ser Leu Ile Leu Val Ser Gln Tyr Thr Pro Asp		
50	55	60
Ser Thr Pro Cys His Arg Gly Asp Asn Gln Leu Gln Val Gln His Thr		
65	70	75
Tyr Phe Thr Gly Ser Glu Val Glu Asn Val Ser Val Asn Val His Asn		
85	90	95
Pro Thr Gly Arg Ser Ile Cys Pro Ser Gln Glu Pro Met Ser Ile Tyr		
100	105	110
Val Tyr Ala Leu Pro Leu Lys Met Leu Asn Ile Pro Ser Ile Asn Val		
115	120	125
His His Tyr Pro Ser Ala Ala Glu Arg Lys His Arg His Leu Pro Val		
130	135	140
Ala Asp Ala Val Ile His Ala Ser Gly Lys Gln Met Trp Gln Ala Arg		
145	150	155
Leu Thr Val Ser Gly Leu Ala Trp Thr Arg Gln Gln Asn Gln Trp Lys		
165	170	175
Glu Pro Asp Val Tyr Tyr Ser Ala Phe Val Phe Pro Thr Lys Asp		
180	185	190
Val Ala Leu Arg His Val Val Cys Ala His Glu Leu Val Cys Ser Met		
195	200	205
Glu Asn Thr Arg Ala Thr Lys Met Gln Val Ile Gly Asp Gln Tyr Val		
210	215	220
Lys Val Tyr Leu Glu Ser Phe Cys Glu Asp Val Pro Ser Gly Lys Leu		
225	230	235
Phe Met His Val Thr Leu Gly Ser Asp Val Glu Glu Asp Leu Thr Met		
245	250	255
Thr Arg Asn Pro Gln Pro Phe Met Arg Pro His Glu Arg Asn Gly Phe		
260	265	270
Thr Val Leu Cys Pro Lys Asn Met Ile Ile Lys Pro Gly Lys Ile Ser		
275	280	285
His Ile Met Leu Asp Val Ala Phe Thr Ser His Glu His Phe Gly Leu		
290	295	300
Leu Cys Pro Lys Ser Ile Pro Gly Leu Ser Ile Ser Gly Asn Leu Leu		
305	310	315
Met Asn Gly Gln Gln Ile Phe Leu Glu Val Gln Ala Ile Arg Glu Thr		
325	330	335
Val Glu Leu Arg Gln Tyr Asp Pro Val Ala Ala Leu Phe Phe Asp		
340	345	350
Ile Asp Leu Leu Leu Gln Arg Gly Pro Gln Tyr Ser Glu His Pro Thr		
355	360	365
Phe Thr Ser Gln Tyr Arg Ile Gln Gly Lys Leu Glu Tyr Arg His Thr		
370	375	380
Trp Asp Arg His Asp Glu Gly Ala Ala Gln Gly Asp Asp Asp Val Trp		
385	390	395
Thr Ser Gly Ser Asp Ser Asp Glu Glu Leu Val Thr Thr Glu Arg Lys		
405	410	415
Thr Pro Arg Val Thr Gly Gly Ala Met Ala Gly Ala Ser Thr Ser		
420	425	430
Ala Gly Arg Lys Arg Lys Ser Ala Ser Ser Ala Thr Ala Cys Thr Ala		

eof-seql.txt

435	440	445
Gly Val Met Thr Arg Gly Arg Leu Lys Ala Glu Ser Thr Val Ala Pro		
450	455	460
Glu Glu Asp Thr Asp Glu Asp Ser Asp Asn Glu Ile His Asn Pro Ala		
465	470	475
Val Phe Thr Trp Pro Pro Trp Gln Ala Gly Ile Leu Ala Arg Asn Leu		
485	490	495
Val Pro Met Val Ala Thr Val Gln Gly Gln Asn Leu Lys Tyr Gln Glu		
500	505	510
Phe Phe Trp Asp Ala Asn Asp Ile Tyr Arg Ile Phe Ala Glu Leu Glu		
515	520	525
Gly Val Trp Gln Pro Ala Ala Gln Pro Lys Arg Arg Arg His Arg Gln		
530	535	540
Asp Ala Leu Pro Gly Pro Cys Ile Ala Ser Thr Pro Lys Lys His Arg		
545	550	555
Gly		560

<210> 7
<211> 561
<212> PRT
<213> artificial sequence

<220>
<223> mutated CMV pp65

<400> 7
Met Glu Ser Arg Gly Arg Arg Cys Pro Glu Met Ile Ser Val Leu Gly
1 5 10 15
Pro Ile Ser Gly His Val Leu Lys Ala Val Phe Ser Arg Gly Asp Thr
20 25 30
Pro Val Leu Pro His Glu Thr Arg Leu Leu Gln Thr Gly Ile His Val
35 40 45
Arg Val Ser Gln Pro Ser Leu Ile Leu Val Ser Gln Tyr Thr Pro Asp
50 55 60
Ser Thr Pro Cys His Arg Gly Asp Asn Gln Leu Gln Val Gln His Thr
65 70 75 80
Tyr Phe Thr Gly Ser Glu Val Glu Asn Val Ser Val Asn Val His Asn
85 90 95
Pro Thr Gly Arg Ser Ile Cys Pro Ser Gln Glu Pro Met Ser Ile Tyr
100 105 110
Val Tyr Ala Leu Pro Leu Lys Met Leu Asn Ile Pro Ser Ile Asn Val
115 120 125
His His Tyr Pro Ser Ala Ala Glu Arg Lys His Arg His Leu Pro Val
130 135 140
Ala Asp Ala Val Ile His Ala Ser Gly Lys Gln Met Trp Gln Ala Arg
145 150 155 160
Leu Thr Val Ser Gly Leu Ala Trp Thr Arg Gln Gln Asn Gln Trp Lys
165 170 175
Glu Pro Asp Val Tyr Tyr Thr Ser Ala Phe Val Phe Pro Thr Lys Asp
180 185 190

eof-seql.txt

Val Ala Leu Arg His Val Val Cys Ala His Glu Leu Val Cys Ser Met
195 200 205
Glu Asn Thr Arg Ala Thr Lys Met Gln Val Ile Gly Asp Gln Tyr Val
210 215 220
Lys Val Tyr Leu Glu Ser Phe Cys Glu Asp Val Pro Ser Gly Lys Leu
225 230 235 240
Phe Met His Val Thr Leu Gly Ser Asp Val Glu Glu Asp Leu Thr Met
245 250 255
Thr Arg Asn Pro Gln Pro Phe Met Arg Pro His Glu Arg Asn Gly Phe
260 265 270
Thr Val Leu Cys Pro Lys Asn Met Ile Ile Lys Pro Gly Lys Ile Ser
275 280 285
His Ile Met Leu Asp Val Ala Phe Thr Ser His Glu His Phe Gly Leu
290 295 300
Leu Cys Pro Lys Ser Ile Pro Gly Leu Ser Ile Ser Gly Asn Leu Leu
305 310 315 320
Met Asn Gly Gln Gln Ile Phe Leu Glu Val Gln Ala Ile Arg Glu Thr
325 330 335
Val Glu Leu Arg Gln Tyr Asp Pro Val Ala Ala Leu Phe Phe Asp
340 345 350
Ile Asp Leu Leu Leu Gln Arg Gly Pro Gln Tyr Ser Glu His Pro Thr
355 360 365
Phe Thr Ser Gln Tyr Arg Ile Gln Gly Lys Leu Glu Tyr Arg His Thr
370 375 380
Trp Asp Arg His Asp Glu Gly Ala Ala Gln Gly Asp Asp Asp Val Trp
385 390 395 400
Thr Ser Gly Ser Asp Ser Asp Glu Glu Leu Val Thr Thr Glu Arg Lys
405 410 415
Thr Pro Arg Val Thr Gly Gly Ala Met Ala Gly Ala Ser Thr Ser
420 425 430
Ala Gly Arg Asn Arg Lys Ser Ala Ser Ser Ala Thr Ala Cys Thr Ala
435 440 445
Gly Val Met Thr Arg Gly Arg Leu Lys Ala Glu Ser Thr Val Ala Pro
450 455 460
Glu Glu Asp Thr Asp Glu Asp Ser Asp Asn Glu Ile His Asn Pro Ala
465 470 475 480
Val Phe Thr Trp Pro Pro Trp Gln Ala Gly Ile Leu Ala Arg Asn Leu
485 490 495
Val Pro Met Val Ala Thr Val Gln Gly Gln Asn Leu Lys Tyr Gln Glu
500 505 510
Phe Phe Trp Asp Ala Asn Asp Ile Tyr Arg Ile Phe Ala Glu Leu Glu
515 520 525
Gly Val Trp Gln Pro Ala Ala Gln Pro Lys Arg Arg Arg His Arg Gln
530 535 540
Asp Ala Leu Pro Gly Pro Cys Ile Ala Ser Thr Pro Lys Lys His Arg
545 550 555 560
Gly

<210> 8

<211> 536

<212> PRT

eolf-seql.txt

<213> artificial sequence

<220>

<223> mutated CMV pp65

<400> 8

Met Glu Ser Arg Gly Arg Arg Cys Pro Glu Met Ile Ser Val Leu Gly
1 5 10 15
Pro Ile Ser Gly His Val Leu Lys Ala Val Phe Ser Arg Gly Asp Thr
20 25 30
Pro Val Leu Pro His Glu Thr Arg Leu Leu Gln Thr Gly Ile His Val
35 40 45
Arg Val Ser Gln Pro Ser Leu Ile Leu Val Ser Gln Tyr Thr Pro Asp
50 55 60
Ser Thr Pro Cys His Arg Gly Asp Asn Gln Leu Gln Val Gln His Thr
65 70 75 80
Tyr Phe Thr Gly Ser Glu Val Glu Asn Val Ser Val Asn Val His Asn
85 90 95
Pro Thr Gly Arg Ser Ile Cys Pro Ser Gln Glu Pro Met Ser Ile Tyr
100 105 110
Val Tyr Ala Leu Pro Leu Lys Met Leu Asn Ile Pro Ser Ile Asn Val
115 120 125
His His Tyr Pro Ser Ala Ala Glu Arg Lys His Arg His Leu Pro Val
130 135 140
Ala Asp Ala Val Ile His Ala Ser Gly Lys Gln Met Trp Gln Ala Arg
145 150 155 160
Leu Thr Val Ser Gly Leu Ala Trp Thr Arg Gln Gln Asn Gln Trp Lys
165 170 175
Glu Pro Asp Val Tyr Tyr Ser Ala Phe Val Phe Pro Thr Lys Asp
180 185 190
Val Ala Leu Arg His Val Val Cys Ala His Glu Leu Val Cys Ser Met
195 200 205
Glu Asn Thr Arg Ala Thr Lys Met Gln Val Ile Gly Asp Gln Tyr Val
210 215 220
Lys Val Tyr Leu Glu Ser Phe Cys Glu Asp Val Pro Ser Gly Lys Leu
225 230 235 240
Phe Met His Val Thr Leu Gly Ser Asp Val Glu Glu Asp Leu Thr Met
245 250 255
Thr Arg Asn Pro Gln Pro Phe Met Arg Pro His Glu Arg Asn Gly Phe
260 265 270
Thr Val Leu Cys Pro Lys Asn Met Ile Ile Lys Pro Gly Lys Ile Ser
275 280 285
His Ile Met Leu Asp Val Ala Phe Thr Ser His Glu His Phe Gly Leu
290 295 300
Leu Cys Pro Lys Ser Ile Pro Gly Leu Ser Ile Ser Gly Asn Leu Leu
305 310 315 320
Met Asn Gly Gln Gln Ile Phe Leu Glu Val Gln Ala Ile Arg Glu Thr
325 330 335
Val Glu Leu Arg Gln Tyr Asp Pro Val Ala Ala Leu Phe Phe Asp
340 345 350
Ile Asp Leu Leu Leu Gln Arg Gly Pro Gln Tyr Ser Glu His Pro Thr

eolf-seql.txt

355	360	365													
Phe	Thr	Ser	Gln	Tyr	Arg	Ile	Gln	Gly	Lys	Leu	Glu	Tyr	Arg	His	Thr
370				375					380						
Trp	Asp	Arg	His	Asp	Glu	Gly	Ala	Ala	Gln	Gly	Asp	Asp	Asp	Val	Trp
385					390				395					400	
Thr	Ser	Gly	Ser	Asp	Ser	Asp	Glu	Glu	Leu	Val	Thr	Thr	Glu	Arg	Lys
					405				410				415		
Thr	Pro	Arg	Val	Thr	Gly	Gly	Ala	Met	Ala	Gly	Ala	Ser	Thr	Ser	
					420			425				430			
Ala	Gly	Arg	Asn	Arg	Lys	Ser	Ala	Ser	Ser	Ala	Thr	Ala	Cys	Thr	Ala
					435			440				445			
Gly	Val	Met	Thr	Arg	Gly	Arg	Leu	Lys	Ala	Glu	Ser	Thr	Val	Ala	Pro
					450			455			460				
Glu	Glu	Asp	Thr	Asp	Glu	Asp	Ser	Asp	Asn	Glu	Ile	His	Asn	Pro	Ala
465					470				475			480			
Val	Phe	Thr	Trp	Pro	Pro	Trp	Gln	Ala	Gly	Ile	Leu	Ala	Arg	Asn	Leu
							485		490				495		
Val	Pro	Met	Val	Ala	Thr	Val	Gln	Gly	Gln	Asn	Leu	Lys	Tyr	Gln	Glu
							500		505			510			
Phe	Phe	Trp	Asp	Ala	Asn	Asp	Ile	Tyr	Arg	Ile	Phe	Ala	Glu	Leu	Glu
							515		520			525			
Gly	Val	Trp	Gln	Pro	Ala	Ala	Gln								
					530		535								