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MULTIPLICATION OF LARGE OPERANDS

Field of the invention and description of prior art

The invention relates to a method for performing a multiplication of two large operands
(which represent numbers as multiplicands) such as large integer operands, and in particular
to a method as described in the preamble part of claim 1. The invention also relates to a

processing system for performing such a method according to the invention.

Multiplication of large numbers and specifically large integer numbers is one of the most
important arithmetic operations in public-key cryptography. For instance, large-integer
multiplication engrosses most of the resources and execution time of modern microproces-
sors, for instance up to 80 % for Elliptic Curve Cryptography (ECC) and RSA implementa-
tions. In order to increase the performance of multiplication, great effort has been put by
researchers and developers to reduce the number of instructions or minimize the amount of

memory-access operations.

A straightforward approach to multiplication, which corresponds to the schoolbook method
of multiplying numbers, is called operand-scanning method. More efficient is the so-called
Comba technique, which is widely used in practice. This method requires at least 2n? load
instructions for the multiplication of two integers of n words each, in order to process all
operands and to calculate the necessary partial products. US 7,650,374 (Gura et al.) discloses a
multiplication method, called hybrid multiplication, that combines the advantages of these
methods. This method reduces the number of load instructions to only 2-ceil(n?/d), with a
parameter d which depends on the number of available registers of the underlying architec-
ture. (In this disclosure, ceil(x) denotes the smallest integer value equal or greater than x.)
US 7,650,374 reports a performance gain of about 25 % for the hybrid multiplication as
compared to the classical Comba multiplication; the 160-bit implementation needs 3,106

clock cycles on an 8-bit ATmegal28 microcontroller.

The major part of work in prior-art literature is based on the hybrid multiplication technique,
which provides best performance on most microprocessors. A major improvement on the

hybrid multiplication algorithm, which is the best reported implementation to date to the
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knowledge of the inventors, was reported by M. Scott & P.Szczechowiak (“Optimizing
Multiprecision Multiplication for Public Key Cryptography”, Cryptology ePrint Archive
[http://eprint.iacr.org/], Report 2007/299, 2007). They introduced additional registers (so-
called carry catchers) and could increase the performance to 2,651 clock cycles; it is worth-
while to note, however, that they fully unrolled the execution sequence to avoid additional
clock cycles for loop instructions. In 2009, C. Lederer et al. (“Energy-Efficient Implementation
of ECDH Key Exchange for Wireless Sensor Networks. In 3rd International Workshop in
Information Security Theory and Practices — WISTP 2009, Brussels, Belgium, September 1-4,
2009, Vol. 5746 of LNCS, pp. 112-127. Springer, 2009) showed that the needed number of
addition and move instructions can be reduced by simply rearranging the instructions
during execution of the hybrid-multiplication method. Similar findings were recently, in
2010, described by Z. Liu et al. (“Efficient and Side-Channel Resistant RSA Implementation
for 8-bit AVR Microcontrollers. In Workshop on the Security of the Internet of Things -
SOCIOT 2010, 1st International Workshop, November 29, 2010, Tokyo, Japan. IEEE Com-
puter Society, 2010) who reported the fastest looped version of the hybrid multiplication

needing 2,865 clock cycles in total.

The present invention relates to a novel multiplication technique that reduces the number of
needed load instructions to only 2n?/e, where e>d. We propose a new way to process the
operands which allows efficient caching of required operands. In order to evaluate the
performance, we use the ATmegal28 microcontroller and compare the results with related
work. For a 160-bit multiplication, 2,395 clock cycles are necessary, which is an improvement
by 10% as compared to the implementation of M. Scott & P. Szczechowiak (op. cit.), which
needs 2,651 clock cycles. In comparison to US 7,650,374 it is an improvement by about 23 %.
The invention can be implemented with different sizes of integer numbers, and a comparison
based on different integer sizes (such as 160, 192, 256, 512, 1,024, and 2,048) and register sizes
(e =2, 4,8, 10, and 20) shows that the solution according to the invention needs about 15%
less clock cycles for any chosen integer size. The method according to the invention also
scales very well for different register sizes without significant loss of performance. Besides
this, the method fully complies with common architectures that support multiply-
accumulate instructions using a (Comba-like) triple-register accumulator or other multiple-

word registers.
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In Fig. 1 the general process of calculating the product of two large operands in a processing
system PS of general kind is shown schematically; it also illustrates the notation used
hereinafter. The two integers to be multiplied are denoted a and b, respectively; they are two
m-bit large Integers that are represented as multiple-word array structures A = (A[n-1], ...,
Al[2], A[1], A[0]) and B = (B[n-1], ..., B[2], B[1], B[O]), respectively, held in a storage memory
SR of the processing system PS. Further, W is the word size of the processor (e.g. 8, 16, 32, or
64 bits) and n = ceil(m/W) is the number of words required to represent each of the Integers
aand b. The result of the multiplication is the integer ¢ = ab, which is represented in a
double-size word array C= (C[2n-1], ..., C[2], C[1], C[0]). The distinction between the
integers a and b on one hand and the arrays A and B used to represent them on the other
hand is usually dropped in the following, and likewise the distinction between the product
number ¢ and the array C representing it. Furthermore, the operands A and B discussed
inhere primarily have the same length n, but in a more general case the operands A and B (or
a and b) may have different sizes, na = ceil(ma./W) and ny = ceil(my»/W), respectively, without

affecting the principal operation of the invention.

Furthermore, an index notation is used for addressing the individual words in the arrays:
operand indices i and j are used for the operands, with i running from 0 to a maximal value
imax = n—1, and likewise j running from 0 to a maximal value jmax = n—-1, wherein i and j are
here used for indexing Ali] and BJj], respectively, but in a variant it is possible to exchange
them mutually as well; a product index k is used for the result C, with k running from 0 to
imax+jmaxt1 = 2n—1. The individual components A[i], B[j], C[k] of the arrays A, B, C are herein
referred to as words, or segments (specifically, operand segments or product segments);
often the operand segments are also simply called operands where this will not cause
confusion. Generally, calculation of the product ¢ = ab will require calculation of all “partial
products” X[i, j]= A[i] x B[j] for all combinations of values of the indices i and j, i.e., all index
pairs where the indices take the values i = 0...imax and j = 0...jmax. These calculations are, for
instance, performed in a multiplication circuit MC of the processing system PS; for instance,
the multiplication circuit may be a central processor unit of the system PS or a co-processor
associated with a central processor unit and its operation is controlled by a control unit CU.
For each of the partial products, the value of the k index affected by a partial product X][i, jl=
Ali] x B[j] is the sum of the respective operand index values, k = i+j, and generally also the

next value k+1 = i+j+1, as well as possibly additional consecutive index values depending on
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the amount of carry bits affected. Basically, the range in the result C affected by a partial
product X[i, j] is two words wide, i.e., k and k+1; a third word will come about since the
partial product X[i, j] will have to be added to an intermediate value of C[k = i+j}, which may
produce a carry to be stored in a third word. This is why the accumulator register AR of the
multiplication circuit MC will advantageously have a three-word width; in Fig. 1 the three
words of the accumulator register AR are labeled ACCy, ACC;, ACC;. Furthermore, there
are a number of caching registers CR for buffering selected operand segments and result
segments for the calculations done with the multiplication circuit MC. Buffering of result
segments in caching registers is not shown in Fig. 1 for better clarity, but will be understood.
The result of an individual multiplication process, corresponding to a partial product X[i, j],
may be stored directly into the accumulator words ACCy, ACC; or into other registers

(cf. Fig. 1), depending on the architecture of the system used.

As a graphical representation for illustrating the order of calculating in the methods dis-
cussed here, a rhombus matrix representation is used in this disclosure as exemplified by
Figs. 2 and 7 (in Fig. 7 with n =8). A rhombus matrix shows the partial products X[i, j]=
Ali] x Bfj] which are collected to calculate the muitiplication result C in a matrix arrangement
order by the indices i, j. Each dot in a rhombus matrix represents one individual index pair
[i, j], which stands for the processing of one partial product X[i, j] (in Fig. 7 as one example
the index pair [1, 3] is indicated). for instance. Index pairs [i, j] of same value of index i are
arranged in a straight slant line; the lines for constant index j run in a slant direction trans-
versal to that of the i direction. The rhomboid arrangement of the matrix allows to show the
index pairs [i, j] which belong to the same product index k = i+j in a vertical column which,
therefore, corresponds to a segment of the result C with that index k (i.e., C[k]). The orienta-
tion is generally chosen such that the indices i, j, k increase from right to left, so index pair
[0, 0] (which corresponds to X[0, 0] and product segment C[0]) is in the right-hand corner
and the index pair with the highest values [n-1, n—1] corresponding with C[2(n-1)] is in the

left-hand corner of the rhombus matrix.

Known common multiplication techniques, which are often used in practice, are the operand
scanning, product scanning, and hybrid multiplication method. The methods differ in
several ways how to process the operands. Consequently, they also exhibit significantly
different amounts of load and store instructions necessary to perform the calculation. The

mentioned three prior-art methods are discussed in the following with reference to Figs. 7 to
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9a which show respective implementations for the multiplication of two 8-word integers, i.e.,
n = §; the generalization to multiplication of other operands, in particular other values of n, is
straightforward. The sequence of processing the partial products is indicated in Fig.7 and
other rhombus diagrams by means of strong arrow lines: each arrow lines marks a group of
calculations which is done in immediate sequence, and after one group is finished, the

processing continues with a next group (at the point at the start of an arrow line).

Figs. 7 and 7a illustrate the so-called operand-scanning method. This method is also referred
to as schoolbook or row-wise multiplication method. The multiplication can be implemented
using two nested loop operations. A first, outer loop loads the operand A[i] for each index i =
0, ..., n—1 (usually in ascending order, in particular where a product of numbers is calcu-
lated; otherwise descending order is possible as well) and keeps the value constant inside a
second, inner loop of the algorithm. Within the inner loop, the multiplicand B{j] is loaded
word by word and multiplied with the operand AJi]. The partial product X[i, j]= A[i] x B[j] is
then added to the intermediate result of the column k= i+j which is usually buffered in a

register or stored in data memory.

With reference to Fig. 7, the operand-scanning method processes the partial products from
the upper-right side to the lower-left side of the rhombus, as indicated by arrow lines which
each represent respective inner loops starting from j=0 with increasing index j. The algorithm
starts from the loop for i=0, proceeding until the highest index pair [i, j]= [n-1, n—-1] = [7, 7] is
reached. In each group, n multiplications have to be performed. Furthermore, 2n load
operations and n store operations are required to load the multiplicand and the intermediate
result C[i+j] and to store the result C[i+j] < C[i+j] + X[i, j]. Thus, 3n?+2n memory operations
are necessary for the entire multi-precision multiplication. (In architectures that can maintain

the intermediate result in available working registers ,this number decreases to n?+3n.)

Fig. 7a illustrates the sequence of intermediate results processed in a diagram (‘product
sequence diagram’ like also used in US 7,650,374). Each line of the product sequence diagram
contains one box representing the two words of the partial product processed. The algorithm
proceeds from line to line, so the vertical axis in the product sequence diagram roughly

corresponds to time t, whereas the horizontal position denotes the index k.
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Figs. 8 and 8a illustrate another way to perform a multi-precision multiplication which is
commonly in use, namely, the so-called product-scanning method. This method is also
referred to as Comba method or column-wise multiplication method. In the product-
scanning method, the partial products are processed in a column-wise approach as illus-
trated by the arrow lines in Fig. 8. This has several advantages. First, since all operands of
each column are multiplied and added consecutively, using a multiply-accumulate ap-
proach, a final value of the respective product segment is obtained at the end of each column.
Therefore, no intermediate results (for C[i+j]) have to be stored or loaded throughout the
algorithm. In addition, the handling of carry propagation is very easy because the carry can
be simply added to the result of the next column using a simple register-copy operation.
Moreover, only five working registers are needed to perform the multiplication: two
registers for the operand and multiplicand and three registers for accumulation. For these
reasons the product-scanning method is very suitable for low-resource devices with limited

registers.

As will be clear from Fig. 8, by processing the partial products in a column-wise instead of a
row-wise approach, only one store operation is needed to store the final value of the product
segment at the end of a column. This particular virtue of the product-scanning method is
evident from the product sequence diagram for the product-scanning method shown in
Fig. 8a. For the entire multi-precision operation, 2n load operations are necessary to load the
operands A[i] and B[j] and 2n store operations are needed to store the result. Therefore,

2n+2n memory operations are needed.

Figs. 9 and 9a illustrate a further commonly used method, the so-called hybrid multiplication
method, which combines the operand-scanning and product-scanning methods in order to
obtain the advantages of both. It can be implemented using two nested loop structures where
the outer loop follows a product-scanning approach and the inner loop performs a multipli-
cation according to the operand-scanning method. In the example of Figs. 9 and 9a the total
area is divided into blocks H00, H04, H40, H44 of smaller rhombus shape of uniform size.
The inner loop is done for each of the four blocks, and the outer loop processes the blocks by
order of product index of the respective block (the product index is, for instance, the product
index of the smallest index pair in the block), which in the present example is the sequence
HO00, H04, H40, H44 (or equivalently H0O, H40, HO04, H44). The basic idea of the hybrid

method is to minimize the number of load instructions within the inner loop. For this, the
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accumulator has to be increased with regard to the number of register contained in it to a
size of 2d+1 registers. The parameter d defines the number of rows within a processed block.
The parameter d will be chosen such that 1 < d < n. Otherwise, the hybrid multiplication will
coincide with the product-scanning method if the parameter d = 1, and it is equal to the

operand-scanning method if d = n.

As can be seen from Fig. 9 with d = 4, all operands are processed line by line within one
block according to the operand-scanning approach. Note that the blocks HO0, HO04, H40, H44
use operands with a very limited range of indices. Thus, several load instructions can be
saved in cases where enough working registers are available. This will also become clear
from the product sequence diagram of Fig. 9a. However, the outer loop of the hybrid method
processes the blocks H00, H04, H40, H44 in a column-wise approach. So between two
consecutive blocks no operands can be shared and all operands have to be loaded from
memory again. For instance, blocks H04 and H40, which are executed next to each other, do
not share any operands that possess the same indices. Therefore, after processing of block
HO04 is finished, several operands that had been loaded earlier for block HOO have to be
loaded again for processing of block H40, which requires additional and unnecessary load
instructions. However, in total, the hybrid method needs 2ceil(n?/d)+2n memory access

instructions which provides good performances on devices that feature a large register set.

A general drawback of known methods for performing a multiplication lies in the fact that
they load the same operands not only once but several times throughout the algorithm; this
results in additional clock cycles which could be avoided. Therefore, it is an aim of the
present invention to provide a new multiplication technique that offers an improvement

over existing solutions by efficiently reducing the load instructions.

Summary of the invention

The mentioned aim is achieved by a method according to the invention for performing a
multiplication of two large operands on a processing system including a multiplication
circuit with the following features. The method is performed on a multiplication circuit
configured to calculate the product of a pair of word-wide operand inputs into a two-word-
wide product result, where a word is a specified number of bits, wherein each of the

operands is represented by a plurality of contiguous ordered word-wide operand segments
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(denoted as Ali], B[j]), each identified by means of a respective operand index (denoted i, j),
and a result of the multiplication is represented by a plurality of contiguous ordered word-
wide product segments (denoted C[k]) identified by means of a product index (k). Process-
ing of partial products is done by multiplication of operand segments of one of the two
operands and operand segments of the other of the two operands according to the steps of:

- loading operand segments of the two operands corresponding to specific values of the
operand indices into the multiplication circuit, with the exception of operand segments
that are already held in registers of the multiplication circuit,

— performing a multiplication operation on the operand segments in the multiplication
circuit to obtain a respective two-word-wide intermediate product, and

— updating product segments by adding the two-word-wide intermediate product to
product segments which have a product index value equal to the sum of the operand
index values of the operand segments as well as the next product index value, respec-
tively;

wherein this processing of partial products is repeated for each value pair of the two
operand indices according to a specified sequence. This sequence is composed of runs, such
that each of said runs corresponds to a subset of the set of index value pairs, the subsets of
different runs being disjoint, and the union of the runs preferably covering the complete set
of index pair values. The step of updating product segments will, in the greater part of
implementations, comprise the sub-steps of

- loading said product segments into an operand input of the circuit,

— adding the intermediate product to the operand input to obtain a sum result, and

- storing the sum result back to said product segments.

According to the invention, a number of caching registers is used in each run for caching
operand segments of at least one of the operands. The caching registers are at least word-
wide registers of the multiplication circuit. Each run comprises several parts, namely, an
initial part, optionally one or more inner parts (but typically all runs comprise two inner
parts respectively, with the possible exception of one residual run or “initialization block”
which is a run without inner parts), and a final part, wherein each part is characterized by a
parameter number which specifies the number of operand segments of one of the two
operands being cached in caching registers and used for processing of partial products.

— In the initial part operand segments of a first of the two operands (either A or B) and at

least one operand segment of the respective other operand are loaded into caching regis-
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ters, partial products are processed for a number of product index values, wherein the
number of partial products processed for each product index value increases from one to
the parameter number of the initial part (this statement specifies the number of partial
products processed, but does not prejudices the order of processing). At the end of the
initial part, a number of first operand segments are left in caching registers, which num-
ber corresponds to the parameter number of the next part.

— In each inner part partial products are processed wherein for each product index value
the same number of partial products is processed, which number corresponds to the
parameter number of the respective part. All operand segments of one of the operands
(either A or B) used for the partial products in the part are held in caching registers as a
result of a respective preceding part, whereas at least one operand segment of the re-
spective other operand (i.e., B or A, as the case may be) is loaded into the multiplication
circuit, namely, for each product index processed in the part at least one operand seg-
ment. After processing of the partial products in the respective part, a number of oper-
and segments of the respective other operand are left in caching registers, said number
corresponding to the parameter number of the respective next part.

— In the final part partial products are processed for a number of product index values
where the number of partial products processed for each product index value decreases
from the parameter number of the final part to one (this statement specifies the number
of partial products processed, but does not prejudices the order of processing). All oper-
and segments of one of the operands used for the partial products in the final part are

held in caching registers as a result of a respective preceding part.

This solution offers an improved multiplication technique usable with embedded microproc-
essors. The multiplication method reduces the number of necessary load instructions
through a special arrangement of caching of operands. By implementing the product
scanning approach but dividing the processing into several parts, the invention allows the
scanning of sub-products where most of the operands are kept within the register-set
throughout the algorithm. The invention leads to a considerable reduction of operations
performed in the course of a multiplication of two operands; in a test implementation an
improvement of the best reported solution by a factor of 10 % was found. In comparison to
the hybrid multiplication of US 7,650,374 (Gura et al.), a speed gain up of 23% was achieved.
An evaluation of the results further showed that the solution according to the invention

scales very well for different Integer sizes used for ECC and RSA. For instance, an improve-
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ment of about 15 % for bit sizes between 256 and 2,048 bits was obtained as compared to a

reference implementation of the hybrid multiplication.

The invention is particularly suitable for calculating products of integer numbers, but it will
be clear to the person skilled in the art that it can be used for other applications as well, such
as the multiplication of the significands (also called mantissa parts) of two floating-point

numbers or multiplication of two binary polynomials.

In a suitable special case of the method according to the invention, partial products are
processed according to a product-scanning multiplication method, namely, by grouping
together operations for processing partial products which have the same product index
values. This may be done in the inner parts and/or the initial and final parts of at least one
run, preferably in the inner parts of each run (if it has an inner part). In other words, it may
be advantageous to realize a method according to the invention such that within each run,
partial products are processed in groups of same product index, and the product index

between groups increases by an increment of one.

In a special realization of the method according to the invention at least one of the runs,
preferably all runs but one, comprise at least two inner parts. Runs having (at least) two
inner parts are also called “full runs”; the one remaining runs is a “residual run”. For each
full run, the parameter number of the initial part may be equal to the parameter number of
the inner part and be greater by one than the parameter number of the final part. Moreover,
in each full run, the same number of product index values may be processed within each

inner part.

In particular the residual run may comprise only an initial and a final part, and then each
other run may be a full run comprising an initial part, two inner parts, and a final part. In
this configuration, the largest run is the last run. In the last run the number of product index
values processed in an inner part may be equal to the number of operand segments in one of
the operands reduced by the parameter number. Further, the other runs are suitably
consecutively smaller than the last run. They precede the last run and have different part
lengths as expressed by the number of product index values processed in an inner part of the

respective full run, wherein part length of a full run is smaller than the part length of the
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respectively larger run (which immediately precedes the former) by the parameter number

of the initial part of the run.

The width parameters of the residual run is typically not greater than the larger of the

parameters of the initial and final parts of each of the full runs.

Furthermore, the earlier-mentioned aim can also be obtained by means of a processing
system (or target platform) for performing a multiplication of two large operands, compris-
ing a multiplication circuit configured to calculate the product of a pair of word-wide
operand inputs into a two-word-wide product result as well as a number of caching regis-
ters, and further comprising a storage memory for storing a pair of operands and said
product result, as well as a controlling unit configured to perform the method according to
the invention with the multiplication circuit upon said pair of operands. Multiplication
circuits of the mentioned kind are readily available. The controlling unit, may, for instance,
be a CPU provided with instructions stored in a memory (which may be the mentioned
storage memory or a separate instructions memory), where these instructions implement an
algorithm to execute the method according to the invention. Also, the processing systems
and/or multiplication circuits described in US 7,392,276 and US 7,650,374 can easily be
adapted by the person skilled in the art for implementing the methods discussed here so as

to realize a processing system for performing the method according to the invention.

Brief description of the drawings

In the following, the present invention is illustrated in more detail by means of embodiments
which represent exemplary, non-restrictive implementations which are also shown in the

drawings. The drawings show:

Fig.1 is ablock diagram illustrating the general multiplication of two operands in order to
obtain a product result another rhombus diagram of the implementation of Fig. 2,

showing the composition of the rows,

Fig.2 is a rhombus diagram illustrating a first embodiment of the invention, which is an

implementation for 8-word operands with a uniform width parameter e = 3,

Fig. 2a is a product sequence diagram for the implementation shown in Fig. 2,
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Fig.3  shows the structure of a row in the implementation for uniform width parameter e,

Fig.4 illustrates the processing of partial products in parts R0Q2 and R0Q3 of the imple-

mentation shown in Fig. 2,

Fig.5 shows a second embodiment with variable width parameter and varying orientation

of the rows,
Fig.6  shows another embodiment of the invention,
Fig.7 is a rhombus diagram illustrating the operand-scanning method of prior art,
Fig.7a is a product sequence diagram for the method of Fig. 7,
Fig.8 is a rhombus diagram illustrating the product-scanning method of prior art,
Fig. 8a is a product sequence diagram for the method of Fig. 8,
Fig.9 is a rhombus diagram illustrating the hybrid-multiplication method of prior art, and

Fig.9a is a product sequence diagram for the method of Fig. 9.

Detailed description of the invention and embodiments

A principal idea of the invention is to use an efficient caching of operands in order to reduce
the number of memory accesses to a minimum, and using a special order of the partial
products to be calculated. The method according to the invention, also referred to as
“operand-caching method”, basically follows a known approach for calculating the partial
products, and preferably the product-scanning approach, but divides the calculation into
several regions of specific shape (with regard to the range of index pairs). Herein, these
regions are referred to as “rows”, and the process of operating through one of such rows is
referred to as a “run”. If the range of index pairs is visualized in a rhombus diagram, the

rows generally have a bended shape, as is evident from e.g. Figs. 2 and 3.

The invention is based on the finding that by spending a certain amount of store operations,
a significant amount of load instructions can be saved by reusing operands that have been

already loaded in working registers.
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The invention starts from the understanding that the product-scanning method provides best
performance if all needed operands can be maintained in working registers of the multiplica-
tion circuit. In such a case, only 2n load instructions and 2n store instructions would be nec-
essary. However, the required number of registers for operation is 2n+3 (namely 2n registers
for the operands and 3 registers for storing and accumulating the intermediate results),
which is not available in most cases (namely, for typical values of n). The product-scanning
method becomes inefficient if not enough registers are available, i.e., whenever the operand
size is too large to cache a significant amount of operand segments. Hence, several load
instructions are necessary to reload and overwrite the operands in registers. Therefore, the
invention proposes a modified product-scanning method, in that the procedure of the
product-scanning method is divided into several runs, each of which covers a corresponding

row, plus a residual block as explained hereinafter.

Operand-caching with uniform width parameter

In a first exemplary embodiment of the invention, which is illustrated in the rhombus
diagram of Fig. 2 (see above for an explanation of rhombus diagrams), the rows have a
uniform width which is expressed as a parameter e. The number of rows is r = ceil(n/e) -1.
The value of the parameter e is chosen in a way that all words needed for processing of the
initial part of a row can be cached in the available working registers. A row index p is used
to index rows, with p taking values from 0 up to r—1, and the symbol Rp as abbreviation for

the row associated with the row index p.

In this example it is assumed that the multiplication engine provides f = 9 available registers
including a triple-word accumulator. Then the parameter can be chosen as e = 3 since f = 9
=2e+3. Generally, when the multiplication engine provides f registers including the triple-
word accumulator, the parameter e is chosen such that 2e+3 < f. The generalization to other

values of e, n, f is evident for the person skilled in the art.

Figs. 2 and 2a show the structure of the calculating method for n = 8 and e = 3 in a rhombus
diagram (not all index pair are shown as dots for better clarity) and pertinent product
sequence diagram. In accordance with e = 3 , three registers are reserved to store three words
of the operand a and three registers are reserved to store three words of operand b. Now,

since r = ceil(8/3)-1 = 2, the calculation is divided into two rows, referred to as RO and R1 in
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Figs. 2 and 2a, as well as a “residual block” RB (in the upper corner of Fig. 2) which calcu-
lates the partial products which are not processed by the rows. Preferably the residual block
RB is executed first, which is why it is also referred to as initialization block. Thus there are
three runs in this example, one run for the residual block plus one run for each row. (More
generally, there are r+1 runs.) Within each run, the order of calculation of the partial
products is according to the product-scanning method, i.e., performing the partial products
which belong to the same product index k (where k = i+j as defined above) in immediate
order using a multiply-accumulate approach. In the rhombus diagram of Fig. 2, the product-
scanning method is equivalent to a column-wise processing of the partial products within

the region of the respective run.

Each row R0, R1 has an angled shape. The initialization block RB has a rhombus shape which
covers index pairs (ij) withi=re,...,n-1and j =0, ..., Eg~1 where Eg = n-re is the maximal
number of partial products belonging to one k index (namely, for k = n—1) in the initializa-

tion block.

Referring to Fig. 3, the calculation of the rows is, for a general value of n, implemented as
follows: each row Rp is divided into four parts which are executed in consecutive order: Q1,
Q2, Q3 and Q4. Herein, the following notation is used: Qq with q = 1,2,3,4 refers to any row
in a calculation of a product; for specifying a specific part of a specific row the notation RpQq
is used wherein p and q stands for the specific numbers of the row and part, respectively. In
Fig. 3 the parameters of the initialization block RB and one row Rp is given for a general case
wherein n and e are parameters, r = ceil(n/e) -1 (as defined above). The special case of Fig. 2
can be derived from the configuration shown in Fig. 3 with the values n =8 and e = 3 (and

r = 2) as already mentioned.

In the example illustrated in Figs. 2 and 3 all four parts Q1, Q2, Q3, Q4 of each row use the
product-scanning approach in that all partial products of same product index k (with k = i+j)
that are processed within each part are executed in direct succession; no product of other
index k' is carried out in between. The initial part Q1 and the final part Q4 correspond to the
first and second part of a classical product-scanning approach (of a respective triangle-
shaped area in the rhombus diagram representation), whereas the inner parts Q2 and Q3

perform an efficient multiply-accumulate operation of already cached operands. In other
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implementations, the order of calculation within a part may deviate from a product-scanning

sequence, depending on the individual application.

The algorithm starts with the calculation of the initialization block RB and then processes the
individual rows R1, RO. For this, it starts from the smallest row (here, R1) and proceeds to the
largest row; this is in Fig. 3 from the top to the bottom of the rhombus. Furthermore, all
partial products are generated with increasing product index k, which is from right to left in
Figs. 2 and 3. As a variant in implementations where not usual numbers are calculated, the
partial products may also be calculated in a different order, such as generally decreasing

product index k.

In the initialization block RB (which in Figs. 2 and 3 is shown in the upper-mid of the rhom-
bus) performs the multiplication according to the classical product-scanning method. In the
example of Fig. 3, the integer number of the longest sequence of multiplications (multi-pre-
cision multiplication) is Eg = n—re = 2. This integer number is, by virtue of the definition of r,
not greater than e (i.e., Eg<e). Because of this, all operands can be loaded and maintained

within the available registers resulting in only 4Eg = 4(n-re) memory-access operations.

In the special case when n<e (trivial case), only an initialization block RB is performed,
skipping the following processing of rows. Otherwise, in the more usual case that n>e, the
rows are processed: The rows are processed with a row index p decreasing from the largest
possible value r-1, p = r-1, ..., 0. Each row consists of four parts Q1, Q2, Q3, Q4. For each
part a “width parameter” Eq (g= 1,2,34) is defined as the maximal number of partial
products belonging to one k index within the respective block. Furthermore, for each part a
“part length” s, can be defined which counts the number of product index values processed
in this part. Thus, in the inner parts Q2, Q3, which have a parallelogram shape, the number
of partial products processed is Eq~sq. In the example illustrated in Figs. 2, 3, and 5, the inner
parts Q2, Q3 have equal part lengths s, = s3, but in other implementations the part lengths

may be different, in particular in cases where the two operands have different sizes.

An initial part Q1 starts with a product-scanning multiplication for what can be described as
a half-rhombus. All operand segments for that row are first loaded into registers, i.e. Afi]
with i = pe, ..., (p+1)e-1 and B[j] with j= 0, ..., e-1. The sum of all partial products X(ij) =

Ali] x B[j] for same product index k=i+j is then stored as intermediate result to the memory
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location of segements C[k] with k = pe, ..., (p+1)e-1 (this is the same index range as Ali]),
plus a carry word (i.e., next higher word segment at index k+1) which corresponds to
Cl(p+1)e] and is buffered for the start of next part Q2. Consequently, 2e load instructions and
e store instructions are needed. For the largest k value processed in this part Q1, e partial

products are calculated, so E; = €; and s; = e (in compliance with the triangle shape of Q1).

The second part Q2 processes partial products in n—(p+1)e columns, where the columns
correspond to product index k = (p+1)e, ... n-1. Thus, the part length s, = n—(p+1)e. For each
index k, e partial products are processed (E; = e). Within this part Q2 a multiply-accumulate
approach is employed which corresponds to a product-scanning approach restricted to the
area of the part. Since all values of A[i] were loaded during the preceding initial part Q1 and
are kept in caching registers, only one segment BJ[j] has to be loaded from one column to the
next. The operand values A[i] are kept constant throughout the processing of part Q2. Beside
the needed load instructions for BJj], it is also required to load and update the intermediate
result of Q1 with the result obtained in Q2. Consequently, 2(n—(p+1)e) load and s, = n—(p+1)e
store instructions are required for this second part. (In Fig. 3, the short-hands i2 = (p+1)e-1

and j2 = n—(p+1)e are used for the index values of the “inner knee point” [i2, j2] of Q2.)

The third part Q3 performs the same operations mutatis mutandis as described in the directly
preceding part Q2 with exchanged roles of the operands: the already loaded operand
segments B[j] with j = n—(p+1)e, ... (n—1)—pe are kept constant, and for each column one
segment Ali] is loaded. Therefore, with this part the analogous considerations apply as with
the preceding part Q3, mutatis mutandis. For each value of the product index k processed in
Q3 (k= n, ..., 2n-1-(p+1)e) the number of partial products is e (i.e., E3 =e), and the part
length is s3 = n—(p+1)e. Consequently, 2(n—(p+1)e) load and s3 = n—(p+1)e store instructions

are required for this third part Q3 as well.

Thus, each inner part Q2, Q3 can re-use cached operand words which are left from the
preceding part (i.e., the initial part Q1 or preceding inner part Q2) without requiring load
operations for that operand, and only words of the other operand are loaded for processing

of partial products within the respective part.

The final part Q4 calculates the remaining partial products. In contrast to the preceding parts

and in particular initial part Q1, no load instructions are required since all operands were
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loaded in the preceding part Q3 and are kept in caching registers. Hence, only e memory-
access operations are needed to store the remaining words of the (intermediate) result C, at
the locations of C[k] with k = 2n—(p+1)e, ..., (2n—1)-pe. It is worthwhile to note that here the
last C[k] to be updated is at locations C[(2n-2)-pe] and C[(2n-1)-pe], wherein the latter is
the segment which takes the carry word (next higher word segment at index k+1) of the last
partial product processed at i= n-1 and j = (n-1)-pe. It is also remarked that the largest
number of consecutive partial products calculated for one product index value k is only e-1
(namely, for the first k value) and the number of products decreases by one for each further
index value. Therefore, the final part Q4 has width parameter E4 = e-1, and its part length is

sy = e—1 as well.

Fig. 4 illustrates the processing of partial products in parts R0Q2 and R0Q3 of row RO (i.e.,
p=0). For each column, two load instructions are necessary (highlighted in boldface). All
other operands are already loaded and cached in previous steps. Operands which are not
required for further processing are overwritten by new operands. For instance, in part R0Q2
of Fig. 4, in the course of calculation of segment C[3], the value of operand segment B[1] is
initially held in a caching register and is overwritten as it is supplanted by the value of B[3];

then the value B[2] in a caching register is overwritten by B[4]; and so on successively.

It is also remarked that the initialization block RB of the example illustrated in Figs. 2 and 3
can be interpreted as the union of an initial part RBQ1 and a final part RBQ4, where the
initialization block is described by a parameter Eg = n-re (in the example, Eg = 8-2:3 = 2) in
place of the otherwise uniform row parameter e of the rows R0, R1, and the width parameter

of part RBQ1 is E; = Eg, while for part RBQ4, E; = E-1.

Table 1 summaries the memory-access complexity of the initialization block RB and the

individual parts Q1, Q2, Q3, Q4 of a row p.

Table 1: Memory-access complexity for uniform parameter e (Fig. 3)

Component Load Instr. Store Instr. Total
kB 2(n — re) 2(n — re) 4(n — re)
Q1 2e € 3e
Q2 2(n—e(p+1)) n—elp+1) 3(n—e(p+1))
Q3 2(n —e(p+1)) n—e(p+1) 3(n —e(p+1))
Q4 0 € e




WO 2013/044276 PCT/AT2011/000397
-18 -

By summing up all load instructions, we get the total number Ny, of load instructions

r—1

Nijoag = 2(n-re) + ZO (4n—4pe—-2e) = 2n+ 4 - 2er? —2er < 2n?/e
p:

and the total number N, of store operations

r—1
Ngtore = 2(n—re) + z (2n—2pe) = 2n+ 2rn - er’—er < n+n?/e.
p=0
Table 2 lists the complexity of different multi-precision multiplication techniques. It shows

that the hybrid method needs 2ceil(n?/d) load instructions whereas the operand-caching

technique needs about 2n?/e load instructions.

Table 2: Comparison of memory-access complexities of different multiplication techniques

Method Load Store Memory

Instructions Instructions Instructions
Opcrand Scanning 2nt +n n* 4+ n 3n? 4+ 2n
Product Scanning on? 2n 2n? 4+ 2n
Hybrid 2[n? /d] 2n 2[n?/d] + 2n
Operand Caching 2n?/e n®/e+n 3n?/e+n

Now, since the total number of available registers f equals to 2e+3 for the operand-caching
technique (2e registers for the operand registers and three registers for the accumulator),
whereas it is 3d+2 for the hybrid method (d+1 registers for the operands and 2d+1 registers

for the accumulator), we have

2e+3=3d+2 = e=(3d-1)/2 > e>d.

A comparison of the total number of memory-access instructions for the hybrid and the

operand-caching method, expressing both runtimes using f, gives

2n + 2ceil (3n2/(f-2)) > n+ 6n?/(f-3) .

Note that there are more parameters to consider. The number of additions of the operand-
caching method is 3n?, and the number of additions of the hybrid method is n(2+d/2)
(upper bound). Also the pseudocode presented by Gura et al. (US 7,650,374) for the hybrid

multiplication method is inefficient in the special case of nmod d = 0.
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Operand caching with variable width parameter

In a general implementation of the method according to the invention, the width parameter

E can be different from row to row, and can even vary within a row, namely, between parts.

Fig. 5 shows an example where the last run R0 is composed of parts R0Q1, R0Q2, R0OQ3,
ROQ4 having respective width parameters Ey = e-1 =4 = Ej, E3 =e =5, and E4 = 4; here, e can
describe the maximal value of the width parameters. In the run R1, the width of parts R1Q1,
R1Q2, R1Q3, R1Q4 is E; = 4, E; =5, and E; = E4 = 4. This demonstrates that the width para-
meter E can vary from part to part, with the decrement or increment being 1, but also greater
values of the decrement/increments may be suitable in special cases. Also the maximal value
e can vary between rows, for instance, the run R1 could have a value e’ # €; as one prominent
example, it should be noted that the width parameter of the initialization block, Eg , is

generally different (mostly smaller) than the width parameter of other runs or parts.

Another possible variation is visible from the example of Fig. 5, namely, that the rows may
have variable orientation in the [i, j] plane. Thus, the rows R2 and R3 are oriented “upward”
rather than “downward” like rows R0 and R1. In other words, the roles of the operands A, B
is exchanged for R2, R3 as compared to RO, R1. This is realized typically by exchanging the
roles of parts Q2 and Q3, so parts R2Q2, R3Q2 are oriented like parts R0OQ3, R1Q3; whereas
parts R2Q3, R3Q3 are oriented like parts R0Q2, R1Q2. This does not affect the initial parts Q1
(ROQ1 to R3Q1) and final parts Q4 (R0Q4 to R3Q4), but should be considered in the ar-
rangement of caching registers within the individual implementation. It is also worthwhile
to mention that, in the case where rows of both orientations are present, the initialization
block RB (if present) will generally be located in the middle of the rhombus, rather than at

index pair locations near to the “lower” edge [0, n—1] or the “upper” edge [n—1, 0].

As already remarked, it is generally preferred within the invention that the sequence of
processing the partial products within a part Q1, Q2, Q3, Q4 is according to the product-
scanning method. However, depending on the architecture of the multiplication circuit used
other approaches may be suitable in some or all of the parts constituting the rows. For
instance, a zick-zack approach may be used as indicated for parts R1Q2 and R1Q3 of Fig. 5,
based on a zick-zack multiplication procedure as disclosed in US 7,392,276 (Dupaquis et al.).

Also the plain operand-scanning method may be suitable in special cases, in particular with
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some or all of the final or initial parts, as indicated in Fig. 5 for part R2Q4. The sequence of
partial products within a group as represented by one of the arrow lines in Fig. 5 need not be
uniform. The sequence can be chosen with increasing index i, as in parts R0Q2, R1Q2 of
Fig. 5, or decreasing index i, as in parts ROQ3, R1Q3 of Fig. 5 (the index j will then decrease or
increase, respectively, since k =i+j is constant within a group along a vertical arrow in
Fig. 5). The index may also alternately increase and decrease, see part R2Q2. Analogous
considerations apply for parts which embody a different approach from the product-

scanning approach (cf. directions of arrows in parts R2Q4, R3Q3, R2Q3).

Moreover, it is remarked that the sequence of the parts in a row may be reversed with
respect to the order of the index k; this may be particularly suitable in the case that the
partial products are calculated with decreasing product index k. In such an implementation
also the roles of the initial part Q1 and the final part Q4 within a row are exchanged: that is,
then the initial part Q1 starts with the high values of index k, and the row ends in its final

part Q4 at low values of index k.

In a further variant within the present invention, a row may have only one inner part or
more than two inner parts (in addition to the respective initial and final parts). This is
illustrated in the example of Fig. 6. This drawing shows a case where the two operands have
different lengths, so the rhombus is asymmetric. First, a run R0’ is processed which has only
one inner part Q2, then the run RB having the configuration of an initialization part is done.
Next a run R1” is done having two inner parts of different part lengths, whereas a last run
R2" comprises three runs, which are designated Q2, Q3, and Q2’ in Fig. 6, respectively. It is
emphasized that a configuration including rows with one or more than three parts is not
restricted to multiplication of operands of different lengths, but is possible for operands of

same length as well.
Evaluation of the method according to the invention

Table 3, given at the end of the present description, shows a pseudo-code for an implement-
ing algorithm for multi-precision multiplication using the operand-caching method accord-
ing to the invention with uniform width parameter e as explained with reference to Fig. 3.
Variables that are located in data memory are denoted by M, where x represents the Integer

operand A and B or the result C. The parameter e describes the number of locally usable
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registers Ra[e-1, ..., 0] and Rg[e-1, ..., 0] for each operand. The triple-word accumulator is

denoted by ACC, which is composed of ACC, , ACC; and ACC,.

An evaluation setup of the method discussed above with reference to Figs. 2 and 3 used the
8-bit ATmegal28 microcontroller for evaluating the new multiplication technique. The
ATmegal28 is part of the megaAVR family from Atmel Corporation. It has been widely used
in embedded systems, automotive environments, and sensor-node applications. The
ATmegal28 is based on a RISC architecture and provides 133 instructions. The maximum
operating frequency is 16 MHz. The device features 128 kB of flash memory and 4 kB of
internal SRAM. There exist 32 general-purpose registers (RO to R31) of 8-bit size. Three 16-bit
registers can be used for memory addressing, i.e. R26:R27, R28:R29, and R30:R31, which are
denoted as X, Y, and Z. Note that the processor also allows pre-decrement and post-
increment functionalities that can be used for efficient addressing of operands. The AT-
megal28 further provides an hardware multiplier that performs an 8 x 8-bit multiplication
within two clock cycles. The 16-bit result is stored in the registers RO (lower word) and R1

(higher word).

The evaluation setup used register R22 to store a zero value; R23, R24, and R25 were
reserved as accumulator registers. Thus, 20 registers, i.e. R2...R21, are available to be used to
store and cache the words of the operands (i.e., e = 10 registers for each operand a and b). All
implementations have been done by using a self-written code generator that allows the

generation of (looped and unrolled) assembly code.

In order to demonstrate the performance of our method, several multiplication techniques
were implemented, including also methods of prior art as described in the introductory part.
For comparison reasons, a 160 x 160-bit multiplication was chosen as it has been done by
most of the related work. The operand-scanning and product-scanning methods have been
implemented without using all the available registers (as it usually would be implemented).
For hybrid multiplication, d = 4 was applied because this allows a better optimization
regarding necessary addition operations compared to a multiplication with d = 5. The carry
propagation problem has been solved by implementing a similar approach as proposed by
Z. Liu et al. (op.cit.). Thus, 200 MOVW instructions have been necessary to handle the carry
propagation accordingly. For a fair comparison, all methods have been optimized for speed

and provided unrolled instruction sequences. Furthermore, we implemented all accumula-
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tors as ring buffers to reduce necessary MOV instructions. After each partial-product
generation, the indices of the accumulator registers are shifted so that no MOV instructions

are necessary to copy the carry.

Best results have been obtained for the operand-caching technique according to the inven-
tion. By trading additional 20 store instructions, up to 120 load instructions could be saved as
compared with the result with the best reference values, namely, the “hybrid method”. Note
that load, store, and multiply instructions on the ATmegal28 are more expensive than other
instructions since they require two clock cycles instead of only one. For operand-caching
multiplication, almost the same amount of load and store instructions are required. In total
2,395 clock cycles were found to be needed to perform the multiplication with the setup
implementation. Compared to the hybrid implementation, a speed improvement of about
18% was achieved. When taking into account different Integer sizes from 160 up to 2,048 bits

a speed improvement of about 15 % could be achieved compared to the “hybrid method”.

An investigation of how the performance depends upon the parameter e for different Integer
sizes was also done. It is recalled that the parameter e is defined by the number of available
registers to store words of one operand, i.e., e = (f-3)/2; f =2e + 3 denotes the number of
available registers in total (including the triple-size register for the accumulator). The results
showed that for e>10 no significant improvement in speed is obtained. As expected, the
performance decreases for smaller e and higher Integer sizes. However, a comparison of the
solution according to the invention (for a 160-bit multiplication with smallest parameter
e =2, corresponding to f= 7 registers) with the product-scanning method (needing f=
5 registers) revealed 3,915 clock cycles for the operand-caching method and 3,957 clock cycles
for the product-scanning method. Thus, the invention provides a good performance even for
a smaller set of available registers. For the special case e =20, where all 20 words of one
160-bit operand can be maintained in registers (which is the ideal case for product scanning),
it shows that the number of clock cycles reaches nearly the optimum of 2,160 clock cycles,

i.e., 4n = 80 memory-access instructions, n? = 400 multiplications, and 3n?= 1, 200 additions.

It is also worth to note that multiplication method according to the invention is well suitable
for processors that support multiply-accumulate (MULACC) instructions such as ARM or
the dsPIC family of microcontrollers. It also fully complies to architectures which support

instruction-set extensions for MULACC operations.
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Table 3: Pseudocode for operand-caching method (Figs. 2 and 3)

Require: word size n, parameter e, n > e, Integers a,b &

[0,7n),¢ € [0,2n).
Ensure: c = ab.
r = |n/e].

Rale—1,...,00 « Ma[n—1,...,rel.
Rple—1,...,0 + Mp[n—re—1,...,0].
ACC « 0.
fori=0ton—-re—1do
for j =0toido
ACC «+ ACC + Ralj] » Rpli — §).
end for
Mcre+1d + ACCy.
(ACCy, ACCy) + (ACC,, ACCH).
ACCH + 0.
end for
fori=0ton—re—2do
forj=it+1ton—re—1do

ACC < ACC + Ralj] * Rgln — re — j +1].

end for

Me[n+ i « ACC,.

(ACC,, ACCy) + (ACC,, ACCH).
end for
Mc[2n —re — 1] + ACC,.

forp=r—1to0do

Rale—1,...,0] «+ Mallp+ De—1,...,pe]. )

Rple—1,...,0] « Mple—1,...,0].
fori=0toe—1do
for j =0toido
ACC + ACC + Rylj] « Rgli — 7).
end for
Mclpe + i) « ACCy.
(ACCH, ACCh) + (ACCy, ACCY).
ACCy + 0.
end for
fori=0ton—(p+1)e—1do

Rple—1,...,0] + Mpgle+i,Rple—2,...

for j=0toe—1do

ACC ACO-FRA[j] * RB[G— 1- ]]

end for

ACC + ACC + Mc[(p+ 1)e +1].

Mcl(p+ e+ ¢ + ACCy.

(ACC1, ACCy) + (ACCy, ACCY).
end for

RB

} Row Loop:

01

1.

Q2
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fori=0ton—-(p+1)e—1do
Rale—1,...,0} « Ma[(p+ D)e+i],Rale—2,...,1].
for j=0toe—1do

ACC « ACC+ Ryulj] * Rple—1—3].

end for Q3
ACC + ACC + Mc[(n +¢].
Mc[n+ i) + ACC,.
(ACC1, ACCy) + (ACC,, ACCY).
ACCy + 0.

end for

fori=0toe—2do
for j=i+1toe—1do

ACC «+ ACC + Rylj] » Rple— j + 4.

end for
Mc[2n — (p+ Ve +i] + ACC,. 04
(ACC1, ACCy) + (ACCo, ACCH).
ACCy « 0.

end for

Me[2n — 1 — pe] + ACC,.

ACCy « 0.

end for
Return c.
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CLAIMS

1. A method for performing a multiplication of two large operands (a, b) on a processing
system with a multiplication circuit (MC), said multiplication circuit configured to calculate
the product of a pair of word-wide operand inputs into a two-word-wide product result,
where a word is a specified number of bits, wherein each of the operands (a, b) is repre-
sented by a plurality of contiguous ordered word-wide operand segments (A[i], B[j]), each
identified by means of a respective operand index (i, j), and a result (c) of the multiplication
is represented by a plurality of contiguous ordered word-wide product segments (C[k])
identified by means of a product index (k),
the method comprising processing of partial products by multiplication of operand segments
of one of the two operands and operand segments of the other of the two operands according
to the steps of:
~ loading operand segments of the two operands corresponding to specific values of the
operand indices (i, j) into the multiplication circuit, with the exception of operand seg-
ments that are already held in registers of the multiplication circuit,
— performing a multiplication operation on the operand segments in the multiplication
circuit to obtain a respective two-word-wide intermediate product (X{i, j]), and
- updating product segments by adding the two-word-wide intermediate product to
product segments (C[k]) which have a product index value equal to the sum of the oper-
and index values of the operand segments as well as the next product index value, re-
spectively;
wherein said processing of partial products is repeated for each value pair ([i, j]) of the two
operand indices according to a specified sequence which is composed of runs (Rp, RB, R0,
R1’, R2’), each of said runs corresponding to a subset of the set of index value pairs, the
subsets of different runs being disjoint,
characterized in that
a number (e) of caching registers (CR) is used in each run for caching operand segments of at
least one of the operands, said caching registers being at least word-wide registers of the
multiplication circuit, and
each run comprises several parts (Q1, Q2, Q3, Q4), wherein each part is characterized by a
parameter number (E;) which specifies the number of operand segments of one of the two
operands being cached in caching registers and used for processing of partial products,

wherein the parts are consecutively:
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— an initial part (Q1) in which:
operand segments of a first of the two operands and at least one operand segment of
the respective other operand are loaded into caching registers,
partial products are processed for a number of product index values (k), wherein
the number of partial products processed for each product index value increases from
one to the parameter number (E;) of the initial part, and
at the end of the initial part, a number (e) of first operand segments are left in cach-
ing registers, which number corresponds to the parameter number (E;, E4) of the next
part;
— optionally one or more inner parts (Q2, Q3) wherein in each inner part:
partial products are processed wherein for each product index value the same num-
ber of partial products is processed, which number corresponds to the parameter num-
ber (E;, E3) of the respective part, wherein all operand segments of one of the operands
used for the partial products in the part are held in caching registers as a result of a re-
spective preceding part, whereas at least one operand segment of the respective other
operand is loaded into the multiplication circuit, namely, for each product index proc-
essed in the part at least one operand segment, and
after processing of the partial products in the respective part, a number of operand
segments of the respective other operand are left in caching registers, said number corre-
sponding to the parameter number of the respective next part (Q3, Q4);
and
— a final part (Q4) in which partial products are processed for a number of product index
values (k) where the number of partial products processed for each product index value
decreases from the parameter number (E4) of the final part to one, and wherein all oper-
and segments of one of the operands used for the partial products in the final part are
held in caching registers as a result of a respective preceding part;

wherein at least one of the runs (R0, R1) comprises at least one inner part (Q2, Q3).

2. The method of claim 1, wherein at least in the inner parts (Q2, Q3) of at least one run,
partial products are processed according to a product-scanning multiplication method,
namely, by grouping together operations for processing partial products which have the

same product index values (k).
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3. The method of claim 1 or 2, wherein at least one of the runs (Rp, R0, R1), preferably all

runs but one, comprise at least two inner parts (Q2, Q3).

4.  The method of claim 3, wherein for each run comprising at least two inner parts, the
parameter number (E;) of the initial part (Q1) equals the parameter number (E;, E3) of the

inner part (Q2, Q3) and is greater by one as the parameter number (E4) of the final part (Q4).

5. The method of claim 4, wherein in each run comprising at least two inner parts, the

number of product index values (k) processed within each inner part (Q2, Q3) is the same.

6.  The method of any of the foregoing claims, wherein one run is a residual run (RB),
which comprises only an initial and a final part, and each other run is a full run (R0, R1)

which comprises an initial part, two inner parts, and a final part.

7. The method of claim 6, comprising a last run (R0), which is a full run in which the
number of product index values (k) processed in an inner part equals the number of operand
segments in one of the operands reduced by the parameter number, and whenever at least
one further full run (R1) is present, they precede the last run (R0), wherein the full runs have
different part lengths (sy, s3), which lengths are expressed by the number of product index
values (k) processed in an inner part of the respective full run, wherein for said at least one
further full run the part length of the run is smaller than the part length of the respectively

larger run by the parameter number of the initial part of the run.

8. The method of claim 6 or 7, wherein the larger of the parameters of the initial and final
part (RBQ1, RBQ4) of the residual run (RB) is a number which is not greater than the larger
of the parameters of the initial (Q1) and final part (Q4) of each of the full runs.

9.  The method of any of the foregoing claims, wherein the step of updating product
segments comprises

— loading said product segments into an operand input of the circuit,

- adding the intermediate product to the operand input to obtain a sum result, and

— storing the sum result back to said product segments.
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10. The method of any of the foregoing claims, wherein within each run, partial products
are processed in groups of same product index (k), and the product index between groups

increases by an increment of one.

11. Processing system for performing a multiplication of two large operands (a, b),
comprising a multiplication circuit (MC) configured to calculate the product of a pair of
word-wide operand inputs into a two-word-wide product result as well as a number of
caching registers (CR), a storage memory (SR) for storing a pair of operands and said
product result, as well as a controlling unit (CU) configured to perform the method accord-

ing to any of the foregoing claims with the multiplication circuit upon said pair of operands.
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