wo 2010/017113 A2 IO 0 A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

Co o
1 rld Intellectual Property Organization Znf ey
(19) World Intellectual Property Organization /g5 I MIEVAN A1 00000100 0T T 00 0
International Bureau S,/)
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
11 February 2010 (11.02.2010) PCT WO 2010/017113 A2
(51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HO04N 1/00 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
. . KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(21) International Application Number: ME. MG. MK. MN, MW. MX. MY. MZ. NA. NG. NI
PCT/US2009/052508 NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
(22) International Filing Date: SE, S@G, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT,
31 July 2009 (31.07.2009) TZ,UA, UG, US,UZ, VC, VN, ZA, ZM, ZW.
(25) Filing Language: English (84) Designated States (unless otherwise indicated, for every
L.) kind of regional protection available): ARIPO (BW, GH,
(26) Publication Language: English GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
(30) Priority Data: ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TI,
12/185,114 4 August 2008 (04.08.2008) US TM), European (AT, BE, BG, CI, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
(71) Applicant (for all designated States except US). MI- MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
CROSOFT CORPORATION [US/US]; One Microsoft TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Way, Redmond, WA 98052-6399 (US). ML, MR, NE, SN, TD, TG).
(72) Inventors: MICHAIL, Ashraf, One Microsoft Way, Declarations under Rule 4.17:
Redmond, WA 98052-6399 (US). SCHNEIDER, Ger- __ as to applicant's entitlement to apply for and be granted
hard; One Microsoft Way, Redmond, WA 98052-6399 a patent (Rule 4.17(i))
(US). ’
. o — as fto the applicant's entitlement to claim the priority of
(81) Designated States (unless otherwise indicated, for every the earlier application (Rule 4.17(iii))

kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

[Continued on next page]

(54) Title: GPU SCENE COMPOSITION AND ANIMATION

TEXTURE
COMPONENT

Is 106
RETAINED GRAPH
TEXTURE
INFORMATION

104

RETAINED GRAPH
INFORMATION

h 4

A

v r-108

SHADER
COMPONENT

FIG. 1

(57) Abstract: Architecture that expresses scene composi-
tion and animation in a form that can run entirely on the
graphics processing unit (GPU). The architecture stores
retained graph information (e.g., scene graph and anima-
tion information) as texture information, and uses shaders
(e.g., vertex and pixel) to evaluate time information, eval-
uate animation, evaluate transforms, and rasterize paths.
Additionally, the architecture provides the ability to com-
pute animation positions and redraw entirely on the GPU
without per primitive CPU intervention.

WO 2010/01°711:3 A2 I W00 000 U0 TN A A

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

GPU SCENE COMPOSITION AND ANIMATION

BACKGROUND
[0001] The central processing unit (CPU) of computing devices and systems is
under increasing pressure to handle more complex processes as applications and
data become more diverse. In response, vendors have been designing and
providing specialized processors for specific applications such as for signal
processing, graphics processing, industrial control systems, and the like.
[0002] Many applications that utilize computer graphics can place an inordinate
demand on the CPU for graphics processing. In most graphic applications the
processing is shared, where some of the work 1s performed using the CPU and
some of the work is passed to the graphics processing unit (GPU). Classically,
machine graphics was implemented on the CPU. Vendors are now designing
increasing amounts of memory and processing power on the GPU. At the same
time, computing vendors are addressing this problem in part by implementing
multi-core CPUs.
[0003] In modern user interface scenarios, the number of visual elements in a
scene 1s increasing. It is not uncommon to have applications that produce 10,000 to
50,000 visual elements. Producing fast display and animation for such scenarios is
challenging. The GPU computation improves upon CPU-based graphics
computation with significantly more parallelism, better memory bandwidth, and
specialized hardware for graphics operations. However, the conventional GPU is
constrained as a graphics processing component.

SUMMARY

[0004] The following presents a simplified summary in order to provide a basic
understanding of some novel embodiments described herein. This summary is not
an extensive overview, and it is not intended to identify key/critical elements or to
delineate the scope thereof. Its sole purpose is to present some concepts in a
simplified form as a prelude to the more detailed description that is presented later.
[0005] The disclosed architecture expresses the scene composition and animation
in a form that can run entirely on the graphics processing unit (GPU). The

architecture stores the scene graph and animation information as texture

-1-

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

information, and uses shaders (e.g., vertex and pixel) to evaluate time information,
evaluate animation, evaluate transforms, and rasterize paths. In other words,
disclosed is the ability to store animation information and hierarchical scene graph
information in textures. Additionally, the architecture provides the ability to
compute animation positions and redraw entirely on the GPU without per primitive
CPU intervention.
[0006] To the accomplishment of the foregoing and related ends, certain
illustrative aspects are described herein in connection with the following
description and the annexed drawings. These aspects are indicative of the various
ways in which the principles disclosed herein can be practiced, all aspects and
equivalents of which are intended to be within the scope of the claimed subject
matter. Other advantages and novel features will become apparent from the
following detailed description when considered in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG. 1 illustrates a graphics processing system for processing scene and
animation information on a GPU.
[0008] FIG. 2 illustrates a more detailed example of a graphics processing system
for processing scene and animation information via a GPU.
[0009] FIG. 3 illustrates a flow/block diagram for providing scene composition
and animation in a GPU.
[0010] FIG. 4 illustrates a method of processing graphics.
[0011] FIG. 5 illustrates a method of processing scene composition and animation
on a GPU.
[0012] FIG. 6 illustrates a method of additional processing for each frame in the
method of FIG. 5.
[0013] FIG. 7 illustrates a block diagram of a computing system operable to
execute retained graph information in the GPU in accordance with the disclosed
architecture.

DETAILED DESCRIPTION

[0014] The disclosed architecture takes a generic scene graph API system and
moves the work that is performed via the graphics processing unit (GPU) higher up

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

in the stack to have the scene graph itself being stored in video memory and
evaluated by the GPU, and the animation system as well being stored in texture
memory and evaluated by the GPU. This eliminates per element CPU costs. For
example, with respect to per element CPU costs, consider one million elements. In
conventional methods there is some CPU work that reiterates and performs render
processing on each of the million elements. Then, the GPU performs some other
part of that rendering process.

[0015] While the herein described implementation uses the more common shader
based computing model, the architecture may also be implemented using general
purpose computing models that target the GPU and which are not based on the
classic graphics pipeline shader model, and employ a suitable API.

[0016] In the disclosed architecture, the number of elements in the scene graph is
inconsequential from the perspective of CPU work. There can be CPU work done
to call the driver to make a certain number of draw calls. After the scene graph is
configured, however, scene processing does not utilize per element CPU work.
The per primitive work is performed by the GPU, which leads to several orders of
magnitude higher scalability. The traditional limit for real-time animation may be
1,000 or 10,000 elements with CPU work involved. When offloading this work to
the GPU, 100,000 to 500,000 elements can be involved, for example. Accordingly,
several orders of magnitude in scalability improvement are realized based on the
parallel processing capability in GPUs. By offloading scene graph and animation
systems benefits can be obtained from the parallelism capability of GPUs thereby
achieving significantly higher scale in terms of number of primitives that can be
drawn per frame.

[0017] Reference is now made to the drawings, wherein like reference numerals
are used to refer to like elements throughout. In the following description, for
purposes of explanation, numerous specific details are set forth in order to provide
a thorough understanding thereof. It may be evident, however, that the novel
embodiments can be practiced without these specific details. In other instances,
well known structures and devices are shown in block diagram form in order to

facilitate a description thereof. The intention is to cover all modifications,

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

equivalents, and alternatives falling within the spirit and scope of the claimed
subject matter.

[0018] FIG. 1 illustrates a graphics processing system 100 for processing scene
and animation information on a GPU. The system 100 includes a texture
component 102 for converting retained graph information 104 into retained graph
texture information 106, and a shader component 108 for evaluating the retained
graph texture information 106 entirely via the GPU.

[0019] The shader component 108 can include one or more pixel shaders, one or
more vertex shaders, one or more geometric shaders, and/or one or more stream
processors, for example, for evaluating scene graph transforms and rasterizing
paths. The retained graph texture information 106 can include timing information
stored as texture information, position information stored as texture information,
and/or animation information stored as texture information. The shader component
108 includes a pixel shader for composing multiple levels of a transform hierarchy
and a vertex shader for applying the transforms to geometry.

[0020] FIG. 2 illustrates a more detailed example of a graphics processing system
200 (e.g., a daughter card to a mainboard, integrated on the mainboard, etc.) for
processing scene and animation information via a GPU 202. The graphics
processing system 200 can further be associated with a memory subsystem 204 for
storing programs and data associated with graphics processing. The memory
subsystem 204 can represent a discrete memory only for GPU use or memory also
associated with the CPU. For example, the memory subsystem 204 can include the
retained graph information 104 as input to the texture component 102 for creation
(storing) of the retained graph texture information 106. As illustrated, the retained
graph texture information 106 includes time information 206, animation
information 208, and transtorm information 210. The texture component 102
stores (or creates) the retained graph information 104 in texture data as the retained
graph texture information 106, resulting in time texture information 212, animation
texture information 214, and transform texture information 216.

[0021] The GPU 202 can also comprise the shader component 108 for shader

processing of the retained graph texture information 106 to output the desired

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

effects. The shader component 108 is illustrated as providing shader processing for
one or more pixel shaders 218, one or more vertex shaders 220, one or more
geometric shaders 222, and other shaders, as the user may desire using suitable
protocols and instructions. The one or more pixel shaders 218, one or more vertex
shaders 220, one or more geometric shaders 222, etc., are employed to process the
time texture information 212, animation texture information 214, and transform
texture information 216. This is described in detail herein below.

[0022] Note that the graphics processing system 200 also includes other
components and functionality 224 for providing inputs and outputs, processing,
etc., to mainboard processes (e.g., the CPU), other client machines or devices in
which the GPU architecture is implemented.

[0023] In other words, the graphics processing system 200 can comprise the
texture component 102 in the GPU 202 for converting the retained graph
information 104 into the retained graph texture information 106, one of the pixel
shader(s) 218 of the GPU 202 for evaluating time information as time texture
information, and one or more of the vertex shader(s) 220 and a pixel shader of the
GPU 202 for evaluating for transform composition as transform texture
information.

[0024] The retained graph texture information 106 includes the time texture
information 212, the animation texture information 214, and the transform texture
information 216, all evaluated entirely on the GPU 202. One of the pixel shader(s)
218 can be employed for evaluating the animation texture information 214 and
progress texture information (described below). In other words, the pixel shader
evaluates a hierarchy of transforms and the vertex shader applies the resulting
transforms to path vertex data. The system 200 further comprises a shader for
rasterizing paths 226. The vertex shader(s) 220 further evaluate transform
hierarchy and path vertex data. This is described below.

[0025] FIG. 3 illustrates a flow/block diagram 300 for providing scene
composition and animation in a GPU. The rounded blocks represent the

corresponding texture data that is stored in texture memory. The cornered blocks

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

represent the shaders (e.g., pixel, vertex, geometric) that can be utilized available
on the GPU.

[0026] The diagram 300 begins with the timing information stored as the timing
texture information 212. The timing information can be represented as a timing
tree, converted into the timing texture information 212, and input to one or more
pixel shaders 302. The output of the pixel shader(s) 302 (similar to pixel shader(s)
218 of FI1G. 2) includes progress information stored as progress texture information
304. The progress texture information 304 is then passed to one or more pixel
shader(s) 306 along with animation information stored as animation texture
information 214.

[0027] The input animation information can be a graph of elements with timing
information (e.g., parent information) that indicates, for example, start at time five
and continue for five seconds. A child timing description based on the parent
timing information can be to start at time zero relative to the parent, continue for
one second, and then repeat continuously. In the case timing or transforms are a
tree, multiple passes are performed, in the general case. The shader can evaluate
only a constant depth in a single pass. In the most general case, there can be one
shader pass per k& levels, where & is a constant.

[0028] The output of the time description can be incremental outputs based on
progress at a given point in time. For example, if an animation starts at five
seconds and continues for one second, then at 5.5 seconds the output is 0.5 which
indicates the progress is half way along the animation.

[0029] The timing tree as input to one or more pixel shader(s) 302 essentially
maps time to progress along the animation process. The timing texture information
212 is about evaluating the timing tree to determine progress. Once the progress is
evaluated there is an animation description that indicates what to do with the
progress texture information 304. For example, there can be color animation that
indicates to animate from red to blue, and if progress is 0.5 (halfway), then an in
between color of purple can be output as the current property value. Other
examples include values related to animating opacity from 0 to 1. A progress of

0.5 maps to half opacity. Another animation is point animation where animation is

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

performed on a position of an object as the object moves along a path defined by
coordinates (0,0) to (100,100), and a progress of 0.5 relates to a move in position to
coordinates (50,50). More elaborate examples include a spline key frame
description, where spline evaluation includes evaluating the spline to determine
how to map progress to position, and so on. Splines can also be used for the simple
values such as tuple or color for different animation patterns.

[0030] The next stage of animation evaluation using the one or more pixel
shader(s) 306 (similar to pixel shader(s) 218 of FIG. 2) includes taking the progress
result (which states progress relative to animation), receiving a description of the
function for animation (whether a color interpolation, a point interpolation, a
double interpolation, etc.), and performing the interpolation based on the progress.
In other words, the animation evaluation pixel shader(s) 306 takes the progress
value and the interpolation description (as the animation texture information), and
interpolates to the computed value. As illustrated, each step takes input texture
information, and outputs texture information for the subsequent stage.

[0031] The output of the animation evaluation stage (pixel shader(s) 306) is the
texture in video memory (e.g., some or all of memory subsystem 204 of FIG. 2)
generated by the GPU that includes computed transform information, opacity
information, color information, position information 308, and so on, for the next
stage — transform composition, using one or more vertex shader(s) 310 (similar to
vertex shader(s) 220 of FIG. 2). Thus, the timing texture information 212 uses the
pixel shader(s) 302 to generate the progress texture information 304, and then the
pixel shader(s) 306 sample textures to generate the animation transform opacity and
colors texture 308. Thus far, this has all been performed using pixel shaders. The
next stage applies this to the primitives. The vertex shader(s) 310 also receive as
input transform hierarchy evaluation results 312 as texture information, and path
vertex data 314 as texture information.

[0032] An output of the vertex shader(s) 310 is transformed vertex data 316. The
vertex shader(s) 310 are used to apply computed animation data and scene graph
data from the previous stage. If there is a color change, the vertex shader(s) 310

changes the color of the vertex color data or the vertex shader(s) 310 change the

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

opacity by multiplying the opacity with the color of the per vertex data.
Alternatively, the vertex shader(s) 310 change the position by multiplying the
position component of the per vertex data with the input received from the result of
the previous stage. Once the transformed vertex data 316 is obtained, path
rasterization is performed using pixel shader(s) 318 to output the final scene
rasterization 320 (similar to path rasterization 226 of FIG. 2).

[0033] Following is a series of flow charts representative of exemplary
methodologies for performing novel aspects of the disclosed architecture. While,
for purposes of simplicity of explanation, the one or more methodologies shown
herein, for example, in the form of a flow chart or flow diagram, are shown and
described as a series of acts, it is to be understood and appreciated that the
methodologies are not limited by the order of acts, as some acts may, in accordance
therewith, occur in a different order and/or concurrently with other acts from that
shown and described herein. For example, those skilled in the art will understand
and appreciate that a methodology could alternatively be represented as a series of
interrelated states or events, such as in a state diagram. Moreover, not all acts
illustrated in a methodology may be required for a novel implementation.

[0034] FIG. 4 illustrates a method of processing graphics. At 400, retained graph
information is converted into retained graph texture information. At 402, the
retained graph texture information is evaluated on the GPU using pixel shaders and
vertex shaders.

[0035] The method can further comprise storing animation and hierarchical scene
graph information as part of the retained graph texture information, and processing
progress texture information and animation texture information using the pixel
shader.

[0036] The method can further comprise performing path rasterization using the
pixel shader, and evaluating transform hierarchy, path vertex data, and computed
animation transforms, positions, opacity and colors texture information. The
method can further comprise processing the timing texture information using the
pixel shader to output progress texture information. The method can further

comprise storing timing node information in a first texture, animation node

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

information in a second texture, and description of scene graph transforms in a third
texture, and processing the timing node information, animation node information,
and description of scene graph transforms to perform final scene rasterization.
[0037] FIG. 5 illustrates a method of processing scene composition and animation
on a GPU. At 500, a description of the timing nodes is stored in texture T. At 502,
a description of the animation nodes is stored in texture A. At 504, a description of
the scene graph transforms is stored in a texture X. To represent hierarchy, the
texture can have a parent point that includes a texture unit to the parent element. At
506, vertex data 1s stored in a vertex bufter that represents shapes using a
representation such as tessellation. Any representation can be used as long as the
representation can be transformed entirely on the GPU. At 508, additional
processing is performed for each frame.

[0038] FIG. 6 illustrates a method of additional processing for each frame in the
method of FIG. 5. The following steps are performed for each frame. At 600, a
vertex shader constant is set equal to the current time. At 602, draw is performed
with a timing node pixel shader that pulls timing node information from the texture
T. At 604, the timing progress is computed. At 606, output is to a new render
target texture. At 608, steps 602, 604, and 606 are repeated each level of the timing
tree using the previous computed information as parent input for the next level. At
610, draw 1s performed with an animation node pixel shader that pulls timing
information from texture T and animation descriptions from texture A to output
transforms, colors, positions, and opacity values. At 612, for hierarchical
transtforms, step 610 is repeated for each level of the transform hierarchy. At 614, a
vertex buffer 1s drawn that contains all primitives to be drawn with a vertex shader
that pulls the computed transforms, opacity, position, and color values from the
animation result render target texture.

[0039] Asused in this application, the terms “component” and “system” are
intended to refer to a computer-related entity, either hardware, a combination of
hardware and software, software, or software in execution. For example, a
component can be, but is not limited to being, a process running on a processor, a

processor, a hard disk drive, multiple storage drives (of optical and/or magnetic

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

storage medium), an object, an executable, a thread of execution, a program, and/or
a computer. By way of illustration, both an application running on a server and the
server can be a component. One or more components can reside within a process
and/or thread of execution, and a component can be localized on one computer
and/or distributed between two or more computers. The word “exemplary” may be
used herein to mean serving as an example, instance, or illustration. Any aspect or
design described herein as “exemplary” is not necessarily to be construed as
preferred or advantageous over other aspects or designs.

[0040] Referring now to FIG. 7, there is illustrated a block diagram of a
computing system 700 operable to execute retained graph information in the GPU
in accordance with the disclosed architecture. In order to provide additional
context for various aspects thereof, FIG. 7 and the following discussion are
intended to provide a brief, general description of a suitable computing system 700
in which the various aspects can be implemented. While the description above is in
the general context of computer-executable instructions that may run on one or
more computers, those skilled in the art will recognize that a novel embodiment
also can be implemented in combination with other program modules and/or as a
combination of hardware and software.

[0041] Generally, program modules include routines, programs, components, data
structures, etc., that perform particular tasks or implement particular abstract data
types. Moreover, those skilled in the art will appreciate that the inventive methods
can be practiced with other computer system configurations, including single-
processor or multiprocessor computer systems, minicomputers, mainframe
computers, as well as personal computers, hand-held computing devices,
microprocessor-based or programmable consumer electronics, and the like, each of
which can be operatively coupled to one or more associated devices.

[0042] The illustrated aspects can also be practiced in distributed computing
environments where certain tasks are performed by remote processing devices that
are linked through a communications network. In a distributed computing
environment, program modules can be located in both local and remote memory

storage devices.

-10 -

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

[0043] A computer typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by the
computer and includes volatile and non-volatile media, removable and non-
removable media. By way of example, and not limitation, computer-readable
media can comprise computer storage media and communication media. Computer
storage media includes volatile and non-volatile, removable and non-removable
media implemented in any method or technology for storage of information such as
computer-readable instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital video disk (DVD) or
other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage
or other magnetic storage devices, or any other medium which can be used to store
the desired information and which can be accessed by the computer.

[0044] With reference again to FIG. 7, the exemplary computing system 700 for
implementing various aspects includes a computer 702 having a processing unit
704, a system memory 706 and a system bus 708. The system bus 708 provides an
interface for system components including, but not limited to, the system memory
706 to the processing unit 704. The processing unit 704 can be any of various
commercially available processors. Dual microprocessors and other
multi-processor architectures may also be employed as the processing unit 704.
[0045] The system bus 708 can be any of several types of bus structure that may
further interconnect to a memory bus (with or without a memory controller), a
peripheral bus, and a local bus using any of a variety of commercially available bus
architectures. The system memory 706 can include non-volatile memory (NON-
VOL) 710 and/or volatile memory 712 (e.g., random access memory (RAM)). A
basic input/output system (BIOS) can be stored in the non-volatile memory 710
(e.g., ROM, EPROM, EEPROM, etc.), which BIOS are the basic routines that help
to transter information between elements within the computer 702, such as during
start-up. The volatile memory 712 can also include a high-speed RAM such as
static RAM for caching data.

-11 -

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

[0046] The computer 702 further includes an internal hard disk drive (HDD) 714
(e.g., EIDE, SATA), which internal HDD 714 may also be configured for external
use in a suitable chassis, a magnetic floppy disk drive (FDD) 716, (e.g., to read
from or write to a removable diskette 718) and an optical disk drive 720, (e.g.,
reading a CD-ROM disk 722 or, to read from or write to other high capacity optical
media such as a DVD). The HDD 714, FDD 716 and optical disk drive 720 can be
connected to the system bus 708 by a HDD interface 724, an FDD interface 726
and an optical drive interface 728, respectively. The HDD interface 724 for
external drive implementations can include at least one or both of Universal Serial
Bus (USB) and IEEE 1394 interface technologies.

[0047] The drives and associated computer-readable media provide nonvolatile
storage of data, data structures, computer-executable instructions, and so forth. For
the computer 702, the drives and media accommodate the storage of any data in a
suitable digital format. Although the description of computer-readable media
above refers to a HDD, a removable magnetic diskette (e.g., FDD), and a
removable optical media such as a CD or DVD, it should be appreciated by those
skilled in the art that other types of media which are readable by a computer, such
as zip drives, magnetic cassettes, flash memory cards, cartridges, and the like, may
also be used in the exemplary operating environment, and further, that any such
media may contain computer-executable instructions for performing novel methods
of the disclosed architecture.

[0048] A number of program modules can be stored in the drives and volatile
memory 712, including an operating system 730, one or more application programs
732, other program modules 734, and program data 736. All or portions of the
operating system, applications, modules, and/or data can also be cached in the
volatile memory 712. It is to be appreciated that the disclosed architecture can be
implemented with various commercially available operating systems or
combinations of operating systems.

[0049] A user can enter commands and information into the computer 702
through one or more wire/wireless input devices, for example, a keyboard 738 and

a pointing device, such as a mouse 740. Other input devices (not shown) may

-12-

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

include a microphone, an IR remote control, a joystick, a game pad, a stylus pen,
touch screen, or the like. These and other input devices are often connected to the
processing unit 704 through an input device interface 742 that is coupled to the
system bus 708, but can be connected by other interfaces such as a parallel port,
IEEE 1394 serial port, a game port, a USB port, an IR interface, etc.

[0050] A monitor 744 or other type of display device is also connected to the
system bus 708 via an interface, such as a video adaptor 746.

[0051] The video adaptor 746 can include the system 100, system 200,
capabilities and functionality described with respect to the flow/block diagram 300,
and the methods described in Figures 4-6. Alternatively, or in combination
therewith, the computer 702 includes a mainboard (also called a motherboard) on
which graphics processing capability 1s fabricated, and in which case, can include
the system 100, system 200, capabilities and functionality described with respect to
the flow/block diagram 300, and the methods described in Figures 4-6.

[0052] In addition to the monitor 744, a computer typically includes other
peripheral output devices (not shown), such as speakers, printers, etc.

[0053] The computer 702 may operate in a networked environment using logical
connections via wire and/or wireless communications to one or more remote
computers, such as a remote computer(s) 748. The remote computer(s) 748 can be
a workstation, a server computer, a router, a personal computer, portable computer,
microprocessor-based entertainment appliance, a peer device or other common
network node, and typically includes many or all of the elements described relative
to the computer 702, although, for purposes of brevity, only a memory/storage
device 750 is illustrated. The logical connections depicted include wire/wireless
connectivity to a local area network (LAN) 752 and/or larger networks, for
example, a wide area network (WAN) 754. Such LAN and WAN networking
environments are commonplace in offices and companies, and facilitate enterprise-
wide computer networks, such as intranets, all of which may connect to a global
communications network, for example, the Internet.

[0054] When used in a LAN networking environment, the computer 702 is

connected to the LAN 752 through a wire and/or wireless communication network

-13 -

10

15

20

25

30

WO 2010/017113 PCT/US2009/052508

interface or adaptor 756. The adaptor 756 can facilitate wire and/or wireless
communications to the LAN 752, which may also include a wireless access point
disposed thereon for communicating with the wireless functionality of the adaptor
756.

[0055] When used in a WAN networking environment, the computer 702 can
include a modem 758, or is connected to a communications server on the WAN
754, or has other means for establishing communications over the WAN 754, such
as by way of the Internet. The modem 758, which can be internal or external and a
wire and/or wireless device, is connected to the system bus 708 via the input device
interface 742. In a networked environment, program modules depicted relative to
the computer 702, or portions thereof, can be stored in the remote memory/storage
device 750. It will be appreciated that the network connections shown are
exemplary and other means of establishing a communications link between the
computers can be used.

[0056] The computer 702 is operable to communicate with wire and wireless
devices or entities using the IEEE 802 family of standards, such as wireless devices
operatively disposed in wireless communication (e.g., IEEE 802.11 over-the-air
modulation techniques) with, for example, a printer, scanner, desktop and/or
portable computer, personal digital assistant (PDA), communications satellite, any
piece of equipment or location associated with a wirelessly detectable tag (e.g., a
kiosk, news stand, restroom), and telephone. This includes at least Wi-Fi (or
Wireless Fidelity), WiMax, and Bluetooth™ wireless technologies. Thus, the
communication can be a predefined structure as with a conventional network or
simply an ad hoc communication between at least two devices. Wi-Fi networks use
radio technologies called IEEE 802.11x (a, b, g, etc.) to provide secure, reliable,
tast wireless connectivity. A Wi-Fi network can be used to connect computers to
each other, to the Internet, and to wire networks (which use IEEE 802.3-related
media and functions).

[0057] What has been described above includes examples of the disclosed
architecture. It is, of course, not possible to describe every conceivable

combination of components and/or methodologies, but one of ordinary skill in the

-14 -

WO 2010/017113 PCT/US2009/052508

art may recognize that many further combinations and permutations are possible.
Accordingly, the novel architecture is intended to embrace all such alterations,
modifications and variations that fall within the spirit and scope of the appended
claims. Furthermore, to the extent that the term “includes” is used in either the
detailed description or the claims, such term is intended to be inclusive in a manner
similar to the term “comprising” as “comprising” is interpreted when employed as a

transitional word in a claim.

-15 -

WO 2010/017113 PCT/US2009/052508

CLAIMS
What 1s claimed 1s:

1. A graphics processing system (100), comprising:

a texture component (102) for converting retained graph information
into retained graph texture information; and

a shader component (108) for evaluating the retained graph texture
information entirely on a graphics processing unit (GPU).

2. The system of claim 1, wherein the shader component includes a
pixel shader for evaluating time texture information.

3. The system of claim 1, wherein the shader component includes a
pixel shader for composing multiple levels of a transform hierarchy of transforms
and a vertex shader for composing the transforms with geometry.

4. The system of claim 1, wherein the retained graph texture information
includes time information stored as time texture information.

S. The system of claim 1, wherein the retained graph texture information
includes animation information stored as animation texture information.

6. The system of claim 1, wherein the retained graph texture information
includes transform information stored as transform texture information.

7. The system of claim 1, wherein the shader component evaluates scene
graph transforms.

8. The system of claim 1, wherein the shader component rasterizes
paths.

0. A method of processing graphics, comprising:

converting retained graph information into retained graph texture
information (400); and

evaluating the retained graph texture information on a GPU using
pixel shaders and vertex shaders (402).

10. The method of claim 9, further comprising storing animation and
hierarchical scene graph information as part of the retained graph texture

information.

- 16 -

WO 2010/017113 PCT/US2009/052508

11. The method of claim 9, further comprising processing progress
texture information and animation texture information using the pixel shader.

12. The method of claim 9, further comprising performing path
rasterization using the pixel shader.

13. The method of claim 9, further comprising evaluating transform
hierarchy, path vertex data, and computed animation transforms, positions, opacity
and colors texture information.

14. The method of claim 9, further comprising processing the timing
texture information using the pixel shader to output progress texture information.

15. The method of claim 9, further comprising storing timing node
information in a first texture, animation node information in a second texture, and
description of scene graph transforms in a third texture, and processing the timing
node information, animation node information, and description of scene graph

transforms to perform final scene rasterization.

-17 -

WO 2010/017113 PCT/US2009/052508

117

TEXTURE
104 COMPONENT

s 106
RETAINED GRAPH

INFORMATION RETAINED GRAPH
TEXTURE

INFORMATION

I r 108

SHADER
COMPONENT

FIG. 1

WO 2010/017113

217

PCT/US2009/052508

200
204 [~ 202
MEMORY SUBSYSTEM GPU
[~ 104 102 108
RETAINED GRAPH TEXTURE COMPONENT SHADER
INFORMATION 106 COMPONENT
- >
[~ 206 RETAINED GRAPH 218
TIME TEXTURE PIXEL
INFORMATION INFORMATIONZIZ SHADER(S)
[
[~ 208 TIME 220
ANIMATION mggﬁﬁiﬁ -~ VERTEX
INFORMATION SHADER(S)
210 [2
ANIMATION
TRANSFORM TEXTURE GEOMETRIC
INFORMATION INFORMATION SHADER(S)
216 :
226 TRANSFORM
TEXTURE
PATH INFORMATION 224
RASTERIZATION
OTHER
COMPONENTS
AND
FUNCTIONALITY

FIG. 2

WO 2010/017113 PCT/US2009/052508

3/7

212 300
TIMING
TEXTURE
INFORMATION

TIMING TREE - PIXEL _— 302

SHADER(S)

304 214
PROGRESS ANIMATION
TEXTURE TEXTURE
INFORMATION INFORMATION

ANIMATION EVALUATION - L—306
PIXEL SHADER(S)

308
L 314
COMPUTED ANIMATION
TRANSFORM TRANSFORMS, POSITION, PATH VERTEX
HIERARCHY OPACITY, AND COLORS DATA
EVALUATION TEXTURE

TRANSFORM COMPOSITION - [—310
VERTEX SHADER(S)

l s 316

TRANSFORMED
VERTEX DATA

PATH RASTERIZATION - PIXEL | _— 318
SHADER

l s 320

FINAL SCENE
RASTERIZATION

FIG. 3

WO 2010/017113 PCT/US2009/052508

417

CONVERT RETAINED GRAPH 400
INFORMATION INTO RETAINED [~
GRAPH TEXTURE INFORMATION

:

EVALUATE RETAINED GRAPHIC

TEXTURE INFORMATION ON GPU |_— 402

USING PIXEL SHADERS AND
VERTEX SHADERS

STOP

FIG. 4

WO 2010/017113 PCT/US2009/052508

517

STORE TIMING NODES IN TEXTURET P~ 500

!

STORE DESCRIPTION OF ANIMATION [— 502
NODES IN TEXTURE A

I

STORE DESCRIPTION OF SCENE GRAPH [_— 504
TRANSFORMS IN TEXTURE T

|

STORE VERTEX DATA THAT 506
REPRESENTS SHAPES IN VERTEX 78
BUFFER

I

PERFORM PROCESSING FOR EACH | — 508
FRAME

STOP

FIG. 5

WO 2010/017113 PCT/US2009/052508

6/7

START

600
SET VERTEX SHADER CONSTANT EQUAL TO /-
CURRENT TIME
3| DRAW WITH TIMING NODE PIXEL SHADER TO /‘ 602

PULL TIMING NODE INFORMATION FROM
TEXTURE T

l 604

COMPUTE TIMING PROGRESS

v

OUTPUT NEW RENDER TARGET TEXTURE

!

REPEAT FOR EACH LEVEL OF TIMING TREE

USING PREVIOUSLY COMPUTED — 608

INFORMATION AS PARENT INPUT FOR NEXT
LEVEL

v

DRAW USING ANIMATION NODE PIXEL
SHADER THAT PULLS TIMING INFORMATION
FROM TEXTURE T AND ANIMATION 610
—» DESCRIPTIONS FROM TEXTURE A TO OUTPUT
TRANSFORMS, COLORS, POSITIONS AND
OPACITY VALUES

:

REPEAT FOR EACH LEVEL OF TRANSFORM
HIERARCHY

v

DRAW VERTEX BUFFER CONTAINING ALL
PRIMITIVES TO BE DRAWN WITH VERTEX
SHADER THAT PULLS COMPUTED ~— 614
TRANSFORMS, OPACITY, POSITION, AND
COLOR VALUES FROM ANIMATION RESULT

FIG. 6

N

606

N

612

WO 2010/017113 PCT/US2009/052508
717
700
{—
0
! 730
PROCESSING BSSrYe L e |
_— 704 ! 1 OPERATING SYSTEM |
UNIT Lty ;
e £.32
708 706 ! | APPLICATIONS |
SYSTEM L 1M
MEMORY A2 7i i MODULES |
> | VOLATILE |4 ety Attt
) ! DATA "
Tt i
Non-voL 719 '
r YA — _—'—+ — —
724 I /——714 r\~___/V—714
EXTERNAL
] INTERFACE e—Y> INTERNAL HDD I\ R /I
/- 716 T —— — -
/726 FDD 1718
<«—>| INTERFACE j¢e—>]
DISK
z b1 720 744
) > INTERFAC/E_ :2—8—> O RVE MONTTOR
DRIVE 1172 738
- 746 DISK]
KEYBOARD
VIDEO |
> ADAPTOR L~ 740
£~ 742 (WIRED/WIRELESS) MOUSE
INPUT [€
758 754 748
«—>»| DEVICE L L L
INTERFACE [¢——>» MODEM |e—}>»| WAN |« REMOTE
COMPUTER(S)
750
| ADAPTOR > LAN [e—>
(WIRED/WIRELESS)
MEMORY/

FIG. 7

STORAGE

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings

