用于动作指示选择的方法和设备

摘要

描述了一种电子装置(100, 200)上的方法。在高功率操作模式下主动地控制电子装置(100, 200)的触摸屏显示器(105)，高功率模式被中断以进入低功率操作模式。在低功率模式下，向触摸屏显示器(105)提供第一控制信号并且第一图像显示在触摸屏显示器(105)的第一区域上。确定与第一区域相对应的第一触摸输入的发生并且响应于其，向触摸屏显示器(105)提供第二控制信号，并且一组动作图标中的每个动作图标显示在触摸屏显示器(105)上。确定与动作图标相对应的第二触摸输入的发生并且响应于其，选择用于当前显示会话的动作指示并且执行对应的所选择的动作。
1. 一种电子装置(100, 200)的方法，所述方法包括：
在高功率操作模式下主动地控制所述电子装置(100, 200)的触摸屏显示器(105)；
中断在所述高功率操作模式下主动地控制所述触摸屏显示器(105)以进入低功率操作模式；
在所述低功率操作模式下向所述触摸屏显示器(105)提供至少一个第一控制信号以用于当前显示会话；
在所述低功率操作模式下并且响应于所述至少一个第一控制信号，激活所述触摸屏显示器(105)的第一部分；
在所述低功率操作模式下并且响应于所述至少一个第一控制信号，在所述触摸屏显示器(105)的第一区域上显示第一图像，所述第一区域在所述触摸屏显示器(105)的所述第一部分内；
在所述低功率操作模式下确定是否已发生与所述第一区域相对应的第一触摸输入；
在所述低功率操作模式下并且响应于所述第一触摸输入，向所述触摸屏显示器(105)提供至少一个第二控制信号以用于所述当前显示会话；
在所述低功率操作模式下并且响应于所述至少一个第二控制信号，激活所述触摸屏显示器(105)的第二部分；
在所述低功率操作模式下并且响应于所述至少一个第二控制信号，显示一组动作图标，所述一组动作图标中的每个动作图标被显示在所述触摸屏显示器(105)的所述第二部分内的所述触摸屏显示器(105)的独立区域上；
在所述低功率操作模式下确定是否已发生与用于所述一组动作图标中的一个动作图标的独立区域相对应的第二触摸输入；
在所述低功率操作模式下并且响应于所述第二触摸输入，从与所述一组动作图标相对应的一组动作指示中选择用于所述当前显示会话的动作指示；
在所述低功率操作模式下执行与所选择的用于所述当前显示会话的动作指示相对应的所选择的动
2. 根据权利要求1所述的方法，进一步包括在所述低功率操作模式下基于与所述电子装置(100, 200)相关的用户信息、与所述当前显示会话相关联的位置、与所述当前显示会话相关联的日期时间或者来自先前显示会话的所述选择的动作指示中的至少一个来选择所述一组动作指示中的至少一个动作指示。
3. 根据权利要求1所述的方法，其中，执行所选择的动作包括：
在所述低功率操作模式下激活所述触摸屏显示器(105)的第三显示部分；以及
在所述低功率操作模式下在所述第三显示部分内的所述触摸屏显示器(105)的第三区域处显示第二图像。
4. 根据权利要求3所述的方法，其中，所述第二图像包括条形码，所述方法进一步包括：
在所述低功率操作模式下并且响应于第三触摸输入或者音频输入，清除所述触摸屏显示器(105)上的所述第三区域。
5. 根据权利要求3所述的方法，其中，所述第二图像包括动画图像或视频。
6. 根据权利要求1-5中的任一项所述的方法，其中：
所述当前显示会话包括用户调查；
所述第一图像或者所述一组动作图标的一个动作图标中的至少一个包括用于所述用户调查的调查提示，
所述一组动作指示中的至少一个动作指示对应于用于所述用户调查的调查响应指示符，及
如果所选择的动作指示对应于所述调查响应指示符，则执行所选择的动作包括；在所述低功率操作模式下存储所述调查响应指示符，
所述方法进一步包括：
在所述高功率操作模式下将基质所述调查响应指示符的调查响应消息发送给远程网络实体(214)。

7. 根据权利要求1-5中的任一项所述的方法，其中：
所述当前显示会话包括事件通知，
所述一组动作指示中的至少一个动作指示对应于用于所述事件通知的日历加入指示符，及
如果所选择的动作指示对应于所述日历加入指示符，则执行所选择的动作包括；在所述低功率操作模式下存储所述日历加入指示符，
所述方法进一步包括：
在所述高功率操作模式下将基质所述日历加入指示符的日历加入消息发送给远程网络实体(214)以用于加入在所所述电子装置(100, 200)相关联的日历中。

8. 根据权利要求1-5中的任一项所述的方法，其中：
所述当前显示会话包括预订通知，
所述一组动作指示中的至少一个动作指示对应于预订请求指示符，及
如果所选择的动作指示对应于所述预订请求指示符，则执行所选择的动作包括；在所述低功率操作模式下存储所述预订请求指示符，
所述方法进一步包括：
在所述高功率操作模式下将基质所述预订请求指示符的预订请求消息发送至与所述预订通知相关的电子邮件分发列表，其中所述预订请求消息包括与所述电子装置(100, 200)相关联的用户电子邮件地址。

9. 根据权利要求1-5中的任一项所述的方法，其中：
所述当前显示会话包括社交媒体调查，
所述一组动作指示中的至少一个动作指示对应于用于所述社交媒体调查的社交媒体响应指示符，及
如果所选择的动作指示对应于所述社交媒体响应指示符，则执行所选择的动作包括；在所述低功率操作模式下存储所述社交媒体响应指示符，
所述方法进一步包括：
在所述高功率操作模式下将基质所述社交媒体响应指示符的社交媒体响应消息发送给远程网络实体(214)。

10. 一种电子装置(100, 200)，包括：
触摸屏显示器(105)；
应用处理器(203)，被配置为在高功率操作模式下控制所述触摸屏显示器(105)；
传感器集线器（224），被配置为在低功率操作模式下控制所述触摸屏显示器（105）；以及

非暂时性存储器（205），

其中，所述电子装置（100, 200）被配置为在所述高功率操作模式下利用所述应用处理器（203）主动地控制所述触摸屏显示器（105），

其中，所述电子装置（100, 200）被配置为中断在所述高功率操作模式下利用所述应用处理器（203）主动地控制所述触摸屏显示器（105）以进入所述低功率操作模式，

其中，所述传感器集线器（224）被配置为在所述低功率操作模式下向所述触摸屏显示器（105）提供至少一个第一控制信号，

其中，所述触摸屏显示器（105）被配置为在所述低功率操作模式下并且响应于所述至少一个第一控制信号，激活所述触摸屏显示器（105）的第一部分，

其中，所述触摸屏显示器（105）被配置为在所述低功率操作模式下并且响应于所述至少一个第一控制信号，在所述触摸屏显示器（105）的第一区域内显示第一图像，所述第一区域在所述触摸屏显示器（105）的所述第一部分内，

其中，所述传感器集线器（224）被配置为在所述低功率操作模式下确定在所述第一图像的显示期间是否已发生与所述第一区域相对应的第一触摸输入，

其中，所述传感器集线器（224）被配置为在所述低功率操作模式下并且响应于所述第一触摸输入，向所述触摸屏显示器（105）提供至少一个第二控制信号，

其中，所述触摸屏显示器（105）被配置为在所述低功率操作模式下并且响应于所述至少一个第二控制信号，激活所述触摸屏显示器（105）的第二部分，

其中，所述触摸屏显示器（105）被配置为在所述低功率操作模式下并且响应于所述至少一个第二控制信号，显示一组动作图标，所述一组动作图标中的每个动作图标被显示在所述触摸屏显示器（105）的所述第二部分内的所述触摸屏显示器（105）的独立区域内，

其中，所述传感器集线器（224）被配置为在所述低功率操作模式下确定是否已发生用于所述一组动作图标中的一个动作图标的独立区域相对应的第二触摸输入，

其中，所述传感器集线器（224）被配置为在所述低功率操作模式下并且响应于所述第二触摸输入，从与所述一组动作图标相对应的一组动作指示中选择用于当前显示会话的动作指示，以及

其中，所述传感器集线器（224）被配置为在所述低功率操作模式下执行与所选择的用于所述当前显示会话的动作指示相对应的所选择的动作。

11. 根据权利要求10所述的电子装置（100, 200），其中，所述传感器集线器（224）被配置为

在所述低功率操作模式下基于与所述电子装置（100, 200）相关联的用户档案，与所述当前显示会话相关联的位置，与预定位置的接近度，与所述当前显示会话相关联的日期时间，来自先前显示会话的所选择的动作指示或者用于所述当前显示会话的用户交互中的至少一个来选择所述一组动作指示中的至少一个动作指示。

12. 根据权利要求10所述的电子装置（100, 200），其中：

所述当前显示会话包括用户调查，

所述第一图像或者所述一组动作图标中的一个动作图标中的至少一个包括用于所述
所述一组动作指示中的至少一个动作指示对应于所述用户调查的调查响应指示符，
所述传感器集线器(224)被配置为：如果所选择的动作指示对应于所述调查响应指示符，
则在所述低功率操作模式下存储所述调查响应指示符，以及
所述传感器集线器(224)被配置为：在所述高功率操作模式下将基于所述调查响应指示符的调查响应消息发送给远程网络实体(214)。

13. 一种电子装置(100, 200)，包括用于执行根据权利要求1–9中的任一项所述的方法的装置。

14. 一种包括指令的可读存储介质，所述指令在被执行时使得计算装置的一个或多个处理器执行根据权利要求1–9中的任一项所述的方法。
用于动作指示选择的方法和设备

技术领域
[0001] 本公开涉及与电子装置的用户交互。

背景技术
[0002] 电子装置上的传统“通知LED”对于经常接收恒定通知流的用户已不再有用。对于这样的用户，通知LED经常闪烁，因此成为提供很少有用信息的“噪声”。实际上，总是闪烁的LED淹没了重要的通知。另外，采用这样的通知LED的装置助长了“坐立不安”的操作范式，其中用户必须不断地唤醒装置只是为了查看每个通知。这样的操作不但耗时，而且在认知上耗尽。鉴于这样的问题以及其它问题，如果能够开发出向电子装置的用户提供通知的一个或多个改进的方法以及被配置为执行这样的方法的改进的电子装置将是有利的。

附图说明
[0003] 从结合附图进行的实施例的以下描述，这些和/或其它实施例将变得显而易见并且更容易理解其中；
[0004] 图1是依据本公开的电子装置的示例实施例的透视图；
[0005] 图2是表示图1的电子装置的示例组件的框图；
[0006] 图3A、图3B、图3C和图3D是在显示方法的操作的四个不同点期间图1的电子装置的显示屏的四个示例图；
[0007] 图4A、图4B、图4C和图4D结合用户与显示屏交互的示图分别示出显示屏的图3A、图3B、图3C和图3D的示例图；
[0008] 图5是示出由图1的电子装置存储用户交互数据并执行动作的方法的一个实施例的流程图；
[0009] 图6A、图6B、图6C和图6D是在示出用于用户交互的调查的图5的方法的操作期间图1的电子装置的显示屏的四个示例图；
[0010] 图7A、图7B和图7C是在示出可用动作的图5的方法的操作期间图1的电子装置的显示屏的三个示例图；
[0011] 图8是由图1的一个或多个电子装置存储的用户交互数据的一个示例的视图；
[0012] 图9是表示图形的表时间的示例直方图的图表。

具体实施例
[0013] 可向电子装置以及电子装置提供通知的操作方法提供各种改进以使得电子装置能够更好地向用户提供通知。尽管移动装置显示器以及实际上移动装置的使用处理器很多时间或者大多数时间处于断电或者”关闭”状态（例如，处于“睡眠模式”）以节省这样的装置所消耗的功率，显示器的这样的”关闭”状态提供用于仅在恰当的时间显示最相关的信息的机会。另外，由于用户的注意力是有限的资源，所以除了在恰当的时间显示恰当的信息以外，在”关闭”状态期间以这样的方式显示通知还可有助于减少访问最重要的通知所花费的
时间。通过在恰当的时点给予用户恰当量的信息，将更好地告知用户决定是否拿起并主动使用（解锁或打“开”）他们的装置——或者简单地忽略这样的通知而不解锁他们的装置。

【0014】因此，通过实现智能部分OLED显示器技术及传感器集线器（sensor hub）(或者其它辅助处理装置)以使用这样的技术控制显示器，而非使用移动装置应用处理器，以实现通过移动装置应用处理器以相对于显示器的正常“开”状态操作的低功率（或较低功率）方式显示通知，即使在移动装置应用处理器和显示器技术上处于断电或“关闭”状态下的同时，也可允许移动装置显示器的不间断激活。在即使移动装置（或者至少移动装置应用处理器）断电或关闭，显示器仍可在适当被激活以显示通知的范围内，以这样的方式操作的实施例可被认为在提供“始终开启”操作，即在显示器处于低功率状态下的同时可接收触摸输入，在显示器仅需期性地或者有限度地处于“开”的范围内所述低功率状态下就功率使用而言更类似于“关闭”状态。这样的操作可有利于降低电池耗尽速率以及减少显示器的可能被以可导致显示器损坏的方式过度地照明达过长时间。

【0015】在至少一些实施例中，“恰到时间的恰当信息”的显示通过利用智能部分OLED显示器系统以在屏幕“关闭”的同时显示优化的一组通知来实现，其中例如可通过基于诸如各种输入/行为的各种信息的智能优化/排序以及改进的通知管理来实现优化，这样，最重要的上下文相关信息到达用户，特别是当用户需要该信息时被提供给用户（在这样的情况下，还可集成有个人辅助型应用，例如来自加利福尼亚州山景城的谷歌公司的Google Now）。

【0016】另外，在至少一些实施例中，“始终开启”操作在用户利用装置并且装置在“屏幕关闭”状态（锁屏）与“开”状态之间变换时向用户提供无缝或者基本上无缝的体验。在至少一些示例实施例中，通过在发送通知时显示另外通知，通过在基本上不消耗电池的情况下在屏幕上提供“呼吸”警告，并且通过在装置被拿离诸如桌子的表面时变换，装置在仍处于“关闭”模式的同时（例如，在应用处理器仍休眠的情况下）有效。而且，在一些示例实施例中，当装置识别出不适合提供通知的情况时（例如，当装置正面朝下时，当装置处于口袋中时，当在夜间时等等），通知的提供完全被装置禁止。

【0017】另外，在至少一些实施例中，通过按照通常在小部分屏幕使上示出重要通知的方式操作显示器来进一步利用显示器的“关闭”状态期间OLED显示器的低功率操作能力。在一些情况下，不仅显示系统在基本上不消耗电池寿命的情况下在屏幕“关闭”的同时显示优化的一组通知，而且系统在这种状态期间允许选择的一组用户交互，这也避免了对电池寿命的显著影响。而且，在至少一些情况下，在电话与手表操作之间还可在连续的一致性体验。而且，至少一些实施例可提供以用户为中心的安全方法。

【0018】除了对用户的通知以外，移动装置上的对用户的广告也是常见的。然而，这些广告通常被设置在应用或操作系统内，因此必须在用户主动使用移动装置时观看。然而广告必须与应用或操作系统争夺用户的注意力。由于与广告相比用户更有可能将他们的注意力投注于应用，所以为广告置放付费的广告主不太可能为广告的置放支付较高费用。使用“始终开启”操作来显示图形或广告连同在其显示期间的用户交互一起允许更多定向的广告置放和信息收集。

【0019】本公开通常涉及一种用于选择动作指示的方法和系统。具体地讲，本公开涉及在低功率操作模式中的动作指示的选择。

【0020】本公开描述了一种电子装置的方法。在高功率操作模式下主动地控制电子装置的
触摸屏显示器。中断在高功率操作模式下主动地控制触摸屏显示器以进入低功率操作模式。在低功率操作模式下，向触摸屏显示器提供至少一个第一控制信号以用于当前显示会话。在低功率操作模式下并且响应于所述至少一个第一控制信号，激活触摸屏显示器的第一部分。在低功率操作模式下并且响应于所述至少一个第一控制信号，在触摸屏显示器的第一区域上显示第一图像，所述第一区域在触摸屏显示器的第一部分内。在低功率操作模式下，确定与第一区域相对应的第一触摸输入的发生。在低功率操作模式下并且响应于第一触摸输入，向触摸屏显示器提供至少一个第二控制信号以用于当前显示会话。在低功率操作模式下并且响应于所述至少一个第二控制信号，激活触摸屏显示器的第二部分。在低功率操作模式下并且响应于所述至少一个第二控制信号，显示一动作图标，所述一组动作图标中的每个动作图标被显示在触摸屏显示器的第二部分内的触摸屏显示器的不同区域上。在低功率操作模式下，确定与所述一组动作图标中的一个动作图标的独立（distinct）区域相对应的第二触摸输入的发生。在低功率操作模式下并且响应于所述第二触摸输入，从与所述一组动作图标相对应的一组动作指示中选择当前显示会话的动作指示。在低功率操作模式下，执行与所选择的用于当前显示会话的动作指示相对应的所选择的动作。

[0021] 本公开描述了电子装置的另一种方法。在高功率操作模式下主动地控制电子装置的触摸屏显示器。中断在高功率操作模式下主动地控制触摸屏显示器以进入低功率操作模式。在低功率操作模式下，向触摸屏显示器提供至少一个第一控制信号以用于当前显示会话。在低功率操作模式下并且响应于所述至少一个第一控制信号，激活触摸屏显示器的第一部分。在低功率操作模式下并且响应于所述至少一个第一控制信号，在触摸屏显示器的第一区域上显示第一图像，所述第一区域在触摸屏显示器的第一部分内。在低功率操作模式下，确定与第一区域相对应的第一触摸输入的发生。在低功率操作模式下并且响应于第一触摸输入，向触摸屏显示器提供至少一个第二控制信号以用于当前显示会话。在低功率操作模式下并且响应于所述至少一个第二控制信号，激活触摸屏显示器的第二部分。在低功率操作模式下并且响应于所述至少一个第二控制信号，显示一动作图标，所述一组动作图标中的每个动作图标被显示在触摸屏显示器的第二部分内的触摸屏显示器的独立区域上。在低功率操作模式下，确定与所述一组动作图标中的一个动作图标的独立区域相对应的第二触摸输入的发生。在低功率操作模式下并且响应于所述第二触摸输入，从与所述一组动作图标相对应的一组动作指示中选择当前显示会话的动作指示。基于所选择的动作指示中断低功率操作模式以进入高功率操作模式。在高功率操作模式下，执行与所选择的用于当前显示会话的动作指示相对应的所选择的动作。

[0022] 本公开还描述了一种电子装置。该电子装置包括：触摸屏显示器；应用处理器，被配置为在高功率操作模式下控制所述触摸屏显示器；传感器集线器，被配置为在低功率操作模式下控制所述触摸屏显示器；以及非暂时性存储器。所述电子装置被配置为在所述高功率操作模式下利用所述应用处理器主动地控制所述触摸屏显示器。所述电子装置被配置为中断在所述高功率操作模式下利用所述应用处理器主动地控制所述触摸屏显示器以进入所述低功率操作模式。所述传感器集线器被配置为在所述低功率操作模式下向所述触摸屏显示器提供至少一个第一控制信号。所述触摸屏显示器被配置为在所述低功率操作模式下并且响应于所述至少一个第一控制信号，激活所述触摸屏显示器的第一部分。所述触摸
屏显示器被配置为在所述低功率操作模式下并且响应于所述至少一个第一控制信号，在所述触摸屏显示器的第一区域内显示第一图像。所述第一区域在所述触摸屏显示器的所述第一部分内。所述传感器集线器被配置为在所述低功率操作模式下确定在所述第一图像的显示期间是否发生与所述第一区域相对应的第一触摸输入。所述传感器集线器被配置为在所述低功率操作模式下并且响应于所述第一触摸输入，向所述触摸屏显示器提供至少一个第二控制信号。所述触摸屏显示器被配置为在所述低功率操作模式下并且响应于所述至少一个第二控制信号，显示一组动作图标，所述一组动作图标中的每个动作图标被显示在所述触摸屏显示器的第二部分内的所述触摸屏显示器的独立区域内。所述传感器集线器被配置为在所述低功率操作模式下确定是否发生与所述一组动作图标中的一个动作图标的独立区域相对应的第二触摸输入。所述传感器集线器被配置为在所述低功率操作模式下并且响应于所述第二触摸输入，从与所述一组动作图标相对应的一组动作指示中选择当前显示会话的动作指示。所述传感器集线器被配置为在所述低功率操作模式下执行与所选择的用于当前显示会话的动作指示相对应的所选择的动作。

[0023] 转向图1，示出了示例电子装置100的透视图。在本实施例中，电子装置100可以是能够提供触摸屏交互能力的任何类型的装置。电子装置100的示例包括但不限于移动装置、无线装置、智能电话、平板计算机装置、个人计算机装置、个人导航装置、触摸屏输入装置、基于触摸或笔的输入装置、便携式视频播放或音频播放器以及各种其它电子装置中的任一种。将理解，电子装置100可采取各种形状因子的形式，例如但不限于条形、平板、翻盖、滑盖和旋转形状因子。

[0024] 在图1所示的本示例实施例中，电子装置100具有包括前表面103的外壳101，该前表面103包括触摸屏显示器（是可见显示器）105，其与下面所讨论的某些其它特征一起构成用户接口。在本实施例中，触摸屏显示器105包括覆盖前表面103的显示表面形成部分（或者仅定义在其下方或者内部）的触摸敏感表面的触摸屏。在本实施例中，触摸屏显示器105（具体地是其显示表面）采用有机发光二极管(OLED)技术。另外，如所示的电子装置100的用户接口还可包括一个或多个输入键107。输入键107的示例包括但不限于字母或数字（例如，字母或数字）键区（或者其它键盘）的键、物理键、触摸敏感表面、机械表面、多点触摸和侧按钮或键。进一步如所示，电子装置100还可包括前表面103（或者装置的其它外表面）包括分别用于音频输出和输入的扬声器109和麦克风111。

[0025] 尽管图1示出特定特征，在替换实施例中，电子装置可包括其它特征。例如，代替触摸屏显示器，在替换实施例中，电子装置可采用由外壳101支撑的触摸敏感表面，其不覆盖任何类型的显示器（或者被任何类型的显示器覆盖）。实际上，尽管图1具体地示出示例显示器和用户接口特征，将理解，取决于实施例，电子装置100可包括显示器和用户接口特征的多种其它组合。

[0026] 另外，如图1所示，电子装置100包括一个或多个传感器113，其中的多个被示出为定位在外壳101的外边界处或内（并且可被支撑在外壳101上或内）。更具体地，如图1所示，在本实施例中，传感器113可被定位在前表面103、外壳101的外表面的另一表面（例如，一个或多个侧表面115）或者这两个处。在本实施例中，至少一些传感器113（无论在外边界处还
是外边界内，即外壳内部）被配置为检测与外壳外部或内部的环境相关联的一个或多个预定的环境条件。传感器113的进一步示例在下面参照图2来描述。

[0027] 参照图2，示出了表示图1的电子装置100的示例组件（例如内部组件）200的框图。在本实施例中，组件200包括一个或多个无线收发器201、一个或多个处理器203、一个或多个存储器205、一个或多个输入组件207以及一个或多个输入组件209。如上面已提及的，电子装置100包括用户接口，该用户接口包括触摸屏显示器105，该触摸屏显示器105包括一个或多个输出组件207和一个或多个输入组件209。如上面已讨论的，电子装置100包括多个传感器113，其中的若干个在下面更详细地描述。在本实施例中，传感器113与传感器集线器224（以向其提供传感器信号或者从其接收控制信号）。

[0028] 另外，组件200包括提供与辅助组件或附件的直接连接以用于附加或增强功能的装置接口215。另外，内部组件200包括诸如便携式充电器的充电源217，以用于向其它内部组件供电并且允许电子装置100的便携性。如所示，所有的组件200（具体地为无线收发器201、处理器203、存储器205、输出组件207、输入组件209、传感器集线器224、装置接口215和电源217）通过一个或多个内部通信链路218（例如，内部通信总线）彼此直接耦合或者间接耦合。

[0029] 另外，在图2的本实施例中，无线收发器201具体地包括蜂窝收发器211和Wi-Fi收发器213。尽管在本实施例中无线收发器201具体地包括两个无线收发器211和213，本公开旨在涵盖存在任何任意数量的（例如，两种或更多种）通信技术的任意任意数量的（例如，多于两个）无线收发器的众多实施例。具体地，在本实施例中，蜂窝收发器211被配置为进行诸如3G、4G、4G-LTE、面对面蜂窝通信（未示出）的蜂窝通信，但是在其它实施例中，蜂窝收发器211可被配置为利用各种其它基于蜂窝的通信技术的任一种，例如模拟通信（使用AMPS）、数字通信（使用CDMA、TDMA、GSM、iDEN、GPRS、EDGE等）或者下一代通信（使用UMTS、WCDMA、LTE、IEEE 802.16等）或其变体。

[0030] 相比之下，Wi-Fi收发器213是无线局域网（WLAN）收发器，其被配置为依据IEEE 802.11（a、b、g或n）标准与接入点进行Wi-Fi通信。在其它实施例中，替代地（或者另外），Wi-Fi收发器213可进行通常被理解为涵盖于Wi-Fi通信内的其它类型的通信，例如一些类型的对等（例如，Wi-Fi对等）通信。另外，在其它实施例中，可利用被配置用于非蜂窝无线通信的一个或多个其它无线收发器代替或补充Wi-Fi收发器213，包括例如采用自组织通信技术的无线收发器，例如HomeRF（射频）、家庭节点B（3G毫微微小区）、蓝牙或者诸如红外技术的其它无线通信技术。尽管在本实施例中，每个无线收发器201用作或者包括相应发送器和相应接收器二者，但是应该理解，无线收发器也旨在涵盖任何发送器不同的一个或多个接收器以及任何接收器不同的一个或多个发送器。在本文中所涵盖的一个示例实施例中，无线收发器2011包括作为基带接收器的至少一个接收器。

[0031] 与电子装置100的其它组件200结合的无线收发器201的示例性操作可采取各种形式，并且可包括例如在接收到无线信号（由例如由远程装置提供）时内部组件检测通信信号并且收发器201将通信信号解调以恢复通过无线信号发送的进入信息（例如，语音或数据）的操作。在从收发器201接收进入信息之后，处理器203为一个或多个输出组件207格式化进入信息。同样，为了无线信号的传输，处理器203将输出信息格式化（但是这可不通过输入组件209来激活）并且将输出信息传送给一个或多个无线收发器201以用于调制，以提供待发送的调制通信信号。无线收发器201通过无线（以及可能有线）通信链路将调制通信信号
号传送给其它装置（例如，远程装置）。在一个示例中无线收发器201允许电子装置100与远程装置（例如，蜂窝网络或WLAN网络的远程网络实体214）交换消息。远程网络实体214的示例包括可通通过无线收发器201直接地或者经由一个或多个中间装置或网络（例如，经由WLAN接入点、互联网、LTE网络或其它网络）间接地访问的应用服务器、web服务器、数据库服务器或其它网络实体。

[0032] 取决于实施例，组件200的输出和输入组件207、209可包括各种视觉、音频或机械输出。例如，输出装置207可包括：一个或多个视觉输出装置，例如阴极射线管、液晶显示器、等离子体显示器、视频屏幕、白炽灯、荧光灯、正面或背面投影显示器以及发光二极管指示灯；一个或多个音频输出装置，例如扬声器、警报器或蜂鸣器；或者一个或多个机械输出装置，例如振动机制或者基于运动的机制。同样，作为示例，输入装置209可包括：一个或多个视觉输入装置，例如光学传感器（例如，相机镜头和光电传感器）；一个或多个音频输入装置，例如麦克风；以及一个或多个机械输入装置，例如翻转传感器、键盘、键区、选择按钮、导航集群、触摸板、电容传感器、运动传感器和开关。

[0033] 如所述，用户接口，具体地是图1的电子装置100的触摸屏显示器105可被认为构成或者包括一个或多个输入组件209（具体地是图2所示的触摸敏感输入组件219）和一个或多个输出组件207二者。另外，应该理解，可致动一个或多个输入组件209的操作不仅可包括物理地按压/激活触摸屏显示器105或按钮或者用户接口的其它致动器，而且可包括例如打开电子装置100（如果它可采取打开或关闭位置）、解锁电子装置100、移动电子装置以致动运动、移动电子装置以致动位置定位系统以及操作电子装置。

[0034] 在本实施例中，响应于检测到预定手势，一个或多个输入组件209（例如，用户接口所涵盖的一个或多个输入组件，例如图1所示的触摸敏感组件219）可产生输入信号。在这方面，触摸敏感组件219可被视作手勢传感器，并且可以是或者包括例如具有基本上平行于显示器的触摸敏感表面的触摸敏感传感器。触摸敏感传感器可包括电容触摸传感器、电阻触摸传感器、声传感器、超声传感器、接近度传感器或者光学传感器中的至少一个。

[0035] 如上所述，组件200还可包括一个或多个各种类型的传感器113。尽管为了图2的目的，传感器113被示出为与输入装置209不同，但是传感器也可被视作涵盖于输入装置209中。在替换实施例中，一个或多个输入装置可涵盖于传感器中。一个或多个传感器可被视作与输入装置不同，一个或多个输入装置可被视作与传感器不同，或者所有的传感器可被视作与所有的输入装置不同，反之亦然。

[0036] 关于图2中具体示出的传感器113，这些具体地包括作为电子装置100可包括或利用的传感器的示例的各种传感器225至231。如上文所述的，如图2所示，在本实施例中各种传感器225-221可由可响应于或者独立于处理器203来操作的传感器集线器224控制。所述各种传感器225至231可包括但不限于一个或多个功率传感器225、一个或多个温度传感器227、一个或多个压力传感器228、一个或多个湿度传感器229以及一个或多个环境噪声传感器231。

[0037] 另外，关于本实施例，并且如下面进一步讨论的，应该理解，除了控制各种传感器225至231以外，传感器集线器224还用于在电子装置100（具体地是触摸屏显示器）被视作“关闭”时控制用户接口的触摸屏显示器105的操作（以及支持其的功能），包括电子装置在如下所述的操作的中间模式或者“呼吸模式”下操作的时候。这与电子装置100唤醒或者
“开”的时候(在这期间用户接口的触摸屏显示器105(以及支持其的功能)在处理器203（可被视为应用处理器）的控制下)形成对比。这种涉及在电子装置“关闭”的时候通过传感器集线器224控制的操作方式是有利的，因为传感器集线器消耗的功率显著少于处理器203，因此可向在传感器集线器的控制下的操作提供显著少于在处理器203下的操作的电池消耗。

【0038】 尽管图2中示出各种传感器225至231，但在其它实施例中，众多其它类型的传感器中的一个或多个也可被包括在传感器113中，包括例如一个或多个运动传感器，包括例如一个或多个加速度计(当然)陀螺仪传感器(未示出)，一个或多个光传感器，一个或多个接近度传感器(例如，光检测传感器、超声收发器或者红外收发器)，一个或多个其它触摸传感器，一个或多个高度传感器，一个或多个位置电路/组件(可包括例如全球定位系统(GPS)接收器)，三角测量接收器，加速度计，倾斜传感器，陀螺仪或者可识别电子装置100的当前位置或者用户-装置接口(携带模式)的任何其它信息收集装置。

【0039】关于处理器203，处理器可包括任一个或多个处理或控制装置，例如微处理器、微计算机、专用集成电路等。处理器203可包括基于一组一个或多个输入组件209接收的信息来生成命令。处理器203可包括地或者与其它数据(例如，存储器存储器205中的信息)结合地处理所接收的信息。因此，组件200的存储器205可由处理器203用来存储和检索数据。

【0040】另外，组件200的存储器(或者存储器部分)205可涵盖各种形式的任何形式的一个或多个存储器装置(例如，只读存储器、随机存取存储器、静态随机存取存储器、动态随机存取存储器等)。并且可由处理器203用来存储和检索数据。在一些实施例中，一个或多个存储器205可与一个或多个处理器203集成在单个装置中(例如，包括存储器的处理装置或者存储器中处理器(PIM))，但是这样的应装置通常将仍具有执行不同的处理和存储器功能并且可被视为单独的装置的不同部分/区段。由存储器205存储的数据可包括但是不需要限于操作系统、应用和信息数据。

【0041】每个操作系统包括控制电子装置100的基本功能的可执行代码，例如组件200当中所包括的各种组件之间的交互、经由无线收发器201或装置接口215与外部装置或网络的通信、以及应用和数据向存储器205的存储和从存储器205的检索。每个应用包括利用操作系统来提供更特定的功能(例如，文件系统服务以及存储器存储器205中的受保护和未受保护的数据的处理)的可执行代码。这样的操作系统或应用信息可包括软件更新信息(可被理解为潜在地涵盖对操作系统或者这二者的更新)。至于信息数据，这是可由操作系统或应用引用或操纵以用于执行电子装置100的功能的非可执行代码或信息。

【0042】将理解，仅出于示例性目的并且为了示出依据各种实施例的电子装置的组件而提供图2，其不旨在为电子装置所需的各组件的完整示意图。因此，电子装置可包括图2中未示出的各其它组件，或者包括两个或更多个组件的组合或者将特定组件分成两个或更多个单独的组件，并且仍在所公开的实施例的范围内。

【0043】在一个实施例中的电子装置100被配置为在不同的操作模式或状态之间进行，即：“完全唤醒”或“开”操作模式，期间处理器203操作(即，应用处理器启动并运行)；“关闭”操作模式；以及“中间”操作模式，期间“呼吸”和“窥探”过程发生或者可发生。尽管在本实施例中处理器203在关闭操作模式和中间操作模式期间关闭或断电(与处理器203启动并运行的完全唤醒模式下的操作相比)，如下面将进一步描述的，电子装置100在关闭模式和中间模式中的一者或二者期间仍可以涉及触摸屏显示器105的一些显示功能(潜在的包括信息的
输出和输入的接收者)的方式操作。触摸屏显示器105在中间模式或关闭模式期间的这种操作通过传感器集线器224所提供的控制功能来实现。

【0044】还应该理解，一般而言，完全唤醒模式下的操作与处理器203(应用处理器)的正常功率模式或者那些处理器的基本上活动模式相关联。相比之下，中间操作模式和关闭操作模式与处理器203(应用处理器)的低功率(或者甚至完全断电)模式或者那些处理器的基本上不活动模式相关联。在以上假设下，与可被称作“非睡眠”模式或高功率操作模式的完全唤醒模式相比，中间操作模式也可被称作“显示器始终开启”模式(AoD模式)、“睡眠”模式(或者关闭模式潜在地也可一般地被涵盖于“睡眠”模式内)或低功率操作模式。

【0045】另外，如下面将进一步描述的，在本文所公开的至少一些实施例中，在诸如完全唤醒模式的“非睡眠”模式下电子装置100可显示一个或多个通知，并且在诸如中间或AoD模式(如所描述的，包括其子模式部分)的“睡眠”模式下电子装置也可显示一个或多个通知。在至少一些这样的实施例中，在完全唤醒模式或“非睡眠”模式下提供的通知是在该模式下的操作期间接收的通知并且通过整个(或者基本上整个)显示屏幕的激活来显示(例如，显示全屏信息，其中全屏信息包括与显示器能够显示的基本上所有像素相对应的数据)。另外，在这样的实施例中，相比之下，在中间模式或“睡眠”模式下提供的通知是在该模式下的操作期间接收的通知并且仅通过显示屏幕的部分(具体地讲，显示于整个显示屏幕或者显示显著少于全屏信息，即与少于或显著少于显示器能够显示的所有像素相对应的信息的部分)的激活来显示。

【0046】转向图3A、图3B、图3C和图3D，分别示出电子装置100的触摸屏显示器105的第一、第二、第三和第四示例图，其旨在示出触摸屏显示器显示图像或图形以用于用户交互的示例操作。图3A具体地示出当触摸屏显示器105完全关闭时出现的空白图像300。

【0047】相比之下，图3B示出呼吸视图图像302，不是空白的，替代地包括通过触摸屏显示器105显示的一个或多个图像部分，其在示例中具体地包括，例如图304，可构成在中间模式下的操作期间用户可触摸的命中区域(hit area);图306，也可构成附加命中区域;以及图308。呼吸视图图像302在中间模式下的操作期间不始终保持一致，而是周期性地变得可见，然后消失(在图3A中呼吸视图图像105再次采取图3A的空白图像300)。

【0048】接下来，关于图3C，示出窥视动画图像310。如所示，窥视动画图像310也包括通过触摸屏显示器105显示的一个或多个图像部分，更具体地讲，在此实施例中，这一个或多个图像部分不仅包括图3B所示的所有图像部分，而且还包括动画特征312，其在本示例中包括三个点的上下(即，仅显示308上和306下)垂直延伸的列。如进一步讨论的，具体地讲，与触摸屏显示器105在可接收触摸的中间模式期间的时间(例如，显示图3B所示的呼吸视图图像302的时间)与完全进入窥视视图模式并且显示窥视视图图像(例如，图3D所示的示例图像的时间)之间转变期间显示动画特征312。

【0049】另外，关于图3D，其中所示出的窥视视图图像314是一旦进入窥视视图模式可由触摸屏显示器105显示的图像的示例。如所示，窥视视图图像314不再包括窥视动画视图310中所示的图像部分的完全相同的布置，尽管一些图像部分在其对应外观方面相同。更具体地讲，与窥视动画图像310相比，窥视视图图像314不再具有动画特征312或时间显示308，但是继续具有外观与图304相同的图标305以及外观与图306相同的图标307，不同的是图标
305现在在相对于窥探动画视图中的图标304的位置向上移动的位置处（在动画特征的上面一列点中的上个侧点的位置上方），并且图标307现在在相对于它在行前在窥探动画视图中的位置垂直向下移动的位置处（在动画特征的下面一列点中的下个侧点的位置下方）。

另外，另外，在窥探视图图像314中，在图标305上方还显示一个或多个（在此示例中，三个）文本串行316。文本串行316包含消息信息或者与电子装置100所接收的一个或多个过去的通信相对应的信息。因此，这些文本串行的显示允许用户“窥探”电子装置100已接收的（例如，最近接收的）通信，因此是产生本文所用的“窥探视图模式”术语的这种操作方式的特征。

另外参照图4A、图4B、图4C和图4D，分别示出第一附加视图400、第二附加视图402、第三附加视图410和第四附加视图414。第一附加视图400、第二附加视图402、第三附加视图410和第四附加视图414分别涵盖图3A、图3B、图3C和图3D中所示的空白图像300、呼吸视图图像302、窥探动画视图310和窥探视图图像314，但是还结合与那些图像交互的用户（特别是用户的手的手指412）的指示出那些图像。由于可以想到在空白图像300和呼吸视图图像302的情况下用户的手指412还未接近触摸屏显示器，所以图4A的第一附加视图400仅其次示出空白图像300，图4B的第二附加视图402仅其次示出呼吸视图图像302。相比之下，关于图4C的第三附加视图410，可以想到用户已经利用用户的手指412触摸了触摸屏显示器105并且这导致窥探动画视图310的显示。具体地，应该注意的是，手指412正在触摸图标304（在此示例中构成触摸屏显示器105上的一个命令区域）。另外，由于（响应于）用户的手指412触摸命令区域，示出动画特征312出现。

最后，在图4D，第四附加视图414示出图3D的窥探视图图像314并且还再次示出用户的手指412仍接近（触摸）触摸屏显示器105。如箭头415所示的，在窥探视图操作模式下，用户可进一步提供手势（或手势部分）以致动电子装置100执行若干不同的动作中的一个或者向若干不同模式中的任何模式转变，在本示例中，在这方面的电子装置100的手势激活具体地不被实现，直到除了在中间模式期间原始触摸一个命令区域（再次，在此示例中，图标304和306中的一个）以外，用户然后进一步：(i)在从中间模式向窥探视图模式转换期间继续连续地触摸该命令区域（例如，随着触摸屏显示器从呼吸视图302向窥探动画视图310）并且最终转变为窥探视图314，继续触摸图标304、306中的一个）；(ii)然后操纵手指412向上或向下（例如，依据图4D的任一箭头415）滑动直至手指到达窥探视图图像的与原始触摸的命令区域相对的适当的一个图像部分（例如，如窥探视图314中所示，到达图标305、307中的一个）；以及(iii)然后通过将手指412从触摸屏显示器拿开来释放命令区域。

转向图5，图6A，图6B，图6C和图6D，方法500的流程图示了存储用于在显示会话期间的用户交互的数据并且由电子装置100响应于用户交互而执行动作的一个实例。用户的用户交互的示例包括查看或者向触摸屏显示器105提供触摸输入、按压输入键107，向麦克风111提供音频或语音输入，或者提供手势输入（例如，摇动电子装置100）。一个示例中的显示会话表示对电子装置100的用户查询，例如调查或者其它信息提示。在另一示例中，显示会话表示向电子装置100的用户显示图形，例如广告或者信息消息。其它显示会话对于本领域技术人员而言将是显而易见的。图6A，图6B，图6C和图6D是在图5所示的方法的操作期间电子装置100的显示屏幕的四个示例视图，示出作为显示会话的调查。至少部分地在电子装置100的中间或低功率操作模式期间，发生用于显示会话的用户交互。因此，
用户较少由于查询或图像而分心（例如，应用或操作系统）。如上所述，处理器203在高功率
操作模式期间主动地控制(502)触摸屏显示器105。

【0054】可选地，处理器203在高功率操作模式期间接收(504)至少一个显示会话的显示会
话信息。显示会话信息包括图形（例如，文本、图像、图标、动画图像、视频或其组合）、图形的一
部分、动作指示、动作图标、关键字、触发数据或者显示会话的其它信息（例如，调查或广
告）中的至少一个。在这种情况下，处理器203将显示会话信息存储在存储器205中以由传感
器集线器224或者电子装置100的其它组件随后访问。在选派实现方式中，显示会话信息（例
如，在制造或者初始化期间）被预先配置在电子装置100内，或者被存储在单独的存储卡（例
如固态存储卡）上，其然后被载入电子装置100中。在一个实现方式中，电子装置100被配置
为获得显示会话信息的更新。在一个示例中，电子装置100按照预定时间（例如，2:00pm, 4:00
pm等）、预定间隔（例如，每小时）或者在满足其它标准时获得更新，例如当用户没有活跃
地使用电子装置100或者电子装置100的使用（例如，处理器203或无线收发器201的利用）低
于活动阈值时。在另一示例中，电子装置100在发生事件或信号（例如，从远程网络实体214
接收到传送通知）时获得更新。在另一示例中，电子装置100在电子装置200的操作模式改变
时（例如，在进入高功率操作模式时）获得更新，导致更新的其它时间、调用，事件或者信号对
于本领域技术人员将是显而易见的。在另一个示例中，电子装置100通过无线收发器201获得
更新的显示会话信息。在另一示例中，电子装置100通过更换存储卡来获得更新的显示会话
信息。

【0055】在高功率操作模式期间，处理器203被配置为中断(506)主动地控制触摸屏显示器
105以进入低功率操作模式（例如，中间模式）。进入低功率模式基于缺少用户活动、显示超
时或者对于本领域技术人员将显而易见的可适用于触发电子装置100进入“睡眠”的其它标
准。参考图6A，在进入低功率操作模式时，触摸屏显示器105被示出为空白图像600，类似于
空白图像300。

【0056】在低功率操作模式期间，传感器集线器224被配置为向触摸屏显示器105提供
(508)至少一个第一控制信号。如本文所述，传感器集线器224提供第一控制信号以使得触摸
屏显示器105激活并显示所选择的显示会话的图形或者动作图标。在一个示例中，传感器
集线器224基于来自传感器113的一个或多个传感器输入来提供第一控制信号。例如，当传
感器输入对应于用户与电子装置100交互时，传感器集线器224被配置为提供第一控制信
号。当用户将电子装置100置于口袋、钱包、手机套或者其它隔室中时，或者当用户将电子装
置100放置为前表面103面向桌面（未示出）或者遮盖或覆盖触摸屏显示器105的其它表面时，
电子装置100可以已进入中间模式。可选地，用户可能将电子装置100留在桌或台上，电
子装置100在那里保持静止一段时间。因此，传感器集线器224被配置为在电子装置100静止
一段时间之后已移动的指示时或者在电子装置100的触摸屏显示器105在处于被覆盖状态
一段时间之后已改变为未被覆盖状态的指示时提供第一控制信号。例如，响应于来自传感
器113的接近度传感器、光传感器、加速度计或者陀螺仪的输入。

【0057】响应于第二控制信号，触摸屏显示器105被配置为在低功率操作模式期间激活
(510)触摸屏显示器105的第一部分（例如，使用智能部分OLED显示技术）。然后，在低功率操
作模式下并且响应于第二控制信号，触摸屏显示器105将图形或者图形的第二部分显示
(512)在触摸屏显示器105的第一区域上，所述第一区域在触摸屏显示器105的第一部分内。
参照图6B，示出呼吸视图图像602（类似于呼吸视图图像302），其具有在触摸屏显示器105的第一区域上的图形604。在这种情况下，显示会话是通过显示指示“苏打水还是水？”的图形604来提示电子装置100的用户在苏打水或水之间他们偏好哪一个的调查。在图形604被示出于触摸屏显示器105的下部的同时，触摸屏显示器105的其它部分可被激活以显示。对于每个图形或者显示会话，触摸屏显示器105的被激活以显示的部分可不同。

[0058] 传感器集线器224基于与显示会话关联的触发数据或关键词、与电子装置100相关的用户简档、与电子装置100相关联的位置，与预定位置（例如，餐馆、演唱会场地、销售亭）的接近度、与电子装置100相关联的日内时间（time of day）或者从先前显示会话选择的动作指示中的至少一个来选择显示会话。作为一个示例，可基于用户在演唱会场地内或附近的位置来选择调查。因此，下一次他们看向电子装置100时，电子装置100提供关于演唱会场地的乐队当晚应该首先演唱哪首歌的调查。他们可对该问题进行响应，而无需唤醒他们的装置。在其它实现方式中，电子装置100使用预先配置的预定的显示会话。

[0059] 在一个示例中，显示会话包括预先配置的图形序列，例如，可包括图形（例如，图形604、608、618）的预先配置的序列与相对应命令区域的调查（例如，如图6A、图6B、图6C和图6D所示）。在另一示例中，显示会话的显示会话信息包括一组图形，传感器集线器224在显示会话期间的各个时间从这一组图形中选择图形（例如，图形604、608、618）以显示。在另一示例中，传感器集线器224从一组可用的动作图标中选择用于当前显示会话的一组图形和动作图标。在一个示例中，传感器集线器224被配置为从先前接收（504）并存储在存储器205中的显示会话信息中为当前显示会话选择图形、动作图标或者其它信息以显示。传感器集线器224基于与电子装置100相关的用户简档、与当前显示会话相关的服务的位置（例如，电子装置100当前在哪里）、与预定位置（例如，购物商城或餐馆）的接近度、与当前显示会话相关的服务的日内时间、从先前显示会话选择的动作指示（下面描述）、对于当前显示会话的用户交互或者电子装置100所存储的其它信息（例如，用户的偏好或者搜索历史）中的至少一个来选择图形、动作图标或者信息。在另一示例中，传感器集线器224基于与显示会话关联的触发数据或者与图形或动作图标相关的触发数据来选择图形或动作图标。在另一示例中，传感器集线器224可选择先前回答的调查的跟进问题。例如，如下所述，如果用户选择“水，则跟随“苏打水还是水？”之后的后续显示会话可为“瓶装水还是自来水？”。

[0060] 传感器集线器224被配置为在低功率操作模式下确定（514）在显示图形604期间是否发生与图形604相对应的第一用户交互。如上所述，第一用户交互可以是触摸输入（例如，在命中心区域内）、手势输入、音频输入、按键输入、观看或其组合。传感器集线器224使用传感器113所提供的输入来确定是否发生了第一用户交互。传感器集线器224被配置为在低功率操作模式下基于所述确定（514）存储（516）对于图形604的用户交互数据。

[0061] 在一个示例中，图形604对应于在低功率操作模式下的操作期间用户可触摸的一个或多个命中心区域。对于触摸输入，在一个示例中，用户交互数据包括触摸输入的持续时间或者触摸输入在触摸屏显示器105上的位置（例如，命中心区域）中的至少一个。所述位置可指示被触摸的触摸屏显示器上的一个或多个像素、被触摸的触摸屏显示器上的区域，或者被触摸的图形604的一个或多个像素或区域。对于手势输入，在一个示例中，用户交互数据指示手势类型，例如移动、旋转（例如，在横向和竖向取向之间）或者其它移动。对于音频输
入，在一个示例中，用户交互数据指示在音频输入内检测的一个或多个关键字。对于键按压输入，在一个示例中，用户交互数据指示哪一输入键107被按压，并且还指示键按压的持续时间（或者键按压的模式）。

【0062】对于观看输入，传感器集线器224确定图像604是否被观看。在低功率操作模式下，传感器集线器224激活电子装置100的传感器113（例如，成像器或面向前的相机）。利用成像器并且在低功率操作模式下，传感器集线器224确定是否检测到用户的脸。例如，传感器集线器224和成像器可确定是否在触摸屏显示器105的观察距离内检测到一对眼睛或其它面部特征。传感器集线器224将指示是否检测到脸的观看指示作为用户交互数据存储。在脸部检测、检测定时器期满或者满足其它去激活标准之后，传感器集线器224将成像器去激活。

【0063】在一个示例中，传感器集线器224被配置为在显示图形604之后（或期间）等待一个或多个用户交互。传感器集线器224还可被配置为等待用户交互的组合，例如，在同时观看触摸屏显示器105的同时提供触摸输入或者提供触摸输入达预定时间（例如，第一触摸阈值）。在这种情况下，如果触摸输入的持续时间低于阈值，传感器集线器224可将用户交互数据随图形604没有被观看的指示一起存储。否则，如果不满足阈值，则传感器集线器224可省略用户交互数据的存储。

【0064】在存储(516)用户交互数据之后，可选地，传感器集线器224可结束方法500。例如，在用户交互表示信息消息的显示的情况下，用户交互数据可指示信息消息被观看（或者未被观看）并且传感器集线器224用信号通知触摸屏显示器105返回到空白图像600。替换地，传感器集线器224被配置为在低功率操作模式下并且响应于（例如，第一用户交互的）第一触摸输入向触摸屏显示器105提供(518)至少一个第二控制信号。在一个示例中，在第一触摸输入触摸图形604的持续时间满足第二触摸阈值之后，传感器集线器224提供第二控制信号。在另一示例中，传感器集线器224在基本上维持第一触摸输入的同时提供用于显示第二图形的第二控制信号，使得触摸输入的移除（例如，用户将其手指从触摸屏显示器105拿开）导致第二图形从触摸屏显示器105被清除。

【0065】响应于第二控制信号并且在低功率操作模式下，触摸屏显示器105激活(520)触摸屏显示器105的第二部分并且将第二图形显示(522)在触摸屏显示器105的第二区域上。所述第二区域在触摸屏显示器105的第二部分内。可选地，如下面参照图7所示，触摸屏显示器105显示(522)一组动作图标。参照图6C，窥探视图图像606（类似于窥探视图图像314）被示出为具有在触摸屏显示器105的第二区域上的第二图形608。在这种情况下，图形608包括易拉罐和水杯的描绘。在诸如广告的其它显示会话中，第二图形是第一图形的扩展视图。在替换实现方式中，如上面参照图3C所述，传感器集线器224可向触摸屏显示器105提供附加控制信号以便在显示窥探视图图像606之前提供窥探动画图像。

【0066】在显示图形608之后或期间，传感器集线器224被配置为在低功率操作模式下确定(524)是否发生了与第二区域（例如，第二图形608）或者触摸屏显示器105的与第二区域不同的第三区域相对应的第二触摸输入（例如，第二用户交互）。类似于第一用户交互，第二用户交互可以是触摸输入（例如，在命中区域内），手势输入，音频输入，键按压，观看或其组合。在一个示例中，触摸屏显示器105的第三区域包括触摸屏显示器105的在图形608之外的一个或多个部分。在当前的用户调查的情况下，用户可通过滑动或拖动他们的手指直至图
形608以“选择”易拉罐的描绘或水杯的描绘（例如，基于哪些命中区域或像素与触摸输入相对应）来与调查交互，或者可将他们的手指滑动到第三区域以指示他们不想回答调查。

【0067】响应于第二触摸输入并且在低功率模式下，传感器集线器224从显示会话的一组动作指示中选择（526）动作指示并且将该动作指示与用户交互数据一起存储（528）。在一个示例中，动作指示提供用户对调查的选择的指示，并且可选地，传感器集线器224可结束方法500。例如，在显示会话表示调查的情况下，用户交互数据可指示进行了（或者拒绝了）选择，并且传感器集线器224用信号通知触摸屏显示器105返回到空白图像600。尽管用户交互数据被示出为在步骤516和528中存储，在替代实现方式中，仅执行单个存储步骤（例如，在用户交互完成或选择动作指示时）。

【0068】在替代实现方式中，如本文所述，动作指示可指示电子装置100要执行的动作（530）。在一个示例中，第一动作指示对应于第二区域中的触控输入，第二动作指示对应于第三区域中的触控输入。如图6C的示例中所示，图像608对应于用于易拉罐的第一命中区域610（例如，在触控屏显示器105的第二部分的第一部分区域内）以及用于水杯的第二命中区域612（例如，在触控屏显示器105的第二部分的第二部分区域内），而第三命中区域614对应于第三区域。在这种情况下，第一命中区域610对应于对易拉罐的选择，第二命中区域612对应于对水杯的选择，第三命中区域614对应于对拒绝动作指示（例如，用户不想回答调查）。

【0069】参照图6D，在一个示例中，动作指示对应于在针对调查的用户选择之后图像616的显示（类似于窥探视图图像606）。在所示的示例中，图像616包括描绘调查结果的图形618。该结果可由电子装置100动态地确定，或者可利用图形接收（504）。

【0070】在一个示例中，图像604、608和618包括单独的图形元素。在替代实现方式中，图像604、608和618可以是按顺序显示的单个图形元素的组合，例如，主要和次要部分。例如，单个图形元素可被调整尺寸以占据触控屏显示器105的较大部分，但是基于用户交互的部分中整个图形元素被显示或隐藏。在替代实现方式中，图像604、608或618可包括文本、图像、图标、动画或其组合。

【0071】在存储用户交互数据之后，在一个示例中，电子装置100将用户交互数据发送给一个或多个远程网络实体214。例如，远程网络实体214可以是用于存储在电子装置100上位置存储图形的广告主的应用服务器。广告主可使用用户交互数据来确定哪些广告在接收用户交互方面更有效。例如，电子装置100类似于执行图形的更新（例如，按照预定时间、预定周期、在发生事件或信号时、或者在操作的模式改变时）发送用户交互数据的发送的其它时间、调度、事件或者信号对于本领域技术人员将是显而易见的。在一些情况下，用户交互数据的发送是所选择的动作的一部分。

【0072】转向图7A、图7B和图7C，示出在方法500期间图1的电子装置的显示屏幕的三个示例视图，示出了显示视图的可变动作。如图7A所示，图像704（类似于图像604）包括触摸屏显示器105所示显示（512）的优惠卷的广告。响应于如图7B所示的触摸输入，传感器集线器224向触摸屏显示器105提供第二控制信号以显示（522）图像706。图像706包括可通过对条形码读取器（未示出）扫描的条形码。在这种情况下，传感器集线器224可在向触摸屏显示器105提供控制信号之前等待用户交互（例如，触摸输入或语音输入）以在返回到空白图像600之前拒绝或清除触摸屏显示器105。在提供控制信号以清除触摸屏显示器105之前，传感器集线器224可听嘟音（例如，来自收银机的指示已扫描条形码的嘟音）。因此，条形码保持“被钉到”
触摸屏显示器105，直至用户拒绝。

[0073] 在如图7C所示的另一实现方式中，响应于触摸输入，传感器集线器224向触摸屏显示器105提供第二控制信号以显示（522）显示会话的一组动作图标708、710和712。如上所述，在一个示例中，传感器集线器224从显示会话信息选择用于显示的动作图标。在一个示例中，该一组动作图标中的每个动作图标对应于电子装置100可执行（530）的动作的动作指示。如图7C所示，动作图标706（“驾驶”）对应于获得驾驶路线指引的动作，动作图标708对应于拔打电话的动作，动作图标710对应于社交媒体平台的动作。

[0074] 如上所述，传感器集线器224基于用户交互（例如，对应命令区域上的触摸输入）从一组动作指示中选择（526）动作指示。电子装置100执行与所选择的动作指示相对应的所选择的动作。在第一示例中，传感器集线器224在低功率操作模式下执行所选择的动作。在第二示例中，电子装置100基于所选择的动作中断低功率操作模式以进入高功率操作模式。电子装置100（例如，经由处理器203）在高功率操作模式下执行所选择的动作。在第三示例中，所选择的动作包括部分地在低功率操作模式下执行、部分地在高功率操作模式下执行的多个动作（或者复合动作）。在这种情况下，低功率操作模式的动作可由传感器集线器224在显示会话期间或之后执行，而高功率模式的动作由处理器203在下一高功率模式期间执行。在一个示例中，若干不同的显示会话的动作可针对处理器203排序。传感器集线器224可基于所选择的动作或者基于唤醒电子装置100的另一信号或事件来中断低功率操作模式以进入高功率操作模式。

[0075] 在一个示例中，在显示会话表示用户调查的情况下，第一图形包括用户调查的调查提示。在这种情况下，一组动作指示中的至少一个动作指示对应于用户调查的调查响应指示符（例如，用户对调查的选择）。如果所选择的动作指示对应于调查响应指示符，则传感器集线器224在低功率操作模式下存储调查响应指示符。在这种情况下，处理器203在高功率操作模式下将基于调查响应指示符的调查响应消息发送给例如远程网络实体214，以向广告主提供调查的反馈。

[0076] 在另一示例中，显示会话表示对电子装置100的用户的报价。在这种情况下，至少一个动作指示对应于对报价的主张。例如，传感器集线器224将报价主张指示符存储到与电子装置100的用户相关的报价账户。

[0077] 在另一示例中，显示会话表示事件通知。该事件通知允许用户向其日历添加对事件的提醒。在这种情况下，至少一个动作指示对应于事件通知的日历加入指示符。如果所选择的动作指示对应于日历加入指示符，则传感器集线器224在低功率操作模式下存储日历加入指示符。处理器203在高功率操作模式下将基于日历加入指示符的日历加入消息发送给远程网络实体214用于加入到与电子装置相关的日历（例如，用户的日历）中。

[0078] 在另一示例中，显示会话对应于预订通知。在这种情况下，至少一个动作指示对应于预订请求指示符。如果所选择的动作指示对应于预订请求指示符，则传感器集线器224在低功率操作模式下存储预订请求指示符。然后，处理器203在高功率操作模式下将预订请求指示符的预订请求消息发送给预订通知相关的电子设备分发列表。预订请求消息包括与电子装置相关的电子设备电子邮件地址。

[0079] 在另一示例中，显示会话包括允许用户“+1”或“点赞”图形或广告的社交媒体调查。在这种情况下，至少一个动作指示对应于社交媒体调查的社交媒体响应指示符。如果所
选择的动作指示对应于社交媒体应用指示符，则传感器集线器224在低功率操作模式下存储社交媒体应用指示符。处理器203在高功率操作模式下将基于社交媒体应用指示符的社交媒体应用消息发送给远程网络实体214。在一个示例中，处理器203提示用户选择用于社交媒体应用消息的一个或多个社交媒体平台。

[0080] 在一个示例中，在显示会话包括广告的情况下，动作指示对应于动画图形的显示。如上述关于条形码所述，动画图形可被钉到触摸屏显示器105，直至用户拒绝。

[0081] 另一动作指示可对应于统一资源定位符。在这种情况下，执行相对应的所选动作包括连接到该统一资源定位符，例如打开广告主的网页。

[0082] 另一动作指示可对应于导航位置。在这种情况下，执行所选择的动作包括执行导航位置的导航查找。例如，电子装置100打开导航应用（例如，谷歌导航）并且指引用户到达导航位置。在一个示例中，导航位置是绝对位置，例如地址或GPS坐标。在另一示例中，导航位置是指示导航应用找到例如餐馆的最近位置的相对位置。

[0083] 另一动作指示可对应于用户应用。在这种情况下，执行所选择的动作包括下载或启动应用用户应用。

[0084] 动作指示的另一示例对应于电话号码。在这种情况下，执行所选择的动作包括向该电话号码拨打电话。在另一示例中，动作指示可对应于若干电话号码，并且传感器集线器224基于当前的日内时间选择一个电话。这允许在工作时间向办公室拨打电话或者在工作时间以外向语音信箱系统拨打电话。如上所述，传感器集线器224可选择显示会话的动作指示。在一个示例中，当显示会话的时间在接听电话的时间以外时，传感器集线器224不选择拨打电话的动作指示。

[0085] 动作指示的另一示例对应于共享提示。例如，用户可能希望与朋友共享图像或广告。在这种情况，执行所选择的动作包括确定共享提示的联系人地址，例如用户的朋友的电子邮件地址或者其它联系人信息，然后将基于当前显示会话的消息发送至该联系人地址。

[0086] 动作指示的另一示例对应于产品购买。在这种情况下，执行所选择的动作包括发起产品购买。例如，处理器203可向电子装置100的用户确认购买意图。在另一示例中，处理器203使用电子装置100所存储的账单明细（例如，通过谷歌钱包）来发起购买。

[0087] 尽管单独地描述了若干显示会话和动作指示，但是在替换实施例中，多个显示会话可被组合成单个显示会话（例如，利用多个用户交互）。另外，多个动作可被组合并由单个动作图标或动作指示来表示。显示会话可使用与动作指示相对应的单个动作图标或多个动作图标。

[0088] 图8是由一个或多个远程网络实体（例如，远程网络实体214）存储的用户交互数据的一个示例的视图。如上所述，显示会话可包括多个图形、动作图标和关联信息（例如，日内时间、位置）。电子装置100被配置为将此信息的多个或多个部分与用户交互数据一起存储并且将用户交互数据发送给远程网络实体。参照图8，图800包括来自表示多个用户的多个电子装置100的用户交互数据。

[0089] 在图800所示的示例中，每行对应于不同电子装置100上的显示会话，列指示显示会话的信息。主广告ID被示出为识别显示会话的第二图形，次广告ID被示出为识别显示会话的第二图形。一组动作指示（“动作1”、“动作2”和“动作3”）示出对于特定显示会话，哪些
动作指示被选择并显示。用户ID指示电子装置100的用户的标识或者电子装置100的ID。装置型号指示电子装置100的型号名称。日内时间指示电子装置100对显示会话进行显示的日内时间。装置位置指示当显示会话被显示时电子装置100的GPS坐标。唤醒原因指示导致传感器集线器224对显示会话进行显示的事件。例如，接近度传感器是否指示电子装置100已从口袋取出或者加速度计是否指示电子装置100在静止一段时间之后已移动。观看持续时间指示显示会话的图形被看待的时间长度。所采取的动作指示用户选择哪一动作指示符，其中单独的值（例如，“0”）用于指示不采取动作。在替选实现方式中，可存储附加列的用户交互数据，或者列可被省略。

图9是表示图形的观看时间的示例直方图902的图表。基于观看时间的持续时间以及观看时间是否有可能指示电子装置100的用户选择动作指示符。对图形的多个观看时间进行分析并分类。发现观看时间902最有可能导致动作指示选择。观看持续时间越长，暗示着用户对显示会话越有原因，而观看持续时间越短，暗示着用户不太感兴趣或者例如意外地触摸触摸屏显示器105。在一个示例中，可建立观看持续时间阈值以从数据消除无意的触摸和触摸图视，因此避免为无为的观看向广告主收费。例如，此阈值可被设置为1.0秒。

在一个示例中，电子装置100或远程网络实体214基于广告的显示会话的观看持续时间来选择可向广告主收取的不同费率。电子装置100和用户交互数据允许记录用户何时触摸初始横幅广告（例如第一图形）、用户何时关注广告（例如选择动作），因此记录广告的成率。在一个示例中，电子装置100或远程网络实体214基于广告的成率来选择广告的费率。在进一步示例中，电子装置100或远程网络实体214基于显示会话的触发数据的位置、时间或者其它标准中的一个一个来选择费率。在一个示例中，对观看持续时间t，费率被如下设置：示例1：如果t<1.0，然后收取0.00；如果t>1.0，则收取$1.00。作为另一示例：示例2：如果t<1.0，然后收取0.00；如果1.0<t<3.0，则收取(t-0.5)/2.5*$1.00，如果t>3.0，则收取$1.00。

示例1。一种电子装置的方法，所述方法包括：在高功率操作模式下主动地控制所述电子装置的触摸屏显示器；中断在所述高功率操作模式下主动地控制所述触摸屏显示器以进入低功率操作模式；在所述低功率操作模式下向所述触摸屏显示器提供至少一个第一控制信号以用于当前显示会话；在所述低功率操作模式下并且响应于所述至少一个第一控制信号，激活所述触摸屏显示器的第一部分；在所述低功率操作模式下并且响应于所述至少一个第一控制信号，所述触摸屏显示器的第一区域上显示第一图像，所述第一区域在所述触摸屏显示器的所述第一部分内；所述触碰在一个操作模式下确定是否已发生于所述第一区域相对应的第一触摸输入；在所述低功率操作模式下并且响应于所述第一触摸输入，所述触碰在所述触摸屏显示器提供至少一个第二控制信号以用于当前显示会话；在所述低功率操作模式下并且响应于所述至少一个第二控制信号，激活所述触摸屏显示器的第二部分：在所述低功率操作模式下并且响应于所述至少一个第二控制信号，所述触摸屏显示器的独立区域上；在所述低功率操作模式下确定是否已发生与用于所述第一控制动作图标的一个动作图标的独立区域相对应的第二触摸输入；在所述低功率操作模式下并且响应于所述第二触摸输入，从所述一动作图标相对应的一组动作指示中选择用于所述当前显示会话的动作指示；在所述低功率操作模式下执行与所选择的用于所述当前显示会话的动作指示。
会话的动作指示相对应的所选择的动作。【0093】示例2。根据示例1所述的方法，进一步包括在所述低功率操作模式下基于与所述电子装置相关的用户档案、与所述当前显示会话相关联的位置、与所述当前显示会话相关联的点时间或者来自先前显示会话的所选择的动作指示中的至少一个来选择所述一组动作指示中的至少一个动作指示。

【0094】示例3。根据示例1-2的任何组合所述的方法，其中，执行所选择的动作包括：在所述低功率操作模式下激活所述触摸屏显示器的第三显示部分；以及在所述低功率操作模式下在所述第三显示部分内的所述触摸屏显示器的第三区域处显示第二图像。

【0095】示例4。根据示例3所述的方法，其中，所述第二图像包括条形码，所述方法进一步包括：在所述低功率操作模式下并且响应于第三触摸输入或者音频输入，清除所述触摸屏显示器上的所述第三区域。

【0096】示例5。根据示例3所述的方法，其中，所述第二图像包括动画图像或视频。

【0097】示例6。根据示例1-5的任何组合所述的方法，其中所述当前显示会话包括用户调查，其中所述第一图像或者所述一组动作图标中的至少一个包括用于所述用户调查的调查提示，其中所述一组动作指示中的至少一个动作指示对应于用于所述用户调查的调查响应指示符，以及其中如果所选择的动作指示对应于所述调查响应指示符，则执行所选择的动作包括：在所述低功率操作模式下存储所述调查响应指示符，所述方法进一步包括：在所述高功率操作模式下将基于所述调查响应指示符的调查响应消息发送给远程网络实体。

【0098】示例7。根据示例1-5的任何组合所述的方法，其中所述当前显示会话包括事件通知，所述一组动作指示中的至少一个动作指示对应于用于所述事件通知的日历加入指示符，以及其中如果所选择的动作指示对应于所述日历加入指示符，则执行所选择的动作包括：在所述低功率操作模式下存储所述日历加入指示符，所述方法进一步包括：在所述高功率操作模式下将基于所述日历加入指示符的日历加入消息发送给远程网络实体以用于加入在与所述电子装置相关的日历中。

【0099】示例8。根据示例1-5的任何组合所述的方法，其中所述当前显示会话包括预订通知，其中所述一组动作指示中的至少一个动作指示对应于预订请求指示符，以及其中如果所选择的动作指示对应于所述预订请求指示符，则执行所选择的动作包括：在所述低功率操作模式下存储所述预订请求指示符，所述方法进一步包括：在所述高功率操作模式下将基于所述预订请求指示符的预订请求消息发送至与所述预订通知相关的电子设备的服务器列表，其中所述预订通知包括与所述电子装置相关的用户电子邮件地址。

【0100】示例9。根据示例1-5的任何组合所述的方法，其中所述当前显示会话包括社交媒体调查，所述一组动作指示中的至少一个动作指示对应于用于所述社交媒体调查的社交媒体响应指示符，以及其中如果所选择的动作指示对应于所述社交媒体响应指示符，则执行所选择的动作包括：在所述低功率操作模式下存储所述社交媒体响应指示符，所述方法进一步包括：在所述高功率操作模式下将基于所述社交媒体响应指示符的社交媒体响应消息发送给远程网络实体。

【0101】示例10。一种电子装置(100, 200)的方法，所述方法包括：在高功率操作模式下主动地控制所述电子装置(100, 200)的触摸屏显示器(105)；中断在所述高功率操作模式下主
动地控制所述触摸屏显示器(105)以进入低功率操作模式;在所述低功率操作模式下向所述触摸屏显示器(105)提供至少一个第一控制信号以用于当前显示会话;在所述低功率操作模式下并且响应于所述至少一个第一控制信号,激活所述触摸屏显示器(105)的第一部分;在所述低功率操作模式下并且响应于所述至少一个第一控制信号,在所述触摸屏显示器(105)的第一区域上显示第一图像,所述第一区域在所述触摸屏显示器(105)的所述第一部分内;在所述低功率操作模式下确定是否已发生与所述第一区域相对应的第一触摸输入;在所述低功率操作模式下并且响应于所述第一触摸输入,向所述触摸屏显示器(105)提供至少一个第二控制信号以用于所述当前显示会话;在所述低功率操作模式下并且响应于所述至少一个第二控制信号,激活所述触摸屏显示器(105)的第二部分;在所述低功率操作模式下并且响应于所述至少一个第二控制信号,显示一组动作图标,所述一组动作图标中的每个动作图标被显示在所述触摸屏显示器(105)的所述第二部分内的所述触摸屏显示器(105)的独立区域内;在所述低功率操作模式下确定是否已发生与所述一组动作图标中的一个动作图标的独立区域相对应的第二触摸输入;在所述低功率操作模式下并且响应于所述第二触摸输入,从所述一组动作图标相对应的一组动作指示中选择用于所述当前显示会话的动作指示;基于所述选择的动作指示中断低功率操作模式以进入高功率操作模式;以及在所述高功率操作模式下执行与所述选择的用于所述当前显示会话的动作指示相对应的所述选择的动作。

【0102】示例11.根据示例10所述的方法,进一步包括基于与所述电子装置相关联的用户简档,与所述当前显示会话相关联的位置、与所述当前显示会话相关联的所述时间或者来自所述当前显示会话的所述选择的动作指示中的至少一个来选择所述一组动作指示中的至少一个动作指示。

【0103】示例12.根据示例10-11的任何组合所述的方法,其中,所述选择的动作指示对应于统一资源定位符,并且其中,执行所述选择的动作包括连接到所述统一资源定位符。

【0104】示例13.根据示例10-11的任何组合所述的方法,其中,所述选择的动作指示对应于导航位置,并且其中,执行所述选择的动作包括执行所述导航位置的导航查找。

【0105】示例14.根据示例10-11的任何组合所述的方法,其中,所述选择的动作指示对应于用户应用,并且其中,执行所述选择的动作包括下载或启动所述用户应用。

【0106】示例15.根据示例10-11的任何组合所述的方法,其中,所述选择的动作指示包括电话号码,并且其中,执行所述选择的动作包括拨打电话。

【0107】示例16.根据示例10-11的任何组合所述的方法,其中,所述选择的动作指示对应于共享提示,并且其中,执行所述选择的动作包括,确定用于所述共享提示的联系人地址;以及将基于所述当前显示会话的指示发送至所述联系人地址。

【0108】示例17.根据示例10-11的任何组合所述的方法,其中,所述选择的动作指示对应于产品购买,并且其中,执行所述选择的动作包括发起所述产品购买。

【0109】示例18.一种电子装置,包括:触摸屏显示器,应用处理器,被配置为在高功率操作模式下控制所述触摸屏显示器;传感器阵列,被配置为在低功率操作模式下控制所述触摸屏显示器;以及非暂时性存储器,其中,所述电子装置被配置为在所述高功率操作模式下利用所述应用处理器主动地控制所述触摸屏显示器,其中,所述电子装置被配置为中断在所述高功率操作模式下利用所述应用处理器主动地控制所述触摸屏显示器以进入所述低
功率操作模式，其中，所述传感器集线器被配置为在所述低功率操作模式下向所述触摸屏显示器提供至少一个第一控制信号，其中，所述触摸屏显示器被配置为在所述低功率操作模式下并且响应于所述至少一个第一控制信号，激活所述触摸屏显示器的第一部分，其中，所述触摸屏显示器被配置为在所述低功率操作模式下并且响应于所述至少一个第一控制信号，在所述触摸屏显示器的第一区域上显示第一图像，所述第一区域在所述触摸屏显示器的所述第一部分内，其中，所述传感器集线器被配置为在所述低功率操作模式下并且响应于所述第一触摸输入，向所述触摸屏显示器输出至少一个第二控制信号，其中，所述触摸屏显示器被配置为在所述低功率操作模式下并且响应于所述至少一个第二控制信号，激活所述触摸屏显示器的第二部分，其中，所述触摸屏显示器被配置为在所述低功率操作模式下并且响应于所述至少一个第二控制信号，显示一组动作图标，所述一组动作图标中的每个动作图标被显示在所述触摸屏显示器的所述第二部分内的所述触摸屏显示器的独立区域上，其中，所述传感器集线器被配置为在所述低功率操作模式下确定是否已发生与所述一组动作图标中的一个动作图标的相关区域对应的第二触摸输入，其中，所述传感器集线器被配置为在所述低功率操作模式下并且响应于所述第二触摸输入，从与所述一组动作图标相对应的一组动作指示中选择用于当前显示会话的动作指示，以及其中，所述传感器集线器被配置为在所述低功率操作模式下执行与所选择的用于所述当前显示会话的动作指示相对应的所选择的动作。

【0110】示例19.根据示例18所述的电子装置，其中，所述传感器集线器被配置为：在所述低功率操作模式下基于与所述电子装置相关联的用户档案、与所述当前显示会话相关联的位置、与用户位置的接近度、与所述当前显示会话相关联的日内时间、来自先前显示会话的所选择的动作指示或者用于所述当前显示会话的用户交互中的至少一个来选择所述一组动作指示中的至少一个动作指示。

【0111】示例20.根据示例18所述的电子装置，其中所述当前显示会话包括用户调查，其中所述图像或者所述一组动作图标中的一个动作图标，其中所述图像或者所述一组动作指示中的至少一个动作指示对应于所述用户调查的调查提示，其中所述一组动作指示中的至少一个动作指示对应于所述用户调查的调查响应指示符，其中所述传感器集线器被配置为：当所述一组动作指示中的至少一个动作指示对应于所述用户调查的调查响应指示符时，在所述低功率操作模式下存储所述调查响应指示符，以及其中所述传感器集线器被配置为在所述高功率操作模式下基于所述调查响应指示符的调查响应消息发送给远程网络实体。

【0112】示例21.一种电子装置，包括用于执行根据示例1-17中的任一项所述的方法的装置。

【0113】示例22.一种包括指令的计算机可读存储介质，所述指令在被执行时使得计算机装置的一个或者多个处理器执行根据示例1-17中的任一项所述的方法。

【0114】可从上文看出，存储来自低功率显示会话的用户交互数据的方法和系统是有利的。鉴于可应用本公开的原理的许多可能的实施例，应该认识到，本文关于附图所描述的实施例意在仅为示意性的，而不应被当作限制权利要求的范围。因此，如本文所述的技术预期了可落入所附权利要求书及其等同物的范围内的所有这样的实施例。

【0115】本文所述的设备可包括处理器，用于存储要由处理器执行的程序数据的存储器、
诸如盘驱动器的永久存储装置，用于处理与外部装置的通信的通信端口以及用户接口装置，包括显示器、触摸面板、键、按扭等。当涉及软件模块时，这些软件模块可作为可由处理器执行的程序指令或计算机可读代码被存储在非暂时性计算机可读介质上，例如磁存储介质（例如，磁带、硬盘、软盘）、光学记录介质（例如，CD-ROM、数字多功能盘(DVD)等）以及固态存储器（例如，随机存取存储器(RAM)、只读存储器(ROM)、静态随机存取存储器(SRAM)、电可擦除可编程只读存储器(EEPROM)、闪存、拇指驱动器等）。计算机可读记录介质还可分布于联网的计算机系统上，以使得计算机可读代码以分布式方式存储和执行。该计算机可读记录介质可由计算机读取，存储在存储器中，并由处理器执行。

【0116】所公开的实施例可在功能框架组件和各种处理步骤方面进行描述。这些功能框架可通过被配置为执行指定功能的任何数量的硬件和/或软件组件来实现。例如，所公开的实施例可采用诸如存储组件，处理组件，逻辑组件，查找表等的各种集成电路组件，其可在多个或同一个处理器或其它控制系统在控制下执行各种功能。类似地，在所公开的实施例的组件使用软件编程或软件组件实现的情况下，所公开的实施例可利用诸如C、C++、JAVA®、汇编语言等的任何编程或脚本语言来实现。其中各种算法利用数据结构、对象、过程、类或其它编程元素的任何组合来实现。功能方面可在一个或多个处理器上执行的算法中实现。另外，所公开的实施例可采用任何数量的执行方式来进行电子配置、信号处理和/或控制、数据处理等。最后，除非本文中另外指示或者通过上下文清楚地否认，否则本文所描述的所有方法的步骤可按照任何合适的顺序来执行。

【0117】为了简明起见，传统电子器件、控制系统、软件开发以及系统的其它功能方面（以及系统的个体故障组件的组件）可能没有详细描述。另外，所提供的各个图示的连接线或者连接器旨在表示各种元件之间的示例性功能关系和/或物理或逻辑耦合。应该注意的是，在实际装置中可能存在许多替换或另外的功能关系，物理连接或逻辑连接。词语“机制”、“元件”、“单元”、“结构”、“工具”、“装置”、“控制器”和“构造”广义地使用，不限于机械或物理实施例，而是可包括与处理器等等结合的软件例程。

【0118】对于所公开的实施例的实践而言，没有项目或组件是必要的，除非该元件被明确地描述为“必要的”或“关键的”。还将认识到，如本文所述的术语“包括”、“包含”和“具有”明确地意味着在理解为开放式术语。在描述所公开的实施例的上下文中（特别是在所附权利要求的上下文中）抱词或相似指示物的使用应该被解释为涵盖单数和复数，除非上下文清楚地另外指示。另外，应该理解，尽管本文中可使用术语“第一”、“第二”等来描述各种元件，但是这些元件不因这些术语而差异，其仅用于将一个元件与另一元件区分。另外，除非本文中另外指示，否则本文中记载的数值范围旨在用作分别提及落入该范围内的每个单独的值的简写方法，每个单独的值被合并到本说明书中，如同在本文中被个别叙述一样。

【0119】除非另外要求，否则本文所提供的任何和全部示例或者示例性语言（例如，“诸如”）的使用仅旨在更好地示出所公开的实施例，而不是对所公开的实施例的范围进行限制。对于本领域普通技术人员而言众多修改和适配将容易而显易。
图2
图5

1. 502 主动地控制触摸屏显示器
2. 504 接收显示会话信息
3. 506 中断主动控制
4. 508 提供第一控制信号
5. 510 激活触摸屏显示器
6. 512 显示第一图形
7. 514 确定是否已发生用户交互
8. 516 存储用户交互数据
9. 518 提供第二控制信号
10. 520 激活触摸屏显示器
11. 522 显示第二图形或动作图标
12. 524 确定是否已发生用户交互
13. 526 选择动作
14. 528 存储用户交互数据
15. 530 执行所选择的动作
图8

观看时间的直方图

图9