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METHOD TO IDENTIFY GENES UNDER POSITIVE SELECTION
RELATED APPLICATION

[0001] This application is a claims the benefit of U.S. Provisional Application No.
62/067,294, filed on October 22, 2014.

The entire teachings of the above application are incorporated herein by reference.

GOVERNMENT SUPPORT

[0002] This invention was made with government support under Grant No. 1062455 from
the National Science Foundation and Grant Nos. GM079656 and GM066099 from the

National Institutes of Health. The government has certain rights in the invention.

BACKGROUND OF THE INVENTION

[0003] The adaptation of viruses, bacteria, protozoan, single cells in cancer or other
disease process, and multicellular organisms, plants, animals and other organisms and
evolving entity to selective pressures occurs through a variety of processes that affect the
content and the processing of genetic information. As a result, an adapted organism differs
from its ancestral progenitors by having slightly different genes and gene products and by
expressing them, locating them, degrading them and having them interact with other genes
and gene products and with the external milieu in slightly different ways. The result of these
differences then confers a sufficient advantage, so that the adapted organism better
withstands selection constraints and becomes more prevalent relative to its peers and
ancestors or at least lives on for another generation.

[0004] Processes of adaptation are myriad and examples include how viruses evolve to
evade the immune surveillance and maintain their infectious potential; how bacteria become
resistant to environmental stresses such as antibiotics or gene damaging agents such as
radiation; and, likewise, how cancer cells mutate constantly to continue unchecked
proliferation, overcome immune and therapeutic barriers and, often, metastasize.

[0005] A large fraction of biomedical research aims to identify the genes that underlie
these adaptive responses since, in the context of diseases, these genes are the primary cause
of pathogenesis and shutting them down would provide new therapeutic approaches. For that

reason it is of wide interest to find methods that can identify genes that mediate adaptation, a
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problem that can be succinctly restated as finding the genes under positive selection during an

adaptive process.

SUMMARY OF THE INVENTION

[0006] Embodiments of the present invention relate to a computer implemented method
of and a computer system for identifying genes associated with a phenotype.

[0007] A computer implemented method of identifying genes associated with a
phenotype includes obtaining data representing mutations in a cohort of subjects exhibiting a
phenotype; and, in a processor, calculating an evolutionary action (EA) score for each
mutation using the data obtained. For each gene in the cohort, respective distributions of the
calculated EA scores are determined for mutations found in the gene. The determined
distributions of EA scores are quantitatively compared within the cohort and with random
distributions to establish comparison data. Based on the comparison data, distributions of EA
scores are identified that are non-random, and, based on the identified non-random
distributions of EA scores, linkage of each gene in the cohort to the phenotype is assessed to
identify genes associated with the phenotype.

[0008] The data representing mutations can be obtained, for example, from a data store.

[0009] The EA score can be calculated according to the formula:

a—f-Arl.zA(p
o,

wherein ¢f/dr; is an evolutionary gradient, Ar; is a perturbation at residue position 7, and Ag is
a phenotype response to the perturbation.

[0010] Determining distributions of calculated EA scores can include binning calculated
EA scores by, for example, EA score deciles. Other methods of binning may be used. In
some embodiments, distributions of calculated EA scores may be determined without
binning.

[0011] Quantitatively comparing the distributions of EA scores can include using any
combination of a two-sample Kolmogorov-Smirnov test, a Wilcoxon rank-sum test, and an
Anderson—Darling test. Other methods of measuring statistical difference in the EA score
distributions may also be used.

[0012] Quantitatively comparing the distributions of EA scores can include calculating a

decay rate A of an exponential fitted to each distribution and comparing the decay rates.
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[0013] Quantitatively comparing the distributions of EA scores can include comparing
the distributions to an expected distribution obtained from a reference data set when genes are
unrelated to the phenotype. The reference data set can include at least one of 1) random
mutations on the same gene, obtained by translation of random nucleotide changes following
the standard genetic code, i1) mutations on the same gene from Thousand Genomes Project
(TGP) data, and iii) all misssense variations found in any gene in The Cancer Genome Atlas
(TCGA) data.

[0014] In some embodiments, the phenotype is a disease, the subjects are patients
diagnosed with the disease, and the linkage of each gene in the cohort to the disease is
assessed to identify disease causing genes.

[0015] The method can further include using the identified disease causing genes as
prognostic biomarkers in a patient.

[0016] The disease can be cancer and the method can further include distinguishing
tumor suppressors from oncogenes among the identified disease causing genes based on their
respective distributions of EA scores.

[0017] A computer system for identifying genes associated with a phenotype includes a
data store holding data representing mutations in a cohort of subjects exhibiting a phenotype;
a processor coupled to access the data from the data store; and a memory operatively coupled
to the processor. The memory is configuring the processor to 1) calculate an evolutionary
action (EA) score for each mutation using the data from the data store; ii) for each gene in the
cohort, determine respective distributions of the calculated EA scores for mutations found in
the gene; iii) quantitatively compare the determined distributions of EA scores within the
cohort and with random distributions to establish comparison data; iv) based on the
comparison data, identify distributions of EA scores that are non-random; and v) based on the
identified non-random distributions of EA scores, assess linkage of each gene in the cohort to
the phenotype to identify genes associated with the phenotype.

[0018] The memory of the computer system can further configure the processor to
calculate the EA score according to the formula described above.

[0019] The memory of the computer system can further configure the processor to
determine distributions of calculated EA scores by binning calculated EA scores by EA
deciles, to quantitatively compare the distributions of EA scores using any combination of a

two-sample Kolmogorov-Smirnov test, a Wilcoxon rank-sum test, and an Anderson—Darling
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test, to quantitatively compare the distributions of EA scores by calculating a decay rate
lambda of an exponential fitted to each distribution and comparing the decay rates, and to
quantitatively compare the distributions of EA scores by comparing the distributions to an
expected distribution obtained from a reference data set when genes are unrelated to the
phenotype. The reference data set can include at least one of 1) random mutations on the
same gene, obtained by translation of random nucleotide changes following the standard
genetic code, i) mutations on the same gene from Thousand Genomes Project (TGP) data,
and iii) all misssense variations found in any gene in The Cancer Genome Atlas (TCGA)
data.

[0020] The phenotype can be a disease, the subjects can be patients diagnosed with the
disease, and the linkage of each gene in the cohort to the disease can be assessed to identify
disease causing genes. The memory of the computer system can further configure the
processor to output to a user the identified disease causing genes as prognostic biomarkers in
a patient.

[0021] In an embodiment, the disease is cancer and the memory further configures the
processor to distinguish tumor suppressors from oncogenes among the identified disease
causing genes based on their respective distributions of EA scores.

[0022] The method and computer system for identifying genes associated with a
phenotype can be applied to pathways to identify functionally related groups of genes with a
bias towards mutations having high EA scores, wherein each pathway is a set of genes, and
wherein the memory further configures the processor to optimize each pathway on the basis
of distributions of EA scores to identify if there is a subset of genes within the pathway

whose mutations are significantly biased to high EA scores as a group.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] The foregoing will be apparent from the following more particular description of
example embodiments of the invention, as illustrated in the accompanying drawings in which
like reference characters refer to the same parts throughout the different views. The drawings
are not necessarily to scale, emphasis instead being placed upon illustrating embodiments of
the present invention.

[0024] FIG. 1 schematically illustrates Evolutionary Trace (ET) and Evolutionary Trace
Annotation (ETA). The ET process ranks individual positions of aligned sequences (10)

from the correlation of their variations with evolutionary divergences (15). A heat-map (20)
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shows the best-ranked residues cluster on the structure (thick line is best, thin line is worst),
marking functional sites. The ETA process picks (25) a 3D template of six surface exposed,
clustering and top-ranked, residues and suggests functional similarity if it matches (30) to
another structure. Such matches create a network of links (35) among proteins that can be
analyzed to predict function.

[0025] FIGs. 2A and 2C are graphs showing that evolutionary action (“Action”)
correlates with loss of enzymatic activity in two examples; FIGs. 2B and 2D are graphs
showing that action also classifies the relative harm of mutations better than other methods
(see Detailed Description).

[0026] FIGs. 3A-3B illustrates results of CAGI (Critical Assessment of Genome
Interpretation) 2011 and CAGI 2013. Shown are mean rank of state-of-the-art methods
(letters A-O) from different groups (distinguished by different fill patterns), to predict
mutational impact on cystathionine beta-synthase (CBS) activity and on the proliferation rate
of cells with p16 mutants. The CBS data used 18 quality metrics, the p16 only 4. In the
figure, solid back (“Action’) denotes results obtained using the evolutionary action (EA)
equation.

[0027] FIGs. 4A-4B are graphs illustrating gold standard data: Sensitivity and specificity
estimates of the in silico methods SIFT, MutationAssessor and PolyPhen-2 [estimated using
the postMUT (simple) model (white symbols), the postMUT model (grey symbols) without a
gold standard] compared to sensitivity and specificity estimated using the gold standard
(‘Using Variants Directly’) which means to use the known functional status for each variant
(black symbols) in HumDiv (FIG. 4A) and HumVar (FIG. 4B) datasets.

[0028] FIGs. SA-5B are graphs illustrating EA distributions of non-synonymous coding
mutations from 1,092 individuals (TGP). FIG. 5A shows all genes and various groups
defined by their impact on phenotype. FIG. 5B shows that the EA distributions decay
exponentially, at a rate that varies linearly with the logarithm of the allele frequency (R?
value of 0.92).

[0029] FIGs. 6A-6B illustrate EA distributions of (6A) 343 p53 mutations frequently seen
in tumors (at least ten times in 26,597 cases tallied in the IARC database) and (6B) 1,026
sporadic p53 mutations. Black or white bars indicate the fraction with less than or more than
50% of the wild-type transactivation activity in yeast assays. Grey (“No assay data”)

indicates there are no data.
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[0030] FIGs. 6C-6E illustrate (6C) EA distributions of polymorphisms (in white) and
disease-associated (in black) human variations in TSC2, (6D) PKDI1, and (6E) 218 genes
with 8,553 disease-associated mutations and 794 benign variations.

[0031] FIG. 7A is a schematic view of a computer network environment in which
embodiments of the present invention may be deployed.

[0032] FIG. 7B is a block diagram of computer nodes or devices in the computer network
of FIG. 7A.

[0033] FIG. 8 is a flow diagram of one computer-based embodiment of the present
invention.

[0034] FIGs. 9A-9D illustrate distributions of coding Single Nucleotide Variations
(SNVs). FIG. 9A shows human variations found in the TGP database (261,899 unique
SNVs) and FIG. 9B shows somatic cancer mutations found in the TCGA database (829,625
SNVs from 5,392 patients across 21 cancers). FIG. 9C shows random nucleotide changes
following the standard genetic code for all proteins. FIG. 9D shows somatic mutations of the
tumor suppressor TP53, the oncogene PIK3CA, and the unrelated to cancer DNAHS gene.
The upper panel of bar graphs in FIG. 9D shows the human polymorphisms from the TGP
and the bottom panel shows the cancer mutations from the TCGA. False discovery rate (q-
value) of each gene is obtained by comparing the distribution of cancer mutations to the
distribution of random mutations using the tests described below under the experimental
design and the expected outcomes sections of Example 2.

[0035] FIG. 10 is a graph illustrating Leave-one-out STRING diffusion. The top
candidate cancer genes obtained from the analysis of Head and Neck Squamous Cell Cancer
(HNSC) mutations from the TCGA (black dots) were compared to random sets of genes (grey
dots). Arbitrary cutoff values separate different number of genes each time and the z-value is
given for each cutoff.

[0036] FIGs. 11A-11D illustrate identifying ‘core modules’: functionally related gene
sets biased toward high action.

[0037] FIGs. 12A-12B are graphs illustrating support for the ‘core module.” FIG. 12A is
a stacked histogram of the evolutionary action distribution for the core module genes. FIG.
12B illustrates 12 candidate genes in STRING Actions View, high confidence mode.

[0038] FIG. 13 illustrates mutations in the Kelch protein of Plasmodium falciparum

(PF3D7_1343700).
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[0039] FIG. 14 schematically illustrates the functional impact of mutations.

[0040] FIGs. 15A-15D illustrate Evolutionary Action distributions and interpretation of
Kelch mutations.

[0041] FIGs. 16A-16C illustrate correlation of Evolutionary Action scores with parasite
clearance half-life. The (*) in FIGs. 16B and 16C indicates that the parasite clearance half-
life was calculated as the rough average based on the plot of white and black dots in FIG.
16A.

[0042] FIGs. 17A-17D illustrate Evolutionary Action distributions by geographic region.
[0043] FIGs. 18A-18D illustrate computation of the Evolutionary Action equation.
[0044] FIGs. 19A-19E illustrate that mutational action correlates with experimental
impact.

[0045] FIG. 20 illustrates performance of the Evolutionary Action method as compared to
state-of-the-art methods.

[0046] FIGs. 21A- 21B illustrate that mutational action correlates with morbidity.

[0047] FIGs. 22A-22C illustrate nearly exponential action distributions of human coding
polymorphisms. As shown in FIG. 22A, coding polymorphisms from the 1000 Genomes
Projects (including 1092 individuals) were separated into 225,751 rare variants (left) and
36,354 common mutations (right), based on an allele frequency (v) threshold of 1%. Both
groups fit exponential distributions with Pearson coefficients R’ of 0.95 and 0.98 and decay
rates of 2.18 x 10 and 3.38 x 107, respectively, when binned into action deciles. The insets
show equivalent log-linear plots. These groups were further fractionated by allele count or
frequency as shown in FIG. 22B. The action distribution of polymorphisms in the same
tranche of allele count, or frequency, also fit an exponential with R’ values from 0.87 to 0.99.
FIG. 22C shows that the action decay rate for these exponentials varies linearly with the
logarithm of their allele frequency R’ value of 0.92). Arrows indicate the observed decay
rates for all non-synonymous coding mutations from a single individual’s exome; for the rare
and the common mutations of the 1000 Genomes Project; for somatic cancer mutations
retrieved from the TCGA (http://tcgadata.nci.nih.gov); and for non-synonymous mutations
obtained by the translation of random nucleotide changes following the standard genetic code

(random nucleotides).
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DETAILED DESCRIPTION OF THE INVENTION

[0048] A description of example embodiments of the invention follows.

[0049] Past approaches to identify genes that are responsible for disease rely on various
measures of frequency. Frequency of these genes being mutated in the affected patients,
frequency of having a genetic marker present or absent in affected patients, frequency of
having non-synonymous mutations in a gene (versus synonymous ones) in affected patients,
frequency of having truncations in a genes in affected patients, and forth. In all these
examples, a statistical analysis will be done with the aim to show that the frequency of these
various markers is unusually large in a given genes than would be expected by chance alone
and this suggests that this gene is under unusual selective pressure. These approaches are all
observational and do not interpret the downstream biological consequences of any of these
events. More modern approaches begin to try to take these downstream consequences into
consideration, for example, is an amino acid that is hydrophobic replaced by one that is
hydrophilic, is a large one replaces by a small one, is a positively charged one replaced by a
negatively charged one, is the replaced amino acid evolutionarily invariant, is the gene
usually free of polymorphisms or is it frequently affected by missense or nonsense mutations,
is the gene duplicated, and so forth. These and other similar considerations can be further
combined to arrive at some sense of the frequency of a mutational event and its likelihood to
have consequences that are grave or benign.

[0050] Advantageously, embodiments of the current approach provide an improved
measure of whether a mutation is likely to be benign (neutral), nearly neutral, moderately
perturbing, or severely perturbing to the gene and, in fact, to the entire organism. This
measure has the following features: it is continuous, from 0 to 1 (completely neutral to
maximally harmful to the gene); is tailored to every gene; it is not derived through training
over large data sets that give examples of neutral or harmful mutations; and it is based on the
fundamental mechanisms of evolution, that is, the relationship between genotype and
phenotype.

[0051] In general, using a method and computer system of the current approach, genes
under positive selection can be identified with much greater resolution by focusing on the
quality of the mutations rather than on their frequency and measuring it with much greater

accuracy than was previously possible. This is done in coding mutations (also called
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missense mutations, those which result in the substitution of one amino acid for another in a
protein) by predictively measuring their likely deleterious impact.

[0052] Protein missense mutations are clinically important

[0053] Genetic variations are common and influence personal disease susceptibility.
Each birth introduces about 66 novel mutations which, over time, add up to more than four
million DNA differences between random individuals. About 80% of these variations are
single nucleotide substitutions that include about ten thousand amino acid substitutions in the
proteome of unrelated individuals. Protein coding variants often affect fitness, account for
85% of known discase mutations, and are associated with over 2,500 ailments. Association
studies can link monogenic diseases to some of these mutations but more complex diseases,
subject to multiple genetic factors, require sorting among many variations to identify those
that are most harmful. Now, the rapid advent of personal exomes is forcing clinicians to ask
which coding allelic variations are deleterious or not, a task made harder by the fraction of
rare mutations (~15-20%) for which population studies cannot inform us on disease
associations, and because their impact depends on the unique context of each mutation, which
is complex and often cryptic. A compelling need, therefore, exists for means to evaluate the
functional impact of protein mutations.

[0054] Computational prediction of deleterious impact for protein missense
mutations

[0055] Current approaches rely mostly on homology. SIFT calculates the frequency of
the amino acids in the protein family alignment and classifies the mutants as deleterious if
their frequency is less than expected by chance. MAPP quantifies the physicochemical
variations (volume, polarity, hydropathy) in each aligned sequence column and calculates
whether the mutant fits this pattern. Likewise, A-GVGD calls a mutant deleterious if it falls
outside the variations in the alignment (Grantham Difference) and the size of the variation is
smaller than the size of the substitution (Grantham Variation). To improve accuracy,
machine learning (Support Vector Machine, Neural Network, Naive Bayes and Decision
Tree) can combine features such as sequence conservation; secondary structure; solvent
accessibility; functional site location; crystallographic B factors; local sequence environment;
and intrinsic disorder. PolyPhen used Position-Specific Independent Counts (PSIC) to
estimate the likelihood of an amino acid to occur at any position and tuned it with annotation

and structural features. The state of the art Polyphen-2 uses a naive Bayes classifier trained
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on two sets of human SNPs (Mendelian diseases or all diseases) to weigh PSIC with a series
of annotation and structural features. Other methods include SNPs3D; PhD-SNP; Parepro;
LS-SNP; SAPRED or others). Some machine learning methods, such as SNAP; MutPred and
others, also pool predictions of web servers.

[0056] Assessment of computational methods

[0057] Hicks et al. 2011 compared the accuracy of four methods (SIFT, Align-GVGD,
PolyPhen-2, and Xvar (now named mutationassessor) on over 267 well-characterized
missense mutations in the BRCA1, MSH2, MLHI1, and TP53 genes. All algorithms
performed similarly, with an area under the receiver operating characteristic (ROC) curve of
about 80%, but their calls were discordant. Other assessments exist (¢.g., DREAM)
(http://www the-dream-project.org/), and Steven Brenner and John Moult have organized
CAGI (Critical Assessment of Genome Interpretation) to evaluate state-of-the art methods
objectively. Competing groups score genetic variants blindly and independent assessors
assess performance using experimental results available to them only. Most recently, in 2011
and 2013 our method based on a simple and general analytic equation performed among the
best (FIGs. 3A-3B, sce below), beating all statistical and machine-learning-based methods
trained on vast datasets. Among a profusion of statistical/machine learning approaches, our
analytic method is novel and promising.

[0058] Predictors of cancer-associated genes

[0059] The impact of mutations is not typically associated with predicting disease-
causing genes. Instead, these genes are discovered from their increased mutational frequency
in sequencing data of affected patients. Among several other methods, MutSig identifies
cancer driver genes from exome-sequencing data of tumors by comparing their mutation rate
against the background rate across the genome (MutSigl1.0). MutSigl.5 added rudimentary
estimates of per-gene background mutation rates and MutSig2.0 added signals of positive
selection: 1) clustering of mutations in hotspots, and ii) functional impact of the mutations,
estimated in multiple ways (PolyPhen, SIFT, CHASM, Mutation Assessor, etc.) to compute
significance based on all three signals (Frequency, Clustering, and Conservation). The latest
is MutSigCV with refined background mutation rates that pools data from ‘neighbor’ genes
in covariate space. Other notable methods include TUSON Explorer, which identifies tumor
suppressor genes and oncogenes from signature mutational patterns, using multiple ratios

(loss of function or high functional impact or splicing mutations versus mostly benign
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mutations). Another method also combines selection biases (frequency, functional impact,
regional clustering, and association with phosphorylation). Overall these methods are still in
early stages. By contrast, we extend the well-tested Evolutionary Trace approach to propose
a novel approach tied to the fundamentals of evolution. This approach is compatible with the
nearly neutral theory of evolution and basic principles of calculus, and it can identify
disease-causing genes because these genes, logically, are positively selected to bear high
impact mutations in affected patients.

[0060] Evolutionary trace and protein structure-function determinants

[0061] We developed the Evolutionary Trace (ET) to identify protein functional
determinants. ET ranks sequence residues as “more (or less) important” if they vary mostly
among major (or minor) evolutionary branches (FIG. 1 at 10 and 15: the residue variations
are indicated by breaks in the boxes, and the importance would decrease with decrease in line
thickness, from thick to medium to thin). These patterns identify positions that are
phenotypically critical during natural selection and with general properties: they form 3-D
clusters in protein structures that predict functional sites and that are sufficient, by
themselves, to identify function (FIG. 1 at 20, 25, 30 and 35) and to guide experiments to
redesign or mimic it. Thus, relatively simple evolutionary patterns can systematically trace
sequence residues that play a critical role in structure and function. Moreover, maximizing
the structural 3D clustering among top-ranked positions improves predictions of functional
sites, functional determinants, and overall protein functionality. These data are useful to
interpret missense mutations and suggests that ET’s definition of phylogenetically important
residues uncovers deeper aspects of the genotype-to-phenotype relationship.

[0062] FIG. 7A illustrates a computer network or similar digital processing environment
in which embodiments of the present invention may be implemented. Client
computer(s)/devices 50 and server computer(s) 60 provide processing, storage, and
input/output devices executing application programs and the like. Client computer(s)/devices
50 can also be linked through communications network 70 to other computing devices,
including other client devices/processes 50 and server computer(s) 60. Communications
network 70 can be part of a remote access network, a global network (e.g., the Internet), a
worldwide collection of computers, Local area or Wide area networks, and gateways that
currently use respective protocols (TCP/IP, Bluetooth, etc.) to communicate with one

another. Other electronic device/computer network architectures are suitable.
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[0063] FIG. 7B is a diagram of the internal structure of a computer (e.g., client
processor/device 50 or server computers 60) in the computer network of FIG. 7A. Each
computer 50, 60 contains system bus 79, where a bus is a set of hardware lines used for data
transfer among the components of a computer or processing system. Bus 79 is essentially a
shared conduit that connects different elements of a computer system (e.g., processor, disk
storage, memory, input/output ports, network ports, etc.) that enables the transfer of
information between the elements. Attached to system bus 79 is /0 device interface 82 for
connecting various input and output devices (e.g., keyboard, mouse, displays, printers,
speakers, etc.) to the computer 50, 60. Network interface 86 allows the computer to connect
to various other devices attached to a network (e.g., network 70 of FIG. 7A). Memory 90
provides volatile storage for computer software instructions 92 and data 94 used to
implement an embodiment of the present invention (e.g., calculating an Evolutionary Action
(EA) score, determining respective distributions of the calculated EA scores, quantitatively
comparing the determined distributions of EA scores, identifying distributions of EA scores
that are non-random, and assessing linkage of the genes to the phenotype detailed in the
Examples and in FIG. 8). Disk storage 95 provides nonvolatile storage for computer software
instructions 92 and data 94 used to implement an embodiment of the present invention.
Central processor unit 84 is also attached to system bus 79 and provides for the execution of
computer instructions.

[0064] In one embodiment, the processor routines 92 and data 94 are a computer program
product (generally referenced 92), including a computer readable medium (e.g., a removable
storage medium such as one or more DVD-ROM’s, CD-ROM’s, diskettes, tapes, etc.) that
provides at least a portion of the software instructions for the invention system. Computer
program product 92 can be installed by any suitable software installation procedure, as is well
known in the art. In another embodiment, at least a portion of the software instructions may
also be downloaded over a cable, communication and/or wireless connection. In other
embodiments, the invention programs are a computer program propagated signal product 107
embodied on a propagated signal on a propagation medium (e.g., a radio wave, an infrared
wave, a laser wave, a sound wave, or an electrical wave propagated over a global network
such as the Internet, or other network(s)). Such carrier medium or signals provide at least a

portion of the software instructions for the present invention routines/program 92.
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[0065] In alternate embodiments, the propagated signal is an analog carrier wave or
digital signal carried on the propagated medium. For example, the propagated signal may be
a digitized signal propagated over a global network (e.g., the Internet), a telecommunications
network, or other network. In one embodiment, the propagated signal is a signal that is
transmitted over the propagation medium over a period of time, such as the instructions for a
software application sent in packets over a network over a period of milliseconds, seconds,
minutes, or longer. In another embodiment, the computer readable medium of computer
program product 92 is a propagation medium that the computer system 50 may receive and
read, such as by receiving the propagation medium and identifying a propagated signal
embodied in the propagation medium, as described above for computer program propagated
signal product.

[0066] Generally speaking, the term “carrier medium” or transient carrier encompasses
the foregoing transient signals, propagated signals, propagated medium, other mediums and
the like.

[0067] In this respect, it should be appreciated that one implementation of the described
embodiments described herein comprises at least one computer-readable medium encoded
with a computer program (e.g., a plurality of instructions), which, when executed on a
processor, performs some or all of the above-described functions of these embodiments. As
used herein, the term “computer-readable medium” encompasses only a non-transient
computer-readable medium that can be considered to be a machine or a manufacture (i.c.,
article of manufacture). A computer-readable medium may be, for example, a tangible
medium on which computer-readable information may be encoded or stored, a storage
medium on which computer-readable information may be encoded or stored, and/or a non-
transitory medium on which computer-readable information may be encoded or stored. Other
non-exhaustive examples of non-transitory computer-readable media include a computer
memory (¢.g., a ROM, RAM, flash memory, or other type of computer memory), magnetic
disc or tape, optical disc, and/or other types of computer-readable media that can be
considered to be a machine or a manufacture.

[0068] The terms “program” or “software” are used herein in a generic sense to refer to
any type of computer code or set of computer-executable instructions that can be employed to
program a computer or other processor to implement various aspects of the present invention

as discussed above. Additionally, it should be appreciated that according to one aspect of this
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embodiment, one or more computer programs that when executed perform methods of the
present invention need not reside on a single computer or processor, but may be distributed in
a modular fashion amongst a number of different computers or processors to implement
various aspects of the present invention.

[0069] Computer-executable instructions may be in many forms, such as program
modules, executed by one or more computers or other devices. Generally, program modules
include routines, programs, objects, components, data structures, etc. that perform particular
tasks or implement particular abstract data types. Typically, the functionality of the program
modules may be combined or distributed as desired in various embodiments.

[0070] In particular, embodiments of the present invention provide computer-based
system or apparatus 100 programmed or otherwise configured to carry out the following
procedures outlined in FIG. 8.

[0071] As shown in FIG. 8, at 105, data is received, the data representing mutations in a
cohort of subjects exhibiting a phenotype. At 110, an evolutionary action (EA) score is
calculated, by a processor, for each mutation using the data obtained. In particular, module
110 computes Equation (3) further detailed below. At 115, for each gene in the cohort,
respective distributions of the calculated EA scores are determined for mutations found in the
gene. Next, the determined distributions of EA scores are quantitatively compared (120)
within the cohort and with random distributions to establish comparison data. Based on the
comparison data, distributions of EA scores are identified (125) that are non-random. At 130,
linkage of each gene in the cohort to the phenotype is assessed, based on the identified non-
random distributions of EA scores, to identify genes associated with the phenotype. The
system 100 can produce an output, e.g., at module 130, of the identified genes associated with
the phenotype.

[0072] It should be readily appreciated by those of ordinary skill in the art that the
aforementioned blocks (modules) are merely examples and that embodiments of the present
invention are in no way limited to the number of blocks or the ordering of blocks described
above. For example, some of the illustrated blocks may be performed in an order other than
that which is described or include more or fewer blocks. Moreover, it should be understood
that various modifications and changes may be made to one or more blocks without departing

from the broader scope of embodiments of the present invention. It should also be
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appreciated that not all of the illustrated flow diagram is required to be performed, that
additional flow diagram(s) may be added or substituted with other flow diagram(s).

[0073] Methods to determine functional sites of a sequence using quantitative
Evolutionary Trace analysis are described in U.S. Patent Application No. 10/306,496, filed
November 27, 2002 and published February 5, 2004, as US2004/0023296.

[0074] A method and computer program product to determine prognosis in a patient with
head and neck cancer are described in International Application No. PCT/US2013/032336,
filed March 15, 2013 and published January 9, 2014, as W02014/007865.

[0075] A method, computer program product, and computer system for determining or
classifying a phenotypic effect of a mutation in a protein are described in International
Application No. PCT/US2013/032215, filed March 15, 2013 and published January 9, 2014,
as W0O2014/007863.

EXAMPLE 1: MEASURING THE ACTION OF CODING MUTATIONS

[0076] A. Rationale and Approach:
[0077] 1. The Evolutionary Action (EA) equation

[0078] Coding mutations perturb the folding, dynamics, targeting, interactions and many
other features enabling a protein to function. Since no reliable way exists to compute how
cach individual feature depends on the sequence, we cannot score and sum their responses to
a mutation in order to infer some global mutational impact on protein function.

[0079] We propose instead a “systems” solution to this problem by invoking the

genotype-phenotype relationship. Let the protein sequence (#,7,...,7, ) define the protein
genotype, called ¥, and let the complete set of its functional features define the protein
fitness phenotype, called @ . As genotype encodes fitness, we assume an evolutionary

function fexists:

=9 (1),
(time and external constraints are implicit). We also assume that over a long time-scale

evolution is “smooth,” so f'is differentiable, and the evolutionary gradient Vf exists. A
genotype perturbation dy will then cause a phenotype response d¢ given by:
Vf-dy=dg (2).
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Finally, for a single missense mutation at residue position 7, the only non-zero component of

the perturbation vector dy is its i" component Ar;, and to a first order approximation

Equation (2) reduces to:

a—f-Ar =A@ (3).
o,

[0080] This Evolutionary Action (EA) equation, or simply Action, defines the fitness
impact of a point mutation. Surprisingly, while fremains unknown throughout, this work
will test and show that its derivative can be usefully approximated, as can the magnitude of a
substitution. The left hand side of Equation (3) can then be approximated for any protein,
sequence position and substitution to yield the mutational harm, identify positive selection
and guide the discovery of disease genes.

[0081] Other considerations. Equation (1) ignores post-translational modifications (or
epigenetic effects) to keep the genotype-to-phenotype coupling model simple. Equations (2)
and (3) view point mutations as “infinitesimal” on an evolutionary scale. We show later that
this does not ignore the harm of these events on a ~uman scale.

[0082] 2. To measure the evolutionary gradient of/dr;

[0083] Equation (3) may be rewritten

dg/or; = Af [ Ar; @),
so the partial derivative describes how fitness reacts to perturbations at residue i. But this is
identical to ET ranks of importance of every sequence position since better ET ranks are at
positions where mutations couple to larger phylogenetic changes. Thus we may approximate
the gradient with ET and since newer ET methods appear more accurate, we can test (see
below) whether they will improve EA scores.
[0084] Other considerations. (i) Prior ET studies that identified functional sites and
allosteric pathways, guided mutations that block or reprogram function, and defined
structural motifs that predict function on a large-scale, such as substrate specificity speak to
the generality of the Evolutionary Gradient. (i7) ET can be computed for any sequence
position of any protein with enough known homologs to produce an alignment (at least 15 to
20 related sequences). (iii) Readers familiar with ET may recall it ranks residue importance
by percentiles from 0 (best) to 1 (worst). The evolutionary gradient is reversed so that:

(3 /0r,=1-ET,,, ().

[0085] 3. To measure the magnitude of a substitution
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[0086] The second term in Equation (3) is the size of the substitution Az;. To compute it

we use relative evolutionary substitutions rates. The rationale is that amino acids with greater
biophysical and chemical similarities, i.e., “closer,” such as alanine and serine, are more often
substituted mutually rather than for aspartate, which is more dissimilar to either. Thus
transition matrices, such as BLOSUMG62, may approximate the relative size of a substitution
in terms of its log-odds. Since there are many types of substitution matrices, there is a need
to evaluate which ones can improve EA scores.

[0087] B. Performance Evaluation and Example Data

[0088] 1. Experimental Controls

[0089] We can compare EA against experimental datasets to assess better the terms df/or,

and A7;,

* 4,041 lac repressor mutations in E. coli were assayed for B-galactosidase repression
and judged deleterious when repression activity fell below 20-fold, and the remainder as
neutral. In FIG. 2A, EA correlated with the deleterious fraction (R°=0.94).

* 336 HIV-1 protease mutations were assayed by the concentration of cleavage
products from Gag and Gag-Pol precursor proteins, and classified as deleterious when there
was little or no product, while the rest were considered to be neutral. FIG. 2C shows that EA
correlates with the loss of cleavage (R°=0.96).

[0090] Other considerations. (i) These are large correlations, but individual values can
scatter more than the average of a bin, and some of the plots (FIG. 2A) suggest deviation
from linearity. These are reasons for improving further the evolutionary gradient and
substitution matrices, guided by better Pearson coefficient R”. (i) We also have other large
data sets to perform these tests on to reduce possible bias (2,015 lysozyme mutations in
bacteriophage T4 assayed for plaque formation due to lysozyme’s breakup of the host cell
walls; and 2,314 p53 mutants assayed for transactivation).

[0091] 2. Mcethodological Controls

[0092] We can also compare EA to other methods, such as PolyPhen-2, SIFT and MAPP.

One test is to measure the sensitivity and specificity of each approach to classify deleterious
mutations through the area under the ROC curve (AUC) (FIGs. 2B and 2D). As shown in
FIGs. 2B and 2D for lac repressor and HIV-1 protease, EA performs best.

[0093] Other consideration. As mentioned before, we took part in the blinded CAGI

contests. In 2011, 84 mutants were assayed under two different growth conditions by Dr.
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Jasper Rine, UC Berkeley, for restoring yeast growth when lacking the normal CYS4
ortholog. In 2013, the in vitro activity of p16 mutants was assessed by Maria Chiara Scaini et
al, for the ability to block cell proliferation at different time points. Our single submission
ranked #1 in 2011, and #2 in 2013 (the group with the top submission had three others, two
ranked at the near bottom and one that was middling, see FIG. 3). Critically, all methods
were statistical and machine learning trained on large data sets, in contrast, we used our
analytic approach.

[0094] C. To Improve Approximations of the Evolutionary Gradient

[0095] 1. An inherently smoother ET algorithm

[0096] Our example data used a well-established version of ET 108 to approximate df /dr; .

Newer studies suggest that it may be beneficial to instead use a novel ET version that
identifies functional sites better because ET ranks of evolutionary importance are distributed
more smoothly in a structure (i.¢., the quadratic form of the Laplacian of ET ranks is
minimized). This new ET computes ranks of contact-pairs of residues in the protein structure
and averages them for a given residue to find its ET rank. This pair-interaction ET, or piET,
identifies previously missed functional sites and improves protein function predictions over
the entire structural proteome based on templates of 5 or 6 top-ranked residues 91.

Presumably, this new algorithm will provide one approach to better approximate df/or, .

[0097] Pitfall. A 3D structure may not be available. If so, we can test two work-around
approaches. First, homology models will be substituted, precomputed with ModBase and
Swiss-Model, or made with I-TASSER and MUFOLD, for example. Alternately, a
preliminary 1-D implementation of piET can be used. This 1-D piET minimizes the
quadratic form of the Laplacian of ET ranks across nearest neighbors along the sequences.
By itself it was still able to substantially raise ET identification of functional sites (improving
z-scores by 15% in a test set of 74 proteins compared to 23% when considering the structure
of these 74 proteins).

[0098] 2. Better multiple sequence alignments (MSAS)

[0099] Sequence alignments are important to ET and demand many choices that are not
currently optimized for each protein (which databases, search and alignment tools; and which
homologs to include depending on sequence similarity and extent of insertions and
deletions?). One approach can be to BLAST a query against diverse sequence databases

(NCBI non-redundant database, Uniref90, Uniref100) that can then be aligned three-ways:
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with MUSCLE, MAFFT and ClustalOmega, letting the parameters of the alignments vary.
The Evolutionary Trace analyses for each MSA can then be averaged to generate global
percentile ranks. Preliminary results show this averaging yields an AUC as good as the
single best working MSA and better than any individual MSA in 75% of cases. A better but
more computationally demanding approach, is to assess the smoothness of ET ranks derived
from every different MSA in order to judge which is better in the structure, or the sequence,
as demonstrated previously.

[00100] Other considerations. Gene duplications (paralogs) may diverge functionally,
leading to inaccurate ET. This situation is normally treated with Difference ET, which
recognizes differences between traces of the whole protein family and a branch restricted to
the neighborhood of the proteins of interest. This process can be automated by traversing the
phylogenetic tree searching for unique ET trace results. Selecting node j of the phylogenetic
tree results in a different set of sequences, which, in turn, leads to a unique set of ET ranks
(x;). We can compare ET traces for nodes j and & by summing the difference between the

ranks for each position in the protein, dj, = Zi|xj’i - Xk’il. The function provides a distance

matrix (d) representing the similarity between node-specific ET traces. We can then identify
sets of nodes with similar ET signature using a clustering algorithm (such as hierarchical or
quality threshold). This lets us identify nodes that provide distinctly different analysis from
the starting tree which are more relevant to the query protein.

[00101] D. To Improve Approximations of the Substitution Matrices

[00102] 1. More relevant substitution matrices

[00103] The preliminary substitution log-odds were based on 67,000 protein chains of the
PDB database—causing sampling biases. The sequences over which the matrix is computed
should be more specific to the protein of interest. This can done by (a) expanding the
reference set of sequences to all that are available, regardless of whether a structure is
available, (b) eliminating redundancy biases by pruning sequences with greater than a%
sequence identity (say a = 75%); (¢) limiting the reference sequences to the species of interest
only, often a model species (human, mouse, rat, fly, frog, worm, E.coli, and so forth); (d)
limiting sequences to those with the same GO annotation of cellular location; (¢) for each
reference sequence, building MSAs that only include sequences with greater than 5%

sequence identify so that they be mostly functionally related sequences (say b = 50%). This
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approach can generate substitution matrices that are more finely attuned to the protein of
interest.

[00104] 2. ET-dependent substitution matrices

[00105] It would be surprising for the relative substitution rates to be identical among
sequence positions with different evolutionary gradients. Indeed, although on average the
substitution odds from a large set of proteins agree with standard values, there are marked
deviations from this average depending on the evolutionary gradient. For example, alanine to
valine substitution odds form a bell-shaped distribution as the evolutionary gradient varies;
those of alanine to threonine begin flat then tail off, whereas those of alanine to aspartate
decay steadily. These data show that the evolutionary gradient is an important factor in
substitution bias and we can approximate Ar; by the evolutionary gradient-sensitive
substitution odds. In preliminary data, ET-dependent substitution matrices improve Pearson
R” and AUC by 5% to 10%.

[00106] Other considerations. (i) We can further refine substitution matrices to account
for secondary structure, known or predicted (with predictors, such as APSSP2, PSIPRED,
JPRED, and NPS@), and to account for solvent accessibility based on tertiary structure. In
preliminary data, these introduce variations that are useful and distinct/complementary to the
ET-dependence effect.

[00107] E. Benchmarks and Expected Outcome

[00108] To evaluate these approximations for ¢f/dr; and for Ar; against each other and
against other methods, we can divide the datasets discussed in B.1 into separate training and

testing sets. The tests can include:

[00109] 1. Improved Pearson lincar correlation

[00110] We can measure the Pearson R? linear correlation coefficient and slope of EA
versus the fraction of loss-of-function mutations. A bootstrapping method to define the
confidence intervals can let us assess the statistical significance of any improvement. More
broadly, we note that linear correlation coefficients perform best as measures of linear
relationships, if instead the relationship is of the form of y = b x“, then a multiplicative
relationship is expected, and it can be appropriate to apply logarithmic transformations and
employ linear modeling methods.

[00111] 2. Improved AUC
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[00112] The Area under the ROC curve plots the sensitivity (true positive rate) versus the
specificity (true negative rate), so that AUC is between 0.5 and 1 for positively correlated
predictions. Statistical methods for dealing with ROC and AUC show that confidence
intervals for the ROC curve at a fixed false positive fraction can be found for large enough
sample sizes by approximating the distribution of the ROC as a normal distribution with
mean and variance (given in Eq. 5.2 of Section 5.2.3 of Pepe 2003). The empirical AUC is
the Wilcoxon rank sum statistic, so confidence intervals can be determined for this statistic as
well. Furthermore, confidence intervals of the log-odds AUC can be found based on the
sample variance given by Eq. (5.10), which works well in smaller sample sizes (Pepe 2003,
Section 5.2.5). Comparing the AUC of EA to another method is also possible, with
confidence intervals and sample variances given in Pepe 2003, section 5.2.6 for their
difference in AUC. In cases where sample sizes are too small or normality assumptions are
not fulfilled, we can use bootstrapping to determine confidence intervals for the AUC. ROC
curves and the AUC can be calculated and created using the R package ROCR.

[00113] 3. Comparison to current state-of-the-art computational methods

[00114] These tests can also be applied to compare EA to other methods, such as SIFT,
Polyphen-2, MAPP, A-GVGD, SNAP, MutPred and mutationassessor (Other methods:
PANTHER, SNPs&GO, nsSNPAnalyzer).

[00115]  Other considerations. (i) We will continue to participate in international blind
assessments contests such as CAGI and DREAM. (ii) Proteins are multifunctional and
differences may exist between specific experimental assays for a mutation. To study these
issues we note that the retrospective p53 dataset gives mutational impact on § different assays
of p53 activity. We can compare EA to each one, or to their average. So far, the best fit
(R’=0.92) is with the average. (iii) It is important to assess the complementarity of different
approaches. The next section describes methods to do so.

[00116] F. Combining Predictions of Missense Mutations

[00117] We developed a statistical model called postM based on the capture-recapture
paradigm that combines discordant predictions of deleterious impact in a statistically rigorous
manner and estimates a resulting posterior probability of functionality or pathogenicity for
any missense mutation. This probabilistic approach requires no training set or calibration. It
estimates the accuracy (sensitivity and specificity) of each individual in silico method and the

fraction of mutations that are deleterious in the absence of a gold standard by analyzing the
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subsets of data on which different algorithms agree or disagree. Importantly, the framework
allows computing a posterior probability that the variant at a given site is functionally
important, given readings of the interrogated algorithms. Moreover, by introducing
additional hierarchy, we have obtained a more complicated, but also more accurate postMut
model. In practice, we studied several applications to missense mutations with known
functional impact on protein function and both algorithms were extensively tested on
simulated data with the favorable outcomes shown in FIGs. 4A and 4B.

[00118]  Other considerations. PostMut combines binary predictions, while most of the
algorithms offer a continuous score. We can remove this disadvantage in a new algorithm
postMut-2, which can allow estimation of a posterior probability of the variant being

functional, based on the continuous scores of several algorithms.

EXAMPLE 2: IDENTIFYING DISEASE-CAUSING GENES

[00119] A. Rationale: EA distribution in a population

[00120] Since EA correlates with changes in fitness, a population of individuals should
carry fewer coding polymorphisms with larger action. FIG. 5A (dashed line) shows the
frequency of 261,899 unique coding variations from the Thousand Genomes Project (TGP) as
a function of their action (EA). With no special regard for zygosity, dominance, genetic
background, or trait associations, and in contrast to other measures of deleterious impact (not
shown), the action distribution is nearly exponential (R’=0.92). This matches Fisher’s 1930
prediction that a population loses polymorphisms nearly exponentially with their fitness
impact, but for which experimental validation had been lacking until now due to lack of a
practical measure for the size of the fitness effect of genomic variants. The decay rate (1) of
the EA distribution is larger for essential genes (thin and thick solid lines), lower for
truncated genes (dotted line), and is log-linear with the allele frequency (v) (FIG. 5B,
R’=0.92). These data show that variations with greater EA score are more stringently
purified. Our hypothesis is that deviations from this EA-based purification pattern indicate
unusual selective constraints that are disease-associated. We can therefore test that disease-
causing mutations, genes and pathways have different EA distributions that identify them and
gain more significance as EA measurements improve.

[00121]  Other consideration. Fitness changes could be beneficial and subject to positive

selection. However, the nearly exponential decay of the EA distribution shows that most
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coding variations are selected against and that advantageous mutations must be rare, at best,
consistent with the nearly neutral theory of evolution.

[00122] B. To separate benign and disease-causing mutations based on distributions
of EA Scores

[00123] We first examine distributions of EA score for mutations and for genes that can be
classified as either benign or disease-associated and that are taken variously from healthy or
affected patients.

[00124] 1. Data Sources

[00125] UniProt (as LOVD -Leiden Open Variation Database- and HGMD -Human Gene

Mutation Database-) is hand-curated and reports for 20,343 human genes whether
polymorphisms are disease-associated, neutral or not yet classified, with references and
description of the phenotype. These genes can be studied to compare distributions of EA
score in benign or discase mutations. As an example, we selected a set of 218 genes, each
with multiple disease-associated variations, benign variations, and few unclassified
variations. Among these genes, 7SC2 (Tuberous Sclerosis 2 disease) and PKD/ (polycystic
kidney disease type 1) have 52 and 95 disease-linked mutations, and 30 and 59 benign
variations, respectively.

[00126] Many other gene-specific databases also exist, for example, TP53 encodes p53,
the single most mutated protein in human cancers and the IARC (International Agency for
Research on Cancer) maintains a database of more than 30,000 7P53 somatic variations from
human tumor samples. These mutations may be grouped by frequency to distinguish
causative from sporadic ones of uncertain significance. Moreover, nearly all of p53
mutations have been assayed in yeast studies for ir vitro transactivation on 8 p53 response-
elements.

[00127]  Other considerations. Disease-associated genes can also come from embryonic
lethality in mice (www.knockoutmouse.org); and from human brain over-expression data
(http://www.ebi.ac.uk/gxa/). A source of benign variations is the Thousand Genomes Project
(TGP) that contains SNVs found in 1092 healthy individuals. These annotations may not all
be equally reliable. The best data will come when independent databases agree.

[00128] 2. Experimental Design

[00129] We can use these datasets to compare distributions of EA scores between benign

and disease-associated mutations. For each individual mutation an EA score can be
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computed from Equation (3) and binned by EA deciles. The preliminary data in FIGs. 6A-6E
show that these distributions are profoundly different. In 7P33, frequently seen mutations
(=10 cases) and likely to be causal are heavily skewed to high action and they are statistically
distinct from the flat EA distribution of sporadic 7P53 mutations (chi-square p-value = 9 x
107*). The distributions of EA scores are also different for disease and benign variants of
both 7SC2 and PKD1 (Wilcoxon rank-sum p-value <0.01), and among all 218 genes from the
UniProt database (Wilcoxon rank-sum p-value < 107°). Quantitatively, these differences can
be measured in two ways: with differences in the decay rate 4 of an exponential fitted to each
distribution, with statistical significance ascertained by the confidence intervals following a
bootstrapping practice. Or it can be measured by classifying each mutation as benign or
harmful based on its EA score and then measuring the AUC under the sensitivity-specificity
ROC (see Example 1, above). This AUC is 0.86 for the p53 data and 0.85 for all 218
proteins, respectively, which is greater than achieved by SIFT, MAPP, PolyPhen and
PolyPhen-2 (data not shown).

[00130] 3. Expected Outcome

[00131] These studies should show that EA scores are a novel measure of clinical harm for
coding mutations. In disease-associated proteins, coding variants with low EA scores are
typically benign while harmful ones typically have larger EA scores. This is true for
individual genes and for entire sets of genes, as reflected by opposite distribution biases of
their EA scores in the preliminary data and by an AUC that is currently on the order of 0.85.
These numbers can improve as EA scores improve as a result of the procedures described
above in Example 1.

[00132] Pitfalls. (i) Sporadic mutations might be deleterious, reducing the accuracy of this
analysis. This can be addressed for TP53 through an exhaustive battery of yeast-based in
vitro assays that assess functional impact. FIGs. 6A and 6B show, in black, the deleterious
fraction of p53 mutants (i.c., transactivation activity was decreased by 50% over § different
assays, on average). The sporadic mutations that impaired function in vitro were largely
biased to large EA scores with a chi-square p-value of 2-10". Thus, sporadic mutations with
high EA scores are functionally deleterious in vitro and likely to be driver mutations in
cancer.

[00133] C. To identify disease-causing genes
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[00134] We now examine distributions of EA scores for mutations in cohorts of patients
with identical disease diagnosis. In such cohorts, recurrently mutated genes are thought to be
causative. We can test whether EA scores also detect these genes. Example data are shown
in FIGs. 9A-9D.

[00135] 1. Data Sources

[00136] The Cancer Genome Atlas (TCGA) currently contains about 10,000 genomes

from 29 tumor types. The International Cancer Genome Consortium (ICGC) contains 11,633
cancer genomes from 18 tumor types (data release 16, May 2014). A list of known cancer
genes can be obtained from The Cancer Gene Census, which currently lists 522 cancer genes.

[00137] 2. Experimental Design and Example Data

[00138] To identify disease-causing genes in cancer, we can compare the EA distribution
for the mutations found in each gene in the disease cohort with the expected distribution
when genes are unrelated to the disease. Reference sets include: 1) random mutations on the
same gene, obtained by the translation of random nucleotide changes following the standard
genetic code, i) mutations on the same gene from TGP data (healthy patients mostly), and iii)
all missense variations found in any gene in the TCGA data.

[00139] The background EA distribution for all TGP coding variants (FIG. 9A) is the basis
for the dashed curve (“All Genes”) of FIG. SA. The same distribution for all somatic cancer
mutations from TCGA (FIG. 9B) has a much smaller exponential decay rate (A=0.011), that is
indistinguishable from a simulated distribution in which nucleotides are randomly mutated
(FIG. 9C, consistent with the view that most genetic alterations in cancer cells are random).
The distributions of the tumor suppressor 7P53 and the oncogene PIK3CA are strikingly
different (FIG. 9D) with strong biases to higher and intermediate EA scores, respectively.
This is also in sharp contrast to the equivalent TGP distribution and to DNAHS5, which is the
most frequently mutated gene in TCGA that is also unrelated to cancer. These example
results suggest we can compare EA distributions in cancer genes and non-cancer genes to
detect preferential selection of genetic alterations that identify cancer-associated genes.
[00140] 3. Statistics

[00141] We can compare distributions with two-sample Kolmogorov—Smirnov (g-values,
FIG. 9), Wilcoxon rank-sum and Anderson-Darling tests. Kolmogorov-Smirnov is the
classical test but relies on critical values calculated based on asymptotic distributions, so

genes with small sample sizes could be problematic. The Anderson-Darling test is more
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powerful generally, and useful for small sample sizes, but slower than the Kolmogorov-
Smirnov statistic. The Wilcoxon rank-sum test is also useful because it is less sensitive to
individual observations and more sensitive to differences in the median (Kolmogorov-
Smirnov is sensitive to any differences in the distributions).

[00142]  Other considerations. These example results also suggest EA may distinguish
tumor suppressors from oncogenes. The EA distribution of 7P53 is strongly biased towards
high EA mutations presumably because these inactivate the tumor-suppressive function of the
gene and provide a selective growth advantage to cancer cells. However, for PIK3CA,
mutations with intermediate EA values are preferred, suggesting the selective advantage
arises in oncogenes that is potentiated by a milder impact, gain-of-function mutation but that
1S not so strong as to knock out function altogether.

[00143] D. Application to Specific Cancers

[00144] 1. Hecad and Neck Cancer

[00145] We can apply these EA distribution differences to identify cancer-causing genes.
Example data from TCGA in Head and Neck Squamous Cell Carcinoma (HNSC) illustrate
the process using 42,236 missense mutations from 306 patients.

[00146] We applied the two-sample Kolmogorov—Smirnov (KS) test between each gene’s
distribution of EA scores for HNSC mutations, and a reference EA distribution for somatic
mutations (we used all missense variations found in any gene in the TCGA HNSC data).

This yielded 88 genes (p-value < 0.01), 15 of which are associated to head and neck cancer in
the literature (7P53, PIK3CA, NOTCHI, NFE2L2, HRAS, FBXW7, EP300, MYH9, CDKN2A,
CASPS, NSD1, RACI, MAPKI, FATI, and PTPRT), and 7 more are associated with other
cancers, but not HNSC thus far (EPHA3, SMARCA4, DFNAS, PPFIAI, CUL3, DOCK2, and
ZNF217).

[00147]  Pitfall. Multiple-hypothesis testing is a concern. Despite the significant
enrichment of HNSC genes and of other cancer associated genes, when we convert the p-
values to false discovery rate (¢g-value) based on the method of Benjamini and Hochberg
(1995) to correct for multiple testing, only the top five well-established HNSC causative
genes remain significant: TP53 (g-value =7.2x10™"), PIK3CA (g-value =2.7x10™), NOTCH]
(g-value =2.8x107), NFE2L2 (g-value =3.4x107), and HRAS (g-value =5.6x102). The loss
of 10 known HNSC genes and 7 more known CA genes suggests this multiple testing
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approach is too conservative. To address this issue, we turn next to the significance of
functional connections in our list of 88 genes.

[00148] 2. Gene Clustering Statistics

[00149] Two approaches can test whether a candidate cancer driver gene list (L) is
enriched over a protein-protein interaction network, such as STRING (Franceschini et al.,
2013). First, we can choose a random background model that preserves the degree
distribution of proteins in a given list, called the Random Graph with Given Degree Sequence
(RGGDS), (Franceschini et al., 2013) and similar to references (Maslov & Sneppen, 2002;
Pradines et al., 2005). A strong edge enrichment corresponds to a low probability of
sampling an RGGDS that has at least the observed number x of edges connecting proteins in
the list L. Let X be a random variable denoting the number of edges connecting proteins in
an RGGDS with similar size as L. The probability (p-value) is then written as
S(x)=P(Xr>x). If L is large, Xi. can be approximated by a Poisson random variable, whose
cumulative probability function P(X;>x) can be explicitly written down.

[00150] Second, as an independent assessment, one can determine whether the candidate
cancer driver genes in the list L tend to cluster. A graph diffusion model propagates the
annotation of a group of genes belonging to a particular class, in this case “cancer candidate
genes,” over a protein-protein interaction network, such as STRING to implicate related
genes. Highly clustered members of the list L can be found from leave-one-out cross-
validation in which each tested candidate gene from the list L is “left out” and tested to see
whether that gene would have been predicted by network diffusion using the remaining
candidate genes from the list L. It will be considered as part of the cluster if its diffusion
score is greater than one standard deviation above the mean of the diffusion scores of all
genes in the network. Finally, to test whether the leave-one-out analysis results in
statistically significant enrichment in the gene list L with respect to an equal number of
randomly selected genes from the STRING network, one can compare the fraction of genes
that cluster in each case. In order to estimate the clustering for a random set of genes in the
STRING network, one can iterate this process at least 1000 times.

[00151] In practice, the candidate cancer genes obtained from the analysis of Head and
Neck Squamous Cell Cancer (HNSC) mutations from the TCGA were compared to random
sets of genes ranging from 10 to 100 genes (FIG. 10). For any number less than 50 HNSC

genes, the fraction of clustering was at least 3.26 standard deviations away from the fraction
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of clustering for the same number of randomly selected genes. This strongly suggests that the
leave-one-out analysis can provide a level of confidence for the cutoff of p-values that
separates genes predicted to associate with cancer. (If the top five genes are removed,
clustering remains significant (1.95 standard deviations)).

[00152] Expected Outcome and Additional Directions. These studies can show that the
distribution of EA scores provides a novel approach to identify potential cancer-causing
genes that methods largely based on mutational frequency cannot, with additional
significance arising from their functional relatedness. In turn, these genes are candidates for
experimental testing. As an additional direction, the same methods may be applied for the
association (or not) of a gene with a complex inherited disease other than cancer: One can
compare the action of germline mutations found in the disease cohort with the action of
mutations observed in the TGP, taking into account the allelic frequency of each
polymorphism and its variability among different ethnic groups.

[00153]  Other considerations. (i) This does not take into account other types of mutations
as MutSig and other techniques do. However, one can incorporate the EA score with other
parameters (nonsense mutations, Ka/Kg ratio test, and so forth) into a machine learning
scheme to prioritize cancer related genes. (ii) A greater concern is that many genes may
contribute to a disease sporadically because mutations in many other genes can perturb their
pathway. The next section sketches out further directions to identify rarely mutated genes
and their underlying pathways.

[00154] E. Identify disease causing pathways

[00155] In order to identify genes that impact cancer in synergy with other genes, one can
analyze mutation bias on the pathway scale. Groups of functionally related genes may be
mutated at a low frequency individually but at sufficiently high frequency collectively and
are biased toward high action. For example, this may occur if damage to a particular function
in the cell confers advantage to the cancer, but there are multiple genes that, when mutated,
are equally capable of disrupting the function. Using the Reactome database, a manually
curated, peer-reviewed pathway database, composed of nearly 1500 pathways and about 7000
genes, embodiments of the present invention can identify functionally related groups of genes
with a bias towards high action mutation as illustrated in FIGs. 11A-11D. This pipeline
considers all Reactome pathways consisting of >1 gene that contain at least one somatic

missense mutation in the patient cohort. In order to avoid rediscovering high-frequency
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drivers, all pathways are considered without the contribution of genes that are significant in
single-gene analysis. Each pathway is then optimized to identify if there is a subset of genes
(a ‘module’) within the pathway whose mutations are significantly biased to high action as a
group, as determined by the Kolmogorov-Smirnov two-sample test with all missense
mutations in the cancer as the reference. Modules that are more significant than at least 95%
of the modules obtained from optimization of randomly simulated pathways of the same size
are then considered to be gene modules of interest. Positive selection of this group of
candidate genes is then confirmed through a significantly increased missense:silent mutation
ratio in the candidate gene group compared to the non-candidate gene group. This method
allows not only the identification of low-frequency driver genes that current computational
methods overlook, but also the identification of which biological processes are most
disrupted by these mutations. This approach can provide new drug targets on both the single-
gene and pathway level, as well as indicate new markers for effective patient stratification.
[00156] FIG. 11A shows the evolutionary action distribution of all TCGA HNSCC
somatic mutations in the 7060 genes in the Reactome Database. FIG. 11B shows the
evolutionary action distribution of the reactome pathway ‘Sema4D in semaphorin signaling’
(REACT _19259.1) in HNSCC. The pathway contains 27 genes and 111 missense somatic
mutations. Optimization of the pathway in this case identifies a ‘core module’ of 12 genes
and 58 mutations (FIG. 11D) that accounts for the majority of the high action mutations and
is significantly biased toward high action (p=1.08¢-7), while the excluded genes (FIG. 11C)
account for the majority of the low action mutations.

[00157] FIGs. 12A-12B are graphs illustrating support for the ‘core module.” FIG. 12A is
a stacked histogram of the evolutionary action distribution for the core module genes. Two
of the core module genes, SEMA4D (Basile et al. 2006; PMID: 16754882) and MYH9
(Schramek et al. 2014; PMID: 24436421), have been validated experimentally in the
literature as driver genes in this cancer, but are believed to have never been predicted
computationally before now. This pathway method identifies SEMA4D correctly as an
oncogene (action=53.24) with only a single mutation, and also identifies MYH9 correctly as
a tumor suppressor (median action= 81.07). In FIG. 12B, the 12 candidate genes are shown
in STRING Actions View, high confidence mode. All twelve candidate genes are

experimentally confirmed to interact with at least one other gene in the set.
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EXAMPLE 3: KELCH MUTATIONS

[00158] The Evolutionary Action approach has been employed to study mutations of a
protein associated with Malaria.

[00159] FIG. 13 illustrates mutations in the Kelch protein of Plasmodium falciparum
(PF3D7_1343700). In the literature, 63 Kelch mutations were reported in four papers: 1)
Ashley et al., 2014, ii) Ariey et al., 2014, iii) Straimer et al., 2014, iv) Taylor et al., 2014, and
v) Takala-Harrison, 2014. The mutations include mutations of the following types: 1
nonsense, 8 silent, and 54 misssense mutations. Of the 54 misssense mutations, 17 are
resistant, 19 sensitive and 18 unknown. Here, ‘resistant’ is defined as exhibiting a parasite
clearance half-life > 5 with respect to Artemisinin, ‘sensitive’ is defined as exhibiting a
parasite clearance half-life < 5 with respect to Artemisinin, and ‘unknown’ denotes that no
information of parasite clearance half-life with respect to Artemisinin is available.

[00160] FIG. 14 illustrates the functional impact of mutations. Here, a formal perturbation
equation between genotype and phenotype determines the evolutionary action of protein
coding variations on fitness. Evolutionary importance is computed with the Evolutionary
Trace (ET) procedure described herein, separately for every sequence position (FIG. 14,
upper left panel, “Evolutionary Importance of the Site”’). The ET procedure produces a
number that tells us whether mutations at a given amino acid sequence position is linked to
large evolutionary jumps (vertebrates to invertebrates) or small ones (wolf to dog). Large
jumps suggest that the overall organismal “fitness” is very sensitive to mutations at that site,
in that protein. Small jumps suggest the opposite, i.c., fitness is insensitive to mutations at
that site in that protein.

[00161] Substitution magnitude measures the size of the perturbation introduced by a
coding mutation (FIG. 14, lower left panel, “Substitution Magnitude at the Site”). Alanine to
Valine would be small, Alanine to Lysine would be large. So we use substitution matrices to
compute this value. A subtlety is that these substitution matrices, which are computed over a
large fraction of the proteome, depend on the evolutionary importance of the site under
consideration.

[00162] As schematically illustrated in FIG. 14, Evolutionary Action is a product of
Evolutionary importance and Substitution magnitude. This product reflects the first order
perturbation equation for the approximate change of a quantity, y, when another quantity, x,

changes and the two are related by a function, f, such that y = f(x). The solution is dy =



WO 2016/064995 PCT/US2015/056646
231 -

f(x)-dx. When x is genotype and y is fitness, {’ is the evolutionary importance computed by
ET, and dx is the substitution magnitude. Their product is, to a first approximation, dy, which
is the change in fitness resulting from the action of the mutation dx. The function f itself
remains unsolved, it is the “evolutionary function” that connects genotype x to
phenotype/fitness y. What is surprising, is that the evolutionary gradient, f, is easy to
compute. The result is a fundamental perturbation equation for the evolutionary action of
coding mutations on fitness (FIG. 14, right panel, “Evolutionary Action or Fitness Impact”).
[00163] FIGs. 15A-15D illustrate Evolutionary Action distributions of Kelch mutations
and their interpretation. In the figures, KS scores are the Kolmogorov-Smirnov p-values
when comparing each action distribution with those of 1) random nucleotide changes
(“KSiandom”), and ii) polymorphisms found in the 1000 Genomes Project (“KSi0006”).
Resistant mutations show significant positive selection (non-random and non-polymorphic).
[00164] It was hypothesized that mutations that affect Kelch function have intermediate to
high action, and that mutations that do not affect Kelch function have low to intermediate
action. The results of the interpretation of the distributions shown in FIG. 15A-15D suggest
the following:

[00165] 1) The 54 missense Kelch mutations have no bias to low or high action (FIG.
15A).

[00166] ii) The 17 resistant Kelch mutations have intermediate-to-high action, consistent
with significant perturbation of the Kelch function (FIG. 15B).

[00167] iii) The 19 sensitive Kelch mutations have low-to-intermediate action, consistent
with being nearly neutral (FIG. 15C).

[00168] iv) The 18 Kelch mutations with unknown phenotype can be separated into low,
intermediate and high action (FIG. 15D).

[00169] Asillustrated in FIG. 15D, the EA procedure revealed, for example, that four
unknown mutations have high action scores (in the 100 decile): G449D, G554R, G5445E,
and G638R. This is one demonstration of the utility of the EA procedure. The four unknown
mutations are candidates for further testing, for example, to elucidate their respective roles in
Kelch function.

[00170] Turning to FIGs. 16A-16C, these figures illustrate correlation of Evolutionary
Action scores with parasite clearance half-life. FIG. 16C illustrates parasite clearance half-

life measures (dots) overlaid with EA score (bar plots) for Plasmodium falciparum Kelch
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mutations. FIGs. 16B and 16C indicate the relationship between parasite clearance half-life
and action score for mutations of FIG. 16A. When action scores are binned in deciles (FIG.
16C), a linear relationship between parasite clearance half-life and action score of the
mutations emerges.

[00171] FIGs. 17A-17D illustrate evolutionary action distributions by geographic region
for Kelch mutations of Plasmodium falciparum. The figures show that different action
distributions can be seen in mutations found in different geographical regions. For example,
FIG. 17B illustrates that mutations in Cambodia and Gambia (Ariey et al., 2014) seem to
form typical gain-of-function distribution. Further, as shown in FIG. 17C, the sub-Saharan
mutations (Taylor et al., 2014) appear to contain both more impactful and less impactful
mutations than Gambia. As illustrated in FIG. 17D, the Southeast (SE) Asian mutations

(Ashley et al., 2014) appear to be a mix of medium-to-high action and low action mutations.

EXAMPLE 4: THE EVOLUTIONARY ACTION OF PROTEIN CODING VARIATIONS
OF FITNESS

[00172] A corresponding paper by Katsonis, P., and Lichtarge, O., entitled “A formal
perturbation equation between genotype and phenotype determines the evolutionary action of
protein coding variations on fitness,” Genome Res., was published online September 12,
2014, in advance of the print journal.

[00173] Introduction

[00174] The relationship between genotype mutations and phenotype variations
determines health in the short term and evolution over the long term, and it hinges on the
action of mutations on fitness. A fundamental difficulty in determining this action, however,
is that it depends on the unique context of each mutation, which is complex and often cryptic.
As a result, the effect of most genome variations on molecular function and overall fitness
remains unknown and stands apart from population genetics theories linking fitness effect to
polymorphism frequency. Here, we hypothesize that evolution is a continuous and
differentiable physical process coupling genotype to phenotype. This leads to a formal
equation for the action of coding mutations on fitness that can be interpreted as a product of
the evolutionary importance of the mutated site with the difference in amino acid similarity.
Approximations for these terms are readily computable from phylogenetic sequence analysis,
and we show mutational, clinical, and population genetic evidence that this action equation

predicts the effect of point mutations in vivo and in vitro in diverse proteins, correlates
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disease-causing gene mutations with morbidity, and determines the frequency of human
coding polymorphisms, respectively. Thus, elementary calculus and phylogenetics can be
integrated into a perturbation analysis of the evolutionary relationship between genotype and
phenotype that quantitatively links point mutations to function and fitness and that opens a
new analytic framework for equations of biology. In practice, this work explicitly bridges
molecular evolution with population genetics with applications from protein redesign to the
clinical assessment of human genetic variations.

[00175] Each birth introduces about 70 new human genetic mutations that have led, over
generations, to the current four million DNA differences among randomly chosen
individuals. Besides insertions, deletions, copy number variations, and chromosomal
rearrangements, genetic alterations include single nucleotide substitutions that translate into
nearly 10,000 amino acid substitutions per human exome. These protein-coding variants can
affect fitness, account for 85% of known disease mutations, and are associated with more
than 2500 ailments. Nevertheless, association studies explain only a fraction of disease
susceptibility and the role of both private and common mutations remains unclear.
Computational approaches therefore aim to identify which coding variations cause disease
within the limitations of biophysical, statistical, and machine-learning models of protein
function. In parallel, a large body of theory models the spread and fixation of mutations, their
distribution for various population sizes and fitness effects, and whether selection or drift
dominates their fate. However, without a practical measure of the action of mutations on
fitness, the theory cannot be applied to the massive inflow of genetic information.

[00176] Here, we follow the perspective that evolution proceeds in infinitesimal
mutational steps to propose an equation for the Evolutionary Action of a mutation on fitness.
This action equation is derived from a model of the genotype-phenotype relationship that is
simpler than current models and that is compatible with the theory of nearly neutral evolution
and with fundamental variational principles of physics describing how physical systems
evolve to follow paths of least action. The computed Evolutionary Action consistently topped
the most sophisticated, homology-based or machine-learning methods that predict the impact
of mutations in both retrospective and prospective assessments. Retrospective validation
included large data sets of (1) experimental assays of molecular function; (2) human disease
association; and (3) population-wide polymorphisms. Prospective validation involved the

CAGI (Critical Assessment of Genome Interpretation) community contest, which challenged
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predictors to estimate the impact of 84 mutations on enzymatic activity of the cystathionine
beta-synthase. An Evolutionary Action server is accessible at http://mammoth.becm.tmc.edu/.
[00177] Results
[00178] A genotype-phenotype perturbation equation
[00179] To assess mutations, we treat cach one as a small genotype perturbation that may
disturb the phenotype. For a protein P, the genotype v is the sequence of n residues (74, 7>, ...,
r.)p, and the global fitness phenotype is a scalar quantity ¢ that integrates all the structural,
dynamic, and other functional attributes of P that affect the survival and reproduction of the
organism in its milieu. As species drift or adapt over time, y and ¢ vary, coupled to each other
by a multivariate evolutionary fitness function f, such that f(y) = ¢, where time and natural
selection constraints are implicit. Our central hypothesis is that f exists and is differentiable.
If so, a small genotype perturbation dy will trigger a global fitness phenotype variation d¢
given by:

dgp= Fiedy (5),
where Vfis the gradient of f'and » denotes the scalar product [see also Equation (2) above].
[00180] In practice, we consider the phenotype variation for a single missense mutation
from amino acid Xto any other amino acid Y at sequence position /. Then, the genotype
perturbation reduces to the magnitude of that substitution, denoted Ar;x.y, and the gradient
reduces to the partial derivative of the evolutionary fitness function for its ith component,
denoted 070r. This last term is the sensitivity of the global fitness phenotype to variations at
position /and implicitly accounts for part of the context-dependence at / that is, the structural
and functional role of that position. The remainder of the context-dependence should reside in
higher order terms that explicitly represent epistatic interactions with other mutations. To
simplify, we neglect these terms so that the Evolutionary Action (EA, or action for short) of a
single substitution on the reference genotype of a species becomes, to a first order [see also

Equation (3) above]:

(6).
[00181] In this reduced form, the Evolutionary Action equation states that a point mutation

displaces fitness from its current state in proportion to the magnitude of the mutation and to



WO 2016/064995 PCT/US2015/056646
-35-

the evolutionary fitness gradient at that site (FIG. 18 A). This differential expression is useful
because its terms may be evaluated from evolutionary data.

[00182] FIGs. 18A-18D illustrate computation of the Evolutionary Action equation
employed in embodiments of the present invention. FIG. 18A is an illustration of computing
the Evolutionary Action of a mutation, such as the R175H in the 7P53 gene, from the
evolutionary importance of the residue R175 and the Arginine-to-Histidine substitution
magnitude at that position. In FIG. 18B, a sequence alignment and the associated
evolutionary tree show that the evolutionary fitness gradient of a protein residue, which is
defined as the phenotypic fitness change due to an elementary genotypic change, will be
larger (thick line), or smaller (thin line), depending on the phylogenetic distance between
evolutionary branches that differ at that position. Since the Evolutionary Trace ranks the
functional importance of sequence positions by correlating residue variations with
phylogenetic branching (Lichtarge et al. 1996; Mihalek et al. 2004), we can estimate the
evolutionary fitness gradient with ET.

[00183] In FIG. 18C, a matrix, computed from nearly 67,000 protein sequence alignments,
displays the relative substitution odds from alanine to any other amino acids (in single-letter
code) depending on the evolutionary gradient decile at the mutation site (most likely
substitutions are in light grey, least likely ones are in dark grey), and compared to the
standard BLOSUMS62. The single-letter code is: A: Alanine, W: Tryptophan, F:
Phenylalanine, Y: Tyrosine, L: Leucine, I: Isoleucine, V: Valine, M: Methionine, C:
Cysteine, H: Histidine, T: Threonine, G: Glycine, P: Proline, Q: Glutamine, N: Asparagine,
S: Serine, D: Aspartic acid, E: Glutamic acid, K: Lysine, R: Arginine. In FIG. 18D, the
gradient specific (bars), the non-specific (dashed lines) and the BLOSUMS62 (straight lines)
substitution odds are illustrated for alanine substitutions to valine (V), threonine (T), and
aspartate (D).

[00184] To measure the evolutionary fitness gradient 0f/0Or;, we rank the importance of
every sequence position with the Evolutionary Trace (ET) method (Lichtarge et al. 1996;
Mihalek et al. 2004; Wilkins et al. 2013). By definition, a gradient is the ratio of the
sensitivity of a function with respect to its coordinates. Here, df/0r; is the sensitivity of the
global fitness phenotype with respect to a mutational step, or simply the fitness difference
observed upon variation. This definition points to ET, which ranks every position in a

sequence alignment of a protein family as more (or less) important if it varies mostly among
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major (or minor) evolutionary branches. Since evolutionary branch distances reflect fitness,
in effect ET and evolutionary gradient are equivalent concepts and we may choose ET ranks
to approximate Jf/0r; (F1IG. 18B). A frequent and simpler measure of evolutionary importance
is residue conservation, but conservation is an average rather than a derivative and is less
accurate than ET in practice. In that light, prior ET studies have already shown the broad
applications of evolutionary gradients: They identify functional sites and allosteric pathway
residues, guide mutations that block or reprogram function, and define structural motifs that
predict function on a large scale, such as substrate specificity.

[00185] To measure the magnitude of a substitution Ar; x_.y, we use the relative
evolutionary odds of these substitutions. For example, the amino acid alanine is substituted to
serine more often than to aspartate, in line with greater biophysical and chemical similarities
to the former. Although conceptually independent, we find that the gradient of a position
strongly biases its substitution odds. For example, compared to standard, uniform substitution
values, alanine positions with large gradients mostly tolerate substitutions to small neutral
amino acids, whereas alanine positions with small gradients strongly favor substitutions to
large polar or charged amino acids (FIG. 18C). These trends are specific to every amino acid
pair: Alanine to valine substitution odds form a bell-shaped distribution as the evolutionary
gradient at the mutated position varies from minimum to maximum; those of alanine to
threonine begin flat then tail off, whereas those of alanine to aspartate decay steadily (FIG.
18D). These findings are also distinct and complementary to the dependence of substitutions
on structural features and show that the evolutionary gradient at each sequence position is an
important factor in substitution bias. Accordingly, we approximate Ar; y—.y by the
evolutionary gradient-sensitive substitution odds.

[00186] The Evolutionary Action correlates with experimental loss of protein
function

[00187] FIGs. 19A-19E illustrate mutational action correlates with experimental impact.
Each figure shows along the x axis the action predicted from the EA equation, Equation (6),
and along the y-axis the fractional activity or fitness measured experimentally as: (19A) the
average loss of recombination activity in 31 point mutants of E.coli RecA protein; (19B) the
non-functional fraction of 4,041 point mutants in E.coli lac repressor in a -galactosidase
repression assay (Markiewicz et al. 1994); (19C) the non-functional fraction of 2,015 point

mutants in bacteriophage T4 lysozyme in a plaque formation assay (Rennell et al. 1991);
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(19D) the non-functional fraction of 336 HIV-1 protease point mutants in substrate cleavage
(Loeb et al. 1989); and (19E) the average transactivation activity of 2,314 human 7P53 point
mutants assayed in yeast over eight response-clements (Petitjean et al. 2007). The data are
binned into action deciles, the R’ values indicate Pearson product-moment correlation
coefficients following linear fitting, and the standard error of the mean is shown with error
bars.

[00188] For any mutation in a protein with a sufficiently large evolutionary tree, typically
more than 20 sequences from a variety of species, we can now apply the approximations for
0f/0r; and Ar; x—.y to evaluate a normalized Evolutionary Action, from a neutral value of 0 to a
maximum impact value of 100, and then compare this action to the relative changes in
function and fitness observed experimentally. First, the Evolutionary Action correlates
linearly with the average loss of DNA recombination measured in vivo by P1 phage-mediated
transduction in 31 E. coli RecA point mutants relative to wild type, with a Pearson R
correlation coefficient of 0.87 (FIG. 19A). More broadly, in larger and independent data sets,
correlations between the Evolutionary Action and the fraction of dysfunctional mutants in
vivo or the average loss of activity in vitro range from 0.73 to 0.96 (FIG. 19B-19E) in 4041
lac repressor mutations in E. coli assayed for their impact on B-galactosidase repression; 2015
lysozyme mutations in bacteriophage T4 assayed for plaque formation due to degradation of
the host cell walls by lysozyme; 336 HIV-1 protease mutations assayed by the cleavage
products; and 2314 TP53 mutants assayed for transactivation (see Methods). The Spearman’s
rank correlation coefficient is at least 0.98. In lysozyme, two regimes were apparent: Low
action mutations minimally affect the phenotype (or the assay), and then there is a steep
linear response past some action threshold (FIG. 19C). This lag may be due to the relative
insensitivity of the lysozyme assay, which only classified 16% of mutations overall as being
deleterious compared to 62%, 53%, and 30% in the /ac repressor, HIV protease, and 7P53
assays, respectively. In TP53 there is also a lag, but it is small and may reflect the
experimental error of averaging small differences in transactivation.

[00189] As areference, the sensitivity and specificity of common alternative measures of
mutational impact are lower on the same data sets (see FIG. 20, described below). Moreover,
blind predictions assessed by independent judges also showed that the action equation
identified deleterious mutations better than state-of-the-art predictions of mutational effect

(see FIG. 3A, “CAGI 20117). Together these data span 8500 mutations in eukaryotic,
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prokaryotic, and viral proteins, and they show that the Evolutionary Action equation
quantifies the impact of mutations on assays of function and fitness.

[00190] FIG. 20 illustrates the performance of the Evolutionary Action method as
compared to state-of-the-art methods. The Area Under the receiver operating characteristic
Curve (AUC) of the relative sensitivity and specificity to separate harmful from harmless
mutations for the Evolutionary Action, Polyphen-2, SIFT, and MAPP was calculated for each
of the datasets: 2,015 bacteriophage T4 lysozyme mutants to break the host cell walls; 4,041
E.coli /ac repressor mutants to repress beta-galactosidase more than 20 fold; 336 HIV-1
protease mutants to cleave the Gag and Gag-Pol precursor proteins (Polyphen-2 returned no
predictions for the HIV-1 protease mutations); and 2,314 human 7P53 mutants to transactive
8 TP53 response-clements in yeast.

[00191] As described above, FIG. 3A shows additional performance data for the
Evolutionary Action method. The average rank of current methods (bars), from different
groups (letters), to predict the activity of cystathionine beta-synthase (CBS) mutants were
assessed by the Critical Assessment of Genome Interpretation (CAGI) of 2011. The CBS
activity was assayed for the ability of each mutant to restore growth in yeast cells lacking the
normal CYS4 ortholog under two different growth conditions (high and low concentrations of
pyridoxine co-factor) (Mayfield et al. 2012). Twenty methods from nine groups were
assessed over nine criteria (precision, recall, accuracy, harmonic mean f1, Spearman’s rank
correlation coefficient, Student’s t-test p value, Root Mean Square Deviation (RMSD),
RMSD over z scores, and the area under the Receiver Operator Characteristic curve (AUC))
for each co-factor concentration and then their rank was averaged. Evolutionary Action is
shown in black, and a taller bar is better rank. Raw data and assessment details are available
at the CAGI website (https://genomeinterpretation.org/) and from the CAGI organizers
Susanna Repo, John Moult, and Steven E. Brenner. The Evolutionary Action analysis files
are available at http://mammoth.becm.tmc.edu/KatsonisLichtargeGR.

[00192] The Evolutionary Action correlates with severity in inherited diseases
[00193] Since protein variations of unknown significance (VUS) are a recurring problem
in exome interpretation, we asked next whether the Evolutionary Action could be a biomarker
for the impact of protein mutations on human diseases. We first assembled a set of 218 genes
from the UniProt database, which were each annotated with both benign and harmful coding

polymorphisms (see Methods). The Evolutionary Action distribution was strikingly different
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between the mutations that were benign and those that were harmful, with the former strongly
biased to low action and the latter strongly biased to large action (Wilcoxon rank-sum p-value
< 10" see FIG. 6E). As a result, the action separated the two types of mutations with better
specificity and sensitivity than other methods: the area under a receiver-operating
characteristic curve was 85% overall, and it rose above 90% when only the mutations with
the greatest or the least action were considered. A second test aimed to distinguish harmful
mutations within a single protein family. Starting from a collection of 26,597 human tumors
(Petitjean et al. 2007), we compared 7P53 mutations seen in ten or more different cases, and
thus more likely to play a role in pathogenesis, to those seen in fewer cases. The Evolutionary
Action of the frequent mutations was significantly larger (chi-square p-value =9 x 10", and
these mutations were also typically non-functional in vitro (see FIG. 6A). In contrast, the less
frequent mutations had no action bias (see FIG. 6B). The subgroup of less frequent mutations
that impaired function in vitro, however, was biased to large action (chi-square p-value =
2x10™*"). These data show that the action values of clinically harmful and of benign
polymorphisms are not random. In many disease-associated proteins, low action
polymorphisms are typically benign and those with high action are typically harmful.

[00194] These distribution biases suggest that action may be prognostic of morbidity in
diseases that depend directly on a gene defect. Therefore, we turned to two autosomal
recessive monogenic disorders. First, a curated and well-characterized study of 103 mutations
of the CFTR gene linked them to cystic fibrosis (44 cases); CFTR related disease (53 cases);
or benign presentations (6 cases) (Dorfman et al. 2010). The median action between these
groups was significantly different (Wilcoxon rank-sum p-value = 1.6 x 10~; FIG. 21A), such
that high, intermediate, and low action values, separated them. Second, Pompe’s disease is a
clinically heterogencous disorder, caused by a deficiency of acid alpha-glucosidase, an
enzyme encoded by the GAA gene. Known missense mutations of GAA were classified by
order of decreasing severity into types B, C, D, and E, ending with non-pathogenic type F
(Kroos et al. 2008). The median action of GAA mutations rose significantly with clinical
severity (Wilcoxon rank-sum p-value = 5 x 10), being in the top half for pathogenic types
B-E, but in the bottom half for non-pathogenic type F (FIG. 21B). These data show that in
two different diseases the Evolutionary Action of mutation in causative genes is related to

morbidity.
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[00195] FIGs. 21A-21B illustrate that mutational action correlates with morbidity as do
FIGS 6A, 6B and 6E. Recall that FIG. 6E shows the action distributions of coding
polymorphisms from 218 genes for the 8,553 cases that are disease-associated (in black)
compared to the 794 that are benign (in grey). Each of these genes, obtained from the
UniProt database, is linked to at least one disease. Further, FIG. 6A shows the action
distribution of 343 somatic 7P53 mutations found frequently in tumor samples (at least ten
times in 26,597 cases tallied in the IARC database) compared to FIG. 6B, which shows the
remaining 1,026 sporadic 7P53 mutations. The fraction with less (more) than 50% of the
wild type transactivation activity in yeast assays is black (white), and those for which these
data are unknown is grey.

[00196] Returning to FIGs. 21A -21B, FIG. 21A shows the action distribution of 103
mutations in the CFTR gene binned by the severity of clinical presentation: full-blown cystic
fibrosis (top), CFTR-related disorders (middle), and no symptoms (bottom) (Dorfman et al.
2010). In the figure, vertical bars indicate median action, numbers refer to the total mutations
in each group, box size matches the quartiles of the distributions, and the error bars indicate
the spread of variation. FIG. 21B shows the action distribution of 135 Pompe disease
mutations in the GAA4 gene binned into decreasing severity classes from Class B, the most
severe, to Class F, which contains the asymptomatic patients.

[00197] Action reflects the fitness effect of population-wide polymorphisms

[00198] If action is a general biomarker of morbidity or fitness effect, then we would
expect the population to carry fewer coding polymorphisms with larger action. Indeed, long-
standing population genetics models suggest that the probability of polymorphisms to remain
in a population decreases nearly exponentially with their fitness effects, although without a
practical measure for the size of the phenotypic effect, validation in genomic data has been
lacking. Thus, to test the generality of the action equation, we tallied the frequency of coding
polymorphisms from the 1000 Genomes Project (The 1000 Genomes Project Consortium
2012) as a function of their action. The 261,899 unique coding variations were divided into
common mutations (36,379 SNPs with allele frequencies above 1%) and into rare mutations
(225,520 SNVs, with allele frequencies below 1%). Without special regard for zygosity,
dominance, genetic background, or trait associations, and in contrast to other measures of
deleterious impact, we found that the action distribution was nearly exponential in both

groups (R> = 0.98 and 0.95, respectively) (see FIG. 22A), but the decay or loss rate, denoted
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by A, was larger for common than for rare mutations. To investigate these different loss rates,

the variations were grouped more finely by their allele frequency, denoted by v (see FIG.
22B). This revealed a family of exponential distributions with loss rates that were log-linear
n v

J=a Ao ),
where a=4.5x 10 % and g=3.2 x 10" fit these distributions with correlation cocfficient R
=0.92 (see FIG. 22C). These data support the Evolutionary Action as a general measure of
fitness effect and show that the human coding variations from the 1000 Genomes Project are
distributed as a nearly exponential function of the action modulated by a power law function

of allele frequency:

: Ao desien | wr i s derion o 8 detion
Now Nyee s Ng g . (8),

where Nis the fraction of mutations of a given allele frequency, A= 0.2, and the loss rate A is
a scaling factor for the selective constraints on mutations with different actions).

[00199] Coding variations found in single cells, in individuals, and in populations are
ensembles of variants that span a wide range of different allele frequencies. The overall
action distribution of these different ensembles, however, is also nearly exponential with a
loss rate A unique to each one. For example, A is largest in an individual’s exome, but it
decreases by 40% over a group of individuals, such as the entire set of variations from 1092
individuals sequenced in the 1000 Genomes Project, and it decreases by 73% over the set of
all somatic cancer mutations described in The Cancer Genome Atlas (TCGA) (The Cancer
Genome Atlas Research Network et al. 2013). These data show that ensemble-specific loss
rates are dominated by common polymorphisms for an individual’s exome, by rare variants
over a population such as the group of the 1000 Genomes Project exomes, and by random
nucleotide changes in somatic cancer tissue from TCGA (see FIG. 22C).

[00200] Discussion

[00201] A fundamental problem in evolution is to quantify how genotype variations drive
phenotype variations. This work therefore applied elementary mathematical concepts from
differential analysis to formulate an equation of evolution. The result is a computable first
order Evolutionary Action equation for the effect of genotype perturbations on fitness. At the

molecular level, the action estimates the deleterious impact of substitutions in proteins from
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viruses, bacteria, and eukaryotes. In individuals, this deleterious impact measured by the
Evolutionary Action correlates with the pathogenicity and clinical course of mutations in
disease-causing genes, and it separates genes with harmful versus neutral mutations by their
different action distributions. The action threshold for clinical consequences may differ
depending on the essentiality, allelic dominance, and external factors specific to each protein.
Finally, over a population, the greater clinical harm associated with larger Evolutionary
Action governs the purifying selection of coding polymorphisms, notably recovering the
distribution of fitness effect anticipated by Fisher in 1930 and consistent with population
genetics models (Fisher 1930; Orr 2005).. Thus, the Evolutionary Action equation
quantitatively bridges the phenotypic fitness effects of mutations across molecular, clinical,
and population genetics data.

[00202] This Evolutionary Action equation rests on the fact that VAx)-dx = dy for any
differentiable function Ax) = y and on the postulate that the genotype yand the fitness
phenotype @ can stand for x and y, respectively, and be related by a differentiable
evolutionary function £ For missense mutations, the genotype variation dy is the difference in
amino acid similarity, estimated by substitution odds, and the partial derivative components
of the gradient V£is the sensitivity of fitness to mutations, estimated by the evolutionary
importance of each sequence residue. Although evolutionary importance is often conflated
with conservation, in the context of differential analysis, an average, such as conservation, is
less accurate than ET, which directly uses phylogenetic analysis to couple variations in
sequence to variations in fitness, as a derivative should, since by definition derivatives are
ratios of variations. The fact that ET measures a fundamental evolutionary quantity, V# is
consistent with its accuracy and versatility to predict, selectively block, redesign, or mimic
protein function by pinpointing the amino acid determinants of specificity. To improve
substitution odds, we likewise used phylogenetic analysis by considering the evolutionary
gradient of the substituted site. Both terms, Vfand dy, contribute to the impact of a mutation
since each one separates deleterious from neutral mutations if the other is held nearly
constant.

[00203] It is noteworthy that the evolutionary fitness function #between genotype and

phenotype is never solved for. It suffices to evaluate V#because the perturbation approach
treats mutations as infinitesimal displacements from the current fitness state of a species. This

shifts the focus from discovering global evolutionary paths in the fitness landscape,
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tantamount to solving #and predicting protein structure and function from sequence, to

evaluating the path divergences « as a sequence mutates and “jumps” in the fitness
landscape. Computing these jumps requires solving Equation (6), which is simpler because
the phylogenetic divergence tree provides an integrative summary of the impact of mutations
over all past relevant molecular, cellular, systemic, and environmental interactions even if the
details of these features remain unknown. In the future, it may be possible to improve
accuracy with additional higher-order perturbation terms that account for epistatic effects.

Another source for improvements is that, although V#and ¢y are computed over the prast

evolutionary record, their product informs on the Evolutionary Action of mutations &g «:f any
point in fime, including today. In other words, the fitness metric and the action of a mutation
are assumed to be time-invariant. This is an approximation since divergent proteins can
develop new functional sites, a phenomena that leads to branch-specific evolutionary gradient
variations and accounted for by differential ET (Lichtarge et al. 1997), for example, to
identify ligand-specific sites.

[00204] Despite its simplicity and these limitations, the Evolutionary Action equation
matches experimental data as well as or better than the most sophisticated current machine-
learning and statistical methods, and when applied to the 1000 Genomes Project data, it
brings to light fine details and new parameters for the distribution of polymorphisms. First,
the strength of selective constraints against mutations with large fitness effects is specified by
A, the exponential loss rate constant of the Evolutionary Action distribution. This loss rate is
greatest in individuals, consistent with selective pressure to carry few detrimental mutations.
It is smaller in a population, where rare variations may accumulate in unrelated individuals
for better overall adaptive potential. And A is least and reaches the lower limit set by the
codon bias itself in diverse cancer cells, in which the large background of random passenger
mutations obscures the rare cancer driving mutations. Second, as polymorphisms spread in a
population the loss rate A grows linearly at a rate of Auntil it peaks, at fixation, with An.. = «,

when v= 1. Thus, « and g are basic parameters of evolutionary drift and adaptation. For the
same value of «, species with larger B experience less selective forces against new, larger
deviations from neutral alleles, which may increase the pool of variations underlying genetic
drift and possible adaptation. Reciprocally, for the same value of 5, species with larger « have

relatively greater selective forces against larger deviations from neutral alleles, lowering
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possibilities for drift and adaptation. Since the mutation rate is subject to molecular and
selection factors, one may speculate whether similar factors might modulate «and B, and
underlie shifts between evolutionary quiescence and bursts.

[00205] More certain is that mutations with greater action are at increasing selective
disadvantage and that fixation should mostly favor polymorphisms with least action (FIGs.
22A-22B), consistent with the nearly neutral theory of molecular evolution. This is also true
when comparing the Evolutionary Action differences among pairs of homologous proteins as
they diverge further apart. Indeed, homologs that are evolutionarily closer, based on sequence
identity, consistently exhibit lower overall, as well as average, action differences. Therefore
the genotype-phenotype trajectory should follow a path of nearly least Evolutionary Action,
with the frequency of larger deviations from least action attenuating exponentially as dictated
by the loss rate A. The emergence of least action as a fundamental evolutionary constraint is
intriguing and suggests a convergence between evolution in biological systems and familiar
variational principles in physics.

[00206] For now, starting with elementary calculus and a reductive view of biology that @
= f{y), we show a first principle perturbation equation for the Evolutionary Action of
genotype variations on functional fitness phenotype that robustly matches data across
biological scales and clades. This opens new directions for the formal analysis of evolution
and, in practice, sheds light on the analysis of coding variations, with applications to
biological engineering, to genome interpretation, and to disease surveillance and personalized
therapy based on individual and comparative mutational action profiles.

[00207] Methods

[00208] Calculation of Action

[00209] The action Ag was calculated by the product of the evolutionary gradient d7/Jr

and the perturbation magnitude of the substitution, Ari«.». These two terms, Jf/dr; and Arix.»,
were measured by importance ranks of the Evolutionary Trace method and by amino acid
substitution odds, respectively, as described below. We normalized both terms and their
product to become percentile scores for each protein. Therefore, high or low action indicated
deleterious or neutral assessment, respectively, such that, for example, an action of 68
implied that the impact was higher than 68% of all possible amino acid substitutions in a

protein.
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[00210] To compute the evolutionary gradient for position /of protein £, we retrieved its
homologs in three databases (NCBI nr, the UniRef100, and the UniRef90 with blastall 2.2.15.
Up to 5000 homologous sequences were selected each time with an e-value cutoff set to 10,
the minimum sequence identity set to 30%, and all other parameters set to default values.
Sequences were aligned with MUSCLE (Edgar 2004) (http://drive5.com/muscle/), and the
columns with gap in the query sequence were removed. Then, we ran the rvET method,
which optimizes sequence selection by maximizing the spatial clustering among top-ranked
residues and their rank information, and we averaged the ET scores produced on each of
these three alignments. We computed substitution log-odds following the BLOSUM
methodology, with the difference that the odds were computed separately depending on the
evolutionary gradient of the substituted position. For this, we assembled as above over 67,000
multiple sequence alignments for proteins available in the PDB database
(http://www.rcsb.org/pdb/), and we computed an evolutionary gradient for each position of
cach alignment. These positions were divided into 10 groups (gradient deciles), and the
substitution odds were computed for each group, as described below. An additional structure-
dependent set of substitution matrices further divided each gradient decile into nine groups:
into low (< 10 A%), medium (10-50 A?), and high solvent accessibility (> 50 A?), and also
into helical, stranded, and coiled secondary structure elements. Finer bins of substitution
odds may better distinguish the selection constraints that are less common in protein
evolution, such as for transmembrane patches.

[00211] Calculation of the substitution log-odds

[00212] Let £ be the total number of matches between amino acid /(1 < /< 20) to any
amino acid /(1 < <20) when /is the most frequent amino acid in a column of class ¢(1 < ¢
<10 or 1 £ ¢<90). Then the observed frequency, gi,

for substituting the amino acid /by /in class cis

[00213] The probability of occurrence of the amino acid jin the data set is

R
he

[00214] The log-odds for the substitution of /is then calculated with entries
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[00215] Unlike the BLOSUM methodology, log-odds were not rounded to the nearest
integer.

[00216] Current predictors of mutation impact

[00217]  SIFT predictions were obtained using “SIFT BLink” (http://sift.jcvi.org/). MAPP
predictions were obtained after installing the software
(http://mendel.stanford.edu/SidowLab/downloads/MAPP/) using sequence alignments from
the UniRef90 database as input. The “p-value interpretations of the MAPP scores” were used
as the impact. PolyPhen-2 predictions were obtained using the default parameters of the batch
query tab at http://genetics.bwh.harvard.edu/pph2/.

[00218] Statistics

[00219] The chi-square test was used to calculate the p-value of the overlap between
action and clinical association or yeast assay activity of 7P53 mutations. The Wilcoxon rank-
sum test was used to compare the distributions of disease and benign polymorphisms for the
data set of UniProt mutations and of the 7P53, CFTR, and GAA genes.

[00220] Experimental data sets

[00221] The set of 31 E. coli RecA mutations was assayed in Adikesavan et al. (2011) for
its recombination activity as a percent of the wild-type activity. The mutations were binned in
10 action groups and the average recombination was calculated. The set of 2015
bacteriophage T4 lysozyme mutations was assayed in Rennell et al. (1991) by the amount of
formed plaque, due to lysozyme’s break-up of the host cell walls. Mutants with no (—) and
difficult to discern (—/+) plaque formation were considered as deleterious, while mutants with
normal (+) and small plaque formation (+/—) were considered as neutral. The set of 4041 E.
coli lac repressor mutations were assayed in Markiewicz et al. (1994) by the protein’s
repression activity. Mutations with phenotypes less than 20-fold (— and —/+) repression
activity were considered as deleterious, while mutants with more than 20-fold (+ and +/-)
repression activity were considered as neutral. The set of 336 HIV-1 protease mutations were
assayed in Loeb et al. (1989) by the amount of cleavage products of Gag and Gag-Pol
precursor proteins. Mutants with no (—) and some (—/+) product were considered as
deleterious, while mutants with normal (+) function were considered as neutral. The set of
2314 TP53 mutations were assayed in yeast for transactivation on eight 7P53 response-

elements (Kato et al. 2003). Values > 100% in any assay were treated as equal to 100%.
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Then, we calculated the average transactivation, and we grouped the mutants with < 50% of
wild-type activity as deleterious and the rest as neutral.

[00222] The 26,597 TP53 tumor mutations were obtained from the IARC TP53 database
(version R14), and they were divided into 342 recurrent mutations (at least 10 times) and
1023 nonrecurrent mutations (nine times or less). The 9347 human mutations on disease-
associated genes were obtained from the UniProt database (http://www.uniprot.org/) after we
roughly classified each as neutral if it was annotated by the keywords “dbSNP,”
“polymorphism,” and “VAR ” or as disease-associated otherwise. From 20,343 human
genes, 70% (11,995) had at least one SNP entry and only 15% (3023) had at least one
disease-association entry. We selected genes with at least 10 mutations associated with the
same disease, which had at most 10 mutations marked as “Uncertain pathogenicity.” For the
resulting 218 genes, we inspected and corrected the rough classification and removed
mutations associated with uncertain pathogenicity and sporadic cancers. The GA4 missense
mutations and their Pompe’s disease severity classification were obtained from
http://cluster15.erasmusme.nl/klgn/pompe/mutations.html. The 278,179 human
polymorphisms were obtained from the phase 1 analysis of the 1000 Genomes Project, at
http://ftp.1000genomes.ebi.ac.uk/voll/ftp/phasel/analysis_results/input call sets/. The
somatic cancer mutations were obtained from The Cancer Genome Atlas (TCGA) at
http://cancergenome.nih.gov/.

[00223] The output files of the Evolutionary Action analysis for the above proteins may be
found at http://mammoth.bcm.tmc.edu/KatsonisLichtargeGR.
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invention encompassed by the appended claims.



WO 2016/064995 PCT/US2015/056646

=51 -
CLAIMS
What is claimed is:
1. A computer implemented method of identifying genes associated with a phenotype,
the method comprising:
a) obtaining data representing mutations in a cohort of subjects exhibiting a
phenotype;
b) in a processor, calculating an evolutionary action (EA) score for each mutation
using the data obtained;
c) for each gene in the cohort, determining respective distributions of the

calculated EA scores for mutations found in the gene;
d) quantitatively comparing the determined distributions of EA scores within the
cohort and with random distributions to establish comparison data;
e) based on the comparison data, identifying distributions of EA scores that are
non-random; and
f) based on the identified non-random distributions of EA scores, assessing
linkage of each gene in the cohort to the phenotype to identify genes
associated with the phenotype.
2. The method of claim 1, wherein the step of obtaining data includes obtaining the data
from a data store.
3. The method of claim 1 or 2, wherein the step of calculating the EA score is according

to the formula:

g—j; ‘Ar ;= Ag
wherein ¢f/dr; is an evolutionary gradient, Ar; is a perturbation at residue position i,
and Ag is a phenotype response to the perturbation.

4. The method of any one of claims 1-3, wherein the step of determining distributions of
calculated EA scores includes binning calculated EA scores by EA score deciles.

5. The method of any one of claims 1-4, wherein the step of quantitatively comparing

the distributions of EA scores includes using any combination of a two-sample

Kolmogorov-Smirnov test, a Wilcoxon rank-sum test, and an Anderson—Darling test.
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The method of any one of claims 1-5, wherein the step of quantitatively comparing
the distributions of EA scores includes calculating a decay rate A of an exponential
fitted to each distribution and comparing the decay rates.

The method of any one of claims 1-6, wherein the step of quantitatively comparing
the distributions of EA scores includes comparing the distributions to an expected
distribution obtained from a reference data set when genes are unrelated to the
phenotype.

The method of claim 7, wherein the reference data set includes at least one of 1)
random mutations on the same gene, obtained by translation of random nucleotide
changes following the standard genetic code, i1) mutations on the same gene from
Thousand Genomes Project (TGP) data, and iii) all misssense variations found in any
gene in The Cancer Genome Atlas (TCGA) data.

The method of any one of claims 1-8, wherein the phenotype is a disease, the subjects
are patients diagnosed with the disease, and the linkage of each gene in the cohort to
the disease is assessed to identify disease causing genes.

The method of claim 9, further including using the identified disease causing genes as
prognostic biomarkers in a patient.

The method of claim 9, wherein the disease is cancer and further including
distinguishing tumor suppressors from oncogenes among the identified disease
causing genes based on their respective distributions of EA scores.

The method of any one of claims 1-8 applied to pathways to identify functionally
related groups of genes with a bias towards mutations having high EA scores, wherein
cach pathway is a set of genes, and further including optimizing each pathway on the
basis of distributions of EA scores to identify if there is a subset of genes within the
pathway whose mutations are significantly biased to high EA scores as a group.

A computer system for identifying genes associated with a phenotype, the system

comprising:

a) a data store holding data representing mutations in a cohort of subjects
exhibiting a phenotype;

b) a processor coupled to access the data from the data store; and

c) a memory operatively coupled to the processor and configuring the processor

to:
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1) calculate an evolutionary action (EA) score for each mutation using the
data from the data store;

i1) for each gene in the cohort, determine respective distributions of the
calculated EA scores for mutations found in the gene;

1i1) quantitatively compare the determined distributions of EA scores
within the cohort and with random distributions to establish
comparison data;

iv) based on the comparison data, identify distributions of EA scores that
are non-random; and

V) based on the identified non-random distributions of EA scores, assess
linkage of each gene in the cohort to the phenotype to identify genes
associated with the phenotype.

The computer system of claim 13, wherein the memory further configures the

processor to calculate the EA score according to the formula:

a—f-Arl.zA(p
o,

wherein ¢f/dr; is the evolutionary gradient, Ar; is a perturbation at residue position 7,
and Ag is a phenotype response to the perturbation.

The computer system of claim 13 or 14, wherein the memory further configures the
processor to determine distributions of calculated EA scores by binning calculated EA
scores by EA deciles.

The computer system of any one of claims 13-15, wherein the memory further
configures the processor to quantitatively compare the distributions of EA scores
using any combination of a two-sample Kolmogorov-Smirnov test, a Wilcoxon rank-
sum test, and an Anderson—Darling test.

The computer system of any one of claims 13-16, wherein the memory further
configures the processor to quantitatively compare the distributions of EA scores by
calculating a decay rate lambda of an exponential fitted to each distribution and
comparing the decay rates.

The computer system of any one of claims 13-17, wherein the memory further

configures the processor to quantitatively compare the distributions of EA scores by
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comparing the distributions to an expected distribution obtained from a reference data
set when genes are unrelated to the phenotype.

The computer system of claim 18, wherein the reference data set includes at least one
of 1) random mutations on the same gene, obtained by translation of random
nucleotide changes following the standard genetic code, ii) mutations on the same
gene from Thousand Genomes Project (TGP) data, and iii) all misssense variations
found in any gene in The Cancer Genome Atlas (TCGA) data.

The computer system of any one of claims 13-19, wherein the phenotype is a discase,
the subjects are patients diagnosed with the disease, and the linkage of each gene in
the cohort to the disease is assessed to identify disease causing genes.

The computer system of claim 20, wherein the memory further configures the
processor to output to a user the identified disease causing genes as prognostic
biomarkers in a patient.

The computer system of claim 20, wherein the disease is cancer and wherein the
memory further configures the processor to distinguish tumor suppressors from
oncogenes among the identified disease causing genes based on their respective
distributions of EA scores.

The computer system of any one of claims 13-19 applied to pathways to identify
functionally related groups of genes with a bias towards mutations having high EA
scores, wherein each pathway is a set of genes, and wherein the memory further
configures the processor to optimize each pathway on the basis of distributions of EA
scores to identify if there is a subset of genes within the pathway whose mutations are

significantly biased to high EA scores as a group.
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