US 20120239853A1
a9 United States

a2y Patent Application Publication o) Pub. No.: US 2012/0239853 A1

Moshayedi 43) Pub. Date: Sep. 20, 2012
(54) SOLID STATE DEVICE WITH ALLOCATED Publication Classification
FLASH CACHE (51) Int.CL
GO6F 12/00 (2006.01)
(75) Inventor: Mark Moshayedi, Newport Coast, GO6F 12/08 (2006.01)
CA (US) GO6F 12/02 (2006.01)
(52) US.CL 711/103; 711/118; 711/E12.001;
) 711/E12.008; 711/E12.017
(73) Assignee: STEC, INC., Santa Ana, CA (US) (57) ABSTRACT

A flash storage device, and methods for a flash storage device,
having improved write performance are provided. Data is
received from a host system, the data comprising a data seg-
(22) Filed: Jun. 25, 2009 ment, the data segment is temporarily stored in a data buffer
of'the random access memory, the data segment is assigned to

a logical block address, and the data segment is written to an

Related U.S. Application Data allocated cache portion of the flash memory. Subsequently,

the data segment is written from the allocated cache portion of

(60) Provisional application No. 61/075,709, filed on Jun. the flash memory to a main storage portion of the flash

25, 2008. memory.

(21) Appl. No.: 12/492,110

80
Host é
System

15 10
- /.

Interface
/30 g 20 40
Auxiliary
DRAM — Controller Power
I T
[28-1[28-2[\28-3 | 28N
22
Ch Ch2 ch3 chN [
e B B SRR
| 25-1 25-2 /253 25N :
|
| Flash Flash Flash Flash :
| Memory Memory Memory . Memory |
| |
| o e e i

US 2012/0239853 Al

Sep. 20,2012 Sheet 1 of 17

Patent Application Publication

wll!lliiiiiil!l!111I||||II!I|I|
|
_
| Aows|y Aowspy Aowisiy Aowsy
_ yse|4 ysel4 yseld yser4
|
|N-GZ J €-6C -/ ¢sc L-6Z
2z J N guw Zuo LuD
N-8Z—] £82\|Z82\| 182
I | 1 |
1oMod Jelonuo) WvHa
Aseljixny
ov 7 e | 0g”
20BO)U]

wis)sAg
1SOH

} Ol

Patent Application Publication Sep. 20,2012 Sheet 2 of 17 US 2012/0239853 A1

25
/_ 210
Interface ~ 290
Buffer
~ 215]
Read/Write/Erase Circuitry
— 230

Memory Cell Block

FIG. 2

Patent Application Publication Sep. 20,2012 Sheet 3 of 17 US 2012/0239853 A1

Flash LBA 0 / 310
Host LBA 0 | , 3121
Host LBA 1 s 312-2
Host LBA 2 o 312-3
Host LBA 3 /3124
Host LBA 4 - 312-5
Host LBA 5 312-6
Host LBA 6 | 312-7
Host LBA 7 312-8

FIG. 3A

US 2012/0239853 Al

Sep. 20,2012 Sheet 4 of 17

Patent Application Publication

01€

juswbeg
eleqg

Gl+V Va1 useid

oLe 4

L€ vai useid

0LE

juswbeg
eleg

yswbag
ele

Gl

val yseld

91 HO

g¢ old

0LE

wewbag

eleq

Z+Vv van yseld

0LE 4

yswbsg

eleq

Ll va1 yseld

ole ~

jswbag

eleq

c
vaiyseid

€ HO

0LE

awbag
eleq

I+V Va1 useid

0LE]

yuswbag
eleq

9l van useid

0Le -

Juswibag
eled

L Va1 useid

¢ HO

oLe -

wswibag
eleq

Vv vaT useld

oLe -}

juswbag
eyed

Gl var useid

oLe -

juswibeg
eled

0 vaiuseld

I HO

Patent Application Publication Sep. 20,2012 Sheet S of 17 US 2012/0239853 A1

"
O
o

e

L]

)]

~ 410 - 420
Cache Block | Cache Block
Cache Block |— 420 Cache Block |— 450
440 430
- -
Cache Block Cache Block
430 -
Cache Block | Cache Block |~ 410

FIG.4A FIG. 4B

Patent Application Publication

405

Cache Biock

— 410

Cache Block

|~ 420

Cache Block

_— 450

Cache Block

460

Cache Block -

— 440

Cache Block

— 430

FIG. 5A

Sep. 20,2012 Sheet 6 of 17

405

US 2012/0239853 Al

Cache Block

| 410

Cache Block

- 420

Cache Block

— 460

Cache Block

s 470

Cache Block

L — 430

Cache Block

— 450

FIG. 5B

Patent Application Publication Sep. 20,2012 Sheet 7 of 17 US 2012/0239853 A1

605
Cache Physical Address/
LBA Ch No. Inidcator | Cache Block Number
-~ 610-1
- 615 ~~ 620 <625 =630
] n n []
n " | |
n u | |]
-~ 610-n
- 615 - 620 \ 625 630

FIG. 6

US 2012/0239853 Al

Sep. 20,2012 Sheet 8 of 17

Patent Application Publication

0L
0iL

0LL
0LL

JUNO0Y) 89Skl 1SaMOT
16 [¥0¢-¥20ol
118

8 Ol
oLL 0LL
N 0LL

| S I]
0LL 0LL
0LL JUNGY) 9skeli] 1SOMO0T] 0LL
4O 1618-99L/
21807
L Old
oLL oLl
| oLL oLL
[I B]
oLL oLL
plieA suswboeg pleA sjuswbag
eled z¢ elRq OM]
Ze 1517 Z s

piieA juswbeg
Ble(] auQ
L 1S

(7
0L

119
0L

OLL
0Lz

OLL
0L

uno) aseig
1SOMOT JO €201-0
o181l

pleA suswbag
ele(d ON
0187

Patent Application Publication Sep. 20,2012 Sheet 9 of 17 US 2012/0239853 A1

START

RECEIVE A PLURALITY OF DATA SEGMENTS FROM A
HOST SYSTEM

v

STORE THE PLURALITY OF DATA SEGMENTS IN THE
RANDOM ACCESS MEMORY

Y

ALLOCATE THE PLURALITY OF DATA SEGMENTS
AMONG THE PLURALITY OF CHANNELS OF THE FLASH
ARRAY

Y

WRITE THE ALLOCATED DATA SEGMENTS FROM THE
RANDOM ACCESS MEMORY TO THE RESPECTIVE
CHANNELS OF THE FLASH ARRAY

901

902

903

904

NN YD

Y
END

Fig. 9A

Patent Application Publication Sep. 20,2012 Sheet 10 0f 17 US 2012/0239853 A1l

22
FLASH CACHE 50
MAIN FLASH STORAGE 55
FIG. 9B
22
25-1 25-2 25-3 ~25-N
50 50 50 50
§§ §§ & . o » .5—5-
FIG. 9C
22
251 252 253 ~25-N
50 55 55 “ o 55

FIG. 9D

US 2012/0239853 Al

Sep. 20,2012 Sheet 11 of 17

Patent Application Publication

0L "OId

0601

080}

A o201

g5 -~/

_W_moor

DN@OF

mroor

*s e

1£0L
N

- |eunf

osoL -~

ovoL -

ogolL

05 -/

N-GZ 0} L-62 —

020}
VAN
V4
] _ _
| —— ONINOONI
0L0L -~
0

Patent Application Publication Sep. 20,2012 Sheet 12 0f17 US 2012/0239853 A1l

1100
J/

1110 1120 1130 1140
FLASH BLOCK | o No.| MAIN FLASH | FLASH CACHE SEG.
LBA # " |PHYS. ADDRESS| CROSS - REF.
L — 1150-1
_—1150-N

FIG. 11A

Patent Application Publication Sep. 20,2012 Sheet 13 0f17 US 2012/0239853 Al

1160

LBA X
1161—| _ FLASH CACHE e
DATA SEGMENT# | SEGMENT ADDRESS
~—1170-1
~—1170-N

FIG. 11B

Patent Application Publication Sep. 20,2012 Sheet 14 0of 17 US 2012/0239853 A1l

~ 1201

DRAM DATA CACHE RECEIVES
INCOMING DATA

Y 1203

INCOMING DATA FILLED INTO
CACHE DATA BLOCK (SEGMENT)
OF DRAM DATA CACHE

~ 1207

CONTINUE TO FILL CACHE

YES DATA BLOCKS WITH DATA

UNTIL ENOUGH FOR A
FLASH DATA BLOCK

o Y 1209
1213 WRITE SET OF CACHE

SEND CACHE DATA BLOCK OF DATA BLOCKS TO

RANDOM DATA TO DATA FLASH DATA BLOCK OF
MAIN FLASH STORAGE

DATA SEQUENTIAL?

SEGMENT IN FLASH DATA BLOCK
OF FLASH CACHE T 121
Y 1215 | UPDATE ADDRESS TABLE
‘ IN DRAM DATA CACHE

WHEN ENOUGH DATA SEGMENTS
IN FLASH CACHE TO FILL FLASH ASSOCIATED WITH FLASH
DATA BLOCK, WRITE TO FLASH DATA BLOCK
DATA BOLCK OF MAIN FLASH
STORAGE

Y 1217

UPDATE ADDRESS TABLE IN

DRAM DATA CACHE ASSOCIATED

WITH FLASH DATA BLOCK AND
COPY TO FLASH CACHE

1220

FIG. 12

Patent Application Publication Sep. 20,2012 Sheet 150f17 US 2012/0239853 Al

NORMAL POWER DOWN
~ 1301

CHECK TO SEE IF WRITE
COMMANDS WERE RECEIVED
SINCE POWER UP

.~ 1305
SAVE ADDRESS TABLES
YES FROM DRAM DATA CACHE
COMMANDS TO STATIC AREA OF
RCVD? FLASH CACHE
1307
WRITE NORMAL POWER B
DOWN TAG ~
1309
D
EN FIG. 13A
POWER UP 1321
CHECK FOR TAG IN FLASH
CACHE THAT INDICATES
NORMAL POWER DOWN
1325
USE ADDRESS TABLES
THAT WERE SAVED IN

FLASH CACHE

GET ADDRESS TABLES FROM
FLASH CACHE TO IDENTIFY
FLASH DATA BLOCKS

Y - 1329
SCAN ALL FLASH DATA BLOCKS
OF FLASH CACHE &
RECONSTRUCT ADDRESS
TABLES FOR MISSING ONES

1331

(22 " g 1as

Patent Application Publication Sep. 20,2012 Sheet 16 of 17 US 2012/0239853 Al

50
1411
[¢

<r141o ~1420 1430 ~1450 1460
S 311431

2' LR I
[

[
421 FIG. 14A

1411
|
[A1410_~7T420 1430 7~ 1450 1460< > S
A} /| 1451<"K =1 1471
s 17 3’ ’"1‘31_’2__/ B N3 1472
B) j2_1473
\\ \ \\\ / <
FIG. 14B
: 55
1410 -1420 1430 ~1450 ~1460 —
2 11@? 4 A 1T 11471
14521 B 3 —_1472
) 2 11473
ll
! 1470

1421 FIG. 14C

Patent Application Publication Sep. 20,2012 Sheet 17 0f17 US 2012/0239853 Al

— DATA SEGMENTS IN FLASH CACHE THAT BELONG TO

SCAN ADDRESS TABLE / LINK LISTS TO IDENTIFY
A SAME BLOCK FOR STORAGE IN MAIN FLASH

1

WRITE DATA SEGMENTS FROM FLASH CACHE TO
MAIN FLASH BLOCK

'

IDENTIFY ONE OF FLASH DATA BLOCKS IN FLASH
CACHE THAT HAS CERTAIN LEVEL OF INVALID
DATA SEGMENTS

'

MOVE REMAINING DATA SEGMENTS FROM
SELECTED FLASH DATA BLOCK TO NEW EMPTY
FLASH DATA BLOCK

!

ERASE DATA SEGMENTS OF SELECTED
FLASH DATA BLOCK

!

— 1501

— 1503

— 1505

— 1507

— 1509

UPDATE ADDRESS TABLES AND LINK LISTS — 1511

1513

NO EMPTY BLOCKS

ABOVE THRESHOLD
?

STORE FLASH DATA BLOCK IDENTITY L1515
FOR NEXT FLASH DATA BLOCK
IN SEQUENCE

FIG. 15

US 2012/0239853 Al

SOLID STATE DEVICE WITH ALLOCATED
FLASH CACHE

RELATED APPLICATION

[0001] Thepresent application claims the benefit of priority
under 35. U.S.C. §119 from U.S. Provisional Patent Applica-
tion Ser. No. 61/075,709, entitled “SOLID STATE DEVICE,”
filed on Jun. 25, 2008, which is hereby incorporated by ref-
erence in its entirety for all purposes.

FIELD OF THE INVENTION

[0002] The present invention generally relates to storage
devices and, in particular, relates to data access in a flash
storage device.

BACKGROUND OF THE INVENTION

[0003] Flash memory is an improved form of Electrically-
Erasable Programmable Read-Only Memory (EEPROM).
Traditional EEPROM devices are only capable of erasing or
writing one memory location at a time. In contrast, flash
memory allows multiple memory locations to be erased or
written in one programming operation. Flash memory can
thus operate at higher effective speeds than traditional
EEPROM.

[0004] Flash memory enjoys a number of advantages over
other storage devices. It generally offers faster read access
times and better shock resistance than a hard disk drive
(HDD). Unlike dynamic random access memory (DRAM),
flash memory is non-volatile, meaning that data stored in a
flash storage device is not lost when power to the device is
removed. For this reason, a flash memory device is frequently
referred to as a flash storage device, to differentiate it from
volatile forms of memory. These advantages, and others, may
explain the increasing popularity of flash memory for storage
applications in devices such as memory cards, USB flash
drives, mobile phones, digital cameras, mass storage devices,
MP3 players and the like.

[0005] Current flash storage devices suffer from a number
of limitations. Although flash memory can be read or written
at the physical page level, it can only be erased or rewritten at
the block level. Beginning with a pre-erased block, data can
be written to any physical page within that block. However,
once data has been written to a physical page, the contents of
that physical page cannot be changed until the entire block
containing that physical page is erased. In other words, while
flash memory can support random-access read and write
operations, it can not support random-access rewrite or erase
operations.

[0006] Generally, a flash storage device is comprised of
large physical blocks that are optimized for large block
sequential data transfer. Consequently, there is considerable
overhead in the block carry-over and garbage collection
which adversely impact write performance. As the density of
a flash storage device increases, the number of blocks is
increased, resulting in even more overhead and lower perfor-
mance for write operations.

[0007] Accordingly, there is a need for improved memory
controllers and memory management methods to improve the
write performance of flash storage devices.

SUMMARY OF THE INVENTION

[0008] A flash storage device, and methods for a flash stor-
age device, having improved write performance are provided.

Sep. 20, 2012

Data is received from a host system, the data comprising a
data segment, the data segment is temporarily stored in a data
buffer of the random access memory, the data segment is
assigned to a logical block address, and the data segment is
written to an allocated cache portion of the flash memory.
Subsequently, the data segment is written from the allocated
cache portion of the flash memory to a main storage portion of
the flash memory.

[0009] According to another aspect of the invention, data is
received from a host system, the data comprising a data seg-
ment, the data segment is temporarily stored in a data buffer
of'the random access memory, the data segment is assigned to
a logical block address, and the data segment is written to an
allocated cache portion of the flash memory. Subsequently,
the data segment is written from the allocated cache portion of
the flash memory to a main storage portion of the flash
memory. An address table is maintained in the random access
memory, wherein the address table comprises a plurality of
logical block addresses cross-referenced to a plurality of
physical addresses, and the address table is updated upon
writing the data segment from the allocated cache portion to
a location in the main storage portion of the flash memory by
storing the physical address of the location as a cross-refer-
enceto the logical block address assigned to the data segment.
[0010] According to another aspect of the invention, data is
received from a host system, the data comprising a data seg-
ment, the data segment is temporarily stored in a data buffer
of'the random access memory, the data segment is assigned to
a logical block address, and the data segment is written to an
allocated cache portion of the flash memory. Subsequently,
the data segment is written from the allocated cache portion of
the flash memory to a main storage portion of the flash
memory. It is determined whether the received data is sequen-
tial data, and the writing of the data segment to an allocated
cache portion of the flash memory and the writing of the data
segment from the allocated cache portion of the flash memory
to the main storage portion of the flash memory are only
performed if the received data is determined to not be sequen-
tial. In the case that the received data is determined to be
sequential, the data segment is written directly to the main
storage portion of the flash memory.

[0011] Data is received from a host system, the data com-
prising a data segment, the data segment is temporarily stored
in a data buffer of the random access memory, the data seg-
ment is assigned to a logical block address, and the data
segment is written to an allocated cache portion of the flash
memory. Subsequently, the data segment is written from the
allocated cache portion of the flash memory to a main storage
portion of the flash memory. A background cleanup operation
is performed in which the allocated cache portion is scanned
to identify a set of data segments that collectively contain a set
of sequential data, and writing the set of data segments to the
main storage portion of the flash memory, upon which each
one of the set of data segments is identified as in invalid data
segment.

[0012] It is to be understood that both the foregoing sum-
mary and the following detailed description are exemplary
and explanatory and are intended to provide further explana-
tion of the invention as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings, which are included to
provide further understanding of the invention and are incor-
porated in and constitute a part of this specification, illustrate

US 2012/0239853 Al

embodiments of the invention and together with the descrip-
tion serve to explain the principles of the invention. In the
drawings:

[0014] FIG. 1 depicts a block diagram of a flash storage
device according to one aspect of the disclosure.

[0015] FIG. 2 depicts a block diagram of a flash memory
according to an aspect of the disclosure.

[0016] FIG. 3A illustrates an example of a data segment
comprising a plurality of data sectors according to an aspect
of the disclosure.

[0017] FIG. 3B illustrates a process for allocating data seg-
ment in a data cache among channels according to an aspect
of the disclosure.

[0018] FIGS. 4A and 4B illustrate a linked list for cache
blocks according to an aspect of the disclosure.

[0019] FIGS. 5A and 5B illustrate a linked list for cache
blocks according to another aspect of the disclosure.

[0020] FIG. 6 illustrates an example of an address table
according to an aspect of the disclosure.

[0021] FIG. 7 illustrates an example of linked lists for keep-
ing track of valid data segments in data blocks according to an
aspect of the disclosure.

[0022] FIG. 8 illustrates an example of linked lists for keep-
ing track of erase counts of data blocks according to an aspect
of the disclosure.

[0023] FIG. 9A is a flow chart illustrating a method of
transferring data in a flash storage device according to an
aspect of the disclosure.

[0024] FIGS. 9B, 9C and 9D depict block diagrams of a
flash storage device with an allocated cache portion according
to embodiments of the present invention.

[0025] FIG. 10 depicts a block diagram of a flash storage
device in which data is buffered from DRAM to an allocated
cache portion according to one embodiment of the present
invention.

[0026] FIGS. 11A and 11B illustrate an example of an
address table for a main flash storage portion and a cross-
reference table for corresponding data in an allocated cache
portion, respectively, according to an embodiment of the
present invention.

[0027] FIG. 12 depicts a flowchart of an operation for an
allocated cache portion according to one embodiment of the
present invention.

[0028] FIGS. 13A and 13B depict flowcharts of a power-
down sequence and a power-up sequence for maintaining
address tables for an allocated cache portion according to an
embodiment of the present invention.

[0029] FIGS.14A, 14B and 14C depicts block diagrams of
a flash storage device having an allocated cache portion in
which a background cleanup operation is performed accord-
ing to one embodiment of the present invention.

[0030] FIG. 15 depicts a flowchart of a background cleanup
operation of an allocated cache portion in a flash storage
device according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0031] Inthe following detailed description, numerous spe-
cific details are set forth to provide a full understanding of the
present invention. It will be apparent, however, to one ordi-
narily skilled in the art that the present invention may be
practiced without some of these specific details. In other
instances, well-known structures and techniques have not
been shown in detail to avoid unnecessarily obscuring the
present invention.

Sep. 20, 2012

[0032] FIG.1isablock diagram of a multiple-channel flash
storage device 10 according to an aspect. The multiple-chan-
nel flash storage device 10 includes an interface 15, a con-
troller 20 and a flash array 22. The interface 15 interfaces the
flash storage device 10 to a host system 80, and allows the
flash storage device 10 to receive data (e.g., to be written into
the flash array 22) from the host system 80 and send data to the
host system 80 (e.g., data read from the flash array 22). The
controller 20 controls operations of the flash storage device
10 and manages data flow between the host system 80 and the
flash array 22, as discussed further below.

[0033] The controller 20 may be implemented with a gen-
eral purpose processor, a digital signal processor (DSP), an
application specific integrated circuit (ASIC), a field pro-
grammable gate array (FPGA) or other programmable logic
device, discrete gate or transistor logic, discrete hardware
components, or any combination thereof designed to perform
the functions described herein. The controller 20 may also
include firmware (e.g., software code) that is stored in a
machine-readable medium and executed by a processor to
perform the functions described herein.

[0034] The flash array 22 comprises a plurality of flash
memories 25-1 to 25-N split among N channels. Each flash
memory 25-1 to 25-N may comprise one or more physical
flash chips, which may be implemented using NAND flash,
NOR flash, or other flash technology. The flash memories
25-1 to 25-N may comprise different numbers of flash chips.
For example, within the same flash storage device 10, some of
the flash memories 25-1 to 25-N may comprise one flash chip
while others may comprise more than one flash chip.

[0035] The flash storage device 10 further comprises a plu-
rality of flash memory interfaces 28-1 and 28-N. Each flash
memory interface 28-1 to 28-N interfaces the controller 20 to
one of the flash memories 25-1 to 25-N via the corresponding
channel. Each of the N channels may be implemented using
one or more physical /O buses coupled between one of the
flash memory interfaces 28-1 to 28-N and the corresponding
flash memory 25-1 to 25-N. Each of the N channels allows the
corresponding flash memory interface 28-1 to 28-N to send
read, write and/or erase commands to the corresponding flash
memory 25-1 to 25-N. As discussed further below, each flash
memory interface 28-1 to 28-N may include a register (e.g.,
First-In-First-Out (FIFO) register) that queues read, write
and/or erase commands from the controller 20 for the corre-
sponding flash memory 25-1 to 25-N. Although the term
“channel,” as used above, referred to the bus coupled between
a flash memory interface 28-1 and 28-N and the correspond-
ing flash memory 25-1 to 25-N, the term “channel” may also
refer to the corresponding flash memory 25-1 to 25-N that is
addressable through the bus.

[0036] The flash memories 25-1 to 25-N may be logically
divided into data blocks. A data block may also be referred to
as a memory block. Each data block may be further divided
into data segments. A data segment may also be referred to as
apage. For example, each data block may be 128 kilobytes (K
bytes) in size, and each data segment may be 4 kilobytes (K
bytes) insize. In this example, each data block has 32 4 K byte
data segments. The data blocks may have other sizes besides
128 K bytes, including, but not limited, to 256 K bytes or 512
K bytes. For example, a 256 K byte data block may have 64 4
K byte data segments. The data segments may also have other
sizes besides 4 K bytes. For example, the data segments may
have any size that is a multiple of 1 K bytes or 2 K bytes. A
data block may span one or more physical flash chips.

US 2012/0239853 Al

[0037] The flash storage device 10 also comprises a
Dynamic Random Access Memory (DRAM) 30. Other types
of random access memory and/or volatile memory may also
be used. The DRAM 30 may be used to buffer data to be
written into the flash array 22 and buffer data read from the
flash array 22. The data to be written may be incoming data
from a host system 80 and/or data being rewritten from one
portion of the flash array 22 to another portion of the flash
array 22. The flash storage device 10 also comprises an aux-
iliary power device 40 for providing backup power, which is
described in further detail below.

[0038] FIG. 2 is a block diagram of an exemplary flash
memory 25 according to an aspect. The flash memory 25
includes an interface 210, read/write/erase circuitry 215, a
buffer 220, and a memory cell block 230. The interface 210
interfaces the flash memory 25 to the corresponding flash
memory interface 28-1 to 28-N via the corresponding chan-
nel, and allows the read/write/erase circuitry 215 to receive
read, write and/or erase commands from the corresponding
flash memory interface 28-1 to 28-1 and to send data read
from the memory cell block 230 to the corresponding flash
memory interface 28-1 to 28-N in response to a read com-
mand. The memory cell block 230 comprises an array of flash
memory cells, where each cell may store one bit or multiple
bits. The flash memory cells may be implemented using
NAND flash, NOR flash, or other flash technology.

[0039] The read/write/erase circuitry 215 may write data to
the memory cell block 230 based on a write command from
the corresponding flash memory interface 28-1 to 28-N. The
write command may include an address of where the corre-
sponding data is stored in the data cache and a physical
address of where the data is to be written in the flash memory
25. The read/write/erase circuitry 215 may also read data
from the memory cell block 230 based on a read command
from the corresponding flash memory interface 28-1 to 28-N
and send the read data to the corresponding flash memory
interface 28-1 to 28-N. The corresponding flash memory
interface 28-1 to 28-N may then transfer the read data to the
data cache. The read command may include a physical
address of where the data is to be read from the flash memory
25. The read/write/erase circuitry 215 may also erase one or
more data blocks in the memory cell block 230 based on an
erase command from the corresponding flash memory inter-
face 28-1 to 28-N. The erase command may include a physi-
cal address of the data block to be erased.

[0040] The buffer 220 may be used to temporarily store
data to be written to the memory cell block 230. For example,
when the corresponding flash memory interface 28-1 to 28-N
sends a write command to the flash memory 25, the flash
memory interface 28-1 to 28-N may also transfer the data
(e.g., data segment) for the write command from the data
cache to the flash memory 25. Upon receiving the data for the
write command, the read/write/erase circuitry 215 may tem-
porarily store the received data in the buffer 220 and write the
data from the buffer 220 to the memory cell block 230 at the
physical address specified in the write command. When all of
the data in the buffer 220 for the write command has been
written to the memory cell block 20, the read/write/erase
circuitry 215 may send an indication to the corresponding
flash memory interface 28-1 to 28-N that the flash memory 25
has successtully completed the write operation for the write
command and is ready for another command.

[0041] Thebuffer 220 may also be used to temporarily store
dataread from the memory cell block 230. For example, when

Sep. 20, 2012

the read/write/erase circuitry 215 reads data from the memory
cell block 230 in response to a read command, the read/write/
erase circuitry may temporarily store the read data in the
buffer 220. When all of the data requested by the read com-
mand has been read from the memory cell block 230 and
stored in the buffer 220, the read/write/erase circuitry 215
may send all of the data from the buffer 220 to the correspond-
ing flash memory interface 28-1 to 28-N. The flash memory
interface 28-1 to 28-N may then transfer the read data to the
data cache.

[0042] In one aspect, the host system 80 may send data to
and receive data from the flash storage device 10 in data
sectors. For example, each data sector may be 512 bytes in
size with eight data sectors per 4 K byte data segment. The
host system 80 may use different size data sectors.

[0043] In one aspect, the host system 80 may address data
sectors stored in the flash storage device 10 using host Logical
Block Addresses (LBAs). The host LBAs allow the host sys-
tem 80 to address data sectors to be written to or read from the
flash storage device 10 without having to know the physical
locations of the data sectors in the flash storage device 10. The
host LBAs may be implemented using an addressing scheme
where data sectors are located by an index, with the host LBA
of a first data sector being host LBA 0, the host LBA of a
second data sector being host LBA 1, and so on.

[0044] In one aspect, the flash storage device 10 may store
eight data sectors (e.g., 512 bytes) from the host system 80
into one data segment (e.g., 4 K bytes). The number of data
sectors per data segment may be different depending on the
size of a data sector and the size of a data segment. In this
aspect, the controller 20 may address data segments in the
flash storage device 10 using flash L.BAs, in which 8 host
LBAs corresponds to one flash LBA identifying a data seg-
ment. In this disclosure, the term “flash LBA” refers to an
LBA for logically addressing a data segment and the term
“host LBA” refers to an LBA for logically addressing a data
sector.

[0045] Forthe example in which there are eight data sectors
per data segment, the host LBAs and flash LBAs may begin at
zero so that host LBAs 0-7 correspond to flash LBA 0, host
LBAs 8-15 correspond to flash LBA 1, and so on. As a result,
a sequence of eight host LBAs identifying eight data sectors
corresponds to a flash LBA identifying a data segment that
includes the eight data sectors. In this example, the controller
20 may determine the flash LBA corresponding to a host LBA
by dividing the host LBA by the number of data sectors in a
data segment (e.g., 8) and using the integer quotient for the
flash LBA. For example, the data sector identified by host
LBA 14 is stored in the data segment identified by flash LBA
1.

[0046] FIG. 3A illustrates an example of a data segment
310 comprising eight data sectors 312-1 to 312-8. Each data
sector 312-1 to 312-8 may be stored ata know position within
the data segment 310 relative to the other data sectors 312-1to
312-8. When the controller 20 receives a host LBA for a data
sector, the controller 20 may determine the flash LBA for the
corresponding data segment, as discussed above. The control-
ler 20 may also determine the corresponding one of the data
segments 312-1 to 312-8 within the data segment 310 based
on the relative position of the received host LBA within the
sequence of host LBAs corresponding to the flash LBA. For
example, if the host LBA is third within the sequence of host
LBAs corresponding to the flash LBA, then the third data
segment 312-3 within the data segment identified by the flash

US 2012/0239853 Al

LBA corresponds to the host LBA. FIG. 3A shows an
example of a data segment 310 identified by flash LBA 0 and
the corresponding host LBAs 1-7 for the data sectors 312-1 to
312-8. The data segment 310 may include a sector index
indicating which of the data sectors 312-1 to 312-8 in the data
segment 310 are valid. For example, if the host system 80
sends a write command for only host LBAs 0-3, then the data
segment for flash LBA 0 would hold four valid data sectors.

[0047] In one aspect, the host system 80 may address data
sectors to be written to and/or read from the flash storage
device 10 using host LBAs. For example, when writing data
to the flash storage device 10, the host system 80 may send
one or more data sectors with one or more corresponding host
LBAs. Later, the host system 80 may randomly read any one
of'the data sectors from the flash storage device 10 using the
corresponding host LBAs in a host read command. The con-
troller 20 of the flash storage device 10 may write and/or read
requested data sectors to and/or from the flash array 22 using
the corresponding flash LBAs, which may be determined as
discussed above.

[0048] In an aspect, the flash LBAs in the flash storage
device 10 are split evenly among the N channels so that 1/N of
the flash LBAs are assigned to the first channel, and so forth.
Evenly splitting the flash LBAs among the channels increases
the likelihood that, on a read corresponding to more than one
flash LBA, not all of the data comes from one channel.

[0049] The flash LBAs may be evenly split among the N
channels using any one of a number of methods. For example,
the controller 20 may use an algorithm to determine which
channel to assign each flash LBA. The algorithm may be a
MOD function that divides a flash LBA by the number of
channels N and outputs the remainder of the division, where
the remainder represents the channel assigned to the flash
LBA. For example, in a 16 channel device, flash LBA 12101
would be assigned to channel 5 (i.e., 12101 MOD 16=5). This
algorithm provides an even distribution of the flash LBAs
among channels. The above algorithm provides just one
example of evenly splitting the flash LBAs among the chan-
nels. Other algorithms may be used to evenly split flash LBAs
among the channels. An example in which flash LBAs are
evenly split among channels is discussed below.

[0050] An address table mapping all flash LBAs to physical
addresses in the flash array 22 is kept in the DRAM 30. The
controller 20 in the flash storage device 10 stores data seg-
ments into physical addresses in the flash array 20 and maps
each flash LBA to the physical address where the correspond-
ing data segment is stored in the address table. When the host
system 80 sends a host read command to the flash storage
device 10 with one or more host LBAs, the controller 20
determines the corresponding [.LBAs, as discussed above. The
controller 20 then maps the corresponding flash L.BAs to
physical addresses in the flash array 22 using the address table
and reads the requested data from the physical addresses in
the flash array 22. A flash LBA may be 28bits in length or have
another length depending on the amount of logically addres-
sable memory in the flash array 22. An example of an address
table is given below.

[0051] When the controller 20 writes a data segment to a
physical address in the flash array 22, the controller 20 may
store the corresponding flash LBA in the physical address
with the data segment, along with other information dis-
cussed below. This allows the controller 20 to reconstruct the

Sep. 20, 2012

address table by reading the flash . BAs stored in the physical
addresses of the flash array 22 in the event that the address
table is lost.

[0052] The flash storage device 10 has power back-up to
make sure that certain functions are performed in the event of
a power loss. One of these functions may be to store the
address table in non-volatile memory to preserve the table,
e.g., by writing the address table from the DRAM 30 to flash
array 22 when the power goes off (either expectedly or unex-
pectedly). This enables the flash storage device 10 to start up
or initialize faster because the address table can be read from
flash (which may only take two seconds) instead of having to
read all of the data in flash memory to reconstruct the address
table. In other words, the address table does not have to be
reconstructed since the address table is stored in the flash
array 22 by the back-up power.

[0053] In one aspect, the auxiliary power device 40 com-
prises super capacitors that charge when the flash storage
device 10 receives power, and provides auxiliary power when
the main power goes off by using energy stored in the super
capacitors. This allows data (e.g., address table) to be written
into flash array 22 when the power goes off unexpectedly. The
controller 20 may detect a power failure using a voltage
threshold detector that detects when the voltage of a power
supply falls below a threshold voltage. Upon detecting a
power failure, the controller 20 may save all critical data (e.g.,
address table) to the flash array 22 using the auxiliary power
provided by the auxiliary power device 40. Besides triggering
this process upon detection of a power failure, the controller
20 may trigger this process on a sync cache command, flush
cache command, power down immediate command, standby
command, etc. The commands may come from the host sys-
tem 80 and/or the controller 20. The auxiliary power device
40 may comprise one or capacitors, one or more batteries, or
other forms of energy storage devices.

[0054] Datareceived by the flash storage device 10 is stored
in the DRAM 30 and regardless of whether the data is
received sequentially or randomly, the data is written from the
DRAM 30 to the flash array 22 in a sequential manner on a per
channel basis, as discussed further below. This makes data
reads from the flash array 22 random. Since flash memory
typically has good sequential write performance and random
read performance, this arrangement takes advantage of the
sequential write performance and random read performance
of the flash memories 25-1 to 25-N.

[0055] In one aspect, data is buffered in a portion of the
DRAM 30 referred to as a data cache. The data cache may
occupy all remaining DRAM 30 after everything else has
been allocated in the DRAM 30, for example, the address
table and the linked lists discussed below. Therefore, the size
of the data cache varies depending on the device size and
configuration. In one aspect, the flash storage device 10 does
not start up unless there is a minimum amount of memory
(e.g., at least 16 MB of DRAM) available for the data cache.
The data cache may be split up into a plurality (e.g., thou-
sands) of small cache blocks which are each the size of one
data segment (e.g., 4K bytes).

[0056] All read and write data is transmitted between the
host system 80 and the flash array 22 via the data cache in the
DRAM 30. When the host system 80 writes data, the data is
written into the data cache. When the data cache receives
enough data to fill a complete data block, the data is read from
the data cache and written to the flash array 22. When the host
system 80 reads data, the data is read from the flash array 22,

US 2012/0239853 Al

written into the data cache and then read from the data cache
and transmitted to the host system 80 over the host interface.
A central processing unit (CPU) of the host system 80 does
not have to copy the data to/from the data cache or receive the
data. The CPU may instruct hardware where to send the data
or where to retrieve the data from and the hardware does the
rest (e.g., via direct memory access (DMA)).

[0057] FIG. 3B is a diagram illustrating a process for allo-
cating data segments 310 in the data cache of the DRAM 30
among the different channels. In the example in FIG. 3B,
there are 16 channels, although it is to be understood that
other numbers of channels may be used (e.g., 8 channels). For
example, the number of channels may be any power of two,
which allows easier implementation of the controller 20 using
firmware. The data segments 310 may be data received from
the host system 80 in one or more host write commands. In
this example, the data segments 310 are given corresponding
flash LBAs by the controller 20. As discussed above, for the
example in which there are eight data sectors per data seg-
ment, each flash LBA may correspond to eight host LBAs.
For example, flash LBA 0 may correspond to host LBAs 0-7,
flash LBA 1 may correspond to host LBAs 8-15, and so forth.

[0058] AsshowninFIG. 3B, the flash LBAs are splitevenly
among the 16 channels and striped across the 16 channels. In
the example in FIG. 3 A, flash LBA 0 is assigned to channel 1,
flash LBA 1 is assigned to channel 2, flash LBA 2 is assigned
to channel 3, and so on. As data is received from the host
system 80 during a host write and stored in the data cache, the
number of data segments 310 allocated to each channel
increases. In the example in FIG. 3B, the flash LBAs are
sequential across the channels. However, this does not have to
bethe case. For example, the flash LBAs may comprise two or
more random LBAs when the host system 80 writes data
randomly to the flash storage device 10 (random host LBAs)
instead of sequentially to the flash storage device 10 (sequen-
tial host LBAs). In either case, the controller 20 can evenly
split the corresponding flash LBAs among the N channels, for
example, using the algorithm described above or other
method.

[0059] When the number of data segments 310 for a chan-
nel in the data cache reaches enough to fill a data block (e.g.,
32 data segments), the controller 20 writes the data segments
310 from the data cache to the corresponding flash memory
25-1to 25-Nvia the corresponding channel. The controller 20
may write the data segments 310 for a channel to the corre-
sponding flash memory 25-1 to 25-N by queuing write com-
mands for the data segments 310 in the register (e.g., FIFO
register) of the corresponding flash memory interface 28-1 to
28-N (e.g., one write command for each data segment 310).
The flash memory interface 28-1 to 28-N may then send the
queued write commands to the corresponding flash memory
25-1to 25-N via the corresponding channel. For example, the
flash memory interface 28-1 to 28-N may sequentially send
the queued write commands to the corresponding flash
memory 25-1 to 25-N via the corresponding channel. Each
time a write command is sent to the corresponding flash
memory 25-1 to 25-N, the flash memory interface 28-1 to
28-N may transfer the data segment for the write command
from the data cache to the corresponding flash memory 25-1
to 25-N via the corresponding channel. In this example, the
flash memory interface 28-1 to 28-N may send one write
command to the corresponding flash memory 25-1 and 25-N
and wait until it receives an indication from the flash memory

Sep. 20, 2012

25-1 to 25-N that the data segment has been successfully
written before sending the next write command in the register
to the channel.

[0060] The flash memory interfaces 28-1 to 28-N may send
write commands to their respective flash memories 25-1 to
25-N substantially in parallel via the respective channels. In
addition, during the time a flash memory interface 28-1 to
28-N waits for the corresponding flash memory 25-1 to 25-N
to complete a write command after transferring data for the
write command from the data cache to the corresponding
flash memory 25-1 to 250-N, other flash memory interfaces
28-1 to 28-N may transfer data for other write commands
from the data cache to corresponding flash memories 25-1 to
25-N. The parallel write operations among the plurality of
flash memories 25-1 to 25-N results in faster write times and
maximizes the write performance of the flash array 22.
[0061] When the controller 20 receives a host read com-
mand from the host system 80 including host LBAs, the
controller 20 determines the corresponding flash LBAs, as
discussed above. The controller 20 then maps the flash LBAs
to the corresponding physically addresses in the flash array 22
using the address table. The controller 20 then generates read
commands corresponding to the physically addresses and
queues the read commands in the registers of the respective
flash memory interfaces 28-1 to 28-N. Each flash memory
interface 28-1 to 28-N sends the corresponding read com-
mands to the corresponding flash memory 25-1 to 25-N via
the corresponding channel and writes the resulting read data
to the data cache. When all of the requested data is written to
the data cache inthe DRAM 30, the controller 20 may transfer
the requested data from the data cache to the host system 80
via the interface 15. Splitting flash LBAs evenly among the
channels helps ensure that, for a host read spanning several
flash LBAs, the requested data is read from a plurality of the
flash memories 25-1 to 25-N.

[0062] Inone aspect, the data cache in the DRAM 30 may
be divided into cache blocks. Each cache block may corre-
spond to a physical address in the DRAM 30 for storing one
data segment (e.g., 4 K bytes).

[0063] In one aspect, the cache blocks are all held in a
linked list. When a new cache block is required for a new data
segment, the data segment in the cache block that is on the top
of'the linked list is removed from the data cache (assuming it
is not active) and the cache block is allocated for the new data
segment. The cache block with the new data segment is then
placed at the end of the linked list and the new data segment
is stored in a physical address of the data cache corresponding
to the cache block. The new data segment may come from
data in a host write command or data read from the flash array
22 inresponseto a host read command. If the data in the cache
block is not accessed again, then the cache block will slowly
move up the linked list as cache blocks are allocated for new
data segments and moved to the end of the linked list.

[0064] FIGS. 4A and 4B illustrate an example of a linked
list 405 according to an aspect. FIG. 4A shows the linked list
405 in which cache block 410 is on the top of the linked list
405 and cache block 430 is on the end of the linked list 405.
In this example, when a new data segment needs to be stored
in the data cache, the controller 20 removes the data segment
corresponding to cache block 410 from the data cache, allo-
cates cache block 410 to the new data segment and moves the
cache block 410 to the end of the linked list 405. FIG. 4B
shows the linked list 405 after cache block 410 has been
moved to the end of the linked list 405. As a result, the other

US 2012/0239853 Al

cache blocks in the linked list 405 have been moved up one
position in the linked list 405. For example, cache block 430
has been moved up one position from the end of the linked list
405, as shown in FIG. 4B.

[0065] In the above aspect, the controller 20 may continue
to store a data segment in the data cache after the data segment
has been written to the flash array 22. The controller 20
removes the data segment from the data cache when the
corresponding cache block reaches the top of the linked list
and the controller 20 needs to allocate the cache block for a
new data segment.

[0066] If a host read command is received from the host
system 80 and the data for the read command is found in the
data cache, then the flash array 22 does not need to be
accessed. In this case, the controller 20 may retrieve the data
from the data cache and the corresponding cache block is
moved from the current position on the linked list to the end
of the linked list. This way frequently accessed data will be
retained in the data cache because a cache block that is being
frequently accessed will be continually moved to the end of
the linked list and not reach to the top of the linked list from
where the data in the cache block will be removed from the
data cache.

[0067] FIGS. 5A and 5B illustrate an example of the linked
list 405 according to an aspect. FIG. 5A shows the linked list
405 in which cache block 410 is on the top of the linked list
405, cache block 430 is on the end of the linked list 405, and
cache block 450 is at a position somewhere between cache
blocks 410 and 430. In this example, when a host read com-
mand requests a data segment in the data cache corresponding
to cache block 450, the controller 20 retrieves the data seg-
ment from the data cache and moves cache block 450 to the
end of the linked list 405. FIG. 5B shows the linked list 405
after cache block 450 has been moved to the end of the linked
list 405. As a result, the other cache blocks that where previ-
ously below cache block 450 in the linked 405 have been
moved up one position. For example, cache block 430 has
been moved up one position from the end of the linked list
405, as shown in FIG. 5B. If the data segment corresponding
to cache block 450 is frequently read, then cache block 450
will continually move to the end of the linked list 405.
[0068] Inone aspect, a cache block structure is maintained
for each cache block. The cache block structure includes a
physical address of the cache block in the DRAM 30 where
the corresponding data segment is stored and other informa-
tion (e.g., the time that the data segment was written into the
data cache). The cache block structure may also include a
physical address in the flash memory 22 where the corre-
sponding data segment is stored if the data segment has
already been written to the flash memory 22.

[0069] Alldatato be written to the flash array 22 is buffered
in the DRAM 30 for a predetermined amount of time (e.g., 10
seconds) to allow the next sequential data (e.g., data sectors)
in a data sequence to arrive and fill the data cache of the
DRAM 30. This allows the controller 20 to write a large
amount of data from the DRAM 30 to the flash array 22 at one
time and free up the controller 20 to perform other operations.
Ifthe next sequential data does not arrive in the predetermined
amount of time (e.g., 10 seconds), then the data in the data
cache ofthe DRAM 30 is written to the flash array 22 and may
be combined with other data that needs to be written. A
complete data block may not be written to a channel of the
flash memory array 22 when power is turned off and there is
not a complete data block in the DRAM 30 to write to the

Sep. 20, 2012

channel. In this case, the controller 20 may write an incom-
plete data block to the channel of the flash array 22. Data in
the DRAM 30 can also be written to the flash array 22 upon
receiving a command to flush the data cache, clear the data
cache, or clear the cache.

[0070] Inone aspect, the controller 20 uses an address table
to locate a data segment for a given flash LBA in either the
flash array 22 or the data cache of the DRAM 30. The address
table may also be referred to as a virtual-to-physical (V2P)
table since the address table maps a logical address to a
physical address.

[0071] FIG. 6 shows an example of an address table 605
according to an aspect of the disclosure. Each of the entries
610-1 to 610-n in the address table 605 corresponds to a flash
LBA and may be arranged in order of the flash LBAs so that
flash LBA 0 corresponds to the first entry, flash LBA 1 to the
second entry, and so on. The entry 610-1 to 610-» for each
flash LBA 615 may include a channel number 620, a cache
indicator 625 indicating whether the corresponding data seg-
ment is in the data cache, and depending on whether the data
segment is in the data cache, a physical address of the data in
the flash array 22 or a cache block number 630.

[0072] If the cache indicator 625 indicates that the data
segment for a flash LBA 615 is not in the data cache, then the
entry includes the physical address 630 of the data segment in
the flash array 22. In this case, the controller 20 uses the
physical address 630 to locate the data segment in the flash
array 22. The physical address 630 can be in a hardware
format so that the physical address can be passed directly to
the hardware side of the flash storage device 10 to retrieve the
data segment from the flash array 22.

[0073] Ifthe cache indicator 625 indicates that the data for
a flash LBA 615 is in the data cache, then the entry for the
flash LBA 615 includes a cache block number 630. The cache
block number 630 points to the cache block corresponding to
the flash LBA. This allows the controller 20 to retrieve the
cache structure of the corresponding cache block. The cache
structure in turn provides the controller 20 with the physical
address where the data is located in the DRAM 30 and the
NAND device information if required plus other useful infor-
mation (e.g., the time that the corresponding data segment
was written into the data cache). The NAND device informa-
tion may include a physical address of the corresponding data
segment in the flash array 22.

[0074] Inone aspect, the controller 20 updates the address
table 605 when data sectors corresponding to a data segment
are received from the host system 80 in a host write command
or read from the flash array 22 in response to a host read
command. The controller 20 allocates a cache block from the
top of the linked list for the corresponding data segment. The
controller 20 then creates an entry in the address table 605 for
the data segment including the flash LBA 615 of the data
segment and a cache block number 630 of the cache block
allocated to the data segment. The controller 20 also sets the
cache indicator 625 to indicate that the data segment is
located in the data cache. If the data segment is eventually
written to the flash array 22, then the controller 20 may
include the physically address of the data segment in the flash
array 22 in the corresponding cache block. When the data
segment is removed from the data cache, then the controller
20 may update the entry for the data segment accordingly. The
controller 20 may set the cache indicator 625 to indicate that
the data segment is not stored in the data cache and include the

US 2012/0239853 Al

physical address of the data segment in the flash array 22. The
controller 20 may retrieve the physical address from the cache
structure in the cache block.

[0075] In one aspect, each data block in the flash array 22
can hold random data segments instead of consecutive data
segments. Thus, when random write data is received for a
flash LBA (e.g., in a random host write command), it is not
necessary for the controller 20 to re-write a complete data
block for the corresponding data segment. For example, when
the controller 20 receives write data (updated data) for a flash
LBA corresponding to a data segment ina data block (old data
block) in the flash array 22, the controller 20 writes the write
data (updated data) to another data block (new data block) in
the flash array 22 instead of re-writing the old data block with
the write data (updated data) for the flash LBA. In this case,
the data segment corresponding to the flash LBA in the old
data block is invalid since the write data (updated data) for the
flash LBA is stored in the new data block. This reduces wear
on the old data block because the old data block does not have
to be erased and rewritten when one of its data segments is
subsequently updated by the host system 80. Thus, a data
block can hold a varying number of valid data segments at a
given time, depending on how many data segments in the data
block are updated and written to other data blocks.

[0076] Inone aspect, the controller 20 maintains a table for
each data block in the flash array 22. The table for each data
block identifies the number of valid data segments in the data
block and the flash LBAs corresponding to valid data seg-
ments held in the data block. In an aspect, the controller 20
uses this information to identify data blocks with the fewest
valid data segments. After identifying the data blocks with the
fewest valid data segments, the controller 20 copies the valid
data segments of the identified data blocks to one or more
other data blocks in the flash array 22, and erases the identi-
fied data blocks to provide pre-erased data blocks for more
write data. This allows the maximum number of data blocks
to be freed up for write data while having to copy the least
amount of data to other data blocks. As a result, fewer write
operations are required to free up data blocks, providing more
bandwidth for host read and write data.

[0077] In one aspect, each data block is kept in one of a
plurality of linked lists depending on the number of valid data
segments in the data block. All data blocks with only one valid
data segment each are kept in one list, all data blocks with
only two valid data segments are kept in another list, and so
on. As discussed further below, the controller 20 performs
dynamic wear leveling (to free up data blocks) using the lists
of'valid data segments to identify data blocks having only one
valid data segment, data blocks having only two valid data
segments, and so on. There are also separate lists forbad (e.g.,
defective) data blocks, empty data blocks, free data blocks
and data blocks (e.g., data blocks being written to), etc. Each
data blocks is also kept in one of a plurality of linked lists
depending on the number of erase cycles performed on the
data block. As discussed further below, the controller 20
performs static wear leveling using the linked lists of erase
cycles.

[0078] Inone aspect, the controller 20 places a time stamp
on each data segment that is written into the flash array 22
allowing the controller 20 to know which data segments are
newer than the old ones. The time stamps may be generated
by incrementing a counter when a write operation is per-
formed and using the current count value of the counter for
the time stamp for data being written during the write opera-

Sep. 20, 2012

tion. For example, the time stamp for a write may be 11000,
then 11001 for the next write, and so on. Thus, the time
stamps allow the controller 20 to determine the order in which
data segments were written into the flash array 22 by com-
paring their time stamps. In this example, a data segment with
atime stamp having a higher count value is newer than a data
segment with a time stamp having a lower count value. The
time stamp for a data segment may be stored with the data
segment in the flash array 20 and/or stored in a table.

[0079] In an aspect, the controller 20 compares the time
stamps of data segments in the background and not during
regular read/write operations. When two data segments in
different data blocks correspond to the same flash LBA, then
the older data segment (as indicated by the corresponding
time stamp) is invalid. Eventually, a data block with many
invalid data segments is erased and one or more valid data
segments that were in the data block are combined with other
incoming data or valid data from other blocks that are being
erased. The combined data is written to a new data block,
freeing up the erased block for write operations. When the one
or more valid data segments are written to the new data block,
the address table is updated with the new physical addresses
of'the valid data segments. In an aspect, the above operations
are performed in the background to make pre-erased blocks
available for write operations. Since this is a background
operation, the flash storage device 10 may need to allocate
more flash memory than is logically addressable by the con-
troller 20. For example, a flash storage device 10 with 256 GB
of memory may only have 146 GB of addressable memory
(e.g., addressable to the host system 80). This helps provide
pre-erased blocks to write to most of the time.

[0080] Preferably, the time stamps are used if reconstruc-
tion of the address table is required. When there are two or
more physical addresses for the same flash LBA, the time
stamps of the corresponding data segments may be used to
determine which data segment is the most recent (e.g., data
segment with the time stamp having the highest count value is
the most recent). In this example, the physical address with
the more recent time stamp is used to reconstruct the address
table entry for the flash LBA.

[0081] FIG. 7 illustrates linked lists that are used to deter-
mine which data block 710 to remove data from and erase to
provide pre-erased blocks for high-speed writing according
to one aspect. As an example, each data block 710 may be 128
K bytes in size and hold 32 4 K bytes data segments. Nor-
mally, a data block 710 will be full when it is first written to
and will therefore have 32 valid data segments in this
example. The linked lists may cover data blocks in the entire
flash array 22. Alternatively, the linked lists may be imple-
mented for each channel of the flash array 22.

[0082] The link lists are used to keep track of the number of
valid data segments in each data block 710. In one aspect,
each data block 710 is in one of the linked lists of valid data
segments. Inthe example above, there are 33 linked lists since
each data block has zero to 32 valid data blocks. List 0
comprises data blocks 710 with no data segment holding valid
data. List 1 comprises data blocks 710 with only one data
segment holding valid data, list 2 comprises data blocks 710
with two data segments holding valid data, and so forth. List
32 comprises data blocks 710 with all 32 data segments
holding valid data. The number of linked lists may be differ-
ent from 32 depending on the sizes of the data segments
and/or data blocks. For example, the number of linked lists
may be lower if larger data segments are used (fewer data

US 2012/0239853 Al

segments in each data block 710). As another example, the
number of linked lists may be larger if larger data blocks 710
are used (more data segments per data block). The flash
storage device 10 may include lists of pre-erased data blocks
710, bad data blocks 710, system blocks, etc. The data blocks
710 in the lists may be identified by addresses of or pointers
to the data blocks 710 therein or other means.

[0083] By way of example, when a data block XX is ini-
tially written to, the data block XX will be full and therefore
go to the list with all valid data segments (list 32 in the
example illustrated in FIG. 7). If one of the data segments in
data block XX is subsequently written again, then the data
segment will go into a different data block YY. For example,
if the flash storage device 10 receives a host write command
from the host system 80 that results in a write to flash LBA
12100 and a data segment for flash LBA 12100 is already
stored in data block XX, then the controller 20 writes the data
in the write command for flash LBA 12100 to data block YY.
Thus, the data segment for flash LBA 12100 is rewritten to
data block Y, invalidating the data segment for flash LBA
12100 in data block XX. As a result, the data block XX will
have only 31 valid data segments, and the controller 20 will
move the data block XX from list 32 to list 31 in the example
illustrated in FIG. 7. Also, the address table for flash LBA
12100 is updated with the physical address of the data seg-
ment in data block YY. Each time another data segment in data
block XX becomes invalid, data block XX is moved down to
the appropriate list.

[0084] Pre-erased blocks that are available for write opera-
tions are identified in a pre-erased list. When the number of
pre-erased data blocks in the pre-erased list gets low (e.g.,
below a predetermined threshold), the controller 20 may need
to erase some of the data blocks 710 to increase the number of
pre-erased data blocks available for write operations. In one
aspect, the controller 20 determines which data blocks 710 to
erase by looking in the lists of valid data segments in ascend-
ing order. The controller 20 first looks in list 0 for data blocks
710 holding no valid data. Since data blocks in list 0 require
no movement of data to erase, these data blocks 710 are
erased and placed into the pre-erased list first. Iflist 0 is empty
and/or additional pre-erased blocks are needed, then the con-
troller looks in list 1 for data blocks 710 with only one valid
data segment. Each data block 710 in list 1 only require the
movement of one data segment to be erased. If list 1 is empty
and/or additional pre-erased blocks are needed, then the con-
troller looks in list 2, and so forth. As data blocks 710 are
erased, they are added to the end of the pre-erased list. When
a pre-erased block is needed, it is taken from the top of the
pre-erased list. This provides a form of dynamic wear level-
ing. The earlier pre-erased blocks are on the top of the list.
[0085] When multiple data blocks 710 with one valid data
segment are erased to produce pre-erased blocks, the valid
data segments of these erased data blocks 710 may be com-
bined and rewritten into a new single data block. For example,
if there are 32 data blocks 710 with one valid segment each,
then the 32 valid data segments of these data blocks 710 may
be written into a new block 710, and all 32 data blocks 710 can
be erased or moved to list 0. The new block 710 will have all
valid data segments. The physical addresses of the 32 valid
segments are updated in the address table accordingly.
[0086] FIG. 8illustrates linked lists that are used to provide
static wear leveling according to one aspect. The lists keep
track of the erase counts of the data blocks 710. The controller
20 uses the lists to provide wear leveling by keeping the erase

Sep. 20, 2012

counts of the data blocks 710 within a certain range (e.g.,
8192 erase counts) of each other. In addition to belonging to
one of the lists of valid data segments discussed above, the
data blocks 710 (with the exception of BAD or System data
blocks) are in one of a plurality of static wear lists. The
example in FIG. 8 has eight static wear lists. Each list com-
prises data blocks 710 that are within a certain range of the
lowest erase count. The linked lists may cover data blocks in
the entire flash array 22. Alternatively, the linked lists may be
implemented for each channel of the flash array 22.

[0087] Inthe example illustrated in FIG. 8, list 0 comprises
data blocks 710 with erase counts that are within 1023 of the
lowest count. List 1 comprises data blocks 710 with erase
counts that are within a range of 1024-2047 of the lowest
count, and so forth up to list 7, which comprises data blocks
710 with erase counts that are within a range of 7168-8191 of
the lowest count. Although the example in FIG. 8 has eight
lists, any number of lists may be used with any count range.
[0088] Each time a data block 710 is erased, it is moved to
the end of the list it is in. In practice, this means that each list
tends to be in roughly an ascending numerical sequence. This
may be especially true at the start of the list where data blocks
with the lowest counts are located.

[0089] When a data block 710 reaches list 7 (highest list),
the block is deemed as hot and in need of static wear leveling.
The data block 710 in list 7 will have been pre-erased at this
point (since the count of a data block is not bumped up until
the data block is erased). Data is copied from the data block at
the head of list 0 (which should hold static data because of its
low erase count) to the pre-erased data block 710 with the
high erase count in list 7. The low count data block 710 from
which the data was moved is erased and put into the free pool.
When list 0 becomes empty, the lists are all moved down by
one (which involves moving head and tail pointers) and the
lowest count is bumped up by 1024. In this example, the data
blocks 710 in list 1 are moved down to list 0, the data blocks
710 in list 2 are moved down to list 1, and so forth. After the
bump up, the lowest count is 1024 higher and list 7 is emptied
since the data blocks previously in list 7 have been moved
down to list 6.

[0090] The controller 20 may use both the lists of valid data
segments and the lists of erase counts to determine which data
segments need to be moved and which data blocks 710 need
to be erased.

[0091] The lists described above may be stored in the
DRAM 30 for fast access by the controller 20 during opera-
tion of the flash storage device 10, and stored in the flash array
22 when the flash storage device 10 is turned off.

[0092] FIG. 9A is a flow chart illustrating a method of
transferring data in a flash storage device comprising a ran-
dom access memory and a plurality of channels of a flash
array according to an aspect of the disclosure. The method
begins with step 901, in which the flash storage device
receives a plurality of data segments from a host system. Each
data segment may comprise data sectors. In step 902, the
plurality of data segments are stored in the random access
memory (e.g., DRAM 30). In step 903, the plurality of data
segments are allocated among the plurality of channels of the
flash array. In step 904, the allocated data segments are writ-
ten from the random access memory to the respective chan-
nels of the flash array.

[0093] In another aspect of the invention, a portion of the
flash memory 25-1 to 25-N may be allocated to be used as an
allocated flash cache portion which can be used as a cache for

US 2012/0239853 Al

buffering data to and from the remaining portion of flash
memory 25-1to 25-N. In this manner, the I/O performance of
buffering data to flash memory 25-1 to 25-N is increased in
comparison to just using DRAM 30 as a data buffer in flash
storage device 10.

[0094] Inthisregard, FIG. 9B depicts a flash storage device
with an allocated flash cache portion according to one
embodiment. As seen in FIG. 9B, flash storage device 10
allocates a portion of flash array 22 as flash cache 50 and the
remainder of flash array 22 is allocated as main flash storage
55. As described above with regard to FIG. 1, flash array 22
can comprise more than one flash chip, such as flash memory
25-1 to 25-N, in which case the allocation of flash cache 50
and main flash storage 55 can be distributed among flash
memory 25-1 to 25-N as shown in FIG. 9C. In FIG. 9C, it can
be seen that the same allocation of flash cache 50 and main
flash storage 55 is provided in each of flash memory 25-1 to
25-N. Of course, it should be appreciated that difterent allo-
cations of flash cache 50 and main flash storage 55 can be
provided in each of flash memory 25-1 to 25-N. In an alter-
ative aspect, the allocation of flash cache 50 and main flash
storage 55 can be distributed among flash memory 25-1 to
25-N such that all of flash cache 50 is provided in only certain
ones of flash memory 25-1 to 25-N and main flash storage 55
is provided in the remainder of flash memory 25-1 to 25-N, as
shown in FIG. 9D. In FIG. 9D, flash memory 25-1 is shown as
being entirely utilized for flash cache 50 while the remainder
flash memory 25-2 to 25-N is used for main flash storage 55.
Itshould be appreciated that any combination and variation of
allocation between flash cache 50 and main flash storage 55
across multiple flash memory 25-1 to 25-N can be imple-
mented according to the invention. In one aspect of the inven-
tion, the apportionment of flash memory 25-1 to 25-N into
flash cache 50 and main flash storage 55 can be program-
mable according to an algorithm or through user selection.
[0095] In one embodiment, the portion of flash memory
25-1 to 25-N that is allocated to flash cache 50 is proportional
to the total size of flash memory 25-1 to 25-N. For example,
the size of flash cache 50 could be 3 GB for flash memory 25-1
to 25-N having a total size of 64 GB, and could be 6 GB for
flash memory 25-1 to 25-N having a total size of 128 GB.
[0096] In one aspect, flash cache 50 is partitioned in a
similar manner to DRAM cache 30 described above. For
example, flash cache 50 can be partitioned into flash data
blocks each of which contain multiple data segments. For
example, a flash data block of flash cache 50 can contain 128
data segments, each data segment being 4 k in size, but could
be other sizes such as 2 k. To obtain increased performance of
flash storage device 10 in conjunction with flash cache 50, the
main flash storage 55 can be partitioned into large flash data
blocks also, such as logical blocks 0of 256 k, 512 k or 1M size.
The benefit of these large blocks is discussed further below
with regard to the efficient buffering of sequential data
directly to the main flash storage 55.

[0097] FIG. 10 depicts a block diagram of a flash storage
device in which data is buffered from DRAM to an allocated
cache portion according to one embodiment of the invention.
In FIG. 10, DRAM 30 is shown which acts as a buffer for
incoming data from controller 20 (not shown), and flash
memory 25-1 to 25-N is also shown. DRAM 30 shows a cache
data block 1010 of a total data cache of DRAM 30 and also
includes address table array 1020. Cache data block 1010
shown in FIG. 10 is of the same size as a data segment to
facilitate transfer of data into flash memory 25-1 to 25-N, but

Sep. 20, 2012

can in the alternative be another size. For example, the size of
cache data block 1010 shown is 4 k, which is the size of a data
segment.

[0098] Address table array 1020 is comprised of a series of
separate address tables for correlating LBAs to physical
addresses of flash memory 25-1 to 25-N where the corre-
sponding data for each LBA is stored. In one example, each
address table of address table array 1020 corresponds to a set
of cache data blocks (data segments) that comprise enough
data to fill a flash data block and which is therefore transferred
from the data cache of DRAM 30 into flash memory 25-1 to
25-N (either in flash cache 50 or in main flash storage 55). In
this regard, flash cache 50 is shown in FIG. 10 to include flash
data blocks 1030, 1040 and 1050, each of which has a corre-
sponding flash cache address table, 1061, 1062 and 1063,
respectively. Similarly, main flash storage 55 is shown in FI1G.
10 to have flash data blocks 1070, 1080 and 1090. Of course,
flash cache 50 and main flash storage 55 may have other
numbers and sizes of flash data blocks.

[0099] Asdiscussed above, host LBAs are mappedto LBAs
by controller 20 and the LBAs are distributed among the
channels of flash memory 25-1 to 25-N according to an algo-
rithm. On this note, also as discussed above in one aspect,
each LBA is stored along with the corresponding data in flash
memory 25-1 to 25-N so that one or more address tables of
address table array 1020 can be recreated if necessary by
scanning the stored data segments in flash memory 25-1 to
25-N.

[0100] Address table array 1020 shown in FIG. 10 is
includes one or more address tables that correspond to physi-
cal addresses of data stored in main flash storage 55 and also
includes one or more address tables that correspond to physi-
cal addresses of data stored in flash cache 50. In the embodi-
ment shown in FIG. 10, incoming data is buffered through the
data cache of DRAM 30 and sent to flash cache 50 which
organizes the data into flash data blocks and then sends the
data to a flash data block in main flash storage 55. In an
alternative, a flash data block of data can be sent directly from
the data cache of DRAM 30 to main flash storage 55, depend-
ing on the type of data as discussed further below. So, some
address tables of address table array 1020 relate to data resid-
ing in flash cache 50 and some address tables relate to data
that is already stored in main flash storage 55. In FIG. 10,
address table 1021 of address table array 1020 is an address
table that corresponds to data stored in flash cache 50, and in
particular to data stored in flash data block 1030 of flash cache
50.

[0101] As seen in FIG. 10, when enough incoming data is
provided to fill a cache data block (segment) of DRAM 30,
such as cache data block 1010, the cache data block is trans-
ferred into an active flash data block of flash cache 50, such as
flash data block 1030 shown in FIG. 10. In this example,
cache data block 1010 is shown to be filled and transferred
into the first data segment 1031 of flash data block 1030.
When an entire flash data block is written from the data cache
of DRAM 30 to flash cache 50, the corresponding address
table 1021 is updated to reference the physical addresses of
where the data segments (cache data blocks) are stored in the
flash data block in correlation with the LBAs that correspond
to each data segment. Accordingly, the “virtual-to-physical”
address table for data which is cached in a flash data block of
flash cache 50 is also stored along with the corresponding
flash data block in flash cache 50. In the example shown in
FIG. 10, address table 1021 is copied to address table 1061 in

US 2012/0239853 Al

correspondence with flash data block 1030 of flash cache 50.
Inthis manner, a portion of flash memory 25-1to 25-N is used
as a cache in order to build up alarge block of data for efficient
transfer into a flash data block of main flash storage 55, such
as flash data block 1070. As will be discussed further below,
this flash cache aspect is particularly useful with regard to the
gathering and organization of random incoming data into
flash data blocks for efficient write operations of flash storage
device 10.

[0102] FIG. 11A depicts an example is shown of a main
flash storage address table according to an aspect of the inven-
tion. In FIG. 11A, main flash storage address table 1100 is
shown in which each of record entries 1150-1 to 1150-N of
main flash storage address table 1100 corresponds to an LBA
of a flash data block stored in main flash storage 55. In this
regard, the record entries 1150-1 to 1150-N may be arranged
in numerical order of the LBAs so that LBA 0 corresponds to
the first entry 1150-1, LBA 1 to the second entry, and so on,
whereby the highest number LBA corresponds to the last
entry 1150-N. The main flash storage address table 1100
includes columns for entry in each record of a channel num-
ber 1120, a main flash storage physical address 1130 and a
flash cache segment cross-reference address 1140. The chan-
nel number 1120 indicates which channel of flash memory
25-1 to 25-N corresponds to the particular LBA of the record.
The main flash storage physical address 1130 indicates the
actual physical address location in main flash storage 55 of
the data associated with the LBA.

[0103] Flash cache segment cross-reference address 1140
may contain an address if there are one or more data segments
stored in flash cache 50 associated with the LBA data stored
in main flash storage 55. This address entry is used as both an
indicator of whether or not there is such corresponding data in
flash cache 50, and also in the case that there is such corre-
sponding data in flash cache 50 it provides an actual physical
address of a cross-reference table that associates the data
segments in flash cache 50 with the LBA of the particular
record in main flash storage address table 1100. If no address
is entered in the record (such as 1150-1) for flash cache
segment cross-reference address 1140, then this indicates that
there is no data in flash cache 50 that corresponds to the LBA
in the record. If there is an address entered in the record (such
as 1150-1) for flash cache segment cross-reference address
1140, then this indicates that there is data in flash cache 50
that corresponds to the LBA in the record, and the address is
used to access a separate lookup table that correlates the data
segments stored in flash cache 50 that correspond to the LBA
in the record. It should be appreciated that main flash storage
address table 1100 may not necessarily be in a table format
but may instead be a link list of record entries 1150-1 to
1150-N.

[0104] In this regard, FIG. 11B, shows an example of flash
cache segment cross-reference table 1160. As seen in FIG.
11B, flash cache segment cross-reference table 1160 is dedi-
cated to a specific LBA (in this example, LBA X) correspond-
ing to a flash data block in flash main storage 55. It can
therefore be appreciated that there are similar tables for all
flash data blocks in flash main storage that have correspond-
ing data provided in flash cache 50. In this manner, the
address to the flash cache segment cross-reference table cor-
responding to a particular LBA can be obtained from main
flash storage address table 1100 as described above, and the
flash cache segment cross-reference table can then be

Sep. 20, 2012

searched to determine of there are any data segments in flash
cache 50 that correspond to the LBA.

[0105] Flash cache segment cross-reference table 1160 of
FIG. 11B includes record entries 1170-1 to 1170-N that cor-
respond to each possible data segment to the particular LBA.
In this example, there are 128 data segments in each flash data
block corresponding to an L.BA, but there are other possible
configurations depending on the size of the flash data block
and the data segment. In each of record entries 1170-1 to
1170-N there are two columns, flash cache data segment
number 1161 and flash cache data segment address 1162.
Flash cache data segment number 1161 includes the particu-
lar data segment number for a data segment stored in flash
cache 50 that corresponds to the flash data block associated
with the particular LBA. There are only entries in flash cache
segment cross-reference table 1160 for those data segments
that are stored on flash cache 50. Accordingly, there may be
only one of record entries 1170-1 to 1170-N provided in flash
cache segment cross-reference table 1160 if there is only one
data segment stored in flash cache 50 corresponding to the
LBA. Record entries 1170-1 to 1170-N are preferably
arranged in ascending numerical order in flash cache segment
cross-reference table 1160, but that is not necessary. Flash
cache data segment address 1162 is the physical address for
the data segment identified in flash cache data segment num-
ber 1161 of each existing one of record entries 1170-1 to
1170-N. In this manner, a segment cross-reference table can
be quickly accessed for each LBA of main storage data to
determine if the LBA has corresponding data segments pro-
vided in flash cache 50. It should be appreciated that flash
cache segment cross-reference table 1160 may not necessar-
ily be in a table format but may instead be a link list of record
entries 1170-1 to 1170-N. Accordingly, flash cache segment
cross-reference table 1160 provides an efficient form of
address table 1021 formed in DRAM 30 as shown in FIG. 10,
which is then copied to address table 1061 in flash cache 50
when the writing of a flash data block from DRAM 30 data
cache to flash cache 50 is completed.

[0106] In this regard, address table 1061 can also be pro-
vided with link lists that can be used to manage and track data
segments of the flash data blocks of flash cache 50 in a similar
to that already described above with respect to FIGS. 4A, 4B,
5A, 5B, 7 and 8. In particular, link lists of the flash cache
blocks can be used in a similar to that described above with
respect to FIGS. 4A, 4B, 5A and 5B in order to manage the
ordered use of flash cache blocks. For example a flash cache
block that is empty can be placed at the top of the link list for
next active use, followed by flash cache blocks that are the
oldest or the least accessed, and the most active accessed flash
cache blocks would be maintained at the bottom of the link
list.

[0107] Similarly, multiple link lists of the flash cache
blocks can be used in a similar to that described above with
respect to FIG. 7 in order to track valid and invalid data
segments in the flash cache blocks to assist in cleanup opera-
tions of the flash cache blocks, such as a background cleanup
operation of the flash cache blocks in flash cache 50, as is
described in more detail below. Lastly, multiple link lists of
the flash cache blocks can be used in a similar to that
described above with respect to FIG. 8 in order to erase count
status of the flash cache blocks to assist in wear leveling
management of the flash cache blocks in flash cache 50, as is
described in more detail below.

US 2012/0239853 Al

[0108] FIG. 12 depicts a flowchart describing an operation
for an allocated cache portion of the flash memory 25-1 to
25-N, such as flash cache 50, according to an embodiment of
the invention. In FIG. 12, the operation begins with step 1201
in which incoming data is sent to DRAM 30 data cache, such
as from controller 20 in response to a write command from
host 80 (both shown in FIG. 1). Next, in step 1203, the
incoming data is filled into a cache data block of the data
cache in DRAM 30. A determination is made in step 1205
whether the incoming data stored in the cache data block is
sequential data or is random data. If the incoming data is
sequential data, then the data cache of DRAM 30 continues to
fill cache data blocks with the incoming sequential data in
step 1207 until set of cache data blocks is completed that is
enough to fill a flash data block for being written to main flash
storage 55. In step 1209, the completed set of cache data
blocks is written to a flash data block of main flash storage 55.
The address table in data cache of DRAM 30 that corresponds
to the flash data block is then updated with the physical
address of the flash data block in main flash storage 55. This
path of the operation ends at step 1220.

[0109] If the incoming data is not sequential data but is
random data, then the cache data block of the incoming ran-
dom data is written from the data cache of DRAM 30 to a data
segment of a flash data block of flash cache 55 in step 1213.
Inone aspect, the cache data block in the data cache of DRAM
30 is made free for being re-written once it is successfully
written to the data segment of a flash data block of flash cache
55. In this manner, less capacity of DRAM is necessary for
data caching of incoming data. Accordingly, if there is a
power failure, the data is already stored in flash cache 50 and
if there is initially a write failure during the write of the data
from data cache in DRAM 30 to flash cache 50 then the data
can be written to a different flash data block of flash cache 50.
Next, in step 1215, once enough data segments are available
to fill the flash data block of flash cache 50, the flash data
block is written to main flash storage 55. Then, the address
table in data cache of DRAM 30 that corresponds to the flash
data block is updated with the physical address of the flash
data block in main flash storage 55, and the address table is
copied to flash cache 50 to be stored in association with the
flash data block in flash cache 50. This path of the operation
ends at step 1220. In this manner, large blocks of incoming
sequential data are efficiently written directly to main flash
storage 55 without the need for interim buffering in flash
cache 50. On the other hand, incoming random data is first
directed to interim buffering in flash cache 50 where it is
collected in a large block size and then efficiently written to
main flash storage 55. For example, much of the randomly
written incoming data from host 80 may actually be sequen-
tial data that is written randomly. The above described use of
flash cache 50 allows the randomly written sequential data to
be organized into proper large sequential data blocks for
efficient writing to main flash storage 55. For incoming data
that is written randomly from host 80 and is truly random (is
not associated with other incoming data), the random data is
written to main flash storage 55 using a read-modify-write
operation for the corresponding large flash data block where
the random data is to be stored. The above operations using
flash cache 50 can result in a reduced capacity need for cache
data in DRAM 30 and can reduce the need to re-arrange and
cleanup data after it has been written into flash main storage
55, otherwise known as a reduction in write amplification.

Sep. 20, 2012

[0110] FIGS. 13A and 13B depict flowcharts of a power-
down sequence and a power-up sequence for maintaining
address tables for the flash cache according to an embodiment
of'the invention. In FIG. 13 A, a normal power down sequence
is shown in which flash device 10 checks in step 1301 to see
if write commands have been received since the device was
last powered up. In step 1303, it is determined if write com-
mands have been received since the last power up, and if so,
the current versions of the address tables for the flash data
blocks in flash cache 50 are saved from the data cache of
DRAM 30 to a static area of flash cache 50 in step 1305. If, in
step 1303, it is determined that write commands have not been
received since the last power up, then the versions of the
address tables already stored in flash cache 50 are still current
and do not need to be updated. In either case, a tag is written
to the static area of flash cache 50 to indicate that flash device
10 is being powered down under normal circumstances, and
the process ends at step 1309.

[0111] InFIG.13B,apowerup sequence is shown in which
flash device 10 first checks in step 1321 for the presence of a
tag was written to the static area of flash cache 50 to indicate
that flash device 10 was last powered down under normal
circumstances. In step 1323, it is determined if such a tag is
present, and if so, the address tables that are already stored in
flash cache 50 are valid for use, so this path of the process ends
at step 1331. If, in step 1323, it is determined if such a tag is
not present, then in step 1327 the last saved versions of the
address tables are obtained from the static area of flash cache
50 and the active flash data blocks of flash cache 50 are
identified according to the address tables. Next, the flash
device 10 scans all active flash blocks of flash cache 50 and
reconstructs new versions of the address tables based on the
LBA and physical address information of the active flash
blocks. The process then ends at step 1331. In this manner, the
above described processes can prevent the loss of address
table data during normal power down sequences, and can
provide for efficient reconstruction of the address tables upon
a power-up sequence following an abnormal power down of
flash device 10.

[0112] As mentioned above, the use of flash cache 50
allows for randomly written data that is sequential in nature to
be efficiently packaged together for a particular flash data
block and then efficiently written to main flash storage 55. In
this regard, FIGS. 14A, 14B and 14C are block diagrams of a
background “cleanup” operation that is conducted during idle
time of flash device 10 to gather randomly written data stored
in flash cache 50 for a common flash data block and write that
block to main flash storage 55, thereby freeing up flash data
blocks in flash cache 50 for subsequent use.

[0113] AsseeninFIG. 14A, flash cache 50 is shown, and is
seen to contain flash data blocks 1410, 1420, 1430 and on to
1450 and 1460. Flash data blocks 1410, 1420 and 1430 con-
tain data and flash blocks 1450 and 1460 are empty and ready
for use. In this regard, a background cleanup operation is
performed when flash device 10 is idle, such as when there is
one second during which no host commands have been sent to
flash device 10. In the example of FIG. 14A, flash data blocks
1410, 1420 and 1430 contain data segments 1411, 1421 and
1431, respectively, which have been randomly written into
different flash data blocks but which are sequential and there-
fore belong to a same data block. These data segments can be
identified by, for example, utilizing the address table
described above with respect to FIG. 11A and the cross-
reference table described above with respect to FIG. 11B.

US 2012/0239853 Al

[0114] FIG. 14B depicts the next step of the background
cleanup operation example. In FIG. 14B, the background
cleanup operation writes the data segments 1411, 1421 and
1431 from flash data blocks 1410, 1420 and 1430, respec-
tively, to sequential data segments 1471, 1472 and 1473 in
flash data block 1470 of flash main storage 55. Also, the data
on either side of data segment 1411 in flash data block 1410
is moved to empty flash data block 1450. In this manner, the
sequential data in data segments 1411, 1421 and 1431 is
gathered and written in a block fashion to flash main storage
55 and the remaining data of flash data block 1410 is sent to
anew block of flash cache 50, thereby making flash datablock
1410 of flash cache 50 ready for re-use.

[0115] InFIG. 14C, flash data block 1410 of flash cache 50
is erased and is now made ready for re-use. Also, flash data
segments 1421 and 1431 of flash data blocks 1420 and 1430
offlash cache 50 are marked as invalid now that their data has
been moved to main flash storage 55. From here, the opera-
tion can continue and all flash data blocks containing invalid
data segments, or above a certain number of invalid data
segments, can be identified and cleaned up in a similar fash-
ion. In one aspect, certain parameters are used to control the
amount of cleanup performed in the background cleanup
operation. For example, a threshold percentage of all flash
data blocks in flash cache 50 can be set, such as 50%, and
when this percentage of flash data blocks in flash cache 50
have been cleaned and emptied, the background cleanup
operation would be stopped until a subsequent idle time. In
this example, the next instance of the background cleanup
operation could begin at the next flash data block in sequence
after the last flash data block that was cleaned up in the last
instance of the background cleanup operation. Also, the back-
ground cleanup operation could be limited to operate on
cleanup of only those flash data blocks in flash cache 50 that
would result in at least a threshold number, such as 16, of data
segments to be written to a block of main flash storage 55.
These thresholds and parameters can of course be changed to
achieve more or less cleanup of flash data blocks in flash
cache 50 with each instance of the background cleanup opera-
tion.

[0116] Accordingly, the example of the background
cleanup operation described above can efficiently gather and
write sequential data from flash cache 50 to flash main storage
55 and also free flash data blocks in flash cache 50 for sub-
sequent reuse. As data is written to main flash storage, and
data in flash data blocks of flash cache 50 is rendered invalid
and flash data blocks of flash cache 50 are erased, the address
tables corresponding to the relevant flash data blocks are
updated to represent the new location of the data, and to
represent the status of the flash data blocks in flash cache 50.
For example, as mentioned above, in one aspect of the inven-
tion link lists can be maintained to represent the empty
“erased” flash data blocks of flash cache 50 which are ready
for use, such as the link lists described above with respect to
FIGS. 4A, 4B, 5A and 5B. These link lists can be stored in
data cache of DRAM 30 along with the address table of the
associated flash data block. Similarly, link lists can also be
maintained to represent the flash data blocks of flash cache 50
that contain invalid data segments, such as the link lists
described above with respect to FIG. 7.

[0117] FIG. 15 is a flowchart that describes the steps of a
background cleanup operation according to an embodiment
of'the invention. As seen in FIG. 15, the process begins at step
1501 when flash device 10 is idle, such as when there is one

Sep. 20, 2012

second during which no host commands have been sent to
flash device 10. In step 1501, data segments are identified in
flash cache 50 which have been randomly written into differ-
ent flash data blocks of flash cache 50 but which are sequen-
tial and therefore belong to a same data block. These data
segments can be identified by, for example, utilizing the
address table described above with respect to FIG. 11A and
the cross-reference table described above with respect to FI1G.
11B. Next, in step 1503, the identified data segments from
step 1501 are written to a same flash data block of main flash
storage 55. For example, the same flash data block of main
flash storage 55 can be the flash data block corresponding to
the L.BA associated with the identified data segments. In one
aspect of the invention, the identified data segments are only
written to a same flash data block of main flash storage 55 in
step 1503 if the number of identified data segments is equal to
or greater than a predetermined threshold, such as 16, in order
increase efficiency by reducing write amplification. Of
course, this threshold can be modified (such as to 8, 4, 2 and
1) as it becomes more necessary to cleanup more flash data
blocks. The identified data segments in the flash data blocks
of flash cache 30 that were just written to main flash storage
55 are marked as invalid in the address table and/or link lists
as described above.

[0118] In step 1505, one of the flash data blocks in flash
cache 50 is identified based on having a certain level of invalid
data segments. This can be a flash data block of flash cache 50
from which the most number of data segments were just
written to main flash storage 55, or it can be another flash data
block of flash cache 50 with a high amount of invalid data
segments. As discussed above, link lists can be used to rep-
resent the flash data blocks of flash cache 50 that contain
certain levels of invalid data segments, such as the link lists
described above with respect to FIG. 7. These link lists can be
used for the background cleanup operation to make the deter-
mination in step 1505 of which next flash data block of flash
cache 50 should be selected for cleanup.

[0119] In step 1507, the remaining data segments (other
than the invalid data segments) of the identified flash data
block are written to an empty flash data block of flash cache
50, thereby making the identified flash data block ready for
erase and re-use. The data segments of identified flash data
block are then erased in step 1509. The address tables and/or
link lists discussed above are updated in step 1511 to reflect
the writing of data segments to main flash storage 55, and to
a new flash data block in flash cache 50 and to reflect the fact
that the identified flash data block is now empty and ready for
re-use. It is next determined in step 1513 if the background
cleanup operation should continue by checking the link lists
associated with flash cache 50 to see if the number of empty
flash data blocks is above a certain percentage (such as 50%)
of all flash data blocks in flash cache 50. If the number of
empty flash data blocks is not above the certain percentage,
then the background cleanup operation continues again at
step 1501. If the number of empty flash data blocks is above
the certain percentage, then the identity of the next flash data
block in cleanup sequence (based on number of invalid blocks
or other factors) is identified and stored in step 1515 in static
data of flash cache 50. In this manner, the next instance of the
background cleanup operation can begin at the next identified
flash data block. The process then ends at step 1517. In this
manner, the background cleanup operation efficiently gathers

US 2012/0239853 Al

and writes sequential data segments from flash cache 50 into
flash main storage 55 and also frees flash data blocks in flash
cache 50 for subsequent use.

[0120] The combination of moving sequential data to main
flash storage and cleaning up flash data blocks with invalid
data segments during the background cleanup operation
improves the efficiency of the flash cache 50. Other tech-
niques and methods can also be employed during the back-
ground cleanup operation to improve efficiency and to main-
tain the operability of the flash data blocks of flash cache 50,
such as a wear leveling operation as described above with
respect to FIG. 8. In this manner, static wear leveling can also
be achieve for the flash data blocks of flash cache 50 based on
maintained relative erase counts for the flash data blocks in
static wear link lists, whereby the erase counts of all flash data
blocks of flash cache 50 are maintained with a predetermined
threshold of each other, such as 512 or 1024 erase counts.
[0121] While the present invention has been particularly
described with reference to the various figures and embodi-
ments, it should be understood that these are for illustration
purposes only and should not be taken as limiting the scope of
the invention. There may be many other ways to implement
the invention. Many changes and modifications may be made
to the invention, by one having ordinary skill in the art,
without departing from the spirit and scope of the invention.

1. A method of transferring data in a flash storage device
comprising a random access memory and a flash memory, the
method comprising:

receiving data from a host system, the data comprising a

data segment;

temporarily storing the data segment in a data buffer of the

random access memory;

assigning the data segment to a logical block address;

determining if the data segment stored in the data buffer

comprises sequential data or random data; and

writing the data segment to an allocated cache portion of

the flash memory if the data segment is determined to
comprise random data.

2. The method of claim 1, further comprising a second
writing step of writing the data segment from the allocated
cache portion of the flash memory to a main storage portion of
the flash memory.

3. The method of claim 1, wherein the flash memory com-
prises an array of plurality of flash memory units, and the
allocated cache portion of the flash memory is evenly distrib-
uted across the plurality of flash memory units.

4. The method of claim 1, wherein the flash memory com-
prises an array of plurality of flash memory units, and the
allocated cache portion of the flash memory is not uniformly
distributed across the plurality of flash memory units.

5. (canceled)

6. The method of claim 2, wherein in the second writing
step the data segment is written from the allocated cache
portion to a location in the main storage portion that corre-
sponds to the logical block address assigned to the data seg-
ment.

7. The method of claim 6, wherein in the second writing
step a plurality of other data segments having the same
assigned logical block address as the data segment are written
along with the data segment to the location in the main storage
portion that corresponds to the assigned logical block
address.

Sep. 20, 2012

8. The method of claim 7, wherein the second writing step
is not conducted until a predetermined number of data seg-
ments having the same assigned logical block address have
been written to the allocated cache portion of the flash
memory.

9. The method of claim 8, wherein the allocated cache
portion of the flash memory and the main storage portion of
the flash memory are each comprised of a plurality of flash
data blocks each of which is sized to accommodate the pre-
determined number of data segments.

10. The method of claim 1, wherein the allocated cache
portion of the flash memory and the main storage portion of
the flash memory are each comprised of a plurality of flash
data blocks.

11. The method of claim 7, wherein the data segment and
the plurality of other data segments are sequential data seg-
ments.

12. The method of claim 2, further comprising:

maintaining an address table in the random access memory,
wherein the address table comprises a plurality of logi-
cal block addresses cross-referenced to a plurality of
physical addresses; and

updating the address table upon writing the data segment

from the allocated cache portion to a location in the main
storage portion of the flash memory by storing the physi-
cal address of the location as a cross-reference to the
logical block address assigned to the data segment.

13. The method of claim 12, wherein the address table also
includes a cross-reference between the plurality of logical
block addresses and a plurality of allocated cache portion
indicators, each indicator indicating that a data segment cor-
responding to the respective logical block address is stored in
the allocated cache portion of the flash memory.

14. The method of claim 13, wherein the each of the plu-
rality of allocated cache portion indicators is a physical
address pointing to a different logical block cache table stored
in the random access memory, the logical block cache table
comprising a list of all data segments stored in the allocated
cache portion that correspond to the same logical block
address which is cross-referenced to the allocated cache por-
tion indicator.

15. The method of claim 14, wherein the logical block
cache table is a link list of all data segments stored in the
allocated cache portion that correspond to the same logical
block address which is cross-referenced to the allocated
cache portion indicator.

16. The method of claim 14, wherein the logical block
cache table also includes a physical address of a location in
the allocated cache portion where each data segment listed in
the logical block cache table is stored.

17. The method of claim 1, further comprising:

writing the data segment from the data buffer of the random

access memory to a main storage portion of the flash

memory without temporarily storing the data segment in

the allocated cache portion of the flash memory if the

data segment is determined to comprise sequential data.

18. The method of claim 17, wherein a plurality of other

data segments having the same assigned logical block address

as the data segment are written along with the data segment to

alocation in the main storage portion of the flash memory that
corresponds to the assigned logical block address.

US 2012/0239853 Al

19. The method of claim 12, further comprising:

storing a copy of the address table in the flash memory prior
to a power-down operation of the flash storage device;
and

transferring the address table from the flash memory to the
random access memory upon power-up operation of the
flash storage device.

20. The method of claim 19, wherein in the storing step, a
normal power- down indicator tag is also stored in flash
memory, and further comprising a reconstruction step, which
upon power-up operation of the flash storage device checks
the flash memory for the presence of a normal power-down
indicator tag, wherein, in the case that the normal power-
down indicator tag is not present, all data segments in flash
memory are scanned to gather information related to all data
segments present in flash memory and their corresponding
logical block addresses, and the address table is reconstructed
based on the gathered information.

21. The method of claim 2, further comprising:

conducting a background cleanup operation in which the
allocated cache portion is scanned to identify a set of
data segments that collectively contain a set of sequen-
tial data, and writing the set of data segments to the main
storage portion of the flash memory, upon which each
one of the set of data segments is identified as in invalid
data segment.

22. The method of claim 21, wherein the flash memory is
comprised of a plurality of flash data blocks, and wherein the
background cleanup operation further includes selecting a
flash data block which has a predetermined number of invalid
data segments and then erasing the selected flash data block
for subsequent use and identifying the selected flash data
block as an erased flash data bock.

23. The method of claim 22, wherein in the background
cleanup operation all data segments in the selected flash data
block which are not identified as an invalid data segment are
moved to another flash data block in the allocated cache
portion before the selected flash data block is erased.

24. The method of claim 22, wherein the background
cleanup operation continues until a predetermined percentage
of all flash data blocks are identified as erased flash data
bocks.

25. A flash storage device comprising:

a flash memory;

a random access memory; and

a controller configured to perform the steps of:

receiving data from a host system, the data comprising a
data segment;

temporarily storing the data segment in a data buffer of
the random access memory;

assigning the data segment to a logical block address;

determining if the data segment stored in the data buffer
comprises sequential data or random data; and

writing the data segment to an allocated cache portion of
the flash memory if the data segment is determined to
comprise random data.

26. The flash storage device of claim 25, the controller
being further configured to perform a second writing step of
writing the data segment from the allocated cache portion of
the flash memory to a main storage portion of the flash
memory.

14

Sep. 20, 2012

27. The flash storage device of claim 25, wherein the flash
memory comprises an array of plurality of flash memory
units, and the allocated cache portion of the flash memory is
evenly distributed across the plurality of flash memory units.

28. The flash storage device of claim 25, wherein the flash
memory comprises an array of plurality of flash memory
units, and the allocated cache portion of the flash memory is
not uniformly distributed across the plurality of flash memory
units.

29. (canceled)

30. The flash storage device of claim 26, wherein in the
second writing step the data segment is written from the
allocated cache portion to a location in the main storage
portion that corresponds to the logical block address assigned
to the data segment.

31. The flash storage device of claim 30, wherein in the
second writing step a plurality of other data segments having
the same assigned logical block address as the data segment
are written along with the data segment to the location in the
main storage portion that corresponds to the assigned logical
block address.

32. The flash storage device of claim 31, wherein the sec-
ond writing step is not conducted until a predetermined num-
ber of data segments having the same assigned logical block
address have been written to the allocated cache portion of the
flash memory.

33. The flash storage device of claim 32, wherein the allo-
cated cache portion of the flash memory and the main storage
portion of the flash memory are each comprised of a plurality
of flash data blocks each of which is sized to accommodate
the predetermined number of data segments.

34. The flash storage device of claim 25, wherein the allo-
cated cache portion of the flash memory and the main storage
portion of the flash memory are each comprised of a plurality
of flash data blocks.

35. The flash storage device of claim 31, wherein the data
segment and the plurality of other data segments are sequen-
tial data segments.

36. The flash storage device of claim 26, the controller
being further configured to perform the steps of :

maintaining an address table in the random access memory,

wherein the address table comprises a plurality of logi-
cal block addresses cross-referenced to a plurality of
physical addresses; and

updating the address table upon writing the data segment

from the allocated cache portion to a location in the main
storage portion of the flash memory by storing the physi-
cal address of the location as a cross-reference to the
logical block address assigned to the data segment.

37. The flash storage device of claim 36, wherein the
address table also includes a cross-reference between the
plurality of logical block addresses and a plurality of allo-
cated cache portion indicators, each indicator indicating that
a data segment corresponding to the respective logical block
address is stored in the allocated cache portion of the flash
memory.

38. The flash storage device of claim 37, wherein the each
of the plurality of allocated cache portion indicators is a
physical address pointing to a different logical block cache
table stored in the random access memory, the logical block
cache table comprising a list of all data segments stored in the
allocated cache portion that correspond to the same logical
block address which is cross-referenced to the allocated
cache portion indicator.

US 2012/0239853 Al

39. The flash storage device of claim 38, wherein the logi-
cal block cache table is a link list of all data segments stored
in the allocated cache portion that correspond to the same
logical block address which is cross-referenced to the allo-
cated cache portion indicator.

40. The flash storage device of claim 38, wherein the logi-
cal block cache table also includes a physical address of a
location in the allocated cache portion where each data seg-
ment listed in the logical block cache table is stored.

41. The flash storage device of claim 26, the controller
being further configured to perform the step of:

writing the data segment from the data buffer of the random

access memory to a main storage portion of the flash
memory without temporarily storing the data segment in
the allocated cache portion of the flash memory if the
data segment is determined to comprise sequential data.

42. The flash storage device of claim 41, wherein a plural-
ity of other data segments having the same assigned logical
block address as the data segment are written along with the
data segment to a location in the main storage portion of the
flash memory that corresponds to the assigned logical block
address.

43. The flash storage device of claim 36, the controller
being further configured to perform the steps of:

storing a copy of the address table in the flash memory prior
to a power-down operation of the flash storage device;
and

transferring the address table from the flash memory to the
random access memory upon power-up operation of the
flash storage device.

44. The flash storage device of claim 43, wherein in the
storing step, a normal power-down indicator tag is also stored
in flash memory, and the controller being further configured
to perform a reconstruction step, which upon power-up
operation of the flash storage device checks the flash memory
for the presence of a normal power-down indicator tag,
wherein, in the case that the normal power-down indicator tag
is not present, all data segments in flash memory are scanned
to gather information related to all data segments present in
flash memory and their corresponding logical block
addresses, and the address table is reconstructed based on the
gathered information.

Sep. 20, 2012

45. The flash storage device of claim 26, the controller
being further configured to perform the step of:

conducting a background cleanup operation in which the

allocated cache portion is scanned to identify a set of
data segments that collectively contain a set of sequen-
tial data, and writing the set of data segments to the main
storage portion of the flash memory, upon which each
one of the set of data segments is identified as in invalid
data segment.

46. The flash storage device of claim 45, wherein the flash
memory is comprised of a plurality of flash data blocks, and
wherein the background cleanup operation further includes
selecting a flash data block which has a predetermined num-
ber of invalid data segments and then erasing the selected
flash data block for subsequent use and identifying the
selected flash data block as an erased flash data bock.

47. The flash storage device of claim 46, wherein in the
background cleanup operation all data segments in the
selected flash data block which are not identified as an invalid
data segment are moved to another flash data block in the
allocated cache portion before the selected flash data block is
erased.

48. The flash storage device of claim 46, wherein the back-
ground cleanup operation continues until a predetermined
percentage of all flash data blocks are identified as erased
flash data bocks.

49. A non-transitory machine readable medium carrying
one or more sequences of instructions for managing memory
operations in a flash storage device having a flash memory, a
random access memory and a controller, wherein execution
of'the one or more sequences of instructions by one or more
processors in the controller cause the one or more processors
to perform the steps of:

receiving data from a host system, the data comprising a

data segment;

temporarily storing the data segment in a data buffer of the

random access memory;

assigning the data segment to a logical block address;

determining if the data segment stored in the data buffer

comprises sequential data or random data; and

writing the data segment to an allocated cache portion of

the flash memory if the data segment is determined to
comprise random data.

sk sk sk sk sk

