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(57) Abstract

A bridge for a multi-processor system includes bus inter-
faces for connection to an I/O bus of a first processing set, an /O
bus of a second processing set and a device bus. It also comprises
a bridge control mechanism configured to be operable, in an op-
erational mode to permit access by at least one of the first and
second processing sets to bridge resources and to the device bus
and, in an error mode, to prevent access by the processing sets
to the device bus and to permit restricted access to at least one
of the processing sets to at least predetermined bridge resources.
By providing restricted access to selected parameters held in the
bridge during an error mode, the bridge can act as a secure repos-
itory for information which can be used by the processing sets
to investigate the error and hopefully to recover therefrom, while
preventing 1/O devices connected to device bus from being cor-
rupted by a faulty processing set. Storage in the bridge provides
for buffering data pending resolution of the error.
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TITLE: MULTI-PROCESSOR SYSTEM BRIDGE WITH CONTROLLED ACCESS

BACKGROUND OF THE INVENTION

This invention relates to a multi-processor system in which first and second processing sets (each of which
may comprise one or more processors) communicate with an I/O device bus.

The application finds particular application to fault tolerant computer systems where two or more
processor sets need to communicate with an I/O device bus in lockstep with provision for identifying lockstep
errors in order to detect faulty operation of the system as a whole.

In such a fault tolerant computer system, an aim is not only to be able to identify faults, but also to provide
a structure which is able to provide a high degree of system availability. In order to provide high levels of system
availability, it would be desirable for such systems automatically to attempt recovery from a fault, or error
condition.

Automatic recovery from an error provides significant technical challenges in that the system has to
provide an environment where it can continue to operate following a fault in a manner which does not further
corrupt the system while permitting diagnostic operations to be performed.

Accordingly, an aim of the present invention is to address these technical problems.

SUMMARY OF THE INVENTION

Particular and preferred aspects of the invention are set out in the accompanying independent and
dependent claims. Combinations of features from the dependent claims may be combined with features of the
independent claims as appropriate and not merely as explicitly set out in the claims.

In accordance with one aspect of the invention, there is provided a bridge for a multi-processor system.
The bridge comprises a first processor bus interface for connection to an /O bus of a first processing set, a
second processor bus interface for connection to an IO bus of a second processing set and a device bus
interface for connection to a device bus. It also comprises a bridge control mechanism configured to be
operable, in an operational mode to permit access by at least one of the first and second processing sets to
bridge resources and to the device bus and, in an error mode, to prevent access by the processing sets to the
device bus and to permit restricted access by at least one of the processing sets to at least predetermined bridge
resources.

By providing restricted access to selected parameters held in the bridge during an error mode, the
bridge can act as a secure repository for information which can be used by the processing sets to investigate and
diagnose the error and hopefully to recover therefrom. By preventing the processing sets from having access to
the device bus, a faulty processing set can be prevented from corrupting devices connected to the device bus.

It should be noted that the bus interfaces referenced above need not be separate components of the
bridge, but may be incorporated in other components of the bridge, and may indeed be simply connections for

the lines of the buses concerned.
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The bridge control mechanism can be operable, in response to detection of an error state, to cause the
bridge to cease operation in the operational mode and instead to operate in the error mode.

Storage can be provided in the bridge for buffering data pending resolution of the error. For example,
error state registers can be provided for saving operating parameters on entry to the error mode, read only
access to the error state registers being permitted by at least one processing set during the error mode. A posted
write buffer can be provided for the storage of writes already posted by at least one processing set on entry to
the error mode, read only access to the posted write buffer being permitted by at least one processing set during
the error mode.

The bridge control mechanism can be operable in an initial error mode to store in the posted write
buffer any internal bridge write accesses initiated by the processing sets and to allow and to arbitrate any
internal bridge read accesses initiated by the processing sets. It can also be operable I the initial mode to store
in a posted write buffer any device bus write accesses initiated by the processing sets and to abort any device
bus read accesses initiated by the processing sets.

In a primary error mode in which a processing set asserts itself as a primary processing set, the bridge
control mechanism can be operable to aliow and to arbitrate any internal bridge write accesses initiated by the
primary processing set, to discard any internal bridge write accesses initiated by any other processing set, and to
allow and to arbitrate any internal bridge read accesses initiated by the processing sets. It can also be operable
in this mode to discard any device bus write accesses initiated by the processing sets and to abort any device bus
read accesses initiated by the processing sets.

The primary processing set is a processing set which determines that it is operational, and not faulty, as
a result of a fault analysis process. This allows any write accesses for the bridge or for the device bus which
have already been posted by the processing sets to be saved during the initial error phase. Later write accesses
to the device bus can be discarded as being erroneous. Read accesses to the device bus can safely be aborted as
they can be resent on exit from the error mode. Read access by the processing sets to the bridge is possible for
diagnostic purposes. When a processing set asserts itself as a primary processing set, this processing set is then
able to have write access to the bridge as well.

The bridge control mechanism can be further operable, in a split operational mode, to arbitrate between
the first and the second processing sets for access to each others I/O bus and to the device bus and, in a
combined operational mode, to monitor lockstep operation of the first and second processing sets.

The bridge control mechanism can be operable on power up of the bridge to in an initial error mode
until a processor set asserts itself as a primary processing set, then in the split operational mode to enable all
processing sets to be set to a corresponding state before transferring to the combined operational mode.

The bridge can include a storage sub-system and a controllable routing matrix connected between the
first processor bus interface, the second processor bus interface, the device bus interface and the storage sub-
system, the bridge control mechanism being operable to control the routing matrix selectively to interconnect
the first processor bus interface, the second processor bus interface, the device bus interface and the memory
sub-system according to a current mode of operation.

The bridge can include at least one further processor bus interface for connection to an I/O bus of a

further processing set.
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In accordance with another aspect of the invention, there is provided a computer system comprising a
first processing set having an I/O bus, a second processing set having an I/O bus, a device bus and a bridge, the
bridge comprising a first processor bus interface connected to the I/O bus of the first processing set, a second
processor bus interface connected to the /O bus of the second processing set, a device bus interface connected
to the device bus and a bridge control mechanism as described above.

In accordance with a further aspect of the invention, there is provided a method of operating a multi-
processor system comprising a first processing set having an I/O bus, a second processing set having an /O bus,
a device bus and a bridge, the bridge comprising a first processor bus interface connected to the I/O bus of the
first processing set, a second processor bus interface connected to the I/O bus of the second processing set and a
device bus interface connected to the device bus, the method comprising selectively operating the bridge:

in an operational mode to permit access by at least one of the first and second processing sets to bridge
resources and to the device bus; and

in an error mode to prevent access by the processing sets to the device bus and to permit restricted

access by at least one of the processing sets to at least predetermined bridge resources.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiments of the present invention will be described hereinafter, by way of example only,
with reference to the accompanying drawings in which like reference signs relate to like elements and in which:

Figure 1 is a schematic overview of a fault tolerant computer system incorporating an embodiment of the
invention;

Figure 2 is a schematic overview of a specific implementation of a system based on that of Figure 1;

Figure 3 is a schematic representation of one implementation of a processing set;

Figure 4 is a schematic representation of another example of a processing set;

Figure 5 is a schematic representation of a further processing set;

Figure 6 is a schematic block diagram of an embodiment of a bridge for the system of Figure 1;

Figure 7 is a schematic block diagram of storage for the bridge of Figure 6;

Figure 8 is a schematic block diagram of control logic of the bridge of Figure 6;

Figure 9 is a schematic representation of a routing matrix of the bridge of Figure 6;

Figure 10 is an example implementation of the bridge of Figure 6;

Figure 11 is a state diagram illustrating operational states of the bridge of Figure 6;

Figure 12 is a flow diagram illustrating stages in the operation of the bridge of Figure 6;

Figure 13 is a detail of a stage of operation from Figure 12;

Figure 14 illustrates the posting of /O cycles in the system of Figure 1;

Figure 15 illustrates the data stored in a posted write buffer;

Figure 16 is a schematic representation of a slot response register;

Figure 17 illustrates a dissimilar data write stage;

Figure 18 illustrates a modification to Figure 17;

Figure 19 illustrates a dissimilar data read stage;
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Figure 20 illustrates an alternative dissimilar data read stage;

Figure 21 is a flow diagram summarising the operation of a dissimilar data write mechanism;

Figure 22 is a schematic block diagram explaining arbitration within the system of Figure 1;

Figure 23 is a state diagram illustrating the operation of a device bus arbiter;

Figure 24 is a state diagram illustrating the operation of a bridge arbiter;

Figure 25 is a timing diagram for PCI signals;

Figure 26 is a schematic diagram illustrating the operation of the bridge of Figure 6 for direct memory
access;

Figure 27 is a flow diagram illustrating a direct memory access method in the bridge of Figure 6; and

Figure 28 is a flow diagram of a re-integration process including the monitoring of a dirty RAM.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Figure 1 is a schematic overview of a fault tolerant computing system 10 comprising a plurality of
CPUsets (processing sets) 14 and 16 and a bridge 12. As shown in Figure 1, there are two processing sets 14
and 16, although in other embodiments there may be three or more processing sets. The bridge 12 forms an
interface between the processing sets and /O devices such as devices 28, 29, 30, 31 and 32. In this document,
the term “processing set” is used to denote a group of one or more processors, possibly including memory,
which output and receive common outputs and inputs. It should be noted that the alternative term mentioned
above, “CPUset”, could be used instead, and that these terms could be used interchangeably throughout this
document. Also, it should be noted that the term “bridge” is used to denote any device, apparatus or
arrangement suitable for interconnecting two or more buses of the same or different types.

The first processing set 14 is connected to the bridge 12 via a first processing set /O bus (PA bus) 24,
in the present instance a Peripheral Component Interconnect (PCI) bus. The second processing set 16 is
connected to the bridge 12 via a second processing set I/O bus (PB bus) 26 of the same type as the PA bus 24
(i.e. here a PCI bus). The /O devices are connected to the bridge 12 via a device I/O bus (D bus) 22, in the
present instance also a PCI bus.

Although, in the particular example described, the buses 22, 24 and 26 are all PCI buses, this is merely
by way of example, and in other embodiments other bus protocols may be used and the D-bus 22 may have a
different protocol from that of the PA bus and the PB bus (P buses) 24 and 26.

The processing sets 14 and 16 and the bridge 12 are operable in synchronism under the control of a
common clock 20, which is connected thereto by clock signal lines 21.

Some of the devices including an Ethernet (E-NET) interface 28 and a Small Computer System
Interface (SCSI) interface 29 are permanently connected to the device bus 22, but other /O devices such as I/O
devices 30, 31 and 32 can be hot insertable into individual switched slots 33, 34 and 35. Dynamic field effect
transistor (FET) switching can be provided for the slots 33, 34 and 35 to enable hot insertability of the devices
such as devices 30, 31 and 32. The provision of the FETs enables an increase in the length of the D bus 22 as
only those devices which are active are switched on, reducing the effective total bus length. It will be

appreciated that the number of I/O devices which may be connected to the D bus 22, and the number of slots
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provided for them, can be adjusted according to a particular implementation in accordance with specific design
requirements.

Figure 2 is a schematic overview of a particular implementation of a fault tolerant computer employing
a bridge structure of the type illustrated in Figure 1. In Figure 2, the fault tolerant computer system includes a
plurality (here four) of bridges 12 on first and second I/O motherboards (MB 40 and MB 42) order to increase
the number of I/O devices which may be connected and also to improve reliability and redundancy. Thus, in
the embodiment shown in Figure 2, two processing sets 14 and 16 are each provided on a respective processing
set board 44 and 46, with the processing set boards 44 and 46 ‘bridging’ the I/O motherboards MB 40 and MB
42. A first, master clock source 20A is mounted on the first motherboard 40 and a second, slave clock source
20B is mounted on the second motherboard 42. Clock signals are supplied to the processing set boards 44 and
46 via respective connections (not shown in Figure 2).

First and second bridges 12.1 and 12.2 are mounted on the first I/O motherboard 40. The first bridge
12.1 is connected to the processing sets 14 and 16 by P buses 24.1 and 26.1, respectively. Similarly, the second
bridge 12.2 is connected to the processing sets 14 and 16 by P buses 24.2 and 26.2, respectively. The bridge
12.1 is connected to an I/O databus (D bus) 22.1 and the bridge 12.2 is connected to an I/O databus (D bus)
22.2.

Third and fourth bridges 12.3 and 12.4 are mounted on the second /O motherboard 42. The bridge
12.3 is connected to the processing sets 14 and 16 by P buses 24.3 and 26.3, respectively. Similarly, the bridge
4 is connected to the processing sets 14 and 16 by P buses 24.4 and 26.4, respectively. The bridge 12.3 is
connected to an I/O databus (D bus) 22.3 and the bridge 12.4 is connected to an I/O databus (D bus) 22.4.

It can be seen that the arrangement shown in Figure 2 can enable a large number of 1/O devices to be
connected to the two processing sets 14 and 16 via the D buses 22.1, 22.2, 22.3 and 22.4 for either increasing
the range of I/O devices available, or providing a higher degree of redundancy, or both.

Figure 3 is a schematic overview of one possible configuration of a processing set, such as the
processing set 14 of Figure 1. The processing set 16 could have the same configuration. In Figure 3, a plurality
of processors (here four) 52 are connected by one or more buses 54 to a processing set bus controller 50. As
shown in Figure 3, one or more processing set output buses 24 are connected to the processing set bus controller
50, each processing set output bus 24 being connected to a respective bridge 12. For example, in the
arrangement of Figure 1, only one processing set /O bus (P bus) 24 would be provided, whereas in the
arrangement of Figure 2, four such processing set I/O buses (P buses) 24 would be provided. In the processing
set 14 shown in Figure 3, individual processors operate using the common memory 56, and receive inputs and
provide outputs on the common P bus(es) 24.

Figure 4 is an alternative configuration of a processing set, such as the processing set 14 of Figure 1.
Here a plurality of processor/memory groups 61 are connected to a common internal bus 64. Each
processor/memory group 61 includes one or more processors 62 and associated memory 66 connected to a
internal group bus 63. An interface 65 connects the internal group bus 63 to the common internal bus 64.
Accordingly, in the arrangement shown in Figure 4, individual processing groups, with each of the processors
62 and associated memory 66 are connected via a common internal bus 64 to a processing set bus controller 60.

The interfaces 65 enable a processor 62 of one processing group to operate not only on the data in its local
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memory 66, but also in the memory of another processing group 61 within the processing set 14. The
processing set bus controller 60 provides a common interface between the common internal bus 64 and the
processing set /O bus(es) (P bus(es)) 24 connected to the bridge(s) 12. It should be noted that although only
two processing groups 61 are shown in Figure 4, it will be appreciated that such a structure is not limited to this
number of processing groups.

Figure 5 illustrates an alternative configuration of a processing set, such as the processing set 14 of
Figure 1. Here a simple processing set includes a single processor 72 and associated memory 76 connected via
a common bus 74 to a processing set bus controller 70. The processing set bus controller 70 provides an
interface between the internal bus 74 and the processing set /O bus(es) (P bus(es)) 24 for connection to the
bridge(s) 12.

Accordingly, it will be appreciated from Figures 3, 4 and 5 that the processing set may have many
different forms and that the particular choice of a particular processing set structure can be made on the basis of
the processing requirement of a particular application and the degree of redundancy required. In the following
description, it is assumed that the processing sets 14 and 16 referred to have a structure as shown in Figure 3,
although it will be appreciated that another form of processing set could be provided.

The bridge(s) 12 are operable in a number of operating modes. These modes of operation will be
described in more detail later. However, to assist in a general understanding of the structure of the bridge, the
two operating modes will be briefly summarized here. In a first, combined mode, a bridge 12 is operable to
route addresses and data between the processing sets 14 and 16 (via the PA and PB buses 24 and 26,
respectively) and the devices (via the D bus 22). In this combined mode, I/O cycles generated by the processing
sets 14 and 16 are compared to ensure that both processing sets are operating correctly. Comparison failures
force the bridge 12 into an error limiting mode (EState) in which device /O is prevented and diagnostic
information is collected. In the second, split mode, the bridge 12 routes and arbitrates addresses and data from
one of the processing sets 14 and 16 onto the D bus 22 and/or onto the other one of the processing sets 16 and
14, respectively. In this mode of operation, the processing sets 14 and 16 are not synchronized and no /0
comparisons are made. DMA operations are also permitted in both modes. As mentioned above, the different
modes of operation, including the combined and split modes, will be described in more detail later. However,
there now follows a description of the basic structure of an example of the bridge 12.

Figure 6 is a schematic functional overview of the bridge 12 of Figure 1. First and second processing
set /O bus interfaces, PA bus interface 84 and PB bus interface 86, are connected to the PA and PB buses 24
and 26, respectively. A device /O bus interface, D bus interface 82, is connected to the D bus 22. It should be
noted that the PA, PB and D bus interfaces need not be configured as separate elements but could be
incorporated in other elements of the bridge. Accordingly, within the context of this document, where a
references is made to a bus interface, this does not require the presence of a specific separate component, but
rather the capability of the bridge to connect to the bus concerned, for example by means of physical or logical
bridge connections for the lines of the buses concerned.

Routing (hereinafter termed a routing matrix) 80 is connected via a first internal path 94 to the PA bus
interface 84 and via a second internal path 96 to the PB bus interface 86. The routing matrix 80 is further

connected via a third internal path 92 to the D bus interface 82. The routing matrix 80 is thereby able to provide
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1/0 bus transaction routing in both directions between the PA and PB bus interfaces 84 and 86. It is also able to
provide routing in both directions between one or both of the PA and PB bus interfaces and the D bus interface
82. The routing matrix 80 is connected via a further internal path 100 to storage control logic 90. The storage
control logic 90 controls access to bridge registers 110 and to a random access memory (SRAM) 126. The
routing matrix 80 is therefore also operable to provide routing in both directions between the PA, PB and D bus
interfaces 84, 86 and 82 and the storage control logic 90. The routing matrix 80 is controlled by bridge control
logic 88 over control paths 98 and 99. The bridge control logic 88 is responsive to control signals, data and
addresses on internal paths 93, 95 and 97, and also to clock signals on the clock line(s) 21.

In the embodiment of the invention, each of the P buses (PA bus 24 and PB bus 26) operates under a
PCI protocol. The processing set bus controllers 50 (see Figure 3) also operate under the PCI protocol.
Accordingly, the PA and PB bus interfaces 84 and 86 each provide all the functionality required for a
compatible interface providing both master and slave operation for data transferred to and from the D bus 22 or
internal memories and registers of the bridge in the storage subsystem 90. The bus interfaces 84 and 86 can
provide diagnostic information to internal bridge status registers in the storage subsystem 90 on transition of the
bridge to an error state (EState) or on detection of an I/O error.

The device bus interface 82 performs all the functionality required for a PCI compliant master and
slave interface for transferring data to and from one of the PA and PB buses 84 and 86. The D bus 82 is
operable during direct memory access (DMA) transfers to provide diagnostic information to internal status
registers in the storage subsystem 90 of the bridge on transition to an EState or on detection of an I/O error.

Figure 7 illustrates in more detail the bridge registers 110 and the SRAM 124. The storage control
logic 110 is connected via a path (e.g. a bus) 112 to a number of register components 114, 116, 118, 120. The
storage control logic is also connected via a path (e.g. a bus) 128 to the SRAM 126 in which a posted write
buffer component 122 and a dirty RAM component 124 are mapped. Although a particular configuration of the
components 114, 116, 118, 120, 122 and 124 is shown in Figure 7, these components may be configured in
other ways, with other components defined as regions of a common memory (e.g. a random access memory
such as the SRAM 126, with the path 112/128 being formed by the internal addressing of the regions of
memory). As shown in Figure 7, the posted write buffer 122 and the dirty RAM 124 are mapped to different
regions of the SRAM memory 126, whereas the registers 114, 116, 118 and 120 are configured as separate from
the SRAM memory.

Control and status registers (CSRs) 114 form internal registers which allow the control of various
operating modes of the bridge, allow the capture of diagnostic information for an EState and for I/O errors, and
control processing set access to PCI slots and devices connected to the D bus 22. These registers are set by
signals from the routing matrix 80.

Dissimilar data registers (DDRs) 116 provide locations for containing dissimilar data for different
processing sets to enable non-deterministic data events to be handled. These registers are set by signals from
the PA and PB buses.

Bridge decode logic enables a common write to disable a data comparator and allow writes to two

DDRs 116, one for each processing set 14 and 16.
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A selected one of the DDRs can then be read in-sync by the processing sets 14 and 16. The DDRs thus
provide a mechanism enabling a location to be reflected from one processing set (14/16) to another (16/14).

Slot response registers (SRRs) 118 determine ownership of device slots on the D bus 22 and to allow
DMA to be routed to the appropriate processing set(s). These registers are linked to address decode logic.

Disconnect registers 120 are used for the storage of data phases of an I/O cycle which is aborted while
data is in the bridge on the way to another bus. The disconnect registers 120 receive all data queued in the bridge
when a target device disconnects a transaction, or as the EState is detected. These registers are connected to the
routing matrix 80. The routing matrix can queue up to three data words and byte enables. Provided the initial
addresses are voted as being equal, address target controllers derive addresses which increment as data is
exchanged between the bridge and the destination (or target). Where a writer (for example a processor I/O write, or
a DVMA (D bus to P bus access)) is writing data to a target, this data can be caught in the bridge when an error
occurs. Accordingly, this data is stored in the disconnect registers 120 when an error occurs. These disconnect
registers can then be accessed on recovery from an EState to recover the data associated with the write or read cycle
which was in progress when the EState was initiated.

Although shown separately, the DDRs 116, the SRRs 118 and the disconnect registers may form an
integral part of the CSRs 114.

EState and error CSRs 114 provided for the capture of a failing cycle on the P buses 24 and 26, with an
indication of the failing datum. Following a move to an EState, all of the writes initiated to the P buses are
logged in the posted write buffer 122. These may be other writes that have been posted in the processing set
bus controllers 50, or which may be initiated by software before an EState interrupt causes the processors to
stop carrying out writes to the P buses 24 and 26.

A dirty RAM 124 is used to indicate which pages of the main memory 56 of the processing sets 14 and
16 have been modified by direct memory access (DMA) transactions from one or more devices on the D bus 22.
Each page (e.g. each 8K page) is marked by a single bit in the dirty RAM 124 which is set when a DMA write
occurs and can be cleared by a read and clear cycle initiated on the dirty RAM 124 by a processor 52 of a
processing set 14 and 16.

The dirty RAM 124 and the posted write buffer 118 may both be mapped into the memory 124 in the
bridge 12. This memory space can be accessed during normal read and write cycles for testing purposes.

Figure 8 is a schematic functional overview of the bridge control logic 88 shown in Figure 6.

All of the devices connected to the D bus 22 are addressed geographically. Accordingly, the bridge
carries out decoding necessary to enable the isolating FETs for each slot before an access to those slots is
initiated.

The address decoding performed by the address decode logic 136 and 138 essentially permits four
basic access types:

- an out-of-sync access (i.e. not in the combined mode) by one processing set (e.g. processing set 14 of
Figure 1) to the other processing set (e.g. processing set 16 of Figure 1), in which case the access is routed from

the PA bus interface 84 to the PB bus interface 86;
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- an access by one of the processing sets 14 and 16 in the split mode, or both processing sets 14 and 16
in the combined mode to an I/O device on the D bus 22, in which case the access is routed via the D bus
interface 82;

- a DMA access by a device on the D bus 22 to one or both of the processing sets 14 and 16, which
would be directed to both processing sets 14 and 16 in the combined mode, or to the relevant processing set 14
or 16 if out-of-sync, and if in a split mode to a processing set 14 or 16 which owns a slot in which the device is
located; and

- a PCI configuration access to devices in I/O slots.

As mentioned above, geographic addressing is employed. Thus, for example, slot 0 on motherboard A
has the same address when referred to by processing set 14 or by processing set 16.

Geographic addressing is used in combination with the PCI slot FET switching. During a
configuration access mentioned above, separate device select signals are provided for devices which are not
FET isolated. A single device select signal can be provided for the switched PCI slots as the FET signals can be
used to enable a correct card. Separate FET switch lines are provided to each slot for separately switching the
FETs for the slots.

The SRRs 118, which could be incorporated in the CSR registers 114, are associated with the address
decode functions. The SRRs 118 serve in a number of different roles which will be described in more detail
later. However, some of the roles are summarized here.

In a combined mode, each slot may be disabled so that writes are simply acknowledged without any
transaction occurring on the device bus 22, whereby the data is lost. Reads will return meaningless data, once
again without causing a transaction on the device board.

In the split mode, each slot can be in one of three states. The states are:

- Not owned;

- Owned by processing set A 14;

- Owned by processing set B 16.

A slot that is not owned by a processing set 14 or 16 making an access (this includes not owned or un-
owned slots) cannot be accessed. Accordingly, such an access is aborted.

When a processing set 14 or 16 is powered off, all slots owned by it move to the un-owned state. A
processing set 14 or 16 can only claim an un-owned slot, it cannot wrest ownership away from another
processing set. This can only be done by powering off the other processing set, or by getting the other
processing set to relinquish ownership.

The ownership bits are assessable and settable while in the combined mode, but have no effect until a
split state is entered. This allows the configuration of a split system to be determined while still in the
combined mode.

Each PCI device is allocated an area of the processing set address map. The top bits of the address are
determined by the PCI slot. Where a device carries out DMA, the bridge is able to check that the device is
using the correct address because a D bus arbiter informs the bridge which device is using the bus at a particular
time. If a device access is a processing set address which is not valid for it, then the device access will be

ignored. It should be noted that an address presented by a device will be a virtual address which would be
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translated by an [/O memory management unit in the processing set bus controller 50 to an actual memory
address.

The addresses output by the address decoders are passed via the initiator and target controllers 138 and
140 to the routing matrix 80 via the lines 98 under control of a bridge controller 132 and an arbiter 134.

An arbiter 134 is operable in various different modes to arbitrate for use of the bridge on a first-come-
first-served basis using conventional PCI bus signals on the P and D buses.

In a combined mode, the arbiter 134 is operable to arbitrate between the in-sync processing sets 14 and
16 and any initiators on the device bus 22 for use of the bridge 12. Possible scenarios are:

- processing set access to the device bus 22;

- processing set access to internal registers in the bridge 12;

- Device access to the processing set memory 56.

In split mode, both processing sets 14 and 16 must arbitrate the use of the bridge and thus access to the
device bus 22 and internal bridge registers (e.g. CSR registers 114). The bridge 12 must also contend with
initiators on the device bus 22 for use of that device bus 22.

Each slot on the device bus has an arbitration enable bit associated with it. These arbitration enable
bits are cleared after reset and must be set to allow a slot to request a bus. When a device on the device bus 22
is-suspected of providing an I/O error, the arbitration enable bit for that device is automatically reset by the
bridge.

A PCI bus interface in the processing set bus controller(s) 50 expects to be the master bus controller
for the P bus concerned, that is it contains the PCI bus arbiter for the PA or PB bus to which it is connected.
The bridge 12 cannot directly control access to the PA and PB buses 24 and 26. The bridge 12 competes for
access to the PA or PB bus with the processing set on the bus concerned under the control of the bus controller
50 on the bus concerned.

Also shown in Figure 8 is a comparator 130 and a bridge controller 132. The comparator 130 is
operable to compare /O cycles from the processing sets 14 and 16 to determine any out-of-sync events. On
determining an out-of-sync event, the comparator 130 is operable to cause the bridge controller 132 to activate
an EState for analysis of the out-of-sync event and possible recovery therefrom.

Figure 9 is a schematic functional overview of the routing matrix 80.

The routing matrix 80 comprises a multiplexer 143 which is responsive to initiator control signals 98
from the initiator controller 138 of Figure 8 to select one of the PA bus path 94 , PB bus path 96, D bus path 92
or internal bus path 100 as the current input to the routing matrix. Separate output buffers 144, 145, 146 and
147 are provided for output to each of the paths 94, 96, 92 and 100, with those buffers being selectively enabled
by signals 99 from the target controller 140 of Figure 8. Between the multiplexer and the buffers 144-147
signals are held in a buffer 149. In the present embodiment three cycles of data for an /O cycle will be held in
the pipeline represented by the multiplexer 143, the buffer 149 and the buffers 144.

In Figures 6 to 9 a functional description of elements of the bridge has been given. Figure 10 is a
schematic representation of a physical configuration of the bridge in which the bridge control logic 88, the
storage control logic 90 and the bridge registers 110 are implemented in a first field programmable gate array

(FPGA) 89, the routing matrix 80 is implemented in further FPGAs 80.1 and 80.2 and the SRAM 126 is
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implemented as one or more separate SRAMs addressed by a address control lines 127. The bus interfaces 82,
84 and 86 shown in Figure 6 are not separate elements, but are integrated in the FPGAs 80.1, 80.2 and 89. Two
FPGAs 80.1 and 80.2 are used for the upper 32 bits 32-63 of a 64 bit PCI bus and the lower 32 bits 0-31 of the
64 bit PCI bus. It will be appreciated that a single FPGA could be employed for the routing matrix 80 where
the necessary logic can be accommodated within the device. Indeed, where a FPGA of sufficient capacity is
available, the bridge control logic, storage control logic and the bridge registers could be incorporated in the
same FPGA as the routing matrix. Indeed many other configurations may be envisaged, and indeed technology
other than FPGAs, for example one or more Application Specific Integrated Circuits (ASICs) may be
employed. As shown in Figure 10, the FPGAs 89, 80.1 and 80.2 and the SRAM 126 are connected via internal
bus paths 85 and path control lines 87.

Figure 11 is a transition diagram illustrating in more detail the various operating modes of the bridge.
The bridge operation can be divided into three basic modes, namely an error state (EState) mode 150, a split
state mode 156 and a combined state mode 158. The EState mode 150 can be further divided into 2 states.

After initial resetting on powering up the bridge, or following an out-of sync event, the bridge is in this
initial EState 152. In this state, all writes are stored in the posted write buffer 120 and reads from the internal
bridge registers (e.g., the CSR registers 116) are allowed, and all other reads are treated as errors (i.e. they are
aborted). In this state, the individual processing sets 14 and 16 perform evaluations for determining a restart
time. Each processing set 14 and 16 will determine its own restart timer timing. The timer setting depends on 2
“blame” factor for the transition to the EState. A processing set which determines that it is likely to have caused
the error sets a long time for the timer. A processing set which thinks it unlikely to have caused the error sets a
short time for the timer. The first processing set 14 and 16 which times out, becomes a primary processing set.
Accordingly, when this is determined, the bridge moves (153) to the primary EState 154.

When either processing set 14/16 has become the primary processing set, the bridge is then operating
in the primary EState 154. This state allows the primary processing set to write to bridge registers (specifically
the SRRs 118). Other writes are no longer stored in the posted write buffer, but are simply lost. Device bus
reads are still aborted in the primary EState 154.

Once the EState condition is removed, the bridge then moves (155) to the split state 156. In the split
state 156, access to the device bus 22 is controlled by the SRR registers 118 while access to the bridge storage is
simply arbitrated. The primary status of the processing sets 14 and 16 is ignored. Transition to a combined
operation is achieved by means of a sync_reset (157). After issue of the sync_reset operation, the bridge is then
operable in the combined state 158, whereby all read and write accesses on the D bus 22 and the PA and PB
buses 24 and 26 are allowed. All such accesses on the PA and PB buses 24 and 26 are compared in the
comparator 130. Detection of a mismatch between any read and write cycles (with an exception of specific
dissimilar data I/O cycles) cause a transition 151 to the EState 150. The various states described are controlled
by the bridge controlier 132.

The role of the comparator 130 is to monitor and compare I/O operations on the PA and PB buses in
the combined state 151 and, in response to a mismatched signal, to notify the bridge controller 132, whereby the

bridge controller 132 causes the transition 152 to the error state 150. The VO operations can include all /O
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operations initiated by the processing sets, as well as DMA transfers in respect of DMA initiated by a device on

the device bus.

Table 1 below summarizes the various access operations which are allowed in each of the operational

states
TABLE 1
D Bus - Read D Bus-Write
E State Master Abort Stored in Post Write Buffer
Primary EState Master Abort Lost
Split Controlled by SRR bits Controlled by SRR bits
and arbitrated and arbitrated
Combined Allowed and compared Allowed and compared

As described above, after an initial reset, the system is in the initial EState 152. In this state, neither
processing sets 14 or 16 can access the D bus 22 or the P bus 26 or 24 of the other processing set 16 or 14. The
internal bridge registers 116 of the bridge are accessible, but are read only.

A system running in the combined mode 158 transitions to the EState 150 where there is a comparison
failure detected in this bridge, or alternatively a comparison failure is detected in another bridge in a multi-
bridge system as shown, for example, in Figure 2. Also, transitions to an EState 150 can occur in other
situations, for example in the case of a software controlled event forming part of a self test operation.

On moving to the EState 150, an interrupt is signaled to all or a subset of the processors of the
processing sets via an interrupt line 95. Following this, all VO cycles generated on a P bus 24 or 26 result in
reads being returned with an exception and writes being recorded in the posted write buffer.

The operation of the comparator 130 will now be described in more detail. The comparator is
connected to paths 94, 95, 96 and 97 for comparing address, data and selected control signals from the PA and
PB bus interfaces 84 and 86. A failed comparison of in-sync accesses to device /O bus 22 devices causes a
move from the combined state 158 to the EState 150.

For processing set I/O read cycles, the address, command, address parity, byte enables and parity error
parameters are compared.

If the comparison fails during the address phase, the bridge asserts a retry to the processing set bus
controllers 50, which prevents data leaving the /O bus controllers 50. No activity occurs in this case on the
device I/O bus 22. On the processor(s) retrying, no error is returned.

If the comparison fails during a data phase (only control signals and byte enables are checked), the
bridge signals a target-abort to the processing set bus controllers 50. An error is returned to the processors.

In the case of processing set /O bus write cycles, the address, commahd, parity, byte enables and data

parameters are compared.
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If the comparison fails during the address phase, the bridge asserts a retry to the processing set bus
controllers 50, which results in the processing set bus controllers 50 retrying the cycle again. The posted write
buffer 122 is then active. No activity occurs on the device I/O bus 22.

If the comparison fails during the data phase of a write operation, no data is passed to the D bus 22.
The failing data and any other transfer attributes from both processing sets 14 and 16 are stored in the
disconnect registers 122, and any subsequent posted write cycles are recorded in the posted write buffer 118.

In the case of direct virtual memory access (DVMA) reads, the data control and parity are checked for
each datum. If the data does not match, the bridge 12 terminates the transfer on the P bus. In the case of
DVMA writes, control and parity error signals are checked for correctness.

Other signals in addition to those specifically mentioned above can be compared to give an indication
of divergence of the processing sets. Examples of these are bus grants and various specific signals during
processing set transfers and during DMA transfers.

Errors fall roughly into two types, those which are made visible to the software by the processing set
bus controller 50 and those which are not made visible by the processing set bus controller 50 and hence need to
be made visible by an interrupt from the bridge 12. Accordingly, the bridge is operable to capture errors
reported in connection with processing set read and write cycles, and DMA reads and writes.

Clock control for the bridge is performed by the bridge controller 132 in response to the clock signals
from the clock line 21. Individual control lines from the controller 132 to the various elerments of the bridge are
not shown in Figures 6 to 10.

Figure 12 is a flow diagram illustrating a possible sequence of operating stages where lockstep errors
are detected during a combined mode of operation.

Stage S1 represents the combined mode of operation where lockstep error checking is performed by
the comparator 130 shown in Figure 8.

In Stage S2, a lockstep error is assumed to have been detected by the comparator 130.

In Stage S3, the current state is saved in the CSR registers 114 and posted writes are saved in the
posted write buffer 122 and/or in the disconnect registers 120.

Figure 13 illustrates Stage S3 in more detail. Accordingly, in Stage S31, the bridge controller 132
detects whether the lockstep error notified by the comparator 130 has occurred during a data phase in which it is
possible to pass data to the device bus 22. In this case, in Stage S32, the bus cycle is terminated. Then, in Stage
S33 the data phases are stored in the disconnect registers 120 and control then passes to Stage S35 where an
evaluation is made as to whether a further /O cycle needs to be stored. Alternatively, if at Stage S31, it is
determined that the lockstep error did not occur during a data phase, the address and data phases for any posted
write I/O cycles are stored in the posted write buffer 122. At Stage S34, if there are any further posted write I/O
operations pending, these are also stored in the posted write buffer 122.

Stage S3 is performed at the initiation of the initial error state 152 shown in Figure 11. In this state, the
first and second processing sets arbitrate for access to the bridge. Accordingly, in Stage S31-S35, the posted
write address and data phases for each of the processing sets 14 and 16 are stored in separate portions of the

posted write buffer 122, and/or in the single set of disconnect registers as described above.
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Figure 14 illustrates the source of the posted write /O cycles which need to be stored in the posted
write buffer 122. During normal operation of the processing sets 14 and 16, output buffers 162 in the individual
processors contain I/O cycles which have been posted for transfer via the processing set bus controllers 50 to
the bridge 12 and eventually to the device bus 22. Similarly, buffers 160 in the processing set controllers 50
also contain posted I/O cycles for transfer over the buses 24 and 26 to the bridge 12 and eventually to the device
bus 22.

Accordingly, it can be seen that when an error state occurs, I/O write cycles may already have been
posted by the processors 52, either in their own buffers 162, or already transferred to the buffers 160 of the
processing set bus controllers 50. It is the I/O write cycles in the buffers 162 and 160 which gradually
propagate through and need to be stored in the posted write buffer 122.

As shown in Figure 15, a write cycle 164 posted to the posted write buffer 122 can comprise an
address field 165 including an address and an address type, and between one and 16 data fields 166 including a
byte enable field and the data itself.

The data is written into the posted write buffer 122 in the EState unless the initiating processing set has
been designated as a primary CPU set. At that time, non-primary writes in an EState still go to the posted write
buffer even after one of the CPU sets has become a primary processing set. An address pointer in the CSR
registers 114 points to the next available posted write buffer address, and also provides an overflow bit which is
set when the bridge attempts to write past of the top of the posted write buffer for any one of the processing sets
14 and 16. Indeed, in the present implementation, only the first 16 K of data is recorded in each buffer.
Attempts to write beyond the top of the posted write buffer are ignored. The value of the posted write buffer
pointer can be cleared at reset, or by software using a write under the control of a primary processing set.

Returning to Figure 12, after saving the status and posted writes, at Stage S4 the individual processing
sets independently seek to evaluate the error state and to determine whether one of the processing sets is faulty.
This determination is made by the individual processors in an error state in which they individually read status
from the control state and EState registers 114. During this error mode, the arbiter 134 arbitrates for access to
the bridge 12.

In Stage S5, one of the processing sets 14 and 16 establishes itself as the primary processing set. This
is determined by each of the processing sets identifying a time factor based on the estimated degree of
responsibility for the error, whereby the first processing set to time out becomes the primary processing set. In
Stage S35, the status is recovered for that processing set and is copied to the other processing set. The primary
processing is able to access the posted write buffer 122 and the disconnect registers 120.

In Stage S6, the bridge is operable in a split mode. If it is possible to re-establish an equivalent status
for the first and second processing sets, then a reset is issued at Stage S7 to put the processing sets in the
combined mode at Stage S1. However, it may not be possible to re-establish an equivalent state until a faulty
processing set is replaced. Accordingly the system will stay in the Split mode of Stage S6 in order to continued
operation based on a single processing set. After replacing the faulty processing set the system could then
establish an equivalent state and move via Stage S7 to Stage S1.

As described above, the comparator 130 is operable in the combined mode to compare the /O

operations output by the first and second processing sets 14 and 16. This is fine as long as all of the I/O
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operations of the first and second processing sets 14 and 16 are fully synchronized and deterministic. Any
deviation from this will be interpreted by the comparator 130 as a loss of lockstep. This is in principle correct
as even a minor deviation from identical outputs, if not trapped by the comparator 130, could lead to the
processing sets diverging further from each other as the individual processing sets act on the deviating outputs.
However, a strict application of this puts significant constraints on the design of the individual processing sets.
An example of this is that it would not be possible to have independent time of day clocks in the individual
processing sets operating under their own clocks. This is because it is impossible to obtain two crystals which
are 100% identical in operation. Even small differences in the phase of the clocks could be critical as to
whether the same sample is taken at any one time, for example either side of a clock transition for the respective
processing sets.

Accordingly, a solution to this problem employs the dissimilar data registers (DDR) 116 mentioned
earlier. The solution is to write data from the processing sets into respective DDRs in the bridge while disabling
the comparison of the data phases of the write operations and then to read a selected one of the DDRs back to
each processing set, whereby each of the processing sets is able to act on the same data.

Figure 17 is a schematic representation of details of the bridge of Figures 6 to 10. It will be noted that
details of the bridge not shown in Figure 6 to 8 are shown in Figure 17, whereas other details of the bridge
shown in Figures 6 to 8 are not shown in Figure 17, for reasons of clarity.

The DDRs 116 are provided in the bridge registers 110 of Figure 7, but could be provided elsewhere in
the bridge in other embodiments. One DDR 116 is provided for each processing set. In the example of the
multi-processor system of Figure 1 where two processing sets 14 and 16 are provided, two DDRs 116A and
116B are provided, one for each of the first and second processing sets 14 and 16, respectively.

Figure 17 represents a dissimilar data write stage. The addressing logic 136 is shown schematically to
comprise two decoder sections, one decoder section 136A for the first processing set and one decoder section
136B for the second processing set 16. During an address phase of a dissimilar data /O write operation each of
the processing sets 14 and 16 outputs the same predetermined address DDR-W which is separately interpreted
by the respective first and second decoding sections 136A and 136B as addressing the respective first and
second respective DDRs 116A and 116B. As the same address is output by the first and second processing sets
14 and 16, this is not interpreted by the comparator 130 as a lockstep error.

The decoding section 136A, or the decoding section 136B, or both are arranged to further output a
disable signal 137 in response to the predetermined write address supplied by the first and second processing
sets 14 and 16. This disable signal is supplied to the comparator 130 and is operative during the data phase of
the write operation to disable the comparator. As a result, the data output by the first processing set can be
stored in the first DDR 116A and the data output by the second processing set can be stored in the second DDR
116B without the comparator being operative to detect a difference, even if the data from the first and second
processing sets is different. The first decoding section is operable to cause the routing matrix to store the data
from the first processing set 14 in the first DDR 116A and the second decoding section is operable to cause the
routing matrix to store the data from the second processing set 16 in the second DDR 116B. At the end of the
data phase the comparator 130 is once again enabled to detect any differences between I/O address and/or data

phases as indicative of a lockstep error.
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Following the writing of the dissimilar data to the first and second DDRs 116A and 116B, the
processing sets are then operable to read the data from a selected one of the DDRs 116A/116B.

Figure 18 illustrates an alternative arrangement where the disable signal 137 is negated and is used to
control a gate 131 at the output of the comparator 130. When the disable signal is active the output of the
comparator is disabled, whereas when the disable signal is inactive the output of the comparator is enabled.

Figure 19 illustrates the reading of the first DDR 116A in a subsequent dissimilar data read stage. As
illustrated in Figure 19, each of the processing sets 14 and 16 outputs the same predetermined address DDR-RA
which is separately interpreted by the respective first and second decoding sections 136A and 136B as
addressing the same DDR, namely the first DDR 116A. As a result, the content of the first DDR 116A is read
by both of the processing sets 14 and 16, thereby enabling those processing sets to receive the same data. This
enables the two processing sets 14 and 16 to achieve deterministic behavior, even if the source of the data
written into the DDRs 116 by the processing sets 14 and 16 was not deterministic.

As an alternative, the processing sets could each read the data from the second DDR 116B. Figure 20
illustrates the reading of the second DDR 116B in a dissimilar data read stage following the dissimilar data
write stage of Figure 15. As illustrated in Figure 20, each of the processing sets 14 and 16 outputs the same
predetermined address DDR-RB which is separately interpreted by the respective first and second decoding
sections 136A and 136B as addressing the same DDR, namely the second DDR 116B. As a result, the content
of the second DDR 116B is read by both of the processing sets 14 and 16, thereby enabling those processing
sets to receive the same data. As with the dissimilar data read stage of Figure 16, this enables the two
processing sets 14 and 16 to achieve deterministic behavior, even if the source of the data written into the DDRs
116 by the processing sets 14 and 16 was not deterministic.

The selection of which of the first and second DDRs 116A and 116B to be read can be determined in
any appropriate manner by the software operating on the processing modules. This could be done on the basis
of a simple selection of one or the other DDRs, or on a statistical basis or randomly or in any other manner as
long as the same choice of DDR is made by both or all of the processing sets.

Figure 21 is a flow diagram summarizing the various stages of operation of the DDR mechanism
described above.

In stage S10, a DDR write address DDR-W is received and decoded by the address decoders sections
136A and 136B during the address phase of the DDR write operation.

In stage S11, the comparator 130 is disabled.

In stage S12, the data received from the processing sets 14 and 16 during the data phase of the DDR
write operation is stored in the first and second DDRs 116A and 116B, respectively, as selected by the first and
second decode sections 136A and 136B, respectively.

In stage S13, a DDR read address is received from the first and second processing sets and is decoded
by the decode sections 136A and 136B, respectively.

If the received address DDR-RA is for the first DDR 116A, then in stage S14 the content of that DDR
116A is read by both of the processing sets 14 and 16.

Alternatively, 116A if the received address DDR-RB is for the second DDR 116B, then in stage S15
the content of that DDR 116B is read by both of the processing sets 14 and 16.
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Figure 22 is a schematic representation of the arbitration performed on the respective buses 22, 24 and
26, and the arbitration for the bridge itself.

Each of the processing set bus controllers 50 in the respective processing sets 14 and 16 includes a
conventional PCI master bus arbiter 180 for providing arbitration to the respective buses 24 and 26. Each of the
master arbiters 180 is responsive to request signals from the associated processing set bus controller 50 and the
bridge 12 on respective request (REQ) lines 181 and 182. The master arbiters 180 allocate access to the bus on
a first-come-first-served basis, issuing a grant (GNT) signal to the winning party on an appropriate grants line
183 or 184.

A conventional PCI bus arbiter 185 provides arbitration on the D bus 22. The D bus arbiter 185 can be
configured as part of the D bus interface 82 of Figure 6 or could be separate therefrom. As with the P bus
master arbiters 180, the D bus arbiter is responsive to request signals from the contending devices, including the
bridge and the devices 30, 31, etc. connected to the device bus 22. Respective request lines 186, 187, 188, etc.
for each of the entities competing for access to the D bus 22 are provided for the request signals (REQ). The D
bus arbiter 185 allocates access to the D bus on a first-come-first-served basis, issuing a grant (GNT) signal to
the winning entity via respective grant lines 189, 190, 192, etc.

Figure 23 is a state diagram summarising the operation of the D bus arbiter 185. In a particular
embodiment up to six request signals may be produced by respective D bus devices and one by the bridge itself.
On a transition into the GRANT state, these are sorted by a priority encoder and a request signal (REQ#) with
the highest priority is registered as the winner and gets a grant (GNT#) signal. Each winner which is selected
modifies the priorities in a priority encoder so that given the same REQ# signals on the next move to grant. A
different device has the highest priority, hence each device has a “fair” chance of accessing DEVs. The bridge
REQ# has a higher weighting than D bus devices and will, under very busy conditions, get the bus for every
second device.

If a device requesting the bus fails to perform a transaction within 16 cycles it may lose GNT# via the
BACKOFF state. BACKOFF is required as, under PCI rules, a device may access the bus one cycle after GNT#
is removed.” Devices may only be granted access to D bus if the bridge is not in the not in the EState. A new
GNT# is produced at the times when the bus is idle.

In the GRANT and BUSY states, the FETs are enabled and an accessing device is known and
forwarded to the D bus address decode logic for checking against a DMA address provided by the device.

Turning now to the bridge arbiter 134, this allows access to the bridge for the first device which asserts
the PCI FRAME# signal indicating an address phase. Figure 24 is a state diagram summarising the operation of
the bridge arbiter 134.

As with the D bus arbiter, a priority encoder can be provided to resolve access attempts which collide.
In this case “a collision” the loser/losers are retried which forces them to give up the bus. Under PCI rules
retried devices must try repeatedly to access the bridge and this can be expected to happen.

To prevent devices which are very quick with their retry attempt from hogging the bridge, retried
interfaces are remembered and assigned a higher priority. These remembered retries are prioritised in the same

way as address phases. However as a precaution this mechanism is timed out so as not to get stuck waiting for a
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faulty or dead device. The algorithm employed prevents a device which hasn’t yet been retried, but which
would be a higher priority retry than a device currently waiting for, from being retried at the first attempt.

In combined operations a PA or PB bus input selects which P bus interface will win a bridge access.
Both are informed they won. Allowed selection enables latent fault checking during normal operation. EState
prevents the D bus from winning.

The bridge arbiter 134 is responsive to standard PCI signals provided on standard PCI control lines 22,
24 and 25 to control access to the bridge 12.

Figure 25 illustrates signals associated with an I/O operation cycle on the PCI bus. A PCI frame signal
(FRAME#) is initially asserted. At the same time, address (A) signals will be available on the DATA BUS and
the appropriate command (write/read) signals (C) will be available on the command bus (CMD BUS). Shortly
after the frame signal being asserted low, the initiator ready signal (IRDY#) will also be asserted low. When the
device responds, a device selected signal (DEVSEL#) will be asserted low. When a target ready signal is
asserted low (TRDY#), data transfer (D) can occur on the data bus.

The bridge is operable to allocate access to the bridge resources and thereby to negotiate allocation of a
target bus in response to the FRAME# being asserted low for the initiator bus concerned. Accordingly, the
bridge arbiter 134 is operable to allocate access to the bridge resources and/or to a target bus on a first-come-
first-served basis in response to the FRAME# being asserted low. As well as the simple first-come-first-served
basis, the arbiters may be additionally provided with a mechanism for logging the arbitration requests, and can
imply a conflict resolution based on the request and allocation history where two requests are received at an
identical time. Alternatively, a simple priority can be allocated to the various requesters, whereby, in the case
of identically timed requests, a particular requester always wins the allocation process.

Each of the slots on the device bus 22 has a slot response register (SRR) 118, as well as other devices
connected to the bus, such as a SCSI interface. Each of the SRRs 118 contains bits defining the ownership of
the slots, or the devices connected to the slots on the direct memory access bus. In this embodiment, and for
reasons to be elaborated below, each SRR 118 comprises a four bit register. However, it will be appreciated
that a larger register will be required to determine ownership between more than two processing sets. For
example, if three processing sets are provided, then a five bit register will be required for each slot.

Figure 16 illustrates schematically one such four bit register 600. As shown in Figure 16, a first bit
602 is identified as SRR[0], a second bit 604 is identified as SRR[1], a third bit 606 is identified as SRR[2] and
a fourth bit 608 is identified as SRR[3].

Bit SRR[0] is a bit which is set when writes for valid transactions are to be suppressed.

Bit SRR[1] is set when the device slot is owned by the first processing set 14. This defines the access
route between the first processing set 14 and the device slot. When this bit is set, the first processing set 14 can
always be master of a device slot 22, while the ability for the device slot to be master depends on whether bit
SRR[3] is set.

Bit SRR[2] is set when the device slot is owned by the second processing set 16. This defines the
access route between the second processing set 16 and the device siot. When this bit is set, the second
processing set 16 can always be master of the device slot or bus 22, while the ability for the device slot to be

master depends on whether bit SRR[3] is set.
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Bit SRR[3] is an arbitration bit which gives the device slot the ability to become master of the device
bus 22, but only if it is owned by one of the processing sets 14 and 16, that is if one of the SRR [1] and SRR[2]
bits is set.

When the fake bit (SRR[0]) of an SRR 118 is set, writes to the device for that siot are ignored and do
not appear on the device bus 22. Reads return indeterminate data without causing a transaction on the device
bus 22. In the event of an I/O error the fake bit SRR[0] of the SRR 188 corresponding to the device which
caused the error is set by the hardware configuration of the bridge to disable further access to the device slot
concerned. An interrupt may also be generated by the bridge to inform the software which originated the access
leading to the /O error that the error has occurred. The fake bit has an effect whether the system is in the split
or the combined mode of operation.

The ownership bits only have effect, however, in the split system mode of operation. In this mode,
each slot can be in three states:

Not-owned,

Owned by processing set 14; and

Owned by processing set 16

This is determined by the two SRR bits SRR[1} and SRR[2], with SRR[1] being set when the slot is
owned by processing set 14 and SRR[2] being set when the slot is owned by processing set B. If the slot is un-
owned, then neither bit is set (both bits set is an illegal condition and is prevented by the hardware).

A slot which is not owned by the processing set making the access (this includes un-owned slots)
cannot be accessed and results in an abort. A processing set can only claim an un-owned slot; it cannot wrest
ownership away from another processing set. This can only be done by powering-off the other processing set.
When a processing set is powered off, all slots owned by it move to the un-owned state. Whilst it is not
possible for a processing set to wrest ownership from another processing set, it is possible for a processing set to
give ownership to another processing set.

The owned bits can be altered when in the combined mode of operation state but they have no effect
until the split mode is entered.

Table 2 below summarizes the access rights as determined by an SRR 118.

From Table 2, it can be seen that when the 4-bit SRR for a given device is set to 1100, for example,
then the slot is owned by processing set B (i.e. SRR[2] is logic high) and processing set A may not read from or
write to the device (i.e. SRR[1] is logic low), although it may read from or write to the bridge. “FAKE AT” is
set logic low (i.e. SRR[0] is logic low) indicating that access to the device bus is allowed as there are no faults
on the bus. As “ARB_EN” is set logic high (i.e. SRR[3] is logic high), the device with which the register is
associated can become master of the D bus. This example demonstrates the operation of the register when the

bus and associated devices are operating correctly.
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TABLE 2
SRR PA BUS PB BUS Device Interface
[3[21[1100]

0000

x00x Read/Write bridge SRR~ Read/Write bridge SRR~ Access denied

0010 Read/Write bridge Read/Write bridge Access Denied because
Owned D Slot No access to D Slot arbitration bit is off

0100 Read/Write bridge Read/write bridge Access Denied because
No access to D Slot Access to D Slot arbitration bit is off

1010 Read/Write bridge, Read/Write Bridge Access to CPU B Denied
Owned D Slot No access to D Slot Access to CPU A OK

1100 Read/Write bridge, Read/Write bridge Access to CPU A Denied
No access to D Slot Access to D Slot Access to CPU B OK

0011 Read/Write bridge, Read/Write bridge Access Denied because
Bridge discard writes No access to D Slot Arbitration bit is off

0101 Read/Write bridge, Read/Write bridge Access Denied because
No access to D slot Bridge discards writes Arbitration bit is off

1011 Read/Write bridge, Read/Write bridge Access to CPU B Denied
Bridge discard writes No access to D Slot Access to CPU A OK

1101 Read/Write bridge, Read/Write bridge Access to CPU B Denied
No access to D slot Bridge discards writes Access to CPU A OK

In an alternative example, where the SRR for the device is set to 0101, the setting of SRR[2] logic high
indicates that the device is owned by processing set B. However, as the device is malfunctioning, SRR[3] is set
logic low and the device is not allowed access to the processing set. SRR[0] is set high so that any writes to the
device are ignored and reads therefrom return indeterminate data. In this way, the malfunctioning device is
effectively isolated from the processing set, and provides indeterminate data to satisfy any device drivers, for
example, that might be looking for a response from the device.

Figure 26 illustrates the operation of the bridge 12 for direct memory access by a device such as one of
the devices 28, 29, 30, 31 and 32 to the memory 56 of the processing sets 14 and 16. When the D bus arbiter
185 receives a direct memory access (DMA) request 193 from a device (e.g., device 30 in slot 33) on the device
bus, the D bus arbiter determines whether to allocate the bus to that slot. As a result of this granting procedure,
the D-bus arbiter knows the slot which has made the DMA request 193. The DMA request is supplied to the
address decoder 142 in the bridge, where the addresses associated with the request are decoded. The address
decoder is responsive to the D bus grant signal 194 for the slot concerned to identify the slot which has been
granted access to the D bus for the DMA request.

The address decode logic 142 holds or has access to a geographic address map 196, which identifies
the relationship between the processor address space and the slots as a resuit of the geographic address
employed. This geographic address map 196 could be held as a table in the bridge memory 126, along with the
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posted write buffer 122 and the dirty RAM 124. Alternatively, it could be held as a table in a separate memory
element, possibly forming part of the address decoder 142 itself. The map 182 could be configured in a form
other than a table.

The address decode logic 142 is configured to verify the correctness of the DMA addresses supplied by
the device 30. In one embodiment of the invention, this is achieved by comparing four significant address bits
of the address supplied by the device 30 with the corresponding four address bits of the address held in the
geographic addressing map 196 for the slot identified by the D bus grant signal for the DMA request. In this
example, four address bits are sufficient to determine whether the address supplied is within the correct address
range. In this specific example, 32 bit PCI bus addresses are used, with bits 31 and 30 always being set to 1, bit
29 being allocated to identify which of two bridges on 2 motherboard is being addressed (see Figure 2) and bits
28 to 26 identifying a PCI device. Bits 25-0 define an offset from the base address for the address range for
each slot. Accordingly, by comparing bits 29-26, it is possible to identify whether the address(es) supplied
fall(s) within the appropriate address range for the slot concerned. It will be appreciated that in other
embodiments a different number of bits may need to be compared to make this determination depending upon
the allocation of the addresses.

The address decode logic 142 could be arranged to use the bus grant signal 184 for the slot concerned
to identify a table entry for the slot concerned and then to compare the address in that entry with the address(es)
received with the DMA request as described above. Alternatively, the address decode logic 142 could be
arranged to use the address(es) received with the DMA address to address a relational geographic address map
and to determine a slot number therefrom, which could be compared to the slot for which the bus grant signal
194 is intended and thereby to determine whether the addresses fall within the address range appropriate for the
slot concerned.

Either way, the address decode logic 142 is arranged to permit DMA to proceed if the DMA addresses
fall within the expected address space for the slot concerned. Otherwise, the address decoder is arranged to
ignore the slots and the physical addresses.

The address decode logic 142 is further operable to control the routing of the DMA request to the
appropriate processing set(s) 14/16. If the bridge is in the combined mode, the DMA access will automatically
be allocated to all of the in-sync processing sets 14/16. The address decode logic 142 will be aware that the
bridge is in the combined mode as it is under the control of the bridge controller 132 (see Figure 8). However,
where the bridge is in the split mode, a decision will need to be made as to which, if any, of the processing sets
the DMA request is to be sent.

When the system is in split mode, the access will be directed to a processing set 14 or 16 which owns
the slot concerned. If the slot is un-owned, then the bridge does not respond to the DMA request. In the split
mode, the address decode logic 142 is operable to determine the ownership of the device originating the DMA
request by accessing the SRR 118 for the slot concerned. The appropriate slot can be identified by the D bus
grant signal. The address decode logic 142 is operable to control the target controller 140 (see Figure 8) to pass
the DMA request to the appropriate processing set(s) 14/16 based on the ownership bits SRR[1] and SRR[2]. If
bit SRR[1] is set, the first processing set 14 is the owner and the DMA request is passed to the first processing

set. If bit SRR[2] is set, the second processing set 16 is the owner and the DMA request is passed to the second
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processing set. If neither of the bit SRR[1] and SRR[2] is set, then the DMA request is ignored by the address
decoder and is not passed to either of the processing sets 14 and 16.

Figure 27 is a flow diagram summarizing the DMA verification process as illustrated with reference to
Figure 24.

In stage S20, the D-bus arbiter 160 arbitrates for access to the D bus 22.

In stage S21, the address decoder 142 verifies the DMA addresses supplied with the DMA request by
accessing the geographic address map.

In stage S22, the address decoder ignores the DMA access where the address falls outside the expected
range for the slot concerned.

Alternatively, as represented by stage S23, the actions of the address decoder are dependent upon
whether the bridge is in the combined or the split mode.

If the bridge is in the combined mode, then in stage S24 the address decoder controls the target
controller 140 (see Figure 8) to cause the routing matrix 80 (see Figure 6) to pass the DMA request to both
processing sets 14 and 16.

If the bridge is in the split mode, the address decoder is operative to verify the ownership of the slot
concerned by reference to the SRR 118 for that slot in stage S25.

If the slot is allocated to the first processing set 14 (i.e. the SRR[1] bit is set), then in stage S26 the
address decoder 142 controls the target controller 140 (see Figure 8) to cause the routing matrix 80 (see Figure
6) to pass the DMA request to first processing set 14.

If the slot is allocated to the second processing set 16 (i.e. the SRR[2] bit is set), then in stage S27 the
address decoder 142 controls the target controller 140 (see Figure 8) to cause the routing matrix 80 (see Figure
6) to pass the DMA request to the second processing set 16.

If the slot is unallocated (i.e. neither the SRR[1] bit nor the SRR[2] bit is set), then in step S18 the
address decoder 142 ignores or discards the DMA request and the DMA request is not passed to the processing
sets 14 and 16.

A DMA, or direct vector memory access (DVMA), request sent to one or more of the processing sets
causes the necessary memory operations (read or write as appropriate) to be effected on the processing set
memory.

There now follows a description of an example of a mechanism for enabling automatic recovery from
an EState (see Figure 11).

The automatic recovery process includes reintegration of the state of the processing sets to a common
status in order to attempt a restart in lockstep. To achieve this, the processing set which asserts itself as the primary
processing set as described above copies its complete state to the other processing set. This involves ensuring that
the content of the memory of both processors is the same before trying a restart in lockstep mode.

However, a problem with the copying of the content of the memory from one processing set to the other is
that during this copying process a device connected to the D bus 22 might attempt to make a direct memory access
(DMA) request for access to the memory of the primary processing set. If DMA is enabled, then a write made to
an area of memory which has already been copied would result in the memory state of the two processors at the end

of the copy not being the same. In principle, it would be possible to inhibit DMA for the whole of the copy
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process. However, this would be undesirable, bearing in mind that it is desirable to minimise the time that the
system or the resources of the system are unavailable. As an alternative, it would be possible to retry the whole
copy operation when a DMA operation has occurred during the period of the copy. However, it is likely that
further DMA operations would be performed during the copy retry, and accordingly this is not a good option
either. Accordingly, in the present system, a dirty RAM 124 is provided in the bridge. As described earlier the
dirty RAM 124 is configured as part of the bridge SRAM memory 126.

The dirty RAM 124 comprises a bit map having a dirty indicator, for example a dirty bit, for each block,
or page, of memory. The bit for a page of memory is set when a write access to the area of memory concerned is
made. In an embodiment of the invention one bit is provided for every 8K page of main processing set memory.
The bit for a page of processing set memory is set automatically by the address decoder 142 when this decodes a
DMA request for that page of memory for either of the processing sets 14 or 16 from a device connected to the D
bus 22. The dirty RAM can be reset, or cleared when it is read by a processing set, for example by means of read
and clear instructions at the beginning of a copy pass, so that it can start to record pages which are dirtied since a
given time.

The dirty RAM 124 can be read word by word. If a large word size is chosen for reading the dirty RAM
124, this will optimise the reading and resetting of the dirty RAM 124.

Accordingly, at the end of the copy pass the bits in the dirty RAM 124 will indicate those pages of
processing set memory which have been changed (or dirtied) by DMA writes during the period of the copy. A
further copy pass can then be performed for only those pages of memory which have been dirtied. This will take
less time that a full copy of the memory. Accordingly, there are typically less pages marked as dirty at the end of
the next copy pass and, as a result, the copy passes can become shorter and shorter. As some time it is necessary to
decide to inhibit DMA writes for a short period for a final, short, copy pass, at the end of which the memories of
the two processing sets will be the same and the primary processing set can issue a reset operation to restart the
combined mode.

The dirty RAM 124 is set and cleared in both the combined and split modes. This means that in split
mode the dirty RAM 124 may be cleared by either processing set.

The dirty RAM 124 address is decoded from bits 13 to 28 of the PCI address presented by the D bus
device. Erroneous accesses which present illegal combinations of the address bits 29 to 31 are mapped into the
dirty RAM 124 and a bit is dirtied on a write, even though the bridge will not pass these transactions to the
processing sets.

When reading the dirty RAM 124, the bridge defines the whole area from 0x00008000 to 0x0000ffff
as dirty RAM and will clear the contents of any location in this range on a read.

As an alternative to providing a single dirty RAM 124 which is cleared on being read, another
alternative would be to provide two dirty RAMs which are used in a toggle mode, with one being written to
while another is read.

Figure 28 is a flow diagram summarising the operation of the dirty RAM 124.

In stage S41, the primary processing set reads the dirty RAM 124 which has the effect of resetting the
dirty RAM 124.

23



10

15

20

WO 99/66404 PCT/US99/12431

In stage S42, the primary processor (e.g. processing set 14) copies the whole of its memory 56 to the

memory 56 of the other processing set (€.g. processing set 16).

In stage S43, the primary processing set reads the dirty RAM 124 which has the effect of resetting the
dirty RAM 124.

In stage S44, the primary processor determines whether less than a predetermined number of bits have
been written in the dirty RAM 124.

If more than the predetermined number of bits have been set, then the processor in stage S45 copies those
pages of its memory 56 which have been dirtied, as indicated by the dirty bits read from the dirty RAM 124 in
stage S43, to the memory 56 of the other processing set. Control then passes back to stage S43.

If, in stage S44, it is determined less than the predetermined number of bits have been written in the dirty
RAM 124, then in Stage S45 the primary processor causes the bridge to inhibit DMA requests from the devices
connected to the D bus 22. This could, for example, be achieved by clearing the arbitration enable bit for each of
the device slots, thereby denying access of the DMA devices to the D bus 22. Alternatively, the address decoder
142 could be configured to ignore DMA requests under instructions from the primary processor. During the period
in which DMA accesses are prevented, the primary processor then makes a final copy pass from its memory to the
memory 56 of the other processor for those memory pages corresponding to the bits set in the dirty RAM 124.

In stage S47 the primary processor can issue a reset operation for initiating a combined mode.

In stage S48, DMA accesses are once more permitted.

It will be appreciated that although particular embodiments of the invention have been described, many
modifications/additions and/or substitutions may be made within the spirit and scope of the present invention as
defined in the appended claims. For example, although in the specific description two processing sets are provided,
it will be appreciated that the specifically described features may be modified to provide for three or more

processing sets.
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WHAT IS CLAIMED:

1. A bridge for a multi-processor system, the bridge comprising a first processor bus interface for
connection to an I/O bus of a first processing set, a second processor bus interface for connection to an I/O bus
of a second processing set, a device bus interface for connection to a device bus and a bridge control mechanism
configured to be operable:

in an operational mode to permit access by at least one of the first and second processing sets to bridge
resources and to the device bus; and

in an error mode to prevent access by the processing sets to the device bus and to permit restricted

access by at least one of the processing sets to at least predetermined bridge resources.

2. The bridge of claim 1, wherein the bridge control mechanism is configured to be operable, in response
to detection of an error state to cause the bridge to cease operation in the operational mode and instead to

operate in the error mode.

3. The bridge of claim 2, comprising storage for buffering data pending resolution of the error.

4, The bridge of claim 1 comprising error state registers for saving operating parameters on entry to the
error mode, read only access to the error state registers being permitted by the processing sets during the error

mode.

S. The bridge of claim 1 comprising a posted write buffer for the storage of writes already posted by at

least one processing set on entry to the error mode, read only access to the posted write buffer being permitted

by the processing sets during the error mode.

6. The bridge of claim 1, wherein the bridge control mechanism is configured to be operable in an initial
error mode:
to store in the posted write buffer any internal bridge write accesses initiated by the processing sets and

to allow and to arbitrate any internal bridge read accesses initiated by the processing sets.

7. The bridge of claim 1, wherein the bridge control mechanism is configured to be operable in an initial
error mode:
to store in a posted write buffer any device bus write accesses initiated by the processing sets and to

abort any device bus read accesses initiated by the processing sets.

8. The bridge of claim 1, wherein the bridge control mechanism is configured to be operable in a primary

error mode in which a processing set asserts itself as a primary processing set:
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to allow and to arbitrate any internal bridge write accesses initiated by the primary processing set, to
discard any internal bridge write accesses initiated by any other processing set, and to allow and to arbitrate any

internal bridge read accesses initiated by the processing sets.

9. The bridge of claim 8, wherein the bridge control mechanism is configured to be operable in the
primary error mode:
to discard any device bus write accesses initiated by the processing sets and to abort any device bus

read accesses initiated by the processing sets.

10. The bridge of claim 1, wherein the bridge control mechanism is configured to be operable:

in a first, split, operational mode to arbitrate between the first and the second processing sets for access
to each others I/O bus and to the device bus; and

in a second, combined, operational mode to monitor lockstep operation of the first and second

processing sets.

11. The bridge of claim 10, wherein the bridge control mechanism is configured to be operable on power
up of the bridge to operate in an initial error mode until a processor set asserts itself as a primary processing set,
then to operate in the split operational mode to enable all processing sets to be set to a corresponding state

before transferring to the combined operational mode.

12. The bridge of claim 1, comprising a memory sub-system and a controllable routing matrix connected
between the first processor bus interface, the second processor bus interface, the device bus interface and the
memory sub-system, the bridge control mechanism being configured to be operable to control the routing
matrix selectively to interconnect the first processor bus interface, the second processor bus interface, the device

bus interface and the memory sub-system according to a current mode of operation.

13. The bridge of claim 1, comprising at least one further processor bus interface for connection to an VO

bus of a further processing set.

14. A bridge for a multi-processor system, the bridge comprising means for connection to an /O bus of a
first processing set, to an I/O bus of a second processing set and to a device bus, and a means for controlling
operation of the bridge:

in an operational mode to permit access by at least one of the first and second processing sets to bridge
resources and to the device bus; and

in an error mode to prevent access by the processing sets to the device bus and to permit restricted

access by at least one of the processing sets to at least predetermined bridge resources.

15. A computer system comprising a first processing set having an I/O bus, a second processing set having

an /O bus, a device bus and a bridge, the bridge being connected to the I/O bus of the first processing set, the
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I/O bus of the second processing set and the device bus and comprising a bridge control mechanism configured
to be operable:

in an operational mode to permit access by at least one of the first and second processing sets to bridge
resources and to the device bus; and

in an error mode to prevent access by the processing sets to the device bus and to permit restricted

access by at least one of the processing sets to at least determined bridge resources.

16. The system of claim 15, wherein the bridge control mechanism is configured to be operable, in
response to detection of an error state to cause the bridge to cease operation in the operational mode and instead

to operate in the error mode.

17. The system of claim 16, wherein the bridge comprises storage for buffering data pending resolution of
the error.
18. The system of claim 15, wherein the bridge comprises error state registers for saving operating

parameters on entry to the error mode, read only access to the error state registers being permitted by the

processing sets during the error mode.

19. The system of claim 15, wherein the bridge comprises a posted write buffer for the storage of writes
already posted by at least one processing set on entry to the error mode, read only access to the posted write

buffer being permitted by the processing sets during the error mode.

20. The system of claim 15, wherein the bridge control mechanism is configured to be operable in an
initial error mode:

to store in the posted write buffer any internal bridge write accesses initiated by the processing sets and
to allow, to arbitrate any internal bridge read accesses initiated by the processing sets, to store in a posted write
buffer any device bus write accesses initiated by the processing sets and to abort any device bus read accesses

initiated by the processing sets.

21. The system of claim 15, wherein the bridge control mechanism is configured to be operable in a
primary error mode in which a processing set asserts itself as a primary processing set:

to allow and to arbitrate any internal bridge write accesses initiated by the primary processing set, to
discard any internal bridge write accesses initiated by any other processing set, to allow and to arbitrate any
internal bridge read accesses initiated by the processing sets, to discard any device bus write accesses initiated

by the processing sets and to abort any device bus read accesses initiated by the processing sets.

22. The system of claim 15, wherein the bridge control mechanism is configured to be operable:

in a first, split, operational mode to arbitrate between the first and the second processing sets for access

to each others I/O bus and to the device bus; and
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in a second, combined, operational mode to monitor lockstep operation of the first and second

processing sets.

23. The system of claim 22, wherein the bridge control mechanism is configured to be operable on power
up of the bridge to operate in an initial error mode until a processor set asserts itself as a primary processing set,
then to operate in the split operational mode to enable all processing sets to be set to a corresponding state

before transferring to the combined operational mode.

24, The system of claim 15, wherein the bridge comprises a memory sub-system and a controllable routing
matrix connected between the first processor bus interface, the second processor bus interface, the device bus »
interface and the memory sub-system, the bridge control mechanism being configured to be operable to control
the routing matrix selectively to interconnect the first processor bus interface, the second processor bus

interface, the device bus interface and the memory sub-system according to a current mode of operation.

25. The system of claim 15, wherein each processing set comprises at least one processor, memory and a

processing set I/O bus controller.

26. The system of claim 15, further comprising at least one further processing set, the bridge comprising at

least one further processor bus interface for connection to an I/O bus of the at least one further processing set.

27. A method of operating a muiti-processor system comprising a first processing set having an I/O bus, a
second processing set having an I/O bus, a device bus and a bridge, the bridge being connected to the I/O bus of
the first processing set, the I/O bus of the second processing set and the device bus, the method comprising
selectively operating the bridge:

in an operational mode to permit access by at least one of the first and second processing sets to bridge
resources and to the device bus; and

in an error mode to prevent access by the processing sets to the device bus and to permit restricted

access by at least one of the processing sets to at least predetermined bridge resources.

28. The method of claim 27, wherein, in response to detection of an error state, the bridge ceases operation

in the operational mode and instead operates in the error mode.

29. The method of claim 28, comprising buffering data in the bridge pending resolution of the error.

30. The method of claim 27, comprising saving operating parameters in error state registers in the bridge
on entry to the error mode and permitting read only access to the error state registers by the processing sets

during the error mode.
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31. The method of claim 27, comprising storing, in a posted write buffer in the bridge, writes already
posted from at least one processing set on entry to the error mode, and permitting read only access to the posted

write buffer by the processing sets during the error mode.

32. The method of claim 27, comprising operating in an initial error mode in which:

any internal bridge write accesses initiated by the processing sets are stored in a posted write buffer in
the bridge and any internal bridge read accesses initiated by the processing sets are allowed and arbitrated by
the bridge; and

any device bus write accesses initiated by the processing sets are posted in a posted write buffer in the

bridge and any device bus read accesses initiated by the processing sets are aborted by the bridge.

33.  The method of claim 32, comprising subsequently operating in a primary error mode in which a
processing set asserts itself as a primary processing set, in which:

any internal bridge write accesses initiated by the primary processing set are allowed and arbitrated by
the bridge, any internal bridge write accesses initiated by any other processing set are discarded by the bridge,
and any internal bridge read accesses initiated by the processing sets are allowed and arbitrated by the bridge;
and

any device bus write accesses initiated by the processing sets are discarded by the bridge and any

device bus read accesses initiated by the processing sets are aborted by the bridge.

34. The method of claim 27, comprising operating in:

a split operational mode in which accesses by the first and the second processing sets to each others /O
bus and to the device bus are arbitrated by the bridge; and

a combined operational mode in which lockstep operation of the first and second processing sets is

monitored by the bridge.

35. The method of claim 34, wherein on power up the bridge operates in an initial error mode until a
processor set asserts itself as a primary processing set, and then the bridge operates in the split operational mode

to enable all processing sets to be set to a corresponding state before transferring to the combined operational

mode.
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