
(19) United States 
US 2006O199205A1 

(12) Patent Application Publication (10) Pub. No.: US 2006/0199205 A1 
Natsoulis et al. (43) Pub. Date: Sep. 7, 2006 

(54) 

(76) 

(21) 

(22) 

(63) 

REAGENT SETS AND GENESIGNATURES 
FOR RENAL TUBULE INURY 

Inventors: Georges Natsoulis, Kensington, CA 
(US); Mark Fielden, Santa Clara, CA 
(US); Kurt Jarnagin, San Mateo, CA 
(US); Kyle Kolaja, San Mateo, CA 
(US) 

Correspondence Address: 
HOWREY LLP 
CFO IP DOCKETING DEPARTMENT 
2941 FAIRVIEW PARK DRIVE, SUITE 200 
FALLS CHURCH, VA 22042-2924 (US) 

Appl. No.: 11/357,887 

Filed: Feb. 17, 2006 

Related U.S. Application Data 

Continuation-in-part of application No. 11/184,272, 
filed on Jul. 18, 2005. 

(60) Provisional application No. 60/589,409, filed on Jul. 
19, 2004. 

Publication Classification 

(51) Int. Cl. 
CI2O I/68 (2006.01) 
GOIN 33/53 (2006.01) 
CI2M I/34 (2006.01) 

(52) U.S. Cl. ............................. 435/6: 435/7.1; 435/287.2 

(57) ABSTRACT 

The invention discloses reagent sets and gene signatures for 
predicting onset of renal tubule injury in a subject. The 
invention also provides a necessary set of 186 genes useful 
for generating signatures of varying size and performance 
capable of predicting onset of renal tubule injury. The 
invention also provides methods, apparatuses and reagents 
useful for predicting future renal tubule injury based on 
expression levels of genes in the signatures. In one particular 
embodiment the invention provides a method for predict 
whether a compound will induce renal tubule injury using 
gene expression data from Sub-acute treatments. 
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REAGENT SETS AND GENESIGNATURES FOR 
RENAL TUBULE INURY 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a continuation-in-part of U.S. 
patent application Ser. No. 11/184,272, filed on Jul. 18. 
2005, which claims priority from U.S. Provisional Applica 
tion No. 60/589,409, filed Jul. 19, 2004, each of which is 
hereby incorporated by reference herein in its entirety. 

FIELD OF THE INVENTION 

0002 This invention relates to reagent sets and gene 
signatures useful for predicting the onset of renal tubule 
injury (RTI) in a subject. The invention also provides 
methods, apparatuses and kits useful for predicting occur 
rence of renal tubule injury based on expression levels of 
genes in the signatures. In one embodiment the invention 
provides a method for predicting whether a compound will 
induce renal tubule injury using gene expression data from 
Sub-acute treatments. 

BACKGROUND OF THE INVENTION 

0003 Renal tubule injury (also referred to herein as, 
“tubular nephrosis) is a common drug-induced toxicity that 
includes degenerative lesions of the renal tubules, such as 
acute tubular dilation, vacuolation and necrosis. Necrotic 
lesions of the tubules can arise as a consequence of septic, 
toxic or ischemic insult, and is a frequent cause of renal 
failure among hospitalized patients. Recognition is ham 
pered by the lack of accurate markers and the shortcomings 
and over-reliance of serum markers of impaired glomerular 
filtration rate (i.e., serum creatinine and blood urea nitrogen) 
(see e.g., Schrier et al., “Acute renal failure: definitions, 
diagnosis, pathogenesis, and therapy,” J. Clin Invest, 
114(1):5-14 (2004)). Drugs associated with the development 
of tubular nephrosis include aminoglycoside antibiotics, 
antifungals, antineoplastics, immunosuppresants and radio 
contrast dyes, among others. 
0004 Similarly to the human clinical setting, long-term 
treatment of rats during preclinical drug development with 
relatively low doses of aminoglycoside antibiotics, heavy 
metal toxicants or antineoplastic drugs, for example, leads to 
the development of degenerative lesions of the renal tubules. 
However, histopathological or clinical indications of kidney 
injury are not readily apparent in the early course of treat 
ment, thus necessitating expensive and lengthy studies. 
0005. The development of methods to predict the future 
onset of renal tubule injury (RTI) and gain a greater under 
standing of the underlying mechanism, would facilitate the 
development more reliable clinical diagnostics and safer 
therapeutic drugs. In addition, improved preclinical markers 
for RTI would dramatically reduce the time, cost, and 
amount of compound required in order to prioritize and 
select lead candidates for progression through drug devel 
opment. 

SUMMARY OF THE INVENTION 

0006 The present invention provides methods, reagent 
sets, gene sets, and associated apparatuses and kits, that 
allow one to determine the early onset of renal tubule injury 
(or nephrotoxicity) by measuring gene expression levels. In 
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one particular embodiment, the invention provides a RTI 
“necessary set of 186 genes mined from a chemogenomic 
dataset. These genes are information-rich with respect to 
classifying biological samples for onset of RTI, even at 
Sub-acute doses and time points of 5 days or earlier, where 
clinical and histopathological evidence of RTI are not mani 
fested. Further, the invention discloses that the necessary set 
for RTI classification has the functional characteristic of 
reviving the performance of a fully depleted set of genes (for 
classifying RTI) by Supplementation with random selections 
of as few as 10% of the genes from the set of 186. In 
addition, the invention discloses that selections from the 
necessary set made based on percentage impact of the 
selected genes may be used to generate high-performing 
linear classifiers for RTI that include as few as 4 genes. In 
one embodiment, the invention provides several different 
linear classifiers (or gene signatures) for RTI. For all of the 
disclosed embodiments based on the necessary set of 186 
genes, the invention also provides reagent sets and kits 
comprising polynucleotides and/or polypeptides that repre 
sent a plurality of genes selected from the necessary set. 

0007. In one embodiment, the present invention provides 
a method for testing whether a compound will induce renal 
tubule injury in a test Subject, the method comprising: 
administering a dose of a compound to at least one test 
Subject; after a selected time period, obtaining a biological 
sample from the at least one test Subject; measuring the 
expression levels in the biological sample of at least a 
plurality of genes selected from those listed in Table 4; 
determining whether the sample is in the positive class for 
renal tubule injury using a classifier comprising at least the 
plurality of genes for which the expression levels are mea 
sured. In one embodiment, the method is carried out wherein 
the test Subject is a mammal selected from the group 
consisting of a human, cat, dog, monkey, mouse, pig, rabbit, 
and rat. In one preferred embodiment the test subject is a rat. 
In one embodiment, the biological sample comprises kidney 
tissue. In one embodiment, the method is carried out 
wherein the test compound is administered to the subject 
intravenously (IV), orally (PO, per os), or intraperitoneally 
(IP). In one embodiment, the method is carried out wherein 
the dose administered does not cause histological or clinical 
evidence of renal tubule injury at about 5 days, about 7 days, 
about 14 days, or even about 21 days. In one embodiment, 
the method is carried out wherein the expression levels are 
measured as logo ratios of compound-treated biological 
sample to a compound-untreated biological sample. In one 
embodiment, the method of the invention is carried out 
wherein the classifier is a linear classifier. In alternative 
embodiments, the classifier may be a non-linear classifier. In 
one embodiment, the method is carried out wherein the 
selected period of time is about 5 days or fewer, 7 days or 
fewer, 14 days or fewer, or even 21 days or fewer. In one 
embodiment of the method, the selected period of time is at 
least about 28 days. 

0008. In one embodiment, the method is carried out 
wherein the classifier comprises the genes and weights 
corresponding to any one of iterations 1 through 5 in Table 
4. In one embodiment, the method of the invention is carried 
out wherein the classifier for renal tubule injury classifies 
each of the 64 compounds listed in Table 2 according to its 
label as nephrotoxic and non-nephrotoxic. 
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0009. In one embodiment, the method is carried out 
wherein the linear classifier for renal tubule injury is capable 
of classifying a true label set with a log odds ratio at least 2 
standard deviations greater than its performance classifying 
a random label set. In preferred embodiments of the method, 
the linear classifier for renal tubule injury is capable of 
performing with a training log odds ratio of greater than or 
equal to 4.35. In another embodiment, the plurality of genes 
includes at least 4 genes selected from those listed in Table 
4, the four genes having at least having at least 2, 4, 8, 16. 
32, or 64% of the total impact of all of the genes in Table 4. 
0010. The present invention also provides a gene sets, 
and reagent sets based on those gene sets, that are useful for 
testing whether renal tubule injury will occur in a test 
Subject. In one embodiment, the invention provides a 
reagent set comprising a plurality of polynucleotides or 
polypeptides representing a plurality of genes selected from 
those listed in Table 4. In one embodiment, the reagent set 
comprises a plurality of genes includes at least 4 genes 
selected from those listed in Table 4, the 4 genes having at 
least 2% of the total impact of all of the genes in Table 4. In 
another embodiment, the reagent set comprises a plurality of 
genes includes at least 8 genes selected from those listed in 
Table 4, the 8 genes having at least 4% of the total impact 
of all of the genes in Table 4. Other embodiments include 
reagent sets based on Subsets of genes randomly selected 
from Table 4, wherein the subset includes at least 4 genes 
having at least 1, 2, 4, 8, 16, 32, or 64% of the total impact. 
In preferred embodiments, the reagent sets of the invention 
include represent as few genes as possible from Table 4 
while maximizing percentage of total impact. In preferred 
embodiments, the reagent sets of the invention include fewer 
than 1000, 500, 400, 300, 200, 100, 50, 20, 10, or even 8, 
polynucleotides or polypeptides representing the plurality of 
genes from Table 4. In one embodiment, the reagent sets 
consist essentially of polynucleotides or polypeptides rep 
resenting the plurality of genes from Table 4. Further, the 
invention comprises kits comprising the reagent sets as 
components. In one embodiment, the reagent set is packaged 
in a single container consisting essentially of polynucle 
otides or polypeptides representing the plurality of genes 
from Table 4. 

0011. In one embodiment, the reagent sets of the inven 
tion comprise polynucleotides or polypeptides representing 
genes comprising a random selection of at least about 10% 
of the genes from Table 4, wherein the addition of said 
randomly selected genes to a fully depleted gene set for the 
renal tubule injury classification question increases the aver 
age logodds ratio of the linear classifiers generated by the 
depleted set to at least about 2.5. In another embodiment, a 
random selection of at least 20% of the genes from Table 4. 
wherein the addition of said randomly selected genes to a 
fully depleted gene set for the renal tubule injury classifi 
cation question increases the average logodds ratio of the 
linear classifiers generated by the depleted set to at least 
about 3.3. In another embodiment, a random selection of at 
least 40% of the genes from Table 4, wherein the addition of 
said randomly selected genes to a fully depleted gene set for 
the renal tubule injury classification question increases the 
average logodds ratio of the linear classifiers generated by 
the depleted set to at least about 4.0. In other embodiments, 
reagent sets of the present invention comprise random 
selections of at least about 5%, 30%, 50%, 60%, 70%, 80%, 
90%, or even 99% of the genes from Table 4, each which are 
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capable of Substantially increasing the average performance 
of a depleted set for generating classifiers RTI. 
0012. In one embodiment, the invention provides a 
reagent set for classifying renal tubule injury comprising a 
set of polynucleotides or polypeptides representing a plu 
rality of genes selected from Table 4, wherein the addition 
of a random selection of at least 10% of said plurality of 
genes to the fully depleted set for the renal tubule injury 
classification question increases the average logodds ratio of 
the linear classifiers generated by the depleted set by at least 
2-fold. In another embodiment, the reagent set includes at 
least 40% of said plurality of genes to the fully depleted set 
for the renal tubule injury classification question increases 
the average logodds ratio of the linear classifiers generated 
by the depleted set by at least 3-fold. 
0013 In another preferred embodiment the plurality of 
genes are selected from the variables of a linear classifier 
capable of classifying renal tubule injury with a training log 
odds ratio of greater than or equal to 4.35. In one preferred 
embodiment, the plurality of genes is the set of genes in any 
one of iterations 1 through 5 in Table 4. In another embodi 
ment, the plurality of genes is the set of genes in any one of 
Tables 7, 8, 10, and 11. In one embodiment the reagents are 
polynucleotide probes capable of hybridizing to a plurality 
of genes selected from those listed in Table 4, and in a 
preferred embodiment, the polynucleotide probes are 
labeled. 

0014. In another embodiment, the reagents are primers 
for amplification of the plurality of genes. In one embodi 
ment the reagents are polypeptides encoded by a plurality of 
genes selected from those listed in Table 4. Preferably the 
reagents are polypeptides that bind to a plurality proteins 
encoded by a plurality of genes selected from those listed in 
Table 4. In one preferred embodiment, the reagent set 
comprises secreted proteins encoded by genes listed in Table 
4. 

0015 The present invention also provides an apparatus 
for predicting whether renal tubule injury will occur in a test 
Subject comprising a reagent set as described above. In 
preferred embodiments, the apparatus comprises a device 
with reagents for detecting polynucleotides, wherein the 
reagents comprise or consist essentially of a reagent set for 
testing whether renal tubule injury will occur in a test subject 
as described above. 

0016. In one embodiment, the apparatus comprises at 
least a plurality of polynucleotides or polypeptides repre 
senting a plurality of genes selected from those listed in 
Table 4. In one embodiment the apparatus comprises a 
plurality of genes includes at least 4 genes selected from 
those listed in Table 4, the four genes having at least 2% of 
the total impact of the genes in Table 4. In another preferred 
embodiment the plurality of genes are variables in a linear 
classifier capable of classifying renal tubule injury with a 
training log odds ratio of greater than or equal to 4.35. In one 
embodiment, the apparatus comprises the plurality of genes 
listed in any one of iterations 1 through 5 in Table 4. In one 
preferred embodiment, the apparatus comprises polynucle 
otide probes capable of hybridizing to a plurality of genes 
selected from those listed in Table 4. In preferred embodi 
ments, the apparatus comprises a plurality of polynucleotide 
probes bound to one or more solid surfaces. In one embodi 
ment, the plurality of probes are bound to a single solid 
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Surface in an array. Alternatively, the plurality of probes are 
bound to the solid surface on a plurality of beads. In another 
preferred embodiment, the apparatus comprises polypep 
tides encoded by a plurality of genes selected from those 
listed in Table 4. In one preferred embodiment, the polypep 
tides are secreted proteins encoded by genes listed in Table 
4. 

0017. The present invention also provides a method for 
predicting renal tubule injury in an individual comprising: 
obtaining a biological sample from the individual after 
short-term treatment with compound; measuring the expres 
sion levels in the biological sample of at least a plurality of 
genes selected from Table 4; and determining whether the 
sample is in the positive class for renal tubule injury using 
a linear classifier comprising at least the plurality of genes 
for which the expression levels are measured; wherein a 
sample in the positive class indicates that the individual will 
have renal tubule injury following sub-chronic treatment 
with compound. In one preferred embodiment, the method 
for predicting renal tubule injury is carried out wherein the 
genes encode secreted proteins. In a preferred embodiment, 
the individual is a mammal, and preferably a rat. In another 
preferred embodiment, the biological sample is selected 
from blood, urine, hair or saliva. In another preferred 
embodiment of the method, the expression logo ratio is 
measured using an array of polynucleotides. 
0018. In another embodiment, the invention provides a 
method for monitoring treatment of an individual for renal 
tubule injury, or with a compound Suspected of causing renal 
tubule injury, said method comprising: obtaining a biologi 
cal sample from the individual after short-term treatment 
with compound; measuring the expression levels in the 
biological sample of at least a plurality of genes selected 
from Table 4; and determining whether the sample is in the 
positive class for renal tubule injury using a linear classifier 
comprising at least the plurality of genes for which the 
expression levels are measured; wherein a sample in the 
positive class indicates that the individual will have renal 
tubule injury. In a preferred embodiment, the individual is a 
mammal, and preferably a rat. In another preferred embodi 
ment, the biological sample is selected from blood, urine, 
hair or saliva. In another preferred embodiment of the 
method, the expression logo ratio is measured using an 
array of polynucleotides. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0019 FIG. 1 depicts the 35 genes in the first iteration RTI 
signature derived according to the method of Example 3. 
their corresponding weights, and their average expression 
log ratio in the 15 compound training positive class. 
0020 FIG. 2 depicts a plots of training and test logodds 
ratios for prediction of renal tubule injury for 20 subsets of 
genes randomly selected from the necessary set. A training 
or test LOR of 4.00 could be achieved by signatures of as 
few as 4 and 7 genes, respectively. 

DETAILED DESCRIPTION OF THE 
INVENTION 

I. Overview 

0021. The present invention provides methods for pre 
dicting whether compound treatments induce future renal 

Sep. 7, 2006 

tubular injury following Sub-chronic or long-term treatment 
using expression data from Sub-acute or short-term treat 
ments. The invention provides necessary and Sufficient sets 
of genes and specific signatures comprising these genes that 
allow gene expression data to be used to identify the ability 
of a compound treatment to induce late onset renal tubule 
injury before the actual histological or clinical indication of 
the toxicity. Further, the invention provides reagent sets and 
diagnostic devices comprising the disclosed gene sets and 
signatures that may be used to deduce compound toxicity 
using short term studies, and avoiding lengthy and costly 
long term studies. 
II. Definitions 

0022 “Multivariate dataset' as used herein, refers to any 
dataset comprising a plurality of different variables includ 
ing but not limited to chemogenomic datasets comprising 
logratios from differential gene expression experiments, 
Such as those carried out on polynucleotide microarrays, or 
multiple protein binding affinities measured using a protein 
chip. Other examples of multivariate data include assem 
blies of data from a plurality of standard toxicological or 
pharmacological assays (e.g., blood analytes measured using 
enzymatic assays, antibody based ELISA or other detection 
techniques). 

0023 “Variable' as used herein, refers to any value that 
may vary. For example, variables may include relative or 
absolute amounts of biological molecules, such as mRNA or 
proteins, or other biological metabolites. Variables may also 
include dosing amounts of test compounds. 

0024 "Classifier as used herein, refers to a function of 
a set of variables that is capable of answering a classification 
question. A “classification question' may be of any type 
Susceptible to yielding a yes or no answer (e.g., “Is the 
unknown a member of the class or does it belong with 
everything else outside the class?”). “Linear classifiers' 
refers to classifiers comprising a first order function of a set 
of variables, for example, a Summation of a weighted set of 
gene expression logratios. A valid classifier is defined as a 
classifier capable of achieving a performance for its classi 
fication task at or above a selected threshold value. For 
example, a log odds ratio24.00 represents a preferred 
threshold of the present invention. Higher or lower threshold 
values may be selected depending of the specific classifica 
tion task. 

0025 “Signature' as used herein, refers to a combination 
of variables, weighting factors, and other constants that 
provides a unique value or function capable of answering a 
classification question. A signature may include as few as 
one variable. Signatures include but are not limited to linear 
classifiers comprising sums of the product of gene expres 
sion logratios by weighting factors and a bias term. 

0026. “Weighting factor' (or “weight') as used herein, 
refers to a value used by an algorithm in combination with 
a variable in order to adjust the contribution of the variable. 

0027 “Impact factor or “Impact” as used herein in the 
context of classifiers or signatures refers to the product of the 
weighting factor by the average value of the variable of 
interest. For example, where gene expression logratios are 
the variables, the product of the gene's weighting factor and 
the gene's measured expression logo ratio yields the gene's 
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impact. The sum of the impacts of all of the variables (e.g., 
genes) in a set yields the “total impact” for that set. 
0028 “Scalar product” (or “Signature score') as used 
herein refers to the Sum of impacts for all genes in a 
signature less the bias for that signature. A positive scalar 
product for a sample indicates that it is positive for (i.e., a 
member of) the classification that is determined by the 
classifier or signature. 
0029) “Sufficient set as used herein is a set of variables 
(e.g., genes, weights, bias factors) whose cross-validated 
performance for answering a specific classification question 
is greater than an arbitrary threshold (e.g., a log odds 
ratio.4.0). 
0030 “Necessary set as used herein is a set of variables 
whose removal from the full set of all variables results in a 
depleted set whose performance for answering a specific 
classification question does not rise above an arbitrarily 
defined minimum level (e.g., log odds ratio24.00). 
0031) “Log odds ratio” or “LOR” is used herein to 
Summarize the performance of classifiers or signatures. LOR 
is defined generally as the natural log of the ratio of the odds 
of predicting a subject to be positive when it is positive, 
versus the odds of predicting a subject to be positive when 
it is negative. LOR is estimated herein using a set of training 
or test cross-validation partitions according to the following 
equation, 

3. TP + os : (). TN, + os 
LOR = ln\ll i=1 

(i. FP +0.5) (, FN. +0.5 i=l 

where c (typically c=40 as described herein) equals the 
number of partitions, and TP, TN, FP, and FN represent 
the number of true positive, true negative, false positive, and 
false negative occurrences in the test cases of the i' parti 
tion, respectively. 
0032 “Array' as used herein, refers to a set of different 
biological molecules (e.g., polynucleotides, peptides, carbo 
hydrates, etc.). An array may be immobilized in or on one or 
more solid Substrates (e.g., glass slides, beads, or gels) or 
may be a collection of different molecules in Solution (e.g., 
a set of PCR primers). An array may include a plurality of 
biological polymers of a single class (e.g., polynucleotides) 
or a mixture of different classes of biopolymers (e.g., an 
array including both proteins and nucleic acids immobilized 
on a single Substrate). 
0033 “Array data” as used herein refers to any set of 
constants and/or variables that may be observed, measured 
or otherwise derived from an experiment using an array, 
including but not limited to: fluorescence (or other signaling 
moiety) intensity ratios, binding affinities, hybridization 
stringency, temperature, buffer concentrations. 
0034) “Proteomic data” as used herein refers to any set of 
constants and/or variables that may be observed, measured 
or otherwise derived from an experiment involving a plu 
rality of mRNA translation products (e.g., proteins, peptides, 
etc) and/or small molecular weight metabolites or exhaled 
gases associated with these translation products. 
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III. General Methods of the Invention 

0035. The present invention provides a method to derive 
multiple non-overlapping gene signatures for renal tubule 
injury. These non-overlapping signatures use different genes 
and thus each may be used independently in a predictive 
assay to confirm that an individual will suffer renal tubule 
injury. Furthermore, this method for identifying non-over 
lapping gene signatures also provides the list of all genes 
“necessary to create a signature that performs above a 
certain minimal threshold level for a specific predicting 
renal tubule injury. This necessary set of genes also may be 
used to derive additional signatures with varying numbers of 
genes and levels of performance for particular applications 
(e.g., diagnostic assays and devices). 
0036 Classifiers comprising genes as variables and 
accompanying weighting factors may be used to classify 
large datasets compiled from DNA microarray experiments. 
Of particular preference are sparse linear classifiers. Sparse 
as used here means that the vast majority of the genes 
measured in the expression experiment have Zero weight in 
the final linear classifier. Sparsity ensures that the sufficient 
and necessary gene lists produced by the methodology 
described herein are as short as possible. These short 
weighted gene lists (i.e., a gene signature) are capable of 
assigning an unknown compound treatment to one of two 
classes. 

0037. The sparsity and linearity of the classifiers are 
important features. The linearity of the classifier facilitates 
the interpretation of the signature—the contribution of each 
gene to the classifier corresponds to the product of its weight 
and the value (i.e., logo ratio) from the microarray experi 
ment. The property of sparsity ensures that the classifier uses 
only a few genes, which also helps in the interpretation. 
More importantly, the sparsity of the classifier may be 
reduced to a practical diagnostic apparatus or device com 
prising a relatively small set of reagents representing genes. 

0038 A. Gene Expression Related Datasets 
0.039 a. Various Useful Data Types 
0040. The present invention may be used with a wide 
range of gene expression related data types to generate 
necessary and Sufficient sets of genes useful for renal tubule 
injury signatures. In a preferred embodiment, the present 
invention utilizes data generated by high-throughput bio 
logical assays Such as DNA microarray experiments, or 
proteomic assays. The datasets are not limited to gene 
expression related data but also may include any sort of 
molecular characterization information including, e.g., spec 
troscopic data (e.g., UV-Vis, NMR, IR, mass spectrometry, 
etc.), structural data (e.g., three-dimensional coordinates) 
and functional data (e.g., activity assays, binding assays). 
The gene sets and signatures produced by using the present 
invention may be applied in a multitude of analytical con 
texts, including the development and manufacture of detec 
tion devices (i.e., diagnostics). 

0041 b. Construction of a Gene Expression Dataset 
0042. The present invention may be used to identify 
necessary and Sufficient sets of responsive genes within a 
gene expression dataset that are useful for predicting renal 
tubule injury. In a preferred embodiment, a chemogenomic 
dataset is used. For example, the data may correspond to 
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treatments of organisms (e.g., cells, worms, frogs, mice, rats, 
primates, or humans etc.) with chemical compounds at 
varying dosages and times followed by gene expression 
profiling of the organism's transcriptome (e.g., measuring 
mRNA levels) or proteome (e.g., measuring protein levels). 
In the case of multicellular organisms (e.g., mammals) the 
expression profiling may be carried out on various tissues of 
interest (e.g., liver, kidney, marrow, spleen, heart, brain, 
intestine). Typically, valid sufficient classifiers or signatures 
may be generated that answer questions relevant to classi 
fying treatments in a single tissue type. The present speci 
fication describes examples of necessary and Sufficient gene 
signatures useful for classifying chemogenomic data in liver 
tissue. The methods of the present invention may also be 
used however, to generate signatures in any tissue type. In 
Some embodiments, classifiers or signatures may be useful 
in more than one tissue type. Indeed, a large chemogenomic 
dataset, like that exemplified in the present invention may 
reveal gene signatures in one tissue type (e.g., liver) that also 
classify pathologies in other tissues (e.g., intestine). 
0043. In addition to the expression profile data, the 
present invention may be useful with chemogenomic 
datasets including additional data types such as data from 
classic biochemistry assays carried out on the organisms 
and/or tissues of interest. Other data included in a large 
multivariate dataset may include histopathology, pharma 
cology assays, and structural data for the chemical com 
pounds of interest. 
0044 One example of a chemogenomic multivariate 
dataset particularly useful with the present invention is a 
dataset based on DNA array expression profiling data as 
described in U.S. patent publication 2002/0174096 A1, 
published Nov. 21, 2002 (titled “Interactive Correlation of 
Compound Information and Genomic Information'), which 
is hereby incorporated by reference for all purposes. 
Microarrays are well known in the art and consist of a 
Substrate to which probes that correspond in sequence to 
genes or gene products (e.g., cDNAs, mRNAS, cRNAS, 
polypeptides, and fragments thereof), can be specifically 
hybridized or bound at a known position. The microarray is 
an array (i.e., a matrix) in which each position represents a 
discrete binding site for a gene or gene product (e.g., a DNA 
or protein), and in which binding sites are present for many 
or all of the genes in an organism's genome. 

0045. As disclosed above, a treatment may include but is 
not limited to the exposure of a biological sample or 
organism (e.g., a rat) to a drug candidate (or other chemical 
compound), the introduction of an exogenous gene into a 
biological sample, the deletion of a gene from the biological 
sample, or changes in the culture conditions of the biological 
sample. Responsive to a treatment, a gene corresponding to 
a microarray site may, to varying degrees, be (a) up 
regulated, in which more mRNA corresponding to that gene 
may be present, (b) down-regulated, in which less mRNA 
corresponding to that gene may be present, or (c) 
unchanged. The amount of up-regulation or down-regulation 
for a particular matrix location is made capable of machine 
measurement using known methods (e.g., fluorescence 
intensity measurement). For example, a two-color fluores 
cence detection scheme is disclosed in U.S. Pat. Nos. 
5,474,796 and 5,807,522, both of which are hereby incor 
porated by reference herein. Single color schemes are also 
well known in the art, wherein the amount of up- or 
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down-regulation is determined in silico by calculating the 
ratio of the intensities from the test array divided by those 
from a control. 

0046. After treatment and appropriate processing of the 
microarray, the photon emissions are scanned into numerical 
form, and an image of the entire microarray is stored in the 
form of an image representation Such as a color JPEG or 
TIFF format. The presence and degree of up-regulation or 
down-regulation of the gene at each microarray site repre 
sents, for the perturbation imposed on that site, the relevant 
output data for that experimental run or scan. 

0047 The methods for reducing datasets disclosed herein 
are broadly applicable to other gene and protein expression 
data. For example, in addition to microarray data, biological 
response data including gene expression level data generated 
from serial analysis of gene expression (SAGE, Supra) 
(Velculescu et al., 1995, Science, 270:484) and related 
technologies are within the scope of the multivariate data 
Suitable for analysis according to the method of the inven 
tion. Other methods of generating biological response sig 
nals suitable for the preferred embodiments include, but are 
not limited to: traditional Northern and Southern blot analy 
sis; antibody studies; chemiluminescence studies based on 
reporter genes Such as luciferase or green fluorescent pro 
tein; Lynx; READS (Gene|Logic); and methods similar to 
those disclosed in U.S. Pat. No. 5,569,588 to Ashby et al., 
“Methods for drug screening,” the contents of which are 
hereby incorporated by reference into the present disclosure. 

0048. In another preferred embodiment, the large multi 
variate dataset may include genotyping (e.g., single-nucle 
otide polymorphism) data. The present invention may be 
used to generate necessary and Sufficient sets of variables 
capable of classifying genotype information. These signa 
tures would include specific high-impact SNPs that could be 
used in a genetic diagnostic or pharmacogenomic assay. 

0049. The method of generating classifiers from a mul 
tivariate dataset according to the present invention may be 
aided by the use of relational database systems (e.g., in a 
computing system) for storing and retrieving large amounts 
of data. The advent of high-speed wide area networks and 
the internet, together with the client/server based model of 
relational database management systems, is particularly 
well-suited for meaningfully analyzing large amounts of 
multivariate data given the appropriate hardware and soft 
ware computing tools. Computerized analysis tools are 
particularly useful in experimental environments involving 
biological response signals (e.g., absolute or relative gene 
expression levels). Generally, multivariate data may be 
obtained and/or gathered using typical biological response 
signals. Responses to biological or environmental stimuli 
may be measured and analyzed in a large-scale fashion 
through computer-based scanning of the machine-readable 
signals, e.g., photons or electrical signals, into numerical 
matrices, and through the storage of the numerical data into 
relational databases. For example a large chemogenomic 
dataset may be constructed as described in U.S. patent 
publication 2005/0060102, published Mar. 17, 2005, which 
is hereby incorporated by reference for all purposes. 
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0050 B. Generating Valid Gene Signatures from a 
Chemogenomic Dataset 
0051) 
0.052 Generally classifiers or signatures are generated 

(i.e., mined) from a large multivariate dataset by first label 
ing the full dataset according to known classifications and 
then applying an algorithm to the full dataset that produces 
a linear classifier for each particular classification question. 
Each signature so generated is then cross-validated using a 
standard split sample procedure. 

a. Mining a Large Chemogenomic Dataset 

0053. The initial questions used to classify (i.e., the 
classification questions) a large multivariate dataset may be 
of any type Susceptible to yielding a yes or no answer. The 
general form of Such questions is: “Is the unknown a 
member of the class or does it belong with everything else 
outside the class? For example, in the area of chemoge 
nomic datasets, classification questions may include “mode 
of-action’ questions such as "All treatments with drugs 
belonging to a particular structural class versus the rest of 
the treatments' or pathology questions such as "All treat 
ments resulting in a measurable pathology versus all other 
treatments.” In the specific case of chemogenomic datasets 
based on gene expression, it is preferred that the classifica 
tion questions are further categorized based on the tissue 
Source of the gene expression data. Similarly, it may be 
helpful to subdivide other types of large data sets so that 
specific classification questions are limited to particular 
Subsets of data (e.g., data obtained at a certain time or dose 
of test compound). Typically, the significance of Subdividing 
data within large datasets become apparent upon initial 
attempts to classify the complete dataset. A principal com 
ponent analysis of the complete data set may be used to 
identify the Subdivisions in a large dataset (see e.g., US 
2003/0180808 A1, published Sep. 25, 2003, which is hereby 
incorporated by reference herein.) Methods of using classi 
fiers to identify information rich genes in large chemoge 
nomic datasets is also described in U.S. Ser. No. 11/114,998, 
filed Apr. 25, 2005, which is hereby incorporated by refer 
ence herein for all purposes. 
0054 Labels are assigned to each individual (e.g., each 
compound treatment) in the dataset according to a rigorous 
rule-based system. The +1 label indicates that a treatment 
falls in the class of interest, while a -1 label indicates that 
the variable is outside the class. Thus, with respect to the 64 
compound treatments shown in Table 2 (see Example 2 
below) used in generating an RTI signature, the "nephro 
toxic' treatments were labeled +1, whereas the “non-neph 
rotoxic' were labeled -1. Information used in assigning 
labels to the various individuals to classify may include 
annotations from the literature related to the dataset (e.g., 
known information regarding the compounds used in the 
treatment), or experimental measurements on the exact same 
animals (e.g., results of clinical chemistry or histopathology 
assays performed on the same animal). A more detailed 
description of the general method for using classification 
questions to mine a chemogenomic dataset for signatures is 
described in U.S. Ser. No. 11/149,612, filed Jun. 10, 2005, 
and PCT/US2005/020695, filed Jun. 10, 2005, each of which 
is hereby incorporated in its entirety by reference herein. 
0.055 b. Algorithms for Generating Valid Gene Signa 
tures 

0056 Dataset classification may be carried out manually, 
that is by evaluating the dataset by eye and classifying the 
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data accordingly. However, because the dataset may involve 
tens of thousands (or more) individual variables, more 
typically, querying the full dataset with a classification 
question is carried out in a computer employing any of the 
well-known data classification algorithms. 

0057. In preferred embodiments, algorithms are used to 
query the full dataset that generate linear classifiers. In 
particularly preferred embodiments the algorithm is selected 
from the group consisting of: SPLP, SPLR and SPMPM. 
These algorithms are based respectively on Support Vector 
Machines (SVM), Logistic Regression (LR) and Minimax 
Probability Machine (MPM). They have been described in 
detail elsewhere (See e.g., El Ghaoui et al., op. cit; Brown, 
M. P. W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, 
T. S. Furey, M. Ares, Jr., and D. Haussler, “Knowledge 
based analysis of microarray gene expression data by using 
support vector machines. Proc Natl Acad Sci USA 97: 
262-267 (2000)). 

0058 Generally, the sparse classification methods SPLP. 
SPLR, SPMPM are linear classification algorithms in that 
they determine the optimal hyperplane separating a positive 
and a negative class. This hyperplane, H can be character 
ized by a vectorial parameter, w (the weight vector) and a 
scalar parameter, b (the bias): H={xw"x+b=0}. 
0059 For all proposed algorithms, determining the opti 
mal hyperplane reduces to optimizing the error on the 
provided training data points, computed according to some 
loss function (e.g., the "Hinge loss, i.e., the loss function 
used in 1-norm SVMs; the “LR loss; or the “MPM loss' 
augmented with a 1-norm regularization on the signature, W. 
Regularization helps to provide a sparse, short signature. 
Moreover, this 1-norm penalty on the signature will be 
weighted by the average standard error per gene. That is, 
genes that have been measured with more uncertainty will 
be less likely to get a high weight in the signature. Conse 
quently, the proposed algorithms lead to sparse signatures, 
and take into account the average standard error information. 
0060 Mathematically, the algorithms can be described by 
the cost functions (shown below for SPLP, SPLR and 
SPMPM) that they actually minimize to determine the 
parameters w and b. 

SPLP 

e; c 0, i = 1,..., N. 

0061 The first term minimizes the training set error, 
while the second term is the 1-norm penalty on the signature 
w, weighted by the average standard error information per 
gene given by sigma. The training set error is computed 
according to the so-called Hinge loss, as defined in the 
constraints. This loss function penalizes every data point that 
is closer than “1” to the separating hyperplane H, or is on the 
wrong side of H. Notice how the hyperparameter rho allows 
trade-off between training set error and sparsity of the 
signature w. 
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SPLR 

v. M N rain X. log (1 + exp (-yi (w' x +b))) + pX Ow; 

0062) The first term expresses the negative log likelihood 
of the data (a smaller value indicating a better fit of the data), 
as usual in logistic regression, and the second term will give 
rise to a short signature, with rho determining the trade-off 
between both. 

SPMPM 

min V wif, w + V wif w +p Ow; s.t. w(&, -i ) = 1 
w 

0063 Here, the first two terms, together with the con 
straint are related to the misclassification error, while the 
third term will induce sparsity, as before. The symbols with 
a hat are empirical estimates of the covariances and means 
of the positive and the negative class. Given those estimates, 
the misclassification error is controlled by determining w 
and b such that even for the worst-case distributions for the 
positive and negative class (which we do not exactly know 
here) with those means and covariances, the classifier will 
still perform well. More details on how this exactly relates 
to the previous cost function can be found in e.g., El Ghaoui, 
L., G. R. G. Lanckriet, and G. Natsoulis, 2003, "Robust 
classifiers with interval data'Report # UCB/CSD-03-1279. 
Computer Science Division (EECS), University of Califor 
nia, Berkeley, Calif. 

0064. As mentioned above, classification algorithms 
capable of producing linear classifiers are preferred for use 
with the present invention. In the context of chemogenomic 
datasets, linear classifiers may be used to generate one or 
more valid signatures capable of answering a classification 
question comprising a series of genes and associated weight 
ing factors. Linear classification algorithms are particularly 
useful with DNA array or proteomic datasets because they 
provide simplified signatures useful for answering a wide 
variety of questions related to biological function and phar 
macological/toxicological effects associated with genes or 
proteins. These signatures are particularly useful because 
they are easily incorporated into wide variety of DNA- or 
protein-based diagnostic assays (e.g., DNA microarrays). 

0065 However, some classes of non-linear classifiers, so 
called kernel methods, may also be used to develop short 
gene lists, weights and algorithms that may be used in 
diagnostic device development; while the preferred embodi 
ment described here uses linear classification methods, it 
specifically contemplates that non-linear methods may also 
be suitable. 

0.066 Classifications may also be carried using principle 
component analysis and/or discrimination metric algorithms 
well-known in the art (see e.g., US 2003/0180808 A1, 
published Sep. 25, 2003, which is hereby incorporated by 
reference herein). 
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0067. Additional statistical techniques, or algorithms, are 
known in the art for generating classifiers. Some algorithms 
produce linear classifiers, which are convenient in many 
diagnostic applications because they may be represented as 
a weighted list of variables. In other cases non-linear clas 
sifier functions of the initial variables may be used. Other 
types of classifiers include decision trees and neural net 
works. Neural networks are universal approximators 
(Hornik, K., M. Stinchcombe, and H. White. 1989. “Multi 
layer feedforward networks are universal approximators, 
Neural Networks 2: 359-366); they can approximate any 

measurable function arbitrarily well, and they can readily be 
used to model classification functions as well. They perform 
well on several biological problems, e.g., protein structure 
prediction, protein classification, and cancer classification 
using gene expression data (see, e.g., Bishop, C. M. 1996. 
Neural Networks for Pattern Recognition. Oxford Univer 
sity Press: Khan, J. J. S. Wei, M. Ringner, L. H. Saal, M. 
Ladanyi, F. Westermann, F. Berthold, M. Schwab, C. R. 
Antonescu, C. Peterson, and P. S. Meltzer. 2001. Classifi 
cation and diagnostic prediction of cancers using gene 
expression profiling and artificial neural networks. Nat Med 
7: 673-679; Wu, C. H., M. Berry, S. Shivakumar, and J. 
McLarty. 1995. Neural networks for full-scale protein 
sequence classification: sequence encoding with singular 
value decomposition. Machine Learning 21: 177-193). 
0068 
0069 Cross-validation of a gene signature's performance 

is an important step for determining whether the signature is 
sufficient. Cross-validation may be carried out by first ran 
domly splitting the full dataset (e.g., a 60/40 split). A training 
signature is derived from the training set composed of 60% 
of the samples and used to classify both the training set and 
the remaining 40% of the data, referred to herein as the test 
set. In addition, a complete signature is derived using all the 
data. The performance of these signatures can be measured 
in terms of log odds ratio (LOR) or the error rate (ER) 
defined as: 

0070 where TP, TN, FP, FN, and N are true positives, 
true negatives, false positives, false negatives, and total 
number of samples to classify, respectively, Summed across 
all the cross validation trials. The performance measures are 
used to characterize the complete signature, the average of 
the training or the average of the test signatures. 
0.071) The SVM algorithms described above are capable 
of generating a plurality of gene signatures with varying 
degrees of performance for the classification task. In order 
to identify that signatures that are to be considered “valid.” 
a threshold performance is selected for the particular clas 
sification question. In one preferred embodiment, the clas 
sifier threshold performance is set as log odds ratio greater 
than or equal to 4.00 (i.e., LOR24.00). However, higher or 
lower thresholds may be used depending on the particular 
dataset and the desired properties of the signatures that are 
obtained. Of course many queries of a chemogenomic 
dataset with a classification question will not generate a 
valid gene signature. 

c. Cross-Validation of Gene Signatures 
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0072. Two or more valid gene signatures may be gener 
ated that are redundant or synonymous for a variety of 
reasons. Different classification questions (i.e., class defini 
tions) may result in identical classes and therefore identical 
signatures. For instance, the following two class definitions 
define the exact same treatments in the database: (1) all 
treatments with molecules structurally related to statins; and 
(2) all treatments with molecules having an ICso-1 uM for 
inhibition of the enzyme HMG CoA reductase. 
0073. In addition, when a large dataset is queried with the 
same classification question using different algorithms (or 
even the same algorithm under slightly different conditions) 
different, valid signatures may be obtained. These different 
signatures may or may not comprise overlapping sets of 
variables; however, they each can accurately identify mem 
bers of the class of interest. 

0074 For example, as illustrated in Table 1, two equally 
performing gene signatures (LOR=~7.0) for the fibrate class 
of compounds may be generated by querying a chemoge 
nomic dataset with two different algorithms: SPLP and 
SPLR. Genes are designated by their accession number and 
a brief description. The weights associated with each gene 
are also indicated. Each signature was trained on the exact 
same 60% of the multivariate dataset and then cross vali 
dated on the exact same remaining 40% of the dataset. Both 
signatures were shown to exhibit the exact same level of 
performance as classifiers: two errors on the cross validation 
data set. The SPLP derived signature consists of 20 genes. 
The SPLR derived signature consists of eight genes. Only 
three of the genes from the SPLP signature are present in the 
eight gene SPLR signature. 
0075 Table 1: Two Gene Signatures for the Fibrate Class 
of Drugs 
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0076. It is interesting to note that only three genes are 
common between these two signatures, (K03249, 
BF282712, and BF387347) and even those are associated 
with different weights. While many of the genes may be 
different, some commonalities may nevertheless be dis 
cerned. For example, one of the negatively weighted genes 
in the SPLP derived signature is NM 017136 encoding 
squalene epoxidase, a well-known cholesterol biosynthesis 
gene. Squalene epoxidase is not present in the SPLR derived 
signature but aceto-acteylCoA synthetase, another choles 
terol biosynthesis gene is present and is also negatively 
weighted. 
0077. Additional variant signatures may be produced for 
the same classification task. For example, the average sig 
nature length (number of genes) produced by SPLP and 
SPLR, as well as the other algorithms, may be varied by use 
of the parameter p (see e.g., El Ghaoui, L., G. R. G. 
Lanckriet, and G. Natsoulis, 2003, "Robust classifiers with 
interval data'Report # UCB/CSD-03-1279. Computer Sci 
ence Division (EECS), University of California, Berkeley, 
Calif.; and PCT publication WO 2005/017807 A2, published 
Feb. 24, 2005, each of which is hereby incorporated by 
reference herein). Varying p can produce signatures of 
different length with comparable test performance (Natsou 
lis et al., "Classification of a large microarray data set: 
Algorithm comparison and analysis of drug signatures, 
'Gen. Res. 15:724-736 (2005)). Those signatures are obvi 
ously different and often have no common genes between 
them (i.e., they do not overlap in terms of genes used). 
0078 C. “Stripping Signatures from a Dataset to Gen 
erate the “Necessary” Set 
0079 Each individual classifier or signature is capable of 
classifying a dataset into one of two categories or classes 

Accession Weight Unigene name 

RLPC KO3249 1.1572 enoyl-CoA, hydratase 3-hydroxyacyl CoA dehydrogenase 
AW916833 1.0876 hypothetical protein RMT-7 
BF387.347 O.4769 ESTS 
BF28.2712 O-4634 ESTS 
AFO34577 0.3684 pyruvate dehydrogenate kinase 4 
NM 019292 0.3107 carbonic anhydrase 3 
AI179988 0.2735 ectodermal-neural cortex (with BTB-like domain) 
AIT15955 0.211 Stac protein (SRC homology 3 and cysteine-rich domain protein) 
BE110695 0.2026 activating transcription factor 1 
O3752 0.0953 microsomal glutathione S-transferase 1 
D8658O 0.0731 nuclear receptor subfamily 0, group B, member 2 
BFSSO426 0.0391 KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum protein retention receptor 2 
AA818999 0.0296 muscleblind-like 2 
NM 019125 0.0167 probasin 
AF150082 -0.0141 translocase of inner mitochondrial membrane 8 (yeast) homolog A 
BE118425 -0.0781 Arsenical pump-driving ATPase 
NM 017136 -0.126 squalene epoxidase 
AI171367 –0.3222 HSPC154 protein 
NM 019369 -0.637 inter alpha-trypsin inhibitor, heavy chain 4 
AI137259 -O.7962 ESTS 

SPLR NM 017340 5.3688 acyl-coA oxidase 
BF282712 4.1052 ESTs 
NM 012489 3.8462 acetyl-CoA acyltransferase 1 (peroxisomal 3-oxoacyl-CoA thiolase) 
BF387.347 1.767 ESTS 
KO3249 1.7524 enoyl-CoA, hydratase 3-hydroxyacyl CoA dehydrogenase 
NM 016986 0.0622 acetyl-coA dehydrogenase, medium chain 
ABO26291 -0.7456 acetoacetyl-CoA synthetase 
A454943 -1.6738 likely ortholog of mouse porcupine homolog 
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defined by the classification question. Typically, an indi 
vidual signature with the highest test log odds ratio will be 
considered as the best classifier for a given task. However, 
often the second, third (or lower) ranking signatures, in 
terms of performance, may be useful for confirming the 
classification of compound treatment, especially where the 
unknown compound yields a borderline answer based on the 
best classifier. Furthermore, the additional signatures may 
identify alternative sources of informational rich data asso 
ciated with the specific classification question. For example, 
a slightly lower ranking gene signature from a chemoge 
nomic dataset may include those genes associated with a 
secondary metabolic pathway affected by the compound 
treatment. Consequently, for purposes of fully characteriz 
ing a class and answering difficult classification questions, it 
is useful to define the entire set of variables that may be used 
to produce the plurality of different classifiers capable of 
answering a given classification question. This set of vari 
ables is referred to herein as a “necessary set.” Conversely, 
the remaining variables from the full dataset are those that 
collectively cannot be used to produce a valid classifier, and 
therefore are referred to herein as the "depleted set.” 
0080. The general method for identifying a necessary set 
of variables useful for a classification question involved 
what is referred to herein as a classifier “stripping algo 
rithm. The stripping algorithm comprises the following 
steps: (1) querying the full dataset with a classification 
question so as to generate a first linear classifier capable of 
performing with a log odds ratio greater than or equal to 4.0 
comprising a first set of variables; (2) removing the variables 
of the first linear classifier from the full dataset thereby 
generating a partially depleted dataset; (3) re-querying the 
partially depleted dataset with the same classification ques 
tion so as to generate a second linear classifier and cross 
validating this second classifier to determine whether it 
performs with a log odds ratio greater than or equal to 4. If 
it does not, the process stops and the dataset is fully depleted 
for variables capable of generating a classifier with an 
average log odds ratio greater than or equal to 4.0. If the 
second classifier is validated as performing with a log odds 
ratio greater than or equal to 4.0, then its variables are 
stripped from the full dataset and the partially depleted set 
if re-queried with the classification question. These cycles of 
stripping and re-querying are repeated until the performance 
of any remaining set of variables drops below an arbitrarily 
set LOR. The threshold at which the iterative process is 
stopped may be arbitrarily adjusted by the user depending on 
the desired outcome. For example, a user may choose a 
threshold of LOR=0. This is the value expected by chance 
alone. Consequently, after repeated Stripping until LOR=0 
there is no classification information remaining in the 
depleted set. Of course, selecting a lower value for the 
threshold will result in a larger necessary set. 
0081 Although a preferred cut-off for stripping classifi 
ers is LOR=4.0, this threshold is arbitrary. Other embodi 
ments within the scope of the invention may utilize higher 
or lower stripping cutoffs e.g., depending on the size or type 
of dataset, or the classification question being asked. In 
addition other metrics could be used to assess the perfor 
mance (e.g., specificity, sensitivity, and others). Also the 
stripping algorithm removes all variables from a signature if 
it meets the cutoff. Other procedures may be used within the 
scope of the invention wherein only the highest weighted or 
ranking variables are stripped. Such an approach based on 
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variable impact would likely result in a classifier “surviving 
more cycles and defining a smaller necessary set. 
0082) Other procedures may be used within the scope of 
the invention wherein only the highest weighted or ranking 
variables are stripped. Such an approach based on variable 
impact would likely result in a classifier “surviving more 
cycles and defining a smaller necessary set. 
0083. In another alternative approach, the genes from 
signatures may be stripped from the dataset until it is unable 
to generate a signature capable of classifying the “true label 
set with an LOR that is statistically different from its 
classification of the "random label set.” The “true label set” 
refers to a training set of compound treatment data that is 
correctly labeled (e.g., +1 class, -1 class) for the particular 
classification question. The “random label set' refers to the 
same set of compound treatment data where the class labels 
have been randomly assigned. Attempts to use a signature to 
classify a random label set will result in an average LOR of 
approximately Zero and Some standard deviation (SD). 
These values may be compared to the average LOR and SD 
for the classifying the true label set, where the SD is 
calculated based on LOR results across the 20 or 40 splits. 
The difference in classifying true and random label sets with 
valid signatures should be significantly greater than random. 
In Such an alternative approach, the selected performance 
threshold for a signature is a p-value rather than a LOR 
cutoff. 

0084. The resulting fully-depleted set of variables that 
remains after a classifier is fully stripped from the full 
dataset cannot generate a classifier for the specific classifi 
cation question (with the desired level of performance). 
Consequently, the set of all of the variables in the classifiers 
that were stripped from the full set are defined as “neces 
sary for generating a valid classifier. 
0085. The stripping method utilizes a classification algo 
rithm at its core. The examples presented here use SPLP for 
this task. Other algorithms, provided that they are sparse 
with respect to genes could be employed. SPLR and 
SPMPM are two alternatives for this functionality (see e.g., 
El Ghaoui, L., G. R. G. Lanckriet, and G. Natsoulis, 2003, 
“Robust classifiers with interval data Report # UCB/CSD 
03-1279. Computer Science Division (EECS), University of 
California, Berkeley, Calif., and PCT publication WO 2005/ 
017807 A2, published Feb. 24, 2005, which is hereby 
incorporated by reference herein). 
0086. In one embodiment, the stripping algorithm may be 
used on a chemogenomics dataset comprising DNA microar 
ray data. The resulting necessary set of genes comprises a 
Subset of highly informative genes for a particular classifi 
cation question. Consequently, these genes may be incorpo 
rated in diagnostic devices (e.g., polynucleotide arrays) 
where that particular classification (e.g., renal tubule injury) 
is of interest. In other exemplary embodiments, the stripping 
method may be used with datasets from proteomic experi 
mentS. 

0087. D. Mining the Renal Tubule Injury Necessary Set 
for Signatures 
0088 Besides identifying the “necessary” set of genes for 
a particular signature (i.e., classifier), another important use 
of the stripping algorithm is the identification of multiple, 
non-overlapping Sufficient sets of genes useful for answering 
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a particular classification question. These non-overlapping 
sufficient sets are a direct product of the above-described 
general method of stripping valid classifiers. Where the 
application of the method results in a second validated 
classifier with the desired level of performance, that second 
classifier by definition does not include any genes in com 
mon with the first classifier. Typically, the earlier stripped 
non-overlapping gene signature yields higher performance 
with fewer genes. In other words, the earliest identified 
Sufficient set usually comprises the highest impact, most 
information-rich genes with respect to the particular classi 
fication question. The valid classifiers that appear during 
later iterations of the stripping algorithm typically contain a 
larger number of genes. However, these later appearing 
classifiers may provide valuable information regarding nor 
mally unrecognized relationships between genes in the 
dataset. For example, in the case of non-overlapping gene 
signatures identified by stripping in a chemogenomics 
dataset, the later appearing signatures may include families 
of genes not previously recognized as involved in the 
particular metabolic pathway that is being affected by a 
particular compound treatment. Thus, functional analysis of 
a gene signature stripping procedure may identify new 
metabolic targets associated with a compound treatment. 
0089. The necessary set high impact genes generated by 
the stripping method itself represents a Subset of genes that 
may be mined for further signatures. Hence, the complete set 
of genes in a necessary set for predicting renal tubule injury 
may used to randomly generate random Subsets of genes of 
varying size that are capable of generating additional pre 
dictive signatures. One preferred method of selecting Such 
Subsets is based on percentage of total impact. Thus, Subsets 
of genes are selected whose Summed impact factors are a 
selected percentage of the total impact (i.e., the Sum of the 
impacts of all genes in the necessary set). These percentage 
impact Subsets may be used to generate new signatures for 
predicting renal tubule injury. For example, a random Subset 
from the necessary set of 9 genes with 4% of the total impact 
may be used with one of the SVM algorithms to generate a 
new linear classifier of 8 genes, weighting factors and a bias 
term that may be used as a signature for renal tubule injury. 
Thus, the necessary set for a particular classification repre 
sents a greatly reduced dataset that can generate new sig 
natures with varying properties such as shorter (or longer) 
gene lengths and higher (or lower) LOR performance values. 

0090 E. Functional Characterization of the Renal Tubule 
Injury Necessary Set 

0.091 The stripping method described herein produces a 
necessary set of genes representing for answering the RTI 
classification question. The RTI necessary set of genes also 
may be characterized in functional terms based on the ability 
of the information rich genes in the set to Supplement (i.e., 
“revive') the ability of a fully “depleted set of genes to 
generate valid RTI signatures. Thus, the necessary set for the 
RTI classification question corresponds to that set of genes 
from which any random selection when added to a depleted 
set (i.e., depleted for RTI classification question) restores the 
ability of that set to produce RTI signatures with an average 
LOR (avg. LOR) above a threshold level. The general 
method for functionally characterizing a necessary set in 
terms of its ability to revive its depleted set is described in 
U.S. Ser. No. 11/149,612, filed Jun. 10, 2005, and PCT/ 
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US2005/020695, filed Jun. 10, 2005, each of which is 
hereby incorporated in its entirety by reference herein. 

0092 Preferably, the threshold performance used is an 
avg. LOR greater than or equal to 4.00. Other values for 
performance, however, may be set. For example, avg. LOR 
may vary from about 1.0 to as high as 8.0. In preferred 
embodiments, the avg. LOR threshold may be 3.0 to as high 
as 7.0 including all integer and half-integer values in that 
range. The necessary set may then be defined in terms of 
percentage of randomly selected genes from the necessary 
set that restore the performance of a depleted set above a 
certain threshold. Typically, the avg. LOR of the depleted set 
is ~1.20, although as mentioned above, datasets may be 
depleted more or less depending on the threshold set, and 
depleted sets with avg. LOR as low as 0.0 may be used. 
Generally, the depleted set will exhibit an avg. LOR between 
about 0.5 and 1.5. 

0093. The third parameter establishing the functional 
characteristics of the RTI necessary set of genes for answer 
ing the RTI classification question is the percentage of 
randomly selected genes from that set that result in reviving 
the threshold performance of the depleted set. Typically, 
where the threshold avg. LOR is at least 4.00 and the 
depleted set performs with an avg. LOR of ~1.20, typically 
16-36% of randomly selected genes from the necessary set 
are required to restore the average performance of the 
depleted set to the threshold value. In preferred embodi 
ments, the random supplementation may be achieved using 
16, 18, 20, 22, 24, 26, 28, 30, 32, 34 or 36% of the necessary 
Set. 

0094. Alternatively, as described above, the necessary set 
may be characterized based on its ability to randomly 
generate signatures capable of classifying a true label set 
with an average performance above those signatures ability 
to classify a random label set. In preferred embodiments, 
signatures generated from a random selection of at least 10% 
of the genes in the necessary set may perform at least 1 
standard deviation, and preferably at least 2 standard devia 
tions, better for classifying the true versus the random label 
set. In other embodiments, the random selection may be of 
at least 15%, 20%, 25%, 30%, 40%, 50%, and even higher 
percentages of genes from the set. 
0095 F. Using Signatures and the Necessary Set to 
Generate Diagnostic Assays and Devices for Predicting 
Renal Tubule Injury 
0096. A diagnostic usually consists in performing one or 
more assays and in assigning a sample to one or more 
categories based on the results of the assay(s). Desirable 
attributes of a diagnostic assays include high sensitivity and 
specificity measured in terms of low false negative and false 
positive rates and overall accuracy. Because diagnostic 
assays are often used to assign large number of Samples to 
given categories, the issues of cost per assay and throughput 
(number of assays per unit time or per worker hour) are of 
paramount importance. 

0097. Typically the development of a diagnostic assay 
involves the following steps: (1) define the end point to 
diagnose, e.g., cholestasis, a pathology of the liver (2) 
identify one or more markers whose alteration correlates 
with the end point, e.g., elevation of bilirubin in the blood 
stream as an indication of cholestasis; and (3) develop a 
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specific, accurate, high-throughput and cost-effective assay 
for that marker. In order to increase throughput and decrease 
costs several diagnostics are often combined in a panel of 
assays, especially when the detection methodologies are 
compatible. For example several ELISA-based assays, each 
using different antibodies to ascertain different end points 
may be combined in a single panel and commercialized as 
a single kit. Even in this case, however, each of the ELISA 
based assays had to be developed individually often requir 
ing the generation of specific reagents. 

0098. The present invention provides signatures and 
methods for identifying additional signatures comprising as 
few as 4 genes that are useful for determining a therapeutic 
or toxicological end-point for renal tubule injury. These 
signatures (and the genes from which they are composed) 
may also be used in the design of improved diagnostic 
devices that answer the same questions as a large microarray 
but using a much smaller fraction of data. Generally, the 
reduction of information in a large chemogenomic dataset to 
a simple signature enables much simpler devices compatible 
with low cost high throughput multi-analyte measurement. 

0099. As described herein, a large chemogenomic dataset 
may be mined for a plurality of informative genes useful for 
answering classification questions. The size of the classifiers 
or signatures so generated may be varied according to 
experimental needs. In addition, multiple non-overlapping 
classifiers may be generated where independent experimen 
tal measures are required to confirm a classification. Gen 
erally, the sufficient classifiers result in a substantial reduc 
tion of data that needs to be measured to classify a sample. 
Consequently, the signatures and methods of the present 
invention provide the ability to produce cheaper, higher 
throughput, diagnostic measurement methods or strategies. 
In particular, the invention provides diagnostic reagent sets 
useful in diagnostic assays and the associated diagnostic 
devices and kits. As used herein, diagnostic assays includes 
assays that may be used for patient prognosis and therapeu 
tic monitoring. 

0100 Diagnostic reagent sets may include reagents rep 
resenting the Subset of genes found in the necessary set of 
186 consisting of less than 50%, 40%, 30%, 20%, 10%, or 
even less than 5% of the total genes. In one preferred 
embodiment, the diagnostic reagent set is a plurality of 
polynucleotides or polypeptides representing specific genes 
in a sufficient or necessary set of the invention. Such 
biopolymer reagent sets are immediately applicable in any 
of the diagnostic assay methods (and the associate kits) well 
known for polynucleotides and polypeptides (e.g., DNA 
arrays, RT-PCR, immunoassays or other receptor based 
assays for polypeptides or proteins). For example, by select 
ing only those genes found in a smalleryet “sufficient gene 
signature, a faster, simpler and cheaper DNA array may be 
fabricated for that signature's specific classification task. 
Thus, a very simple diagnostic array may be designed that 
answers 3 or 4 specific classification questions and includes 
only 60-80 polynucleotides representing the approximately 
20 genes in each of the signatures. Of course, depending on 
the level of accuracy required the LOR threshold for select 
ing a sufficient gene signature may be varied. A DNA array 
may be designed with many more genes per signature if the 
LOR threshold is set at e.g., 7.00 for a given classification 
question. The present invention includes diagnostic devices 
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based on gene signatures exhibiting levels of performance 
varying from less than LOR=3.00 up to LOR=10.00 and 
greater. 

0101 The diagnostic reagent sets of the invention may be 
provided in kits, wherein the kits may or may not comprise 
additional reagents or components necessary for the particu 
lar diagnostic application in which the reagent set is to be 
employed. Thus, for a polynucleotide array applications, the 
diagnostic reagent sets may be provided in a kit which 
further comprises one or more of the additional requisite 
reagents for amplifying and/or labeling a microarray probe 
or target (e.g., polymerases, labeled nucleotides, and the 
like). 
0102) A variety of array formats (for either polynucle 
otides and/or polypeptides) are well-known in the art and 
may be used with the methods and subsets produced by the 
present invention. In one preferred embodiment, photolitho 
graphic or micromirror methods may be used to spatially 
direct light-induced chemical modifications of spacer units 
or functional groups resulting in attachment at specific 
localized regions on the Surface of the Substrate. Light 
directed methods of controlling reactivity and immobilizing 
chemical compounds on Solid Substrates are well-known in 
the art and described in U.S. Pat. Nos. 4,562,157, 5,143,854, 
5,556,961, 5,968,740, and 6,153,744, and PCT publication 
WO 99/42813, each of which is hereby incorporated by 
reference herein. 

0103) Alternatively, a plurality of molecules may be 
attached to a single Substrate by precise deposition of 
chemical reagents. For example, methods for achieving high 
spatial resolution in depositing Small volumes of a liquid 
reagent on a solid substrate are disclosed in U.S. Pat. Nos. 
5,474,796 and 5,807,522, both of which are hereby incor 
porated by reference herein. 
0104. It should also be noted that in many cases a single 
diagnostic device may not satisfy all needs. However, even 
for an initial exploratory investigation (e.g., classifying 
drug-treated rats) DNA arrays with sufficient gene sets of 
varying size (number of genes), each adapted to a specific 
follow-up technology, can be created. In addition, in the case 
of drug-treated rats, different arrays may be defined for each 
tissue. 

0105. Alternatively, a single substrate may be produced 
with several different small arrays of genes in different areas 
on the surface of the substrate. Each of these different arrays 
may represent a sufficient set of genes for the same classi 
fication question but with a different optimal gene signature 
for each different tissue. Thus, a single array could be used 
for particular diagnostic question regardless of the tissue 
Source of the sample (or even if the sample was from a 
mixture of tissue sources, e.g., in a forensic sample). 
0106. In addition, it may be desirable to investigate 
classification questions of a different nature in the same 
tissue using several arrays featuring different non-overlap 
ping gene signatures for a particular classification question. 

0.107 As described above, the methodology described 
here is not limited to chemogenomic datasets and DNA 
microarray data. The invention may be applied to other types 
of datasets to produce necessary and Sufficient sets of 
variables useful for classifiers. For example, proteomics 
assay techniques, where protein levels are measured or 
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protein interaction techniques such as yeast 2-hybrid or mass 
spectrometry also result in large, highly multivariate dataset, 
which could be classified in the same way described here. 
The result of all the classification tasks could be submitted 
to the same methods of signature generation and/or classifier 
stripping in order to define specific sets of proteins useful as 
signatures for specific classification questions. 
0108. In addition, the invention is useful for many tradi 
tional lower throughput diagnostic applications. Indeed the 
invention teaches methods for generating valid, high-per 
formance classifiers consisting of 5% or less of the total 
variables in a dataset. This data reduction is critical to 
providing a useful analytical device. For example, a large 
chemogenomic dataset may be reduced to a signature com 
prising less than 5% of the genes in the full dataset. Further 
reductions of these genes may be made by identifying only 
those genes whose product is a secreted protein. These 
secreted proteins may be identified based on known anno 
tation information regarding the genes in the Subset. 
Because the secreted proteins are identified in the sufficient 
set useful as a signature for a particular classification ques 
tion, they are most useful in protein based diagnostic assays 
related to that classification. For example, an antibody-based 
blood serum assay may be produced using the Subset of the 
secreted proteins found in the Sufficient signature set. Hence, 
the present invention may be used to generate improved 
protein-based diagnostic assays from DNA array informa 
tion. 

0109 The general method of the invention as described 
above is exemplified below. The following examples are 
offered as illustrations of specific embodiments and are not 
intended to limit the inventions disclosed throughout the 
whole of the specification. 

EXAMPLES 

Example 1 

Construction of Chemogenomic Reference 
Database (Drug MatrixTM) 

0110. This example illustrates the construction of a large 
multivariate chemogenomic dataset based on DNA microar 
ray analysis of rat tissues from over 580 different in vivo 
compound treatments. This dataset was used to generate RTI 
signatures comprising genes and weights which Subse 
quently were used to generate a necessary set of highly 
responsive genes that may be incorporated into high 
throughput diagnostic devices as described in Examples 2-7. 
0111. The detailed description of the construction of this 
chemogenomic dataset is described in Examples 1 and 2 of 
Published U.S. Pat. Appl. No. 2005/0060102 A1, published 
Mar. 17, 2005, which is hereby incorporated by reference for 
all purposes. Briefly, in vivo short-term repeat dose rat 
studies were conducted on over 580 test compounds, includ 
ing marketed and withdrawn drugs, environmental and 
industrial toxicants, and standard biochemical reagents. Rats 
(three per group) were dosed daily at either a low or high 
dose. The low dose was an efficacious dose estimated from 
the literature and the high dose was an empirically-deter 
mined maximum tolerated dose, defined as the dose that 
causes a 50% decrease in body weight gain relative to 
controls during the course of the 5 day range finding study. 
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Animals were necropsied on days 0.25, 1, 3, and 5 or 7. Up 
to 13 tissues (e.g., liver, kidney, heart, bone marrow, blood, 
spleen, brain, intestine, glandular and nonglandular stom 
ach, lung, muscle, and gonads) were collected for histo 
pathological evaluation and microarray expression profiling 
on the Amersham CodeLinkTM RU1 platform. In addition, a 
clinical pathology panel consisting of 37 clinical chemistry 
and hematology parameters was generated from blood 
samples collected on days 3 and 5. 
0.112. In order to assure that all of the dataset is of high 
quality a number of quality metrics and tests are employed. 
Failure on any test results in rejection of the array and 
exclusion from the data set. The first tests measure global 
array parameters: (1) average normalized signal to back 
ground, (2) median signal to threshold, (3) fraction of 
elements with below background signals, and (4) number of 
empty spots. The second battery of tests examines the array 
visually for unevenness and agreement of the signals to a 
tissue specific reference standard formed from a number of 
historical untreated animal control arrays (correlation coef 
ficient>0.8). Arrays that pass all of these checks are further 
assessed using principle component analysis versus a dataset 
containing seven different tissue types; arrays not closely 
clustering with their appropriate tissue cloud are discarded. 
0113 Data collected from the scanner is processed by the 
Dewarping/DetrendingTM normalization technique, which 
uses a non-linear centralization normalization procedure 
(see, Zien, A., T. Aigner, R. Zimmer, and T. Lengauer. 2001. 
Centralization: A new method for the normalization of gene 
expression data. Bioinformatics) adapted specifically for the 
CodeLink microarray platform. The procedure utilizes 
detrending and dewarping algorithms to adjust for non 
biological trends and non-linear patterns in signal response, 
leading to significant improvements in array data quality. 
0114 Logo-ratios are computed for each gene as the 
difference of the averaged logs of the experimental signals 
from (usually) three drug-treated animals and the averaged 
logs of the control signals from (usually) 20 mock vehicle 
treated animals. To assign a significance level to each gene 
expression change, the standard error for the measured 
change between the experiments and controls is computed. 
An empirical Bayesian estimate of standard deviation for 
each measurement is used in calculating the standard error, 
which is a weighted average of the measurement standard 
deviation for each experimental condition and a global 
estimate of measurement standard deviation for each gene 
determined over thousands of arrays (Carlin, B. P. and T. A. 
Louis. 2000. “Bayes and empirical Bayes methods for data 
analysis.” Chapman & Hall/CRC, Boca Raton; Gelman, A. 
1995. "Bayesian data analysis.” Chapman & Hall/CRC, 
Boca Raton). The standard error is used in a t-test to 
compute a p-value for the significance of each gene expres 
sion change. The coefficient of variation (CV) is defined as 
the ratio of the standard error to the average Logo-ratio, as 
defined above. 

Example 2 
Preparation of a Chemogenomic Dataset for 

Late-Onset Renal Tubule Injury 
0115 This example describes methods used to prepare a 
chemogenomic dataset (i.e., a positive training set) for use 
deriving a signature for renal tubule injury (i.e., late-onset 
nephrotoxicity). 
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0116. Overview 
0117) 28-day repeat dose studies were conducted on 
known nephrotoxicants. Doses were chosen that would not 
cause histological or clinical evidence of renal tubular injury 
after 5 days of dosing, but would cause histological evidence 
of tubular injury after 28 days of dosing. Animals were 
assigned to groups such that mean body weights were within 
10% of the mean vehicle control group. Test compounds 
were administered either orally (10 ml of corn oil/kg body 
weight) or by intra-peritoneal injection (5 ml of Saline/kg 
body weight). Animals were dosed once daily starting on 
day 0, and necropsied 24 hrs after the last dose following an 
overnight fast on day 5 (n=5) and day 28 (n=10). An 
equivalent number of time- and vehicle-matched control rats 
were treated concurrently. Likewise, a large set of short-term 
(day 5/7) treatments that would not cause renal tubular 
injury (i.e., negative control data) after Sub-chronic dosing 
conditions were selected from the chemogenomic reference 
database in-vivo studies described in Example 1 (above), to 
complete the training set. This assertion of the absence of 
nephrotoxicity for these compounds was based on thorough 
evaluation of human clinical studies curated in Physicians 
Desk Reference (PDR) as well as peer-reviewed published 
literature. Lastly, these treatments did not cause histological 
evidence of renal tubular injury on day 5/7. Appropriate time 
and vehicle-matched controls for these negative treatments 
were also derived from the reference database in vivo 
studies described in Example 1. 
0118 Compound Selection and Dosing 
0119) To derive a signature predictive of renal tubular 
injury, it is necessary to first define both nephrotoxic and 
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non-nephrotoxic treatments from short-term studies devoid 
of tissue injury that can be used to model the early tran 
scriptional effects that will be predictive of late-onset tox 
icity. To empirically confirm the late-onset nephrotoxicity of 
the positive treatments prior to inclusion in the training set, 
28-day repeat dose studies were conducted on 15 known 
nephrotoxicants in adult male Sprague-Dawley rats accord 
ing to the in vivo methods described in Example 1. 

0.120. In addition, 49 short-term (day 5/7) compound 
treatments that would not cause renal tubular injury after 
Sub-chronic dosing conditions were selected from chemoge 
nomic reference database (Drug MatrixTM) to complete the 
training set. This assertion of the absence of nephrotoxicity 
for these compounds was based on thorough evaluation of 
human clinical studies curated in Physicians Desk Reference 
(PDR) as well as peer-reviewed published literature. These 
treatments were experimentally confirmed not to cause 
histological evidence of renal tubular injury at the time of 
expression analysis. 

0121 Doses were chosen that would not cause histologi 
cal or clinical evidence of renal tubular injury after 5 days 
of dosing, but would cause histological evidence of tubular 
injury after 28 days of dosing. This time course of injury was 
significant to deriving a predictive signature since the pres 
ence of injury on day 5 would bias the signature towards a 
gene expression pattern that are indicative of the presence of 
a lesion, rather than identifying gene expression events that 
will predict the future occurrence of the lesion. 

0.122 The compounds and their doses are listed in Table 
2. 

TABLE 2 

64 in vivo compound treatments used in the training set. 

Dose Time 
Compound (mg/kg/d) (d) Vehicle Route Class 

4-NONYLPHENOL 2OO 5 Corn oil PO Nephrotoxic 
AMIKACIN 160 5 Saline P Nephrotoxic 
CADMIUM CHLORIDE 2 5 Saline P Nephrotoxic 
CARBOPLATIN 5 5 Saline P Nephrotoxic 
CISPLATIN O.S 5 Saline P Nephrotoxic 
COBALT (II) CHLORIDE 10 5 Saline P Nephrotoxic 
CYCLOSPORINA 70 5 Corn oil PO Nephrotoxic 
DAUNORUBICIN 4 5 Saline V Nephrotoxic 
DOXORUBICIN 4 5 Saline V Nephrotoxic 
GENTAMICIN 40 5 Saline P Nephrotoxic 
IDARUBICIN 4 5 Saline V Nephrotoxic 
LEAD (II) ACETATE 2 5 Saline P Nephrotoxic 
NETILMICIN 40 5 Saline P Nephrotoxic 
ROXARSONE 11 5 Corn oil PO Nephrotoxic 
TOBRAMYCIN 40 5 Saline P Nephrotoxic 
6-METHOXY-2-NAPHTHYLACETIC ACID 360 5 Saline PO Non-nephrotoxic 
ACARBOSE 2OOO 5 Water PO Non-nephrotoxic 
AMPRENAVIR 600 5 CMC PO Non-nephrotoxic 
ANTIPYRINE 1SOO 5 CMC PO Non-nephrotoxic 
ASPIRIN 375 5 Corn oil PO Non-nephrotoxic 
ATORVASTATIN 3OO 5 Corn oil PO Non-nephrotoxic 
AZATHIOPRINE S4 5 Water PO Non-nephrotoxic 
BENAZEPRIL 1750 5 CMC PO Non-nephrotoxic 
BETAHISTINE 1SOO 5 Water PO Non-nephrotoxic 
BISPHENOLA 610 5 Corn oil PO Non-nephrotoxic 
BITHIONOL 333 5 Corn oil PO Non-nephrotoxic 
CANDESARTAN 1300 5 CMC PO Non-nephrotoxic 
CAPTOPRIL 1750 5 Water PO Non-nephrotoxic 
CELECOXIB 263 5 Corn oil PO Non-nephrotoxic 
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TABLE 2-continued 

14 

64 in vivo compound treatments used in the training set. 

Dose Time 
Compound (mg/kg/d) (d) Vehicle 

CLINDAMYCIN 161 5 Saline 
CLOFIBRATE 500 7 Corn oil 
CROMOLYN 1SOO 5 Water 
DEXIBUPROFEN 239 5 CMC 
ENROFLOXACIN 2OOO 5 CMC 
ETHANOL 6OOO 7 Saline 
EUCALYPTOL 930 5 Corn oil 
FENOFIBRATE 215 5 Corn oil 
FLUVASTATIN 94 5 Corn oil 
GADOPENTETATE DIMEGLUMINE 125 5 Saline 
GEMFIBROZIL 700 7 Corn oil 
GLICLAZIDE 500 5 CMC 
GLYCINE 2OOO 5 CMC 
INDINAVIR OOO 5 CMC 
KETOPROFEN 20.4 5 Corn oil 
LEFLUNOMIDE 60 5 Corn oil 
LINCOMYCIN 2OO 5 CMC 
LISINOPRIL 2OOO 5 CMC 
LOVASTATIN 500 5 Corn oil 
N,N-DIMETHYLFORMAMIDE 400 5 Saline 
N-NITROSODIETHYLAMINE 34 5 Saline 
RAMIPRIL 500 5 CMC 
RAPAMYCIN 60 5 CMC 
RIFABUTIN 500 5 CMC 
RIFAPENTINE 75 5 Corn oil 
SULFADIMETHOXINE 100 5 CMC 
SULFAMETHOXAZOLE OOO 5 Water 
SULFINPYRAZONE 269 5 CMC 
TENIDAP 75 5 Corn oil 
THIAMPEHENICOL 500 5 Water 
TRANSPLATIN O.S 5 Saline 
WALACYCLOVIR 88 5 CMC 
VALPROIC ACID 850 5 Water 
ZILEUTON 450 5 Corn oil 
ZOMEPIRAC 11 5 Saline 

0123. In Vivo Studies 
0.124 Male Sprague-Dawley (Crl:CDR) (SD)(IGS)BR) 
rats (Charles River Laboratories, Portage, Mich.), weight 
matched, 7 to 8 weeks of age, were housed individually in 
hanging, stainless steel, wire-bottom cages in a temperature 
(66-77 F.), light (12-hour dark/light cycle) and humidity 
(30-70%) controlled room. Water and Certified Rodent Diet 
#5002 (PMI Feeds, Inc, City, ST) were available ad libitum 
throughout the 5 day acclimatization period and during the 
28 day treatment period. Housing and treatment of the 
animals were in accordance with regulations outlined in the 
USDA Animal Welfare Act (9 CFR Parts 1, 2 and 3). 
0125 Clinical and Post-Mortem Evaluation 
0126 All animals were monitored daily for clinical 
observations approximately 1 hr after dosing. For both the 
reference database studies (described in Example 1) and the 
Sub-chronic study presented herein, gross necropsy obser 
Vations and organ weights (liver, kidneys, heart, testes) were 
recorded for all animals following termination. Paired 
organs were weighed together. Body weights were recorded 
pre-test and daily thereafter for reference database (i.e., 
Drug MatrixTM) studies, and on days 0, 3, 5, 7, 14 and 28 for 
the sub-chronic studies. Terminal body weights were mea 
Sured at necropsy and used to calculate relative organ 
weights and percent body weight gain relative to day 0. 
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0127 Clinical Pathology 
0.128 Blood samples were collected at necropsy from the 
orbital sinus or abdominal aorta under CO/O anesthesia 
prior to terminal necropsy by exsanguinations and pneu 
mothorax. A panel of clinical chemistry and hematology 
parameters were analyzed on a Hitachi-911 and a Baker 
9000 instrument, respectively. 
0129. Histopathology 
0130. The right kidney was preserved in 10% buffered 
formalin for tissue fixation and subsequently embedded in 
paraffin, sectioned and stained with hematoxylin and eosin. 
Sections (5um thick) were examined under light microscope 
by Board Certified Pathologists for histopathological 
lesions. The left kidney was Snap frozen in liquid nitrogen 
for subsequent RNA extraction. 
0131 Statistical Analysis of Animal Data 
0.132 Treatment group means for body and organ 
weights, and clinical chemistry and hematology measure 
ments were compared to the time-matched vehicle control 
group by Student's T-test. Significance was declared at 
p-0.05. 
0.133 Microarray Expression Profiling 
0.134 Gene expression profiling, data processing and 
quality control were performed as previously described in 
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Example 1. Briefly, kidney samples from 3 rats were chosen 
at random from each treatment and control group on day 5 
for expression profile analysis on the Amersham 
CodeLinkTM RU1 Bioarray (Amersham Biosciences, Piscat 
away, N.J.). Log transformed signal data for all probes were 
array-wise normalized used Array Qualifier (Novation Bio 
Sciences, Palo Alto, Calif.), a proprietary non-linear central 
ization normalization procedure adapted for the CodeLink 
RU1 microarray platform. Expression logratios of base 10 
are computed as the difference between the logs of the 
averaged normalized experimental signals and the averaged 
normalized time-matched vehicle control signals for each 
gene. 

0135) Results 
0136. A few treated animals showed histopathological 
evidence of early chronic renal nephropathy on day 5, 
including minimal to mild regeneration of tubular epithe 
lium, interstitial inflammation, pelvic dilation, focal thick 
ening of basement membrane and focal infarcts. Cisplatin 
induced a high incidence of mild tubular basophilia (4 of 5 
rats), while both cisplatin and carboplatin induced a high 
incidence of karyomegaly (3 and 5 rats, respectively). Mild 
tubular dilation and proteinaceous casts were also observed 
in one lead acetate-treated rat. Although considered early 
signs of tubular injury, these mild and infrequent observa 
tions are unlikely to bias the signature since the large 
majority of the animals treated with the 15 nephrotoxicants 
were unaffected on day 5. Furthermore, the incidence and 
severity of findings indicative of tubular injury were mark 
edly increased after 4 weeks of treatment relative to the day 
5 time point. 
0137 After 4 weeks of dosing, all 15 nephrotoxicants 
showed evidence of degenerative changes of the renal 
tubules or early signs of tubular toxicity. Histological find 
ings included tubular necrosis, dilation, vacuolation, baso 
philia, mineralization and cysts. These lesions were also 
accompanied by a higher incidence and increased severity of 
epithelial regeneration and interstitial inflammation, as well 
as granular and proteinaceous casts. A high incidence of 
karyomegaly was also noted for cisplatin, carboplatin, lead 
and cobalt. Consist with the tubular injury was the concur 
rent observation of hypercholesterolemia and hypoalbumin 
emia for a number of the nephrotoxic treatments. Although 
weaker than most other nephrotoxicants, 4-nonylphenol and 
roXarsone induced clear evidence of tubular injury on day 
28. For example, proteinaceous casts, tubular cysts and 
mineralization were only observed in one roXarsone or 
4-nonylphenol treated rat on day 28, yet these treatments did 
induce a much higher incidence and severity of tubular 
regeneration (4-6 rats) and interstitial inflammation (6 rats) 
Suggestive of future tubular injury. Since the nephrotoxicity 
of 4-nonylphenol and roXarsone have previously been 
described (see, Chapin et al., “The effects of 4-nonylphenol 
in rats: a multigeneration reproduction study,” Toxicological 
Science 52(1): 80-91 (1999); Latendresse et al., “Polycystic 
kidney disease induced in F(1) Sprague-Dawley rats fed 
para-nonylphenol in a Soy-free, casein-containing diet.” 
Toxicological Science 62(1): 140-7 (2001); Abdo et al., 
“Toxic responses in F344 rats and B6C3F1 mice given 
roxarsone in their diets for up to 13 weeks.” Toxicology 
Letters 45(1): 55-66), and early signs of injury are apparent 
in the current study, these treatments were included in the 
positive class. 
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Example 3 

Derivation of a Predictive Renal Tubule Injury 
Signature 

0.138. Overview 
0.139. The support vector machine algorithm was trained 
to classify experimentally confirmed nephrotoxicants from 
non-nephrotoxicants using the data acquired in Examples 1 
and 2 above. A linear classifier (i.e., gene signature) was 
derived using kidney expression profiles from rats treated 
with 15 nephrotoxicants that induce renal tubular injury after 
4 weeks of daily dosing, and 49 non-nephrotoxicants known 
not to induce renal tubular injury under subchronic dosing 
conditions. 

0140 Gene Signature Derivation 
0.141. To derive the gene signature, a three-step process 
of data reduction, signature generation and cross-validation 
of the predictive signature was used. A total of 7478 gene 
probes from the total of 10,000 on the CodeLinkTM RU1 
microarray were pre-selected based on having less than 5% 
missing values (e.g., invalid measurement or below signal 
threshold) in either the positive or negative class of the 
training set. Pre-selection of these genes increases the qual 
ity of the starting dataset but is not necessary in order to 
generate valid signatures according to the methods disclosed 
herein. These pre-selected genes are listed in Table 3. 

TABLE 3 

7478 genes used to derive RTI signatures 

Accession # Accession # Accession # Accession # Accession # 

NM 012939 AI180253 AF139809 X63369 U27518 
NM 012657 JO2657 AI717121 A412259 AF1591.03 
NM O12848 NM O12764 D17310 AIO11SOS DOO753 
U67914 ABO40O31 NM O193O8 NM O12878 AF2.90213 
AW915240 AA818643 X78997 NM 019298 AIO 10583 
BF415939 D38381 AFOSS477 ABO2S431 A237852 
L18948 X83231 NM O13052 M62832 AI410548 
NM 017250 AB043981 NM 019242 AA849028 NM O13062 
AF150082 NM 017288 U75924 AA858817 US 6863 
AIS11090 U22S2O M96674 AI175530 BF2824.09 
AA859352 BE113181 BE105381 U16253 U25137 
NM O17270 ABO13732 NM O19322 AW 91.7537 D38101 
M63282 D50671 AFO34577 ABO42598 A407163 
M35992 AF2O2887 Z17239 M81681 AW916143 
ABOO9636 BE114586 AIO2946O AI172112 NM 012698 
XS9132 AJO11607 M11814 AF3064.58 AIS75641 
NM O12824 NM 019126 NM. O13075 U24441 BF40O833 
NM O12777 D38494 NM 019150 UO9838 JO3863 
U24174 M18847 AW913878 AFO)6O173 Y13400 
NM 013105 UO4317 AI171219 NM 012603 NM 012639 
AFOSTS64 A276893 BF405468 U66707 AI236611 
BE109667 AI233740 NM 019348 AI236696 AF12O275 
AF208.288 BE100918 AW920818 BE109861 NM 019286 
NM O13068 AFO53312 BF399598 XO5884 AIOO9597 
NM 012682 AF044264 NM 019128 U94708 AW915049 
NM 019233 NM 012633 AI412261 AFO14503 NM 012567 
NM 013197 ABO32419 XO6827 O2643 ABOOO215 
AF151367 NM O12810 AF199333 AFO58786 AF254802 
BF555121 JO3734 M74716 BE109018 AW141051 
AI169311 JO263S NM O17014 NM O12803 BF403190 
NM O12738 AA997397 KO35O1 AW916301, NM 017123 
NM O12786 NM 012551 AA818120 BE113155 AF227439 
BF522.317 M22899 NM O19332 AF160798 BE107840 
M261.99 NM O17289 X56846 BF557871 U97146 
ABO36792 AF144756 BFSS12SO AW92OO17 AA893596 
AW143OOS M34052 NM 021680 NM O13029 AJOO1713 
NM 012498 AFO86607 XO6889 AF107723 AI18OO10 
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TABLE 3-continued 

Z478 genes used to derive RTI signatures 

Accession # Accession # Accession # Accession # Accession # 

BF283754 BF410170 L22339 
BF405725 AI232332 NM 013177 
NM 013186 U67140 AF110O24 
BF42OO43 AA893.191 AW1435.26 
M552.50 AA817813 BFSSS225 
AA799.784 BE1.11345 X71916 
AIO13110 AA817817 AIO7O303 
BF412643 AI1794.13 AA965.185 
AI170664 AI231827 BE109656 
M94043 AI579555 NM 017026 
A406275 U46149 D893.75 
AFO392O3 BF390970 BE100771 
AA818364 BF405581 U54807 
BF3934.86 AIO4SO3S X99326 
BE128566 AW141446 NM. O.19234 
BFS63114 AW915616 AIS98719 
AI231290 BE116574 AA8O1133 
BF414997 NM 019124 U10894 
AW921,546 BE100609 AI17O303 
AIO44124 NM 013130 NM 019281 
AA848639 M35495 L39991 
BF395067 L14936 AA817968 
AW918O11 A408827 BFS48743 
AIO72218 A410818 AI71648O 
BFSS3984 BF411842 ABO28.933 
AI23S222 AI178134 AA859631 
NM 01716O BE107324 D85189 
U78875 BE111609 NM 017104 
BE1.11770 A411088 AA900434 
AA800708 A4O732O AFO49344 
M27905 AI233452 AI170376 
AI172O75 AA8SO487 AJOO7704 
M55075 BF283,861 Y13380 
AA944549 AA80O291 AA893.164 
AA8OOOO4 BF397919 AA894306 
X51707 DSO 694 AFOS1943 
AI17964O A412931 BF55878O 
X7412S NM 017355 X61677 

0142. The signature used to predict the presence or 
absence of future renal tubular injury was derived using a 
robust linear programming Support vector machine (SVM) 
algorithm as previously described (see e.g., El Ghaoui, L., 
G. R. G. Lanckriet, and G. Natsoulis, 2003, "Robust clas 
sifiers with interval data'Report # UCB/CSD-03-1279. 
Computer Science Division (EECS), University of Califor 
nia, Berkeley, Calif.; and U.S. provisional applications US 
Ser. No. 60/495,975, filed Aug. 13, 2003 and U.S. Ser. No. 
60/495,081, filed Aug. 13, 2003, each of which is hereby 
incorporated by reference herein). Briefly, the SVM algo 
rithm finds an optimal linear combination of variables (i.e., 
gene expression measurements) that best separate the two 
classes of experiments in m dimensional space, where m is 
equal to 7479. The general form of this linear-discriminant 
based classifier is defined by n variables: X, X. . . . X, and 
in associated constants (i.e., weights): a, a2, ... a such that: 

s-Xa-h 
i 

where S is the scalar product and b is the bias term. 
Evaluation of S for a test experiment across the n genes in 
the signature determines what side of the hyperplane in m 
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dimensional space the test experiment lies, and thus the 
result of the classification. Experiments with scalar products 
greater than 0 are considered positive for Sub-chronic neph 
rotoxicity. 

0.143 Signature Validation 
0144) Cross-validation provides a reasonable approxima 
tion of the estimated performance on independent test 
samples. The signature was trained and validated using a 
split sample cross validation procedure. Within each parti 
tion of the data set, 80% of the positives and 20% of the 
negatives were randomly selected and used as a training set 
to derive a unique signature, which was Subsequently used 
to classify the remaining test cases of known label. This 
process was repeated 40 times, and the overall performance 
of the signature was measured as the percent true positive 
and true negative rate averaged over the 40 partitions of the 
data set, which is equivalent to testing 392 samples. Splitting 
the dataset by other fractions or by leave-one-out cross 
validation gave similar performance estimates. 
0145 Cross validation using 40 random iterative splits 
(80:20 training:test) resulted in an estimated sensitivity, or 
true positive rate, of 83.3%, and a specificity, or true 
negative rate, of 94.0%. Leave-one-out cross-validation 
produced similar results. 
0146 To test whether the algorithm is identifying a true 
pattern in the training set, but not a random data set, the 
labels for the 64 experiments were randomly assigned and a 
signature was derived and Subject to cross-validation as 
above. This process was repeated 99 times. As expected, the 
average test log odds closely centered about Zero 
(-0.004+0.86), with a range of -2.3 to 2.9. By comparison, 
the true label set had a log odds ratio of 4.4, which was 
significantly greater than expected by chance (p<0.0001). 

0147 Results 
0.148. Using 7478 pre-selected genes whose accession 
numbers are listed in Table 3, the SVM algorithm was 
trained to produce a gene signature for renal tubule injury 
comprising 35 genes, their associated weights and a bias 
term that perfectly classified the training set. The 35 genes 
and the parameters of the signature are depicted in FIG. 1. 
Average impact represents the contribution of each gene 
towards the Scalar product, and is calculated as the product 
of the average logo ratio and the weight calculated across 
the 15 nephrotoxicants in the positive class listed in Table 2. 

0149. As shown in FIG. 1, the genes are ranked in 
descending order of percent contribution, which is calcu 
lated as the fraction of the average positive impact each gene 
in the positive training class has relative to the sum of all 
positive impacts. Genes with a negative average impact are 
considered penalty genes. The expression logo ratio of each 
gene was plotted in the depicted “heat map across all 15 
treatments in the training set. The sum of the impact across 
all 35 genes for each treatment, and the resulting scalar 
product are presented along the two rows below the plot. The 
bias term for the 35 gene signature was 0.58. 
0150. The 35 genes identified represent 35 unique Uni 
gene clusters. This 35 gene signature identifies compound 
treatments that are predicted to cause future renal tubular 
injury in the rat based on kidney expression data from short 
term (<=5 days) in vivo studies. 
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0151. The product of the weight and the average logo 
ratio across the 15 positive experiments in the training set 
indicated that 31 of the 35 genes are considered “reward' 
genes, as they represent expression changes that positively 
contribute to the signature score (i.e., the scalar product). 
The reward genes assure sensitivity of the signature by 
rewarding expression changes consistent with nephrotoxic 
ity. A positive scalar product indicates the experiment is 
predicted to be positive for future renal tubular injury, while 
a negative scalar product indicates the experiment is nega 
tive for future renal tubular injury. The remaining 4 genes in 
the signature are considered “penalty” genes as they repre 
sent expression changes that negatively contribute to a scalar 
product. Penalty genes assure specificity of the signature by 
penalizing expression changes not consistent with nephro 
toxicity. 
0152 The genes and bias term in the signature are 
weighted Such that the classification threshold (i.e., Zero) is 
equidistant, by one unit, between the positive class and 
negative class experiments in the training set. 
0153. Of the 31 reward genes, 15 have an average expres 
sion logo ratio greater than Zero and are therefore induced 
on average by the nephrotoxicants, while the remaining 16 
are on averaged repressed by the nephrotoxicants. Exami 
nation of the expression changes across the 15 nephrotoxi 
cants in the training set reveals that most genes are not 
consistently altered in the same direction by all treatments 
(FIG. 1). Instead, it is the sum of the product of the weight 
and logo ratio (i.e., impact) across all 35 signature genes, 
less the bias, that results in an accurate classification. For 
example, Cyclin-dependent kinase inhibitor 1A (U24174) or 
the EST AW143082 are induced and repressed to varying 
degrees by compounds in the positive class, thus indicating 
that individual genes would be poor classifiers when used 
individually. This highlights the limitations of using single 

genes for classification and also illustrates the basis for 
signature robustness since classification decisions are not 
dependent on any one gene that may be subject to experi 
mental error. 

Example 4 

Stripping of Renal Tubule Injury Signatures to 
Produce a Necessary Set of Genes 

0154) In order to understand the biological basis of 
classification and provide a Subset of genes useful in alter 
native signatures for renal tubule injury, an iterative 
approach was taken in order to identify all the genes that are 
necessary and Sufficient to classify the training set. 
0.155 Starting with the 7478 pre-selected genes on the 
Codelink RU1 microarray, a signature was generated with 
the SVM algorithm and cross-validated using multiple ran 
dom partitions (80% training: 20% test) of the data set. The 
35 genes identified previously in the first signature (i.e., 
“iteration 1 in Table 4) as being sufficient to classify the 
training set were removed and the algorithm repeated to 
identify additional genes. This identified an additional 37 
genes (i.e., the genes in “iteration 2 in Table 4) that were 
able to classify the training set with a log odds of 3.80. This 
approach was repeated until the test LOR of the model 
reached Zero, which occurred after 14 iterations and which 
consumed 622 genes. Based on the first 5 iterations, 186 
genes were identified to be necessary to classify the training 
set with a test LOR of 1.64 (Table 4), which is approxi 
mately 2 standard deviations greater than the average LOR 
achieved with random label sets. Importantly though, it 
identifies a reasonable number of genes with a demonstrated 
ability to uniquely discriminate nephrotoxicants with an 
approximate accuracy of 76%. These genes are listed in 
Table 4. 

TABLE 4 

186 genes identified to be necessary and Sufficient to classify the training Set. 

Mean Mean 
Logratio Logratio 
Positive Negative Unigene 

Probe Iteration Weight Impact Class Class D UniGene Description 

AI105417 -O.89 O.261 -0.294 -0.172 Rn.8180 neuronal regeneration 
related protein 

BF4O4S57 -1.36 O213 -0156 O.077 RSO972 ESTS 
UO8257 O.88 0.149 O.170 0.029 Rn. 10049 Glutamate receptor, 

ionotropic, kainate 4 
BF28SO22 146 (0.143 O.097 -O.O13 Rn.24387 ESTS 
AF155910 0.55 O.12S O.226 0.002 Rn.92316 heat shock 27 kD protein 

amily, member 7 
(cardiovascular) 

AI144646 O.63 O.108 O.171 -0.075 Rn.36522 gap junction protein, alpha 
2, 47 kDa (Hs.) 
(DBSS strong) 

AI105049 O.82 0.104 O.126 -O.O18 Rn.23565 ESTS 
AI227912 O46 0.074 O-160 -0.026 Rn,873 Sorting nexin 3 (SDP3 

protein) (Hs.) 
(DBSS strong) 

AW916O23 -0.64 O.O74 -0.116 -0.011 Rn.6788 Kelch-like ECH-associated 
protein 1 (Cytosolic 
inhibitor of Nrf2) (INrf2) 
(Rn.) (DBSS weak) 

BF403410 O42 OO68 O.163 0.020 Rn.23087 Homo sapiens clone 25048 
mRNA sequence (Hs.) 
(DBSS) 

YOO697 O.63 OO67 O. 106 0.048 Rn. 1294 Cathepsin L 
AW143O82 -O3O O.O56 -0186 O.361 R22057 ESTS 
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Probe 

AIS991.26 

AI102732 
AI176933 
AF208.288 

AF281 63S 

U24174 

AW142947 
BF396132 

NM 012610 

US 7049 

AI231846 
BE116947 
AW917933 
AW144517 
AW92O818 

ABO21980 

BEO973.09 

AW919837 

NM 013197 

BF396955 

BF281149 

A412011 

BE109152 

AI176739 

228233 
FOO7549 A 

AI232347 

AW915996 

28 

TABLE 4-continued 

186 genes identified to be necessary and sufficient to classify the training set. 

Iteration Weight 

O.36 

-0.31 
O46 

-O.27 

O.43 

O.09 

-0.22 
-0.26 

-0.08 

-0.17 

-0.08 

-0.13 
O.OS 

-0.04 
-0.05 
O.O3 

-0.05 

-0.29 

-0.05 

0.77 

1.34 

2 3.38 

-0.94 
-0.53 
O.66 
O.94 

2 160 

2 O41 

2 0.67 
2 0.55 

2 -2.15 

2 -0.48 

Impact 

O.019 
O.O14 

O.OOO 

O.OOO 

-OOO7 

-O.OSO 

-0.057 

O.279 

O.159 
O.12S 
O.115 
O-111 

O.103 

O.083 

O.O76 
0.075 

Mean 
Logratio 
Positive 
Class 

O.122 

-0.113 
O.O76 

-0.127 

O.049 

O.219 

-0.124 

-0.059 
O.126 

-0.124 
-O.097 
0.177 

-0.057 

-0.004 

O.O10 

-O.259 

-0.065 

-0.042 

-0.168 
-0.234 
O.174 
O.118 

O.064 

O.2OS 

O. 113 
O.136 

-0.114 

Mean 
Logratio 
Negative 
Class 

-0.061 

O.064 
-0.048 
O.043 

O.OO2 

O.133 

-0.030 
O.OO)4 

O.O32 
-0.078 
O.O39 

-0.004 
-0.078 

O.OS4 

O.042 

-O.286 

-O.228 

-0.226 

O.OOS 

-0.017 
O.O26 

Unigene 
D 

Rn 8452 

R.7539 
Rn.23658 
R.48779 

Rn.9264 

Rn.10O89 

Rn61563 
Rn.76362 

Rn.10980 

Rn.10494 

R.15536 

Rn.27 
Rn.8045 
Rn.28424 
R.13780 
Rn 11702 

R.32872 

Rn.30019 

Rn.46694 

Rn.23432 

R.32517 

Rn.41236 

R.3137 

R.3738 

Rn.26560 
Rh42884 
Rn.12100 
Rn.28393 

Rn 19642 

R.22359 

Rn.25139 
Rn.10734 

Rn 102 

Rn 1925O 

UniGene Description 

inner centromere protein 
(Mm.) (DBSS strong) 
ESTS 
ajuba (Mm.) (DBSS) 
G protein-coupled receptor 
26 
Zinc finger protein 22 
(KOX 15) 
cyclin-dependent kinase 
inhibitor 1A 
ESTS 
echinoderm microtubule 
associated protein like 2 
nerve growth factor 
receptor 
methylenetetrahydrofolate 
reductase 
potassium channel, 
subfamily K, member 3 
(Hs.) (DBSS) 
ESTS 
ESTS 
ESTS 
ESTS 
macrophage activation 2 
(Mm.) (DBSS) 
delta-6 fatty acid 
desaturase 
potassium voltage-gated 
channel, Subfamily Q, 
member 3 
Peregrin (Bromodomain 
and PHD finger-containing 
protein 1) (Hs.) 
(DBSS strong) 
adrenergic, alpha-2A-, 
receptor (Hs.) (DBSS) 
aminolevulinic acid 
synthase 2 
PC4035 cell-cycle 
dependent 350K nuclear 
protein (Hs.) (DBSS weak) 
Hypothetical protein 
KIAAO008 (Hs.) 
(DBSS weak) 
RIKEN cDNA 
O610012G03; expressed 
sequence AI839730 (Mm.) 
(DBSS weak) 
ESTS 
kilon 
serum-inducible kinase 
a disintegrin and 
metalloproteinase domain 
(ADAM) 15 (metargidin) 
Red protein (RER protein) 
(Mm.) (DBSS strong) 
KIAA1002 protein (Hs.) 
(DBSS moderate) 
epsin 2 (Hs.) (DBSS) 
golgi SNAP receptor 
complex member 2 
chromosome 14 open 
reading frame 114 (Hs.) 
(DBSS moderate) 
T0.0260 hypothetical 
protein KIAAO605 (Hs.) 
(DBSS strong) 
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Probe 

AA819832 

AWS24724 

BE103916 
BF2833O2 
X68878 

DOO403 
AI145385 
AI317854 
AI231432 

AA996.961 

NM 012971 

BF397726 

AW527217 
AA799789 
NM 013190 

AIST6621 
AA943149 

BF283340 
AFO73379 

AA799981 
AF23.7778 

175375 
130946 

O12120 
W252871 

3863 
96.14 

19651 
407719 

BF396629 

BF290678 

BE1.01099 

AIO7 O303 

ABOOSS49 

29 

TABLE 4-continued 

186 genes identified to be necessary and sufficient to classify the training set. 

Iteration Weight 

2 

2 

2 
2 
2 

2 
2 
2 
2 

2 

2 

2 

2 

2 

2 

-0.40 

-0.34 

-O.72 
O.S6 

-0.17 

-0.44 
-O.79 
-0.22 

-0.34 

-0.26 

2.55 

O.78 
-1.78 

2.54 

2.25 

-1.84 

-1.13 

-1.06 

Impact 

O.OOS 
O.OOS 

O.OO3 
O.OO2 

-0.004 
-0.078 

O.163 
O161 

O.131 
O-111 

O-111 

O.109 

O.109 

O.098 

O.078 

Mean 
Logratio 
Positive 
Class 

-0.136 

-0.156 

-0.064 
O.O81 

-0.244 

-O.O88 
-0.044 
-0.143 

-0.098 

-O.OSS 

-0.057 
-0.046 

-0.034 
-0.017 

-0.019 
O.O14 

-0.016 
-0.145 

O.233 
O.063 

O.168 
-0.063 

O.044 

O.049 

-0.059 

-0.086 

-0.074 

O.097 

Mean 
Logratio 
Negative 
Class 

-O.O25 
-O.096 

-0.149 
-O.370 

O.208 
-OOOS 

-0.051 

-OOO8 

O.019 

Unigene 
D 

Rn.34433 

Rn.95059 

Rn.26832 
Rn.226 
Rn.11022 

Rn.12300 
R.358O 
Rn.2O362 
Rn.6983 

Rn.12469 

Rn.9884 

Rn 18639 

R.23378 
Rn.30163 
Rn.4212 

Rn.24920 
Rn.7346 

Rn.3382 

R.2O857 
Rn.10169 

Rn6263 
Rn 88349 

Rn.24087 
Rn.2949 

Rn.17809 
Rn.12774 

Rn.9918 
R.11373 

Rn 11306 
R.2O359 

Rn.16544 

R.35019 

Rn.21284 

Rn.25196 

UniGene Description 

period homolog 1 
(Drosophila) (Hs.) (DBSS) 
ryanodine receptor type 1 
(Mm.) (DBSS strong) 
ESTS 
ESTS 
synaptosomal-associated 
protein, 91 kDa 
interleukin 1 alpha 
ESTS 
ESTS 
hypermethylated in cancer 
(Mm.) (DBSS moderate) 

DNA-repair protein 
complementing XP-A cells 
(Hs.) (DBSS moderate) 
potassium voltage gated 
channel, shaker related 
subfamily, member 4 
NF-E2-related factor 2 
(Rn.) (DBSS weak) 
ESTS 
ESTS 
Phosphofructokinase, liver, 
B-type 
ESTS 
ALEX3 protein (Hs.) 
(DBSS strong) 
BRCA1 associated protein 
(ubiquitin carboxy 

erminal hydrolase) (Hs.) 
(DBSS strong) 
ESTS 
glutamate receptor, 
ionotropic, N-methyl-D- 
aspartate 3A 
ESTS 
calcium calm odulin 
dependent protein kinase II 
alpha subunit 
ESTS 
aryopherin (importin) 
pha 2 

ESTS 
cell proliferation antigen 
Ki-67 (Mm.) 
(DBSS moderate) 
serine dehydratase 
amina-associated 
polypeptide 1C 
os-like antigen 1 
biquitin specific protease 
(Hs.) (DBSS) 
ched homolog 
osophila) (Hs.) (DBSS) 

eterogeneous nuclear 
bonucleoprotein G (Mm.) 
DBSS) 
arathyroid hormone 
egulated sequence (215 bp) 
ancreasin (Hs.) 
DBSS moderate) 
RIKEN cDNA 
610027 L16 (Mm.) 
DBSS strong) 
hree-PDZ containing 
protein similar to C. 
elegans PAR3 (partitioning 
efect) 

8. 

D 
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Probe 

AI717140 
AA858817 

BF284897 

AW914881 
BE106459 
BF28.3556 

M63282 

AWS33663 

L19656 

NM O12852 

AA946230 
BF40513S 
AA818949 

X79860 
AW253907 
X89603 
AA858649 

AWS29588 
BF550800 
BE1.11296 
AI113104 

U53706 

L36459 
BF410042 

AW915655 
AA944518 
NM 012939 
BF408867 

AW915.454 
BE113132 

AW143273 

AW915107 
BE110577 
AW141985 

AW140530 

30 

TABLE 4-continued 

186 genes identified to be necessary and sufficient to classify the training set. 

Iteration Weight 

3 
3 

s 

: 

: 

-0.59 
-0.23 

0.27 
-0.21 
-0.14 

O.31 

O.08 

O.11 

-0.22 
-0.36 
-0.14 

-0.36 
-0.08 
O.OS 
-OSO 

O.61 
O16 
O.18 
1.77 

-1.14 

-2.26 
-1.07 
-0.19 
-0.37 

-0.26 
-0.37 

0.72 

O.70 
O.96 
O.39 

-0.35 

Impact 

O.043 
O.040 

O.OO6 
O.OOS 
O.004 
-OOO2 

-OOO3 
-0.004 
-0.014 
-O.O86 

O.159 

O.152 
O.151 

O.OS2 
O.042 

O.040 

Mean 
Logratio 
Positive 
Class 

-O.O72 
-0.171 

O.064 

O.123 
-0.157 
-0.188 

O.OSO 

O.174 

-0.014 

O.083 

-O.O39 
-0.022 
-0.052 

-0.017 
-0.064 
O.091 
O.004 

-OOOS 
-O.O23 
-O.O79 
-0.048 

-0.139 

-0.057 
-O.096 
-0.408 
-0.157 

-0.204 
-0.112 

0.055 
O.040 
O.088 

-0.083 

Mean 
Logratio 
Negative 
Class 

O.036 
-O.O37 
O.019 

O.124 

O.048 

-OOO8 

O.066 
O.066 

-O.049 
O.OO)4 

-0.040 
-O.307 
-0.174 
-0.262 

-0.021 

-0.036 
-0.030 

-O.O28 
O.124 

O.OOS 

Unigene 
D 

Rn.22400 
Rn.22047 

R.18772 

Rn.22383 
Rn.2O259 
Rn.7829 

Rn.9664 

Rn41672 

R1OSS2 

Rn.34834 

Rn.47222 
Rn.5.1262 
Rn.20419 

Rn.65877 
Rn.986O1 
Rn 11325 
Rn.16864 

Rn.2818O 
R.36317 
Rn 19339 
Rn.12343 

Rn 10288 

Rn 10045 
Rn.31227 

Rn.14962 
Rn.34351 
Rn 1997 
Rn.35618 

Rn.14822 
Rn.22381 

Rn.11888 

Rn 190O3 
Rn.14584 
Rn.13195 

R.76.79 

UniGene Description 

ESTS 
T46271 hypothetical 
protein DKFZp564P1263.1 
(Hs.) (DBSS moderate) 
hypothetical protein 
FLJ10579 (Hs.) 
(DBSS moderate) 
ESTS 
ESTS 
Homo sapiens clone 23785 
mRNA sequence (Hs.) 
(DBSS) 
Activating transcription 
factor 3 
Proline oxidase, 
mitochondrial precursor 
(Mm.) (DBSS strong) 
5-hydroxytryptamine 
(serotonin) receptor 6 
5-Hydroxytryptamine 
(serotonin) receptor ID 
ESTS 
ESTS 
DnaJ homolog subfamily B 
member 12 (Hs.) 
(DBSS moderate) 
H1SHR mRNA 
ESTS 
metallothionein 3 
chromosome 13 open 
reading frame 9 (Hs.) 
(DBSS strong) 
ESTS 
ESTS 
ESTS 
protein regulator of 
cytokinesis 1 (HS.) 
(DBSS moderate) 
mevalonate pyrophosphate 
decarboxylase 
Interleukin 9 receptor 
cardiac lineage protein 1 
(Mm.) (DBSS) 
ESTS 
ESTS 
Cathepsin H 
mitochondrial translational 
release factor 1-like (Hs.) 
(DBSS moderate) 
ESTS 
guanine nucleotide 
exchange factor for Rap1; 
M-Ras-regulated GEF 
(Hs.) (DBSS) 
Rec8p, a meiotic 
recombination and sister 
chromatid cohesion 
phosphoprotein of the 
rad21p family (Hs.) 
(DBSS) 
ESTS 
ESTS 
ATP-binding cassette, Sub 
family C (CFTR/MRP), 
member 4 
tumor Susceptibility protein 
101 (tsg101) gene (Mm.) 
(DBSS) 
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Probe 

BF42O720 
AW144399 

A411605 
NM 019123 
AW920802 

AI228S98 
AI175454 

AIOO9623 
AI23S282 

NM 012564 

A. 

A. 

A. 
B 

EO95865 

F291437 

F176351 

BO27155 
E116569 

AA894.210 
A. 

A. 

237852 

NM 017186 

NM 012614 
BF285985 

A412889 

AJOO2556 

AI179459 

BE1.11688 

NM O12892 

BE098463 
CO6844 
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TABLE 4-continued 

186 genes identified to be necessary and sufficient to classify the training set. 

Iteration Weight 

4 
4 

4 

: 

: 

-0.31 
-0.78 

-O.30 
O.38 
O.SO 

-0.70 
O.18 

-0.08 
-0.20 

-0.06 

-0.35 

-0.40 

-0.26 

O.15 
O.34 

O.OS 
-0.04 

-1.09 

-0.03 

O.04 

O.OS 
-0.06 

-0.08 

-0.54 

O.12 

O.15 

1.72 

-0.70 

2.30 
-0.94 

Impact 

O.004 
O.OO3 

O.OO1 
-OOO1 

-OOO1 

-OOO3 

-0.011 

-0.019 

-O.O82 

O.128 

O.101 
O.095 

Mean 
Logratio 
Positive 
Class 

-0.083 
-O.O32 

-0.135 
-0.053 

-0.159 

-0.022 

-O.O32 

0.057 
O.O24 

O.091 
-0.058 

O.OO6 

-O.O94 

-0.127 

-0.048 

-0.184 

O.044 
-0.101 

Mean 
Logratio 
Negative 
Class 

-O.095 
-O.O25 
-0.021 

O.036 
-OOO2 

-0.100 

O.104 

-0.058 

O.O17 

0.075 

-O.O15 

-0.063 

O.040 
O.074 

O.OSO 

-O152 

-O.330 

-O.343 

-0.127 

-0.100 
0.075 

Unigene 
D 

Rn.23998 
R.15255 

Rn.20056 
Rn,88072 
Rn.36609 

R.11771 
Rn 17244 

Rn 13924 
Rn.22436 

Rn.1437 

Rn.21852 

Rn.39124 

Rn 44869 
R.15835 

Rn 85480 
Rn.30O23 

Rn.646.32 

Rn.30042 

Rn6269 

Rn.9714 
Rn 42366 

Rn.23659 

Rn.37.490 

Rn.31366 

Rn.13094 

R.23351 

R.37523 

Rn 182O3 
R.7159 

UniGene Description 

ESTS 
hypothetical protein 
FLJ10652 (Hs.) 
(DBSS moderate) 
ESTS 
sialyltransferase 7c 
ribosomal protein L5 (Hs.) 
(DBSS) 
ESTS 
procollagen-proline, 2 
oxoglutarate 4-dioxygenase 
(proline 4-hydroxylase), 
alpha polypeptide II (Hs.) 
(DBSS strong) 
ESTS 
Low-density lipoprotein 
receptor-related protein 1 
precursor (Hs.) 
(DBSS strong) 
Group-specific component 
(vitamin D-binding 
protein) 
calcium channel, voltage 
dependent, alpha 1I subunit 
(Hs.) (DBSS) 
eucine rich repeat protein 
3, neuronal 
nuclear receptor 
coactivator 6 
phosphodiesterase 10A 
zinc-finger protein 
AY163807 (Hs.) 
(DBSS strong) 
ESTS 
sodium channel, voltage 
gated, type1 1, alpha 
polypeptide 
interleukin 10 receptor, 
alpha 
glial cells missing 
(Drosophila) homolog a 
Septin 4 (Peanut-like 
protein 2) (Brain protein 
H5) (Hs.) (DBSS strong) 
Neuropeptide Y 
protein tyrosine 
phosphatase, receptor type, 
f polypeptide (PTPRF), 
interacting protein (liprin), 
alpha 4 
monocyte to macrophage 
differentiation-associated 2 
(Mm.) (DBSS) 
microtubule-associated 
protein 6 
Kell blood group (Mm.) 
(DBSS moderate) 
Cyclin A2 (Cyclin A) 
(Mm.) (DBSS strong) 
cyclin B2 (Hs.) 
(DBSS strong) 
amiloride-sensitive cation 
channel 1 
ESTS 
S49158 complement 
protein C1q beta chain 
precursor (Rn.) 
(DBSS weak) 
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Probe 

AI170114 
AI10526S 

BF394214 
AA946,356 

AW919 159 

BF406522 

AW142828 
AIT05731 

NM 019126 

U73503 

AFO17437 
NM O21869 
AI144644 
AA818377 

AI171994 
AA92S167 
BF398051 
AW144O75 
U26,686 
BF404426 
U31866 
AW917475 

AI408517 

BF398.403 

M22923 

BE107747 
BF281697 

ABOO6461 
AF1 00960 

U79031 
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TABLE 4-continued 

186 genes identified to be necessary and sufficient to classify the training set. 

Iteration Weight 

5 -0.42 
5 -153 

5 -O.79 
5 -1.08 

5 1.09 

5 1.61 

5 O.92 

5 O.14 
5 -1.61 

5 -0.65 
5 -0.95 

5 -0.33 

5 O.64 

5 0.55 
5 -0.42 
5 -0.34 
5 0.79 

5 O.13 
5 -0.12 
5 -0.38 
5 O.48 
5 -0.09 
5 -O.O7 
5 O.24 
5 -O.O7 

5 0.44 

5 -0.34 
5 -0.41 

5 O41 

5 O.OS 

5 -0.05 
5 0.57 

5 O.O3 
5 O.O3 

5 -O.O7 

Impact 

O.048 
O.046 

O.044 
O.040 

O.OOS 
O.OOS 

O.OOS 

O.004 

O.004 
O.004 

O.OOO 

Mean 
Logratio 
Positive 
Class 

-0183 
-0.048 

-O.O90 
-0.058 

-O.O68 
-0.042 

-0.112 

0.057 

O.066 
-0.083 
-O.O87 
O.O37 

O.198 
-018O 
-0.053 
O.040 

-0.158 
-0.128 
O.O29 

-O.O87 

-O.O15 
-0.012 

O.091 

-O.077 
O.007 

Mean 
Logratio 
Negative 
Class 

-0.112 
O.OO9 

-0.014 
-0.017 

-0.022 

-0.034 

-0.019 

O-110 
O.OO2 

-0.034 
O.OS8 

O140 

-0.014 

-0.010 
0.057 
O.O24 

-O.O33 

O.OO8 
O. 106 
O.O8O 

-0.024 
-0.045 
-O.O32 
-O.O37 
0.055 

-0.019 

O.O41 
-0.024 

O.048 

Unigene 
D 

Rn.91697 
Rn.5911 

R.S8227 
Rn.1435 

Rn41574 

Rn.9797 

R.3537 

Rn.54447 
Rn.973 

R.23877 
Rn.24919 

R.25723 

Rn.10961 

Rn.74.09 
Rn.1993 
Rn.12319 
Rn.34063 

Rn.22380 
Rn,8672 
Rn.97322 
Rn.19790 
Rn 10400 
Rn.63325 
R.32307 
Rn.16643 

R.2773 

Rn.42674 
Rn 18670 

Rn.20421 

Rn.10922 

Rn.291.76 
R.7770 

Rn.44299 

UniGene Description 

ESTS 
hypothetical protein 
FLJ10315 (Hs.) 
(DBSS strong) 
ESTS 
CGG triplet repeat binding 
protein 1 (Hs.) (DBSS) 
A38135 ADP 
ribosylarginine hydrolase 
(Rn.) (DBSS weak) 
Fibroblast growth factor 
receptor 1 
cerebellar degeneration 
related protein 2, 62 kDa 
(Hs.) (DBSS) 
erritin, heavy polypeptide 1 
60S acidic ribosomal 
protein P1 (Rn.) 
(DBSS strong) 
ESTS 
ranscription factor 
MTSG1 
Carcinoembryonic antigen 
gene family (CGM3) 
calcium calmodulin 
dependent protein kinase 
(CaM kinase) II gamma 
integrin-associated protein 
Syntaxin 7 
ESTS 
hypothetical protein 
FLJ22419 (Hs.) 
(DBSS weak) 
ESTS 
ESTS 
ESTS 
ESTS 
nitric oxide synthase 2 
ESTS 
Nclone10 mRNA 
high-affinity 
immunoglobulin gamma Fc 
receptor I 
protein phosphatase 1, 
regulatory (inhibitor) 5 
subunit 14B 
ubulin tyrosine ligase 
eucine Zipper and 
CTNNBIP1 domain 
containing (Hs.) 
(DBSS moderate) 
mannosyl-oligosaccharide 
1,3-1,6-alpha-mannosidase 
(EC 3.2.1.114) (Mm.) 
(DBSS moderate) 
membrane-spanning 4 
domains, Subfamily A, 
member 2 
ESTS 
potassium voltage-gated 
channel, Isk-related family, 
member 1-like (Hs.) 
(DBSS) 
neurochondrin 
FAT tumor suppressor 
(Drosophila) homolog 
adrenergic receptor, alpha 
2a 
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TABLE 4-continued 

Sep. 7, 2006 

186 genes identified to be necessary and sufficient to classify the training set. 

Mean Mean 
Logratio Logratio 
Positive Negative Unigene 

Probe Iteration Weight Impact Class Class ID 

NM O17353 5 -0.21 -0.004 O.019 O.045 Rn.32261 
AI231716 5 1.81 -0.007 -0.004 -0.138 R24598 
NM 012964 5 O.67 -0.024 -0.036 -O.298 Rn.92304 

LO6040 5 O.19 -0.035 -0.183 -O.306 Rn. 11318 

0156 The 186 genes of the necessary set listed in Table 
4 correspond to 164 reward genes, of which 72 are induced 
on average across the nephrotoxicants. Additional genes not 
necessary for classification, but nonetheless differentially 
regulated by the nephrotoxicants relative to the negative 
class, were also considered. 

Example 5 

Using a Necessary Set to Generate New Signatures 
for Renal Tubule Injury 

0157. As shown above in Examples 1-3, a predictive 
signature for renal tubule injury comprising 35 genes may be 
derived using gene expression data from a microarray in the 
context of a chemogenomic database. Using the signature 
stripping method described above, four additional high 
performing predictive signatures for renal tubule injury may 
also be derived wherein each of the signatures is non 
overlapping, i.e., comprises genes not used in any of the 
other signatures. Together, the union of the genes in these 
five signatures comprises a set of 186 genes that is necessary 
for deriving a predictive signature for renal tubule injury 
capable of classifying the training set above a selected 
threshold level of LOR=1.64. 

0158. This example demonstrates that additional signa 
tures for renal tubule injury may be generated based on the 
necessary set of 186 genes. In addition, it is shown that at 
least four genes must be selected from the necessary set in 
order to generate a signature for renal tubule injury capable 
of performing above a selected threshold LOR of 4.00. 
0159. As listed in Table 4, for each gene from the 
necessary set of 186, an impact factor was calculated, 
corresponding to the product of the gene’s weight and the 

UniGene Description 

tumor-associated protein 1 
ESTS 
Hyaluronan mediated 
motility receptor 
(RHAMM) 
arachidonate 12 
lipoxygenase 

gene's expression mean logratio in the positive class (i.e., 
nephrotoxicants). Subsets of genes were chosen randomly 
from the necessary set of 186 so that the sum of the impacts 
of all genes in the subset accounted for 1, 2, 4, 8, 16, 32, or 
64% of the total impact. Total impact was defined as the sum 
of the individual impacts of all 186 genes in the necessary 
set. This random subset selection procedure was repeated 20 
times resulting in 140 gene Subsets (i.e., 7 impact thresholds 
times 20 random choices). 
0.160 Table 5 shows the average number of genes for 
each of these seven impact thresholds. This number 
increases regularly reaching an average of 116 genes for 
those subsets that account for 64% of the total impact. Each 
of these random Subsets was used as input to compute a renal 
tubule injury signature using the SPLP algorithm as 
described in Example 3 above. A training LOR and a 10-fold 
cross-validated test LOR were calculated for each signature. 
Table 5 lists average LOR values for the signatures gener 
ated in each of the seven percent of total impact thresholds. 

0.161 Based on the results tabulated in Table 5 it may be 
concluded that signatures for renal tubule injury capable of 
performing with an average training LOR of 4.30 may be 
generated Starting with random Subsets having an average of 
4.4 genes that together have only 2% of the total impact of 
the necessary set. Similarly signatures capable of perform 
ing with an average test LOR of 4.41 may be derived from 
random Subsets of the necessary set having an average of 
9.15 genes with only 4% of the total impact. Significantly, 
the average training LOR never drops below 4.00 when a 
random set of genes having at least 4% impact are selected. 
As shown in Table 5, comparably higher performing signa 
tures are derived from the necessary set when the random 
subsets have a percent impact of 8% or higher. 

TABLE 5 

RTI signatures generated based on randomly selecting necessary set genes 

percent impact 

16 

with minimal percentage impact 

# input genes Signature Length LOR (training) LOR (test) 

avg min max avg min max avg Stolev avg Stolev 

2.85 1 5 2.8 1 S 3.42 1.61 3.01 1.34 
4.4 1 9 4.3 1 8 4.30 1.61 3.20 100 
9.15 3 17 8.OS 3 13 6.82 2.34 4.41 2.43 

17.3 8 27 12.8 8 18, 8.54 0.61 5.91 1.99 
33.4 22 42 19.2 14 2S 8.68 O.OO 7.85 2.01 
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TABLE 5-continued 

RTI signatures generated based on randomly selecting necessary set genes 
with minimal percentage impact 

# input genes Signature Length LOR (training) . LOR (test 

percent impact avg min max avg min max avg Stolev avg stolev 

32 61.6 49 76 26.5 22 3O 8.68 O.OO 7.3S 2.03 
64 116 100 134 30.7 28 36 868 O.OO 7.07 150 

*average of 20 lists chosen from the necessary set 

0162 Table 6 shows the parameters for 20 signatures 0164) 
generated from random subsets of genes with 2% of the total 
impact of the 186 gene necessary set. Tables 7 (subset 8) and TABLE 8 
8 (Subset 14) illustrate two specific 5 gene signatures Subset 14 
(including values for gene weights and bias) for predicting 
renal tubule injury onset that perform with a training LOR I? t 
of 4.00 and 7.3, respectively. BE116947 18.4 

A408517 12.7 
TABLE 6 AA819832 -2.9 

Bias 8.49 

RTI signatures generated based on random selections 
of necessary set genes with 2% impact 

0.165 Similarly Table 9 shows the parameters for 20 
signatures generated from random Subsets of genes with 4% # Input Signature Training Test 

Subset # Genes Length LOR LOR of the total impact of the 186 gene necessary set. Tables 10 
(subset 18) and 11 (subset 5) illustrate specific 9 and 13 gene 

4 5 5 7.3 S.O signatures for predicting renal tubule injury onset that per 
9 7 7 6.8 3.4 form with a test LOR of 4.1 and 10.2, respectively. 
5 5 5 6.2 4.1 

7 6 6 6.O 3.2 TABLE 9 
8 5 5 5.8 3.7 
3 4 4 5.5 4.0 # Input Signature Training Test 

Subset # Genes Length LOR LOR 
O 9 8 S.O 2.8 

2 4 3 4.7 1.7 5 13 13 8.7 10.2 
3 3 3 4.5 3.2 2 14 11 8.7 8.9 

7 11 10 8.7 8.9 
9 6 6 4.4 2.6 9 17 11 8.7 6.2 
8 5 5 4.0 2.8 2O 11 9 8.7 5.3 
1 5 5 3.8 4.5 10 14 12 8.7 4.7 
4 4 4 3.8 4.0 11 13 12 8.7 4.6 

14 7 6 8.7 4.5 
2 4 4 3.8 S.1 12 9 8 8.7 4.3 

2O 4 4 3.2 2.7 18 9 9 8.7 4.1 
5 3 3 2.8 2.6 15 11 9 8.7 3.8 

3 6 6 6.2 3.3 
1 4 4 2.6 2.4 19 7 6 6.2 3.2 

17 3 3 2.2 2.4 13 6 6 4.7 3.1 
6 1 1 2.1 1.6 8 11 9 6.8 2.7 

4 5 5 4.3 2.7 
16 1 1 1.7 2.3 17 5 5 3.7 2.1 

1 7 7 3.7 2.1 
6 4 4 3.4 2.0 

16 3 3 1.9 1.5 
0163) 

TABLE 7 0166) 

Subset 8 
TABLE 10 

BF2833O2 15.5 
AW92O818 5.88 Subset 18 
AW141985 S.48 
BF403410 4.28 AW143273 55.95 
AA858649 -2.3 AIS991.26 29.8 
Bias 1.13 AIT05731 1905 

BF406522 16.71 
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TABLE 10-continued 

Subset 18 

ABO271SS -4.12 
AW2S3895 -1353 
AA819832 -14.81 
X68878 -17.57 
AW140530 -1985 
Bias 8.96 

0167) 

TABLE 11 

Subset 5 

AW144O75 4.82 
AI113104 4.58 
AI171994 4.25 
AW92O818 3.39 
BF281697 3.11 
AIO12120 1.76 
BE110577 1.08 
NMO12964 O.87 
AI227912 O.74 
AW144399 -0.2 
AI232347 -2.9 
AA944518 -6.4 
AW914O90 -6.6 
Bias O.68 

0168 The results tabulated in Table 5 may also be 
illustrated graphically. As shown in FIG. 2, which plots 
training LOR and test LOR versus signature length, a 
signature performing with an average training LOR of 4.00 
may be achieved by randomly selecting on average 4 genes 
from the necessary set. Similarly, an average test LOR of 
4.00 may be achieved by randomly selecting on average 7 
genes from the necessary set. 

Example 6 

Functional Characterization of the Necessary Set of 
Genes for Renal Tubule Injury by Random 
Supplementation of a Fully Depleted Set 

0169. This example illustrates how the set of 186 genes 
necessary for classifying renal tubule injury may be func 
tionally characterized by randomly supplementing and 
thereby restoring the ability of a depleted gene set to 
generate RTI signatures capable of performing on average 
above a threshold LOR. In addition to demonstrating the 
power of the 186 information rich genes in the RTI neces 
sary set, this example illustrates a system for describing any 
necessary set of genes in terms of its performance param 
eters. 

0170 As described in Example 4, a necessary set of 186 
genes (see Table 4) for the RTI classification question was 
generated via the stripping method. In the process, a corre 
sponding fully depleted set of 7292 genes (i.e., the full 
dataset of 7478 genes minus 186 genes) was also generated. 
The fully depleted set of 7292 genes was notable to generate 
an RTI signature capable of performing with a LOR greater 
than or equal to 1.28 (based on cross-validation using 40 
random 80:20 training:test splits). 

35 
Sep. 7, 2006 

0171 A further 186 genes were randomly removed from 
the fully depleted set. Then a randomly selected set includ 
ing 10, 20, 40 or 80% of the genes from either: (a) the 
necessary set; or (b) the set of 186 randomly removed from 
the fully depleted set; is added back to the depleted set minus 
186. The resulting “supplemented” depleted set was then 
used to generate an RTI signature, and the performance of 
this signature is cross-validated using 3 random 60:40 
training:test splits. This process was repeated 20 times for 
each of the different percentage Supplementations of genes 
from the necessary set and the random 186 genes removed 
from the original depleted set. Twenty cross-validated RTI 
signatures were obtained for each of the various percentage 
supplementations of the depleted set. Average LOR values 
were calculated based on the 20 signatures generated for 
each percentage Supplementation. 

0172 Results 
0173 As shown in Table 12, supplementing the fully 
depleted set (minus random 186) with as few as 10% of the 
randomly chosen genes from the necessary set results in 
significantly improved performance for classifying RTI. The 
random 10% of genes selected from the depleted 186 
yielded signatures performing with an avg. LOR=1.4. In 
contrast, Supplementing the depleted set (minus random 
186) with 10% from the necessary set yields RTI signatures 
performing with an avg. LOR=4.5 (based on 3-fold cross 
validation using random 60:40 splits). 

TABLE 12 

Supplementation with randon genes from necessary or depleted sets 

Necessary Set Depleted Set 
% Avg. LOR Avg. LOR 

10 4.51 1.43 
2O 4.93 2.32 
40 4.73 2.63 
8O 4.10 3.28 

0.174 Although increasing the percentage of random 
"depleted set genes used to supplement resulted in an 
increase in average performance, even at 80%, the average 
LOR remained below 4.00, while supplementation with the 
random 80% “necessary” set genes yielded an average LOR 
above 4.00. 

0.175. These results demonstrate how supplementation 
with a percentage of randomly selected genes from the RTI 
necessary set of 186 “revives” the performance of a fully 
depleted set for generating classifiers. Thus, the RTI neces 
sary set of genes may be functionally characterized as the set 
of genes for which a randomly selected 10% will supple 
ment a set of genes fully depleted for RTI classification (i.e., 
not capable of producing RTI signatures with avg. 
LORZ-1.4), such that the resulting “revived gene set 
generates RTI signatures with an average LOR greater than 
or equal to 4.00. 

Example 7 
Functional Characterization of the RTI Necessary 
Set by Random Supplementation with Rigorous 

Signature Cross-Validation 
0176). In a further exemplification of the method of 
Example 6, a randomly selected set including 1, 2, 5, 10, 20, 
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40, 80,90, or 99% of the genes from either: (a) the necessary 
set; or (b) the set of 186 randomly removed from the fully 
depleted set; was added back to the depleted set minus 186. 
The resulting “supplemented depleted set was then used to 
generate an RTI signature, and the performance of this 
signature was cross-validated using 40 random 80:20 train 
ing:test splits. This process was repeated 100 times for each 
of the different percentage Supplementations of genes from 
(a) the necessary set, and (b) the random 186 genes removed 
from the original depleted set. Twenty cross-validated RTI 
signatures were obtained for each of the various percentage 
supplementations of the depleted set. Average LOR values 
were calculated based on the 20 signatures generated for 
each percentage Supplementation. 
0177 Results 
0178 Based on cross-validation using 40 random 80:20 
training:test splits, the fully depleted set of 7292 genes was 
not able to generate an RTI signature capable of performing 
with a LOR greater than or equal to 1.28. As shown in Table 
13, Supplementing the fully depleted set (minus random 
186) with as few as 5% of the randomly chosen genes from 
the necessary set results in Substantially improved perfor 
mance for classifying RTI (avg. LOR-2.2). In contrast, the 
random 5% of genes selected from the depleted 186 yielded 
signatures performing with an avg. LOR ~1.3. Significantly, 
increasing the percentage of random “depleted set genes 
used to Supplement did not result in an increase in average 
performance—even at 99%, the average LOR remained at 
~1.3, while supplementation with the random 99% “neces 
sary set genes yielded an average LOR of ~4.3. 

TABLE 13 

Supplementation with randon genes from necessary or depleted sets 

% Necessary Set Random Set 
Supplementation Avg LOR Avg LOR 

1 1.44 1.31 
2 1.72 1.31 
5 2.19 1.31 
10 2.68 1.31 
2O 3.38 1.30 
40 4.OO 1.30 
8O 4.39 1.28 
90 4.32 1.28 
99 4.32 1.28 

0179 These results further demonstrate how supplemen 
tation with even a small percentage of randomly selected 
genes from the RTI necessary set “revives” the performance 
of a fully depleted set for generating classifiers. It also 
demonstrates that more rigorous cross-validation (40-fold 
random 80:20 training:test splits) provides a more consistent 
average performance of the signatures generated by the 
random supplementations from depleted set. Thus, the RTI 
necessary set of genes may be functionally characterized as 
the set of genes for which a randomly selected 5% will 
supplement a set of genes fully depleted for RTI classifica 
tion (i.e., not capable of producing RTI signatures with avg. 
LORZ-1.3), such that the resulting “revived gene set 
generates RTI signatures with an average LOR of greater 
than or equal to about 2.00. Further, a random Supplemen 
tation of at least 40% of the necessary set genes will produce 
a revived gene set capable of generating RTI signatures with 
an average LOR greater than or equal to about 4.00. 
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Example 8 

Construction and Use of a DNA Array for 
Predicting Renal Tubule Injury 

0180. The necessary subset of 186 genes identified to be 
necessary and Sufficient to classify the renal tubule injury 
training set listed in Table 4 may be used as the basis for a 
DNA array diagnostic device for predicting renal tubule 
injury. The device may be used in a therapeutic monitoring 
context, Such as for monitoring the response of an individual 
to a compound that is suspected of possibly causing renal 
tubule injury (or related nephrotoxic side effects). Alterna 
tively, Smaller sufficient Subsets of genes the necessary set, 
which may be selected according to the methods of 
Examples 4 and 5 described above, may be used as the basis 
for a DNA array. 

0181. The probe sequences used to represent the 186 (or 
fewer) genes on the array may be the same ones used on the 
Amersham CodeLinkTM RU1 platform DNA array used to 
derive the renal tubule injury signature as described in 
Examples 1-3. The 186 probes are pre-synthesized in a 
standard oligonucleotide synthesizer and purified according 
to standard techniques. The pre-synthesized probes are then 
deposited onto treated glass slides according to standard 
methods for array spotting. For example, large numbers of 
slides, each containing the set of 186 probes, are prepared 
simultaneously using a robotic pen spotting device as 
described in U.S. Pat. No. 5,807,522. Alternatively, the 186 
probes may be synthesized in situ one or more glass slides 
from nucleoside precursors according to standard methods 
well known in the art such as ink-jet deposition or photo 
activated synthesis. 

0182. The DNA probe arrays made according to this 
method are then each hybridized with a fluorescently labeled 
nucleic acid sample. The nucleic acid may be derived from 
mRNA obtained from a biological fluid (e.g., blood) or a 
tissue sample from a compound treated individual. Any of 
the well-known methods for preparing labeled samples for 
DNA probe array hybridization may be used. The fluores 
cence intensity data from hybridization of the sample to the 
DNA array of 186 (or fewer) genes of the necessary set is 
used to calculate expression log ratios for each of the genes. 
Depending on the specific gene signature selected for use in 
predicting renal tubule injury (e.g., the genes in iteration 1 
of Table 4), the scalar product for that signature is calculated 
(i.e., Sum of the products of expression logo ratio and 
weight for each gene less the bias). If the Scalar product is 
greater than Zero then the sample is classified as positive 
(i.e., onset of renal tubule injury is predicted). 

0183 All publications and patent applications cited in 
this specification are herein incorporated by reference as if 
each individual publication or patent application were spe 
cifically and individually indicated to be incorporated by 
reference. 

0.184 Although the foregoing invention has been 
described in some detail by way of illustration and example 
for clarity and understanding, it will be readily apparent to 
one of ordinary skill in the art in light of the teachings of this 
invention that certain changes and modifications may be 
made thereto without departing from the spirit and scope of 
the appended claims. 
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What is claimed: 
1. A reagent set for testing whether renal tubule injury will 

occur in a test Subject comprising a plurality of polynucle 
otides or polypeptides representing a plurality of genes 
selected from Table 4. 

2. The reagent set of claim 1, wherein the plurality of 
genes is the set of genes in any one of iterations 1 through 
5 in Table 4. 

3. The reagent set of claim 1, wherein the plurality of 
genes are selected from a linear classifier capable of clas 
Sifying renal tubule injury with a training log odds ratio of 
greater than or equal to 4.35. 

4. The reagent set of claim 1, wherein the plurality of 
genes includes at least 4 genes having at least 2% of the total 
impact of all of the genes in Table 4. 

5. The reagent set of claim 1, wherein the plurality of 
genes includes at least 8 genes having at least 4% of the total 
impact of the genes in Table 4. 

6. The reagent set of claim 1, wherein the reagents are 
polynucleotide probes capable of hybridizing to the plurality 
of genes selected from Table 4. 

7. The reagent set of claim 6, wherein the polynucleotide 
probes are primers for amplification of the plurality of genes. 

8. The reagent set of claim 6, wherein the polynucleotide 
probes are immobilized on one or more solid Surfaces. 

9. The reagent set of claim 1, wherein the reagents are 
polypeptides that bind to a plurality of proteins encoded by 
the plurality of genes selected from Table 4. 

10. The reagent set of claim 9, wherein the proteins are 
secreted proteins. 

11. An apparatus for predicting whether renal tubule 
injury will occur in a test Subject comprising a reagent set 
according to claim 1. 

12. The apparatus of claim 11, wherein the reagents are 
polynucleotides. 
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13. The apparatus of claim 11, wherein the reagents are 
polypeptides. 

14. A set of genes useful for testing whether a compound 
will induce renal tubule injury comprising a random selec 
tion of at least about 10% of the genes from Table 4, wherein 
the addition of said randomly selected genes to a fully 
depleted gene set for the renal tubule injury classification 
question increases the average logodds ratio of the linear 
classifiers generated by the depleted set to at least about 2.5. 

15. The set of claim 14, wherein the randomly selected 
percentage of genes from the necessary set is at least 20% 
and the average logodds ratio is increased to at least about 
3.3. 

16. The set of claim 14, wherein the randomly selected 
percentage of genes from the necessary set is at least 40% 
and the average logodds ratio is increased to at least about 
4.0. 

17. A reagent set for classifying renal tubule injury 
comprising a set of polynucleotides or polypeptides repre 
senting a plurality of genes selected from Table 4, wherein 
the addition of a random selection of at least 10% of said 
plurality of genes to the fully depleted set for the renal tubule 
injury classification question increases the average logodds 
ratio of the linear classifiers generated by the depleted set by 
at least 2-fold. 

18. The reagent set of claim 17, wherein the random 
selection is of at least 40% of said plurality of genes and the 
average logodds ratio of the linear classifiers generated by 
the depleted set by at least 3-fold. 

19. An apparatus comprising a set of polynucleotides 
capable of specifically binding to the reagent set of claim 17. 


