
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0138945 A1

US 20090 138945A1

Savchuk (43) Pub. Date: May 28, 2009

(54) HIGH-PERFORMANCE NETWORK Publication Classification
CONTENT ANALYSIS PLATFORM (51) Int. Cl.

G06F2L/00 2006.O1
(75) Inventor: Gene Savchuk, Bethesda, MD (US) G06F 5/73 30.8

Correspondence Address: (52) U.S. Cl. 726/4; 726/22; 709/225
PATTON BOGGS LLP (57) ABSTRACT

8484 WESTPARK DRIVE, SUITE 900 One implementation of a method reassembles complete cli
MCLEAN, VA 22102 (US) ent-server conversation streams, applies decoders and/or

O O decompressors, and analyzes the resulting data stream using
(73) Assignee: EllisStyry Systems, multi-dimensional content profiling and/or weighted key

Bethesda, MD (US) word-in-context. The method may detect the extrusion of the
data, for example, even if the data has been modified from its

(21) Appl. No.: 12/269,610 original form and/or document type. The decoders may also
1-1. uncover hidden transport mechanisms such as, for example,

(22) Filed: Nov. 12, 2008 e-mail attachments. The method may further detect unautho
O O rized (e.g., rogue) encrypted sessions and stop data transfers

Related U.S. Application Data deemed malicious. The method allows, for example, for
(62) Division of application No. 10/658,777, filed on Sep. building 2 Gbps (Full-Duplex)-capable extrusion prevention

TT Tecca Tecca TTTTT
s:;

bit NIC

10, 2003, now Pat. No. 7,467,202. machines.

Console/DataMining

Shared Memory,

MCPSCanner

Keyword Scanner

Message Queue TCP SeSSion Killer

re
r

NetWOrk

US 2009/O138945 A1 May 28, 2009 Sheet 1 of 29 Patent Application Publication

|- -"- -?

|- – – – – – – – – 7-7--- – — w — — w — — — — —L-– –|

US 2009/O138945 A1 May 28, 2009 Sheet 2 of 29 Patent Application Publication

90eds 10Sn

?9)|OOS

— — — I — -|lonuos

US 2009/O138945 A1 May 28, 2009 Sheet 3 of 29

ON

Patent Application Publication

US 2009/O138945 A1

O
3
c
O

May 28, 2009 Sheet 4 of 29 Patent Application Publication

US 2009/O138945 A1 May 28, 2009 Sheet 5 of 29 Patent Application Publication

US 2009/O138945 A1 2009 Sheet 6 Of 29 9 May 28 Patent Application Publication

US 2009/O138945 A1 May 28, 2009 Sheet 7 of 29 Patent Application Publication

ON
QUE

S0)\,

ON
QUE

CIV/8 S8 uOISSOS XJeW
8 '

ON
QUE

US 2009/O138945 A1 May 28, 2009 Sheet 8 of 29 Patent Application Publication

| || SD|-

US 2009/O138945 A1 May 28, 2009 Sheet 9 of 29 Patent Application Publication

US 2009/O138945 A1

INESTNÁS

May 28, 2009 Sheet 10 of 29 Patent Application Publication

CEHST|8\/[SE]---- |

|XOV ,

GIAOÀI NÁS ||
|

|BEÏNES) XOVTNÅS| NE! ISIT NÅS

GEÏSOTO } – – – – –J

US 2009/O138945 A1 Sheet 11 of 29 May 28, 2009 Patent Application Publication

9 L 'SO|-

GESOTO JO?d?OS@p SUOISS9S

¿ ######################

ÁeJe 6unONTOSW

US 2009/O138945 A1 May 28, 2009 Sheet 12 of 29 Patent Application Publication

p? UOISS0S SS0Jppe uOISS0S

US 2009/O138945 A1 May 28, 2009 Sheet 13 of 29 Patent Application Publication

?UOISS0S pul

US 2009/O138945 A1 May 28, 2009 Sheet 14 of 29 Patent Application Publication

US 2009/O138945 A1 May 28, 2009 Sheet 15 of 29 Patent Application Publication

CHIZ 900090]

US 2009/O138945 A1 May 28, 2009 Sheet 16 of 29 Patent Application Publication

SMTP SeSSiOn

SMTPDeCOder

EMall 2 EMail 1

MeSSage DeCOder MIMEDeCOder

Body

Base64 DeCOcer Quoted-Printable DeCOder

DOCument 2

ZIP DeCOder

DOCument 1

MS ExCel DeCOder MS WOrd DeCOder

FIG. 18

Patent Application Publication May 28, 2009 Sheet 17 of 29 US 2009/O138945 A1

Positive Training Set Negative Training Set

Calculate Word Calculate Word
Frequency Dictionary Frequency Dictionary

POSitive Negative
Frequency Dictionary Frequency Dictionary

Compare Dictionaries

Sort Combined Dictionary
by Bayesian probability
estimates (Weights)

Select Top 100 keywords

Calculate Frequency Limits

FIG. 19

Patent Application Publication May 28, 2009 Sheet 18 of 29 US 2009/O138945 A1

DeCOOled Data BOCK

Initialize FSA State

Initialize Counter Array

YeS End-Of-Data

Get NextByte/Character

Calculate next FSA State

Update Running Counters

Normalize Counter Array

Calculate Output Score

FIG. 20

Patent Application Publication May 28, 2009 Sheet 19 of 29 US 2009/O138945 A1

Positive Training Set Negative Training Set

Calculate Data Points Calculate Data Points

POSitive Data Point Set Negative Data Point Set

Compare Point Sets

Calculate Separation Hyperplanes

Convert Hyperplanes to Profile

FIG 21

Patent Application Publication May 28, 2009 Sheet 20 of 29 US 2009/O138945 A1

Positive and Negative Point Sets

Create Hyperplane List

Last
Dimension

NO

Calculate Midsection/Next Hyperplane
Orthogonal to Dimension 1

Calculate Bayesian Separation quality

YeS

NO

YeS

Quality > Threshold
p

Add Hyperplane to the List

Calculate Overal Bayesian
Separation quality

FIG. 22

Patent Application Publication May 28, 2009 Sheet 21 of 29 US 2009/O138945 A1

DeCOded Data Block

Initialized FSA State

Initialize Running Counters

Yes-1End-of-Data

Get NextByte/Character

Calculate next FSA State

Update Running Counters

Calculate Output Dimensions

Calculate Output Score

FIG. 23

Patent Application Publication May 28, 2009 Sheet 22 of 29 US 2009/O138945 A1

Output Dimensions
(a point in a N-dimensional Space)

Initialize SCOre to 0, dimension to 0

Last
Dimension

Calculate Distance to Hyperplane i

Add Distance to SCOre

YeS

SCOre> Threshold

Yes

Signal Match

FIG. 24

Patent Application Publication May 28, 2009 Sheet 23 of 29 US 2009/O138945 A1

FIG. 25

Uppercase
branch

LOWerCaSe
branch

Numerical
branch

Patent Application Publication May 28, 2009 Sheet 24 of 29 US 2009/O138945 A1

DeCOOled Data Block

Decode SSL/TLS record layer

DeCOde SSL/TLS message layer

Message
Layer OK

?

DeCOde ClientHello and
ServerHello messages

Extract Cypher Suite

SeSSion
AllOWed

?

NO

FIG. 26

Configuration
Data

Patent Application Publication May 28, 2009 Sheet 25 of 29 US 2009/O138945 A1

Process Manager

Process Manager Control

NCAP modules

Spawn

FIG. 27

ôUISS000Id quêAEJOSU?S
US 2009/O138945 A1

NNN

===|
===|

May 28, 2009 Sheet 26 of 29

uMedS

| - | |Od|

Patent Application Publication

US 2009/O138945 A1 May 28, 2009 Sheet 27 of 29

,

Patent Application Publication

US 2009/O138945 A1 May 28, 2009 Sheet 28 of 29

| | | | | | | | | | | | ! <------^ JêAJO
O|N

Patent Application Publication

Patent Application Publication May 28, 2009 Sheet 29 of 29 US 2009/O138945 A1

Session termination request

Alertid
allowed

IP
Yes address and

port allowed

Send Send
to Server End to Client

2 p

YeS YeS

Generate Server- Generate client
specific RST packet specific RST packet

Packet SOCket

FIG. 31

US 2009/O 138945 A1

HIGH-PERFORMANCE NETWORK
CONTENT ANALYSIS PLATFORM

RESERVATION OF COPYRIGHT

0001. A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile repro
duction by anyone of the patent document or the patent dis
closure, as it appears in the Patent and Trademark Office
patent files or records, but otherwise reserves all copyright
rights whatsoever.

FIELD OF THE INVENTION

0002 The present invention relates to network communi
cations. More particularly, the present invention relates to
providing network content analysis, for example, to prevent
leaks of information and/or to detect rogue encryption.

DESCRIPTION OF BACKGROUND
INFORMATION

0003 Content scanning in general is a relatively well
developed area. In most applications, content scanning is
keyword-based; however, more advanced applications use
regular expressions or statistical methods of pattern match
ing/document classification. The methods themselves have
been applied to many document classification problems. An
example of a Successful application of statistical classifiers is
Spam filtering, where Bayesian classifiers demonstrate 98%
COrrectness.

0004. The area of Digital Asset Protection (e.g., prevent
ing information leaks through network channels) is rather
new. Commercial systems So far borrow the approaches and
tools from existing areas, concentrating on off-line analysis
of data for the presence of keywords. The most developed part
of Digital Asset Protection is e-mail scanners, working as
add-ons to e-mail delivery and exchange Software. Products
in this area offer keyword-based and regexp-based filtering
and are focused on preventing attempts to pass offensive or
other improper e-mails to the outside world, protecting a
company from possible litigation.
0005. The Digital Asset Protection area recently started to
attract attention, especially because of the U.S. government's
privacy initiatives such as, for example, the Gramm-Leach
Bliley Act (“GLBA) targeted at financial institutions and the
Health Insurance Portability and Accountability Act
(“HIPAA) for health care providers. Leakages of credit card
numbers and medical records, for example, cost companies
millions of dollars in liabilities. Accordingly, these events
should be stopped.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 FIG. 1 depicts a block diagram of one embodiment
of a network content analysis platform;
0007 FIG. 2 depicts a block diagram of one embodiment
of a packet capture of FIG. 1;
0008 FIG.3 depicts a flow diagram of one embodiment of
a packet capture of FIG. 1;
0009 FIG. 4 depicts a block diagram of one embodiment
of an IP defragmenter of FIG. 1;
0010 FIG. 5 depicts one embodiment of an IP defrag
menter free descriptor chain;
0011 FIG. 6 depicts one embodiment of an IP defrag
menter descriptorage chain;

May 28, 2009

0012 FIG. 7 depicts one embodiment of an IP defrag
menter session descriptor structure;
0013 FIG. 8 depicts a flow diagram of one embodiment of
an IP defragmenter of FIG. 1;
0014 FIG.9 depicts a block diagram of one embodiment
of a TCP reassembler of FIG. 1;
(0015 FIG. 10 depicts one embodiment of a TCP reassem
bler free session and payload chains;
0016 FIG. 11 depicts one embodiment of a stream transi
tion diagram;
(0017 FIG. 12 depicts one embodiment of a TCP session
transition diagram;
(0018 FIG. 13 depicts one embodiment of a TCP session
age chain;
(0019 FIG. 14 depicts one embodiment of a TCP session
ring buffer;
(0020 FIG. 15 depicts one embodiment of a TCP payload
chain;
0021 FIG. 16 depicts a flow diagram of one embodiment
of a TCP reassembler of FIG. 1;
0022 FIG. 17 depicts a flow diagram of one embodiment
of a content decoder of FIG. 1;
0023 FIG. 18 depicts one embodiment of a content decod
ing tree;
0024 FIG. 19 depicts a flow diagram of one embodiment
of an automatic keyword discovery tool;
0025 FIG. 20 depicts a flow diagram of one embodiment
of a keyword scanner of FIG. 1;
0026 FIG. 21 depicts a flow diagram of one embodiment
of an automatic content profiler tool;
0027 FIG. 22 depicts a flow diagram of one embodiment
of a hyperplane calculation;
0028 FIG. 23 depicts a flow diagram of one embodiment
of a multi-dimensional content profiling scanner of FIG. 1;
0029 FIG. 24 depicts a flow diagram of one embodiment
of an output score calculation;
0030 FIG. 25 depicts one embodiment of a content scan
ner finite-state automata;
0031 FIG. 26 depicts a flow diagram of one embodiment
of a rogue encryption detector of FIG. 1;
0032 FIG. 27 depicts a block diagram of one embodiment
of a process manager of FIG. 1;
0033 FIG. 28 depicts a block diagram of one embodiment
of an event spooler of FIG. 1;
0034 FIG. 29 depicts a flow diagram of one embodiment
of an event spooler of FIG. 1;
0035 FIG.30 depicts a block diagram of one embodiment
of a TCP killer of FIG. 1; and
0036 FIG. 31 depicts a flow diagram of one embodiment
of a TCP killer of FIG. 1.

LIST OF ACRONYMS

0037

GLBA Gramm Leach Blailey Act
HIPAA Health Insurance Portability and Accountability Act
IP Internet Protocol
TCP Transport Control Protocol
DF Digital Fingerprinting
HTML HypertextMarkup Language
FSA Finite State Automata
PDF Portable Document Format
HTTP HyperText Transfer Protocol

US 2009/O 138945 A1

-continued

FTP File Transfer Protocol
XML extensible markup language
SSN Social Security Number
OS Operating System
API Application Programming Interface
NIC Network Interface Card
FD Full Duplex
SPAN Switched Port Analyzer
CPU Central Processing Unit
SMP Symmetric Multi-Processing
IPC Inter-Process Communication
DoS Denial of Service
PCAP Packet Capture
PLR Packet Loss Ratio
RAM Random Access Memory
FDC Free Descriptor Chain
SMTP Simple Mail Transfer Protocol
MCP Multi-dimensional Content Profiling
MIME Multi-purpose Internet Mail Extension
TAR Tape Archive
AKD Automatic Keyword Discovery
AIR Alert Information Record
DRM Digital Rights Management
ACP Automatic Content Profiler
FIFO First In - First Out
VM Virtual Machine
ASCII American Standard Code for Information Interchange
CCN Credit Card Number
VPN Virtual Private Network
RED Rogue Encryption Detector
SSLTLS Secure Socket Layer/Transport Layer Security
NCAP Network Content Analysis Platform
MUTEX Mutually - Exclusive Lock
UDP User Datagram Protocol
ACL Access Control List
SNMP Simple Network Management Protocol
ROM Read-Only Memory

DETAILED DESCRIPTION

0038 Nearly every organization maintains valuable infor
mation on its network, including, for example, patient
records, customer credit card numbers, chemical formula
tions and/or customer lists. Over the last six years, approxi
mately 20 percent of organizations Surveyed have acknowl
edged network theft of proprietary information. In that time,
their reported economic losses have increased 850 percent,
making theft of proprietary information the largest Source of
economic loss from computer misuse.
0039. Organizations may use indirect methods basic
network security practices such as, for example, hacker
defense, Software patches, user authentication and physical
security—to guard their data. A more direct method would be
to watch the flow (e.g., outflow) of data itself, for example,
alone and/or combined with one or more indirect methods.

0040. One embodiment of the present invention provides a
method of monitoring and preventing information flow (e.g.,
outflow). The information may include sensitive information,
private information and/or a digital asset such as, for example,
intellectual property. The method may capture network traffic
and provide content Scanning and recognition, for example, in
real time and/or off-line. The method may be used to detect
and/or prevent (i) the unauthorized movement of data, (ii)
leaks of information and/or (iii) bulk transfers of a digital
asset. The digital asset may include customer lists, client and
patient records, financial information, credit card numbers
and/or social security numbers.

May 28, 2009

0041. The method may reassemble complete client-server
conversation streams, apply decoders and/or decompressors,
and/or analyze the resulting data stream using one or more
content scanners. The one or more content scanners may
include multi-dimensional content profiling, weighted key
word-in-context and/or digital fingerprinting. The method
may also perform deep packet inspection dealing with indi
vidual network packets. The method may further provide one
or more layers of content decoding that may "peel off” for
example, common compression, aggregation, file formats
and/or encoding schemas and may extract the actual content
in a form Suitable for processing. In addition, the decoders
may uncover hidden transport mechanisms such as, for
example, e-mail attachments. The method may profile (e.g.,
statistically and/or keyword profile) data and detect the out
flow of the data, for example, even if the data has been
modified from its original form and/or document type. The
method may also detect unauthorized (e.g., rogue) encrypted
sessions and stop data transfers deemed malicious. The
method may operate on real-time network traffic (e.g., includ
ing 1 Gbps networks) and may allow, for example, for build
ing a Full-Duplex-capable (e.g., one or more Gbps) machine
for preventing the unauthorized transfer of information.
0042 Multidimensional content profiling may capture
characteristics of a document (e.g., text, binary data, data
file), and may tolerate variance that is common in the docu
ment lifetime: editing, branching into several independent
versions, sets of similar documents, etc. It may be considered
as the successor to both keyword scanning and fingerprinting,
and may combine the power of both techniques.
0043 Keyword Scanning is a relatively effective and user
friendly method of document classification. It is based on a
set of very specific words, matched literally in the text. Dic
tionaries used for scanning include words inappropriate in
communication, code words for confidential projects, prod
ucts, and/or processes and other words that can raise the
Suspicion independently of the context of their use. Matching
can be performed by a single-pass matcher based on a setwise
string matching algorithm. As anybody familiar with Google
can attest, the signal-to-noise ratio of keyword searches varies
from good to unacceptable, depending on the uniqueness of
the keywords themselves and the exactness of the mapping
between the keywords and concepts they are Supposed to
capture.
0044 Digital Fingerprinting (“DF) may pinpoint the
exact replica of a certain document and/or data file with the
rate of false positives approaching Zero. The method may
calculate message digests by a secure hash algorithm (e.g.,
SHA-1 and MD5). DF may detect unauthorized copying of a
particular data file and/or verify that a file has not been tam
pered. Applications ofDF to Extrusion Detection problem are
scarce because of high sensitivity of DF to Small changes in
content; few if any real life data sets, for example, that con
stitute confidential information and intellectual property are
"frozen” in time and available only in the original form.
Incomplete information (e.g., a part of a document) or the
same information in a different form (e.g., Word document
sent as HTML) or the same document with an extra punctua
tion character may pass a DF-based detector completely
unnoticed. Despite these drawbacks, DF still can be useful as
a second layer on top of some method for factoring out varia
tions in content (e.g., case folding, white space normalization,
word order normalization, word stemming, use of SOUN
DEX codes instead of words)

US 2009/O 138945 A1

0045 Content profiling may include one or more tech
niques to identify documents belonging to a certain document
class. Documents in the same class share similar statistical
characteristics, determined in the course of a preparatory
process such as, for example, profiling. Profiling may utilize
a representative set of documents belonging to the class (posi
tive learning set), accompanied with documents similar to,
but not belonging to the class (negative learning set). The
profiling process for a class may be performed once; the
resulting set of Statistical characteristics (e.g., the profile)
may be used to test for membership in the class.
0046. The quality of a profile may depend on the ability of
the profiling algorithm to capture characteristics common to
all documents in the class; it can be improved by use of
multiple unrelated characteristics of different nature. Each
characteristic may define a dimension (e.g., a quantitative
measure varying from one document to another). Content
profiling of a security device may use a plurality of different
characteristics (e.g., more than 400 different characteristics),
which may be calculated in real time for data passing through
the network. Each document passing through the network
may be mapped to a single point in a multi-dimensional
space; its position in this space may be used to calculate class
membership (e.g., membership in more than one class can be
identified) and trigger an alert and/or reactive measure.
0047 Content profiling methods has been used by crypto
analytics for centuries; ancient Romans knew simple meth
ods of analysis based on variations in frequency of individual
letters. Although still valuable, simple statistical characteris
tics work best when complemented by high-level statistical
methods, operating on larger elements such as, for example,
words and sentences.

0048. A multi-dimensional profiler may operate with a
plurality (e.g., about 200) of low-level statistical measures,
the remaining may be high-level ones. High-level statistics
may be designed with certain generic problem areas in mind
(e.g., protecting confidential personal information related to
individuals health records, bank account information, cus
tomer lists, credit card information, postal addresses, e-mails,
individual history, etc.); it can be re-targeted to other areas by
adding new domain-specific dimensions.
0049. In addition to individual high- and low-level char
acteristics Summarizing overall usage of the given elements,
the profiler may have a plurality (e.g., over 100) dimensions
dedicated to spatial structure of the document, including
mutual co-occurrence and arrangement of the elements. As an
example, it can capture that in postal addresses, state names
and Zip codes have very similar frequency, interleaving each
other with Zip codes closely following state names. Spatial
analysis may be used for capturing the overall structure of a
document; indexes, lexicons, and other types of documents
that can have usage patterns similar to the target class cannot
easily fool it.
0050 Profiling a learning set of documents may generate
as many points in the multidimensional attribute space, as are
documents in the set. Each point may represent an individual
document (or a section of a document) and may be marked as
“+” (in a class) or '-' (not in a class). The final learning act
may calculate the simplest partitioning of the attribute space
that separates "+ and '-' points with minimal overlap. This
partitioning may be automatically “digitized into a data
driven algorithm based on Finite State Automata (“FSA) that

May 28, 2009

may serve as a fast single-pass scanning engine able to iden
tify a “face in the crowd, for example, with high confidence
and at wire speed.
0051. The method may include the following features,
individually or in combination:

0.052 monitoring network traffic at the packet level to
identify and prevent the extrusion of data (e.g., company
data);

0.053 focus on bulk transfers of digital assets such as,
for example, customer lists, client and patient records,
etc.,

0.054 real-time network-based, for example, with mini
mal configuration requirements;

0.055 TCP session reassembly:
0056 uncovering and analyzing all layers of traffic

(e.g., PDF, Ethernet, IP, TCP, HTTP);
0057 multi-level decoding of all popular protocols
used for data transfers (e.g., e-mail, FTP, HTTP);

0.058 deep inspection of nested data layers (e.g., attach
ments, ZIP archives):

0059 inspection of popular data formats (e.g., MS
Word, MS Excel, HTML, XML, plain text):

0060 statistical and/or keyword-based detection;
0061 one or more tools for automatic profiling and
keyword discovery to tailor the method's behavior to
local data;

0062 multidimensional analysis, for example, taking
into account document structure;

0.063 domain-specific high-level features for statistical
analysis (e.g., SSNs, credit card numbers, postal
addresses, e-mail addresses);

0064 on-time reaction, closing of illegal communica
tions in real time; and/or

0065 detection of rogue encryption (e.g., unauthorized
encrypted communication channels).

0.066 One or more of these features may be incorporated
into a network appliance. The appliance may be self-con
tained, task-focused, and/or may make it possible to establish
and enforce a set of network use policies related to a compa
ny's digital assets.
0067. The method may be installed, for example, on off
the-shelf Linux Operating System (“OS) and Intel-based
hardware, and may allow the appliance to function as a stan
dalone network appliance. The method may use a Linux
system APIs for network packet capturing. The method may
also use Linux-specific real-time scheduling facilities and
standard UNIX Inter-Process Communication (“IPC) chan
nels. The method may further use a UNIX networking API for
general management purposes (e.g., configuration, sending
alert information to remote console). The method may also
utilize one or more Network Interface Cards (“NICs”) for
packet capturing. The NICs may not be fully activated by the
OS (e.g., no IP address assigned) and may be used in "pro
miscuous’ mode. The method may listen to an arbitrary num
ber of NICs, for example, in FD/SPAN modes. Multiple
instances of the method may also run on the appliance. The
method may include a TCP Session Killer module to tear
down malicious TCP sessions, and may use a separate NIC
for injecting packets into the specified network segment.
0068 A machine-readable medium (e.g., CD) may be pro
grammed with the method, for example, to be installed on any
Linux 7.3+ running on PC hardware with Pentium IV and/or
higher CPU. Gigabit Intel NICs may be used for network

US 2009/O 138945 A1

sniffing. The appliance may include a 64-bit PCI/X bus and
corresponding Intel Pro 64-bit 1 Gbps cards.
0069. An appliance installation may include three acts:
0070 installation of a hardened Linux kernel and the
necessary set of Linux utilities;

(0071 installation of the software with the method; and/
O

0072 configuration/tuning of the software to match the
specific hardware configuration.

0073 FIG. 1 illustrates one embodiment of a system (e.g.,
a platform) including several modules. The system may be
Suitable for a variety of applications, for example, accessing
all layers of network traffic including the content of TCP/IP
network data exchanges. The system may be capable of oper
ating on fully saturated Gigabit traffic using, for example,
commodity hardware (e.g., multiprocessor Intel/Linux boxes
with Gigabit NICs). The system may be scalable, and may
allow for effective utilization of one or more CPUs in Sym
metric Multi-Processing (“SMP) configuration, for
example, by breaking up the network Sniffing and analytical
applications into several modules communicating via IPC.
0074 The system provides effective and accurate recon
struction of network data exchanges. The system may (1)
capture individual packets traveling through the network, for
example, with the help of the network interface card operating
in the promiscuous mode, (2) decode the packets uncovering
the underlying transport layer (e.g., IP), (3) merge frag
mented packets, (4) track the ongoing bi-directional data
exchanges (e.g., sessions) and, for TCP sessions, (5) reas
semble both sides of each data session, making their entire
content available for a content analysis layer.
0075 Such reconstruction is complicated by several fac

tors. One of the factors is speed: modern networking equip
ment Supports the latest Gigabit Ethernet standard, so many
network segments operate on effective speeds reaching 700
800 Mbps or higher. To keep up with such a connection, the
Sniffing component may be sufficiently fast so that every
packet is captured and there is enough time left for analysis of
its content (e.g., individually or as a part of the session).
Another factor is accuracy: the Sniffer, being a passive appli
cation, may not have all the information needed to reconstruct
all traffic in all cases (to do so, it should have access to internal
state of the communicating hosts). The situation becomes
even more complicated if the sniffer analyzes Full Duplex
stream or asymmetrically routed traffic—several related net
work streams may be captured via separate NICs and ana
lyzed as a single communication channel.
0076 Existing open-source and proprietary solutions for

this problem fall short on many counts. The effective ones
rely on special hardware such as IBM's PowerNP network
processor, those that do not are too slow and inaccurate to be
useful in realistic high-speed network environments.
0077. A system that solves this problem may not even rely
on any special hardware. The system may provide packet
Sniffing, defragmentation, decoding, IP and TCP session
tracking, reassembly and/or analysis of layers 2-7, for
example, at Gigabit speeds. In addition, the system may
include a unified event processing backend with temporary
event storage and event spooler.
0078. The system may be designed to take advantage of
multiple CPUs, providing scalability for content analysis
algorithms. This scalability may be achieved by breaking the
full application to multiple modules and connecting them via
flexible IPC mechanisms, suitable for the given configura

May 28, 2009

tion. The platform’s API may include the following methods
of connecting the processing modules:

0079 Inline. The packet analyzer may be compiled
together with the framework to the same executable and
take its time share in the main packet processing cycle.
This method may be suitable for single-processor hard
Wa.

0080 Packet-level parallel. After being decoded and
initially processed, for example, by the IP and TCP
reassemblers, the packet may be made available for fur
ther analysis to a separate process using a circular queue.
For example, one or more (e.g., up to 32) external ana
lyZers may be attached to a single queue. An option may
also include to set up several independent queues, with
round-robin packet distribution between them. and/or

0081 Stream-level parallel. A TCP stream reassembler
may put the reassembled stream data into a circular
stream queue. This queue may serve the programs
designed to analyze the content of an entire client-server
conversation. For example, one or more (e.g., up to 32)
external analyzers may be connected to a single queue.
Also, multiple queues may be configured, with round
robin distribution between them.

I0082 Both inline and external content analysis compo
nents may generate events, for example, by calling up the
central event processing component via a message-based
API. The event processing component may run in a separate
process with regular priority; it may get events from the input
queue and may write them to the temporary file storage. The
persistent event storage may be used to withstand network
outages with minimal information loss.
I0083. The event processing component may be designed
to minimize the possible effect of Denial of Service (“DoS)
attacks against the Sniffer itself. It may react to a series of
identical or similar events by compressing the entire series
into one “combined’ event that stores all the information in
compressed form; for identical events, the combined event
may containinformation from a single event together with the
event COunt.

I0084. The information collected by the event processor
may be sent to its destination (e.g., a separate event analysis
component such as, for example, a data mining console), for
example, by an event spooling component. The event spooler
may keep track of new events as they are written into a spool
directory. Each new event may be encrypted and sent to one or
more destinations. The event spooler may run as a separate
low-priority process.

Packet Capture
I0085. One embodiment of a packet capture module (see,
for example, FIG. 1) may be configured for fast and reliable
packet capturing and/or a Gigabit-capable network Sniffer. In
single-NIC half-duplex mode, the packet capture module
may offer 2x speedup over conventional packet capturing
methods on Stockhardware (e.g., libpcap on a Linux/Intel box
with Gigabit Intel NICs). This speedup may be achieved by
keeping time-consuming activities such as, for example,
hardware interrupts, system calls and data copying to a mini
mum, leaving more time to packet processing. The real-life
network traffic is heterogeneous. Usual packet size distribu
tion tends to have maximums at about 80 bytes and 1500
bytes. The packet rate distribution over time may be highly
uneven. Unlike the legitimate destination host, a network
Sniffer may have no ability to negotiate packet rates according

US 2009/O 138945 A1

to it needs. Therefore, it may be designed to provide adequate
buffering for the traffic being sniffed and, as such, a sizeable
processing window per each packet.
I0086 Each hardware interrupt potentially causes a context
switch, a very expensive operation on a modern Intel CPU. To
keep interrupts to a minimum, the packet capture module may
utilize customized Intel NIC drivers making full use of Intel
NIC's delayed-interrupt mode. The number of system calls
may be reduced by taking advantage of the so-called “turbo
extension to packet Socket mode Supported by latest Linux
kernels (e.g., PACKET RX RING socket option).
I0087. When used to their full potential, modified drivers
and turbo mode may provide the fastest possible access to
NIC's data buffers; polling at 100% capacity causes only
about 0.001 interrupt/system call per captured packet (amor
tized). To deal with momentary Surges in traffic, the packet
capture module may allocate several megabytes for packet
buffers. Large buffers may also reduce packet loss caused by
irregular delays introduced by IP defragmenterand TCP reas
sembler.
0088. The packet capture module may operate in
FD/SPAN modes using multiple NICs, providing support for
full session reassembly. Packets coming from multiple NICs
operating in promiscuous mode may be interleaved by polling
several packet buffers simultaneously. The polling strategy
may not introduce additional context Switches or system
calls; each buffer may get its share of attention.
0089. The packet capture module may be implemented as
several load-on-demand dynamic libraries. The general-pur
pose' library processes arbitrary number of NICs. There are
also versions with hard coded parameters optimized for 1
(HD mode) and 2CFD mode) NICs. The programming API
may resemble PCAP (full compatibility may be impractical
because of functional differences). The general-purpose
library may accept interface initialization strings with mul
tiple interfaces (e.g., “eth 1:eth3:eth;5').
0090. Measurements of real traffic and simulated traffic
with a TCP-oriented model for distribution of packet arrival
times demonstrated that improvements to packet buffering
and pick-up increase time slot for packet processing by 20%
on average. On the same traffic this leads to 30%-50%
decrease in packet loss ratio (“PLR') in the 0.5-1 Gbps Zone,
allowing the sensor to handle 1.5 times or more load given the
same PLR cut-off and traffic saturation levels.
0091. The packet capture module (see, for example, FIG.
2) may be configured to utilize the Linux high-speed network
capturing interface. This interface may allocate a ring buffer
within the NIC driver space and map it directly to the recipi
ent's process, eliminating the overhead of system calls to
copy the data from the kernel to the destination process.
Additional advantage of the ring buffer may be that it effec
tively smoothes out Surges in the network traffic and delays in
packet processing.
0092. The packet capture module may be implemented
using C language in a form of a load-on-demand dynamic
library. There may be three libraries, optimized for use with 1
NIC, 2 NICs and arbitrary amount of NICs.
0093 Packet Capture Module API
0094. The packet capture module may be implemented
using standard UNIX dynamic library interface. It may be
used in the packet capture module as a load-on-demand
dynamic library. There are several packet capture module
libraries, optimized for different number of NICs (e.g., 1, 2,
user-specified). The packet capture module API may be the

May 28, 2009

same for all instances, except, for example, for initialization
call that expects specially-formatted String containing spe
cific number of NIC names.
0.095 The packet capture module may export the follow
ing functions:

(0.096 void *init(char *iface, char *errbuf, char *nr
blocks)
(0097 iface: NIC name string, like “ethl”. In the case
of multiple interfaces, iface string looks as follows:
“eth 1:eth3:eth2

(0098 errbuf pointer to the caller-provided error
buffer, for example, not less than 512 bytes

0099 nr blocks: requested amount of blocks to be
allocated by the NIC driver. If nr blocks is 0, default
value is requested.

0100 void fini (void *handler)
0101 handler: value returned by the corresponding
init () function

0102 void stat (void handler, pc st stat)
0103 handler: value returned by the corresponding
init () function

0.104 stat: statistics data structure
0105 int linktype (void *handler)

0106 handler: value returned by the corresponding
init () function

0.107 intloop (void handler, pc catcher t func, char
*arg)
0.108 handler: value returned by the corresponding
init () function

0109 func: the address to the user-specified function
that accepts the packet data

0110 arg: optional arguments to be passed down to
the func ()

0111 Packet Capture Module Initialization
0112 A method may load the packet capture dynamic
library and call its init () function. This function may parse
the input string for NIC names and for each NIC name found
may perform the following:

0113 Create a packet socket;
0114 Requesta NIC driver to allocate a ring buffer with
a size specified;

0115 Map the resulting buffer to its memory space:
and/or

0116. Initialize internal buffer markers that point at the
beginning of the buffer segments.

0117. After initialization the method (see, for example,
FIG. 3) may call loop () function. loop () function may work
during the method lifetime, for example, until a fatal error
occurs or the method receives the termination signal. loop ()
may poll NIC buffers in round-robin manner. Current seg
ment of each buffer may be verified for data readiness by
checking the control field initialized by the driver (see, for
example, FIG. 2). If no data is available in the segment, the
next NIC buffer may be checked. If all the buffers are empty,
loop () may suspend the method, for example, using a poll (
) system call.
0118. The method may be resumed when new data
becomes available or after a timeout (e.g., one-second tim
eout), whichever comes first. In the case of timeout, the user
specified function may be called with NULL argument. This
is useful for certain packet processors whose task is to watch
for an absence of the traffic. After the user function is called,
the method may be suspended again via poll (). In the case of
available data, the method may check the result returned by

US 2009/O 138945 A1

poll () to see which NIC buffer currently has the data and may
jump directly to that buffer's last-checked segment, resuming
the normal buffer polling procedure afterwards. If poll ()
signaled about more than one ready buffer, the method may
resume the normal procedure from the saved buffer index.
0119 The packet capture module may stop when the
method finds a reason to exit. The fini () function from the
packet capture API may close the control sockets. UNIX
standard process exit procedure may close all communication
channels and reclaim all the memory used by the method.
Accordingly, there may be no need to call fini ().

IP Defragmenter
0120. One embodiment of an IP defragmenter (see, for
example, FIG. 1) may be configured to satisfy specific
requirements for a network Sniffer. Multi-purpose IP defrag
menters have been designed under the assumption that the
traffic is legal and fragmentation is rare. A network Sniffer
serving as a base for packet inspection application may have
to work under heavy loads and be stable in the presence of
DoS attacks. In addition to providing fast and/or robust packet
reassembly, it may detect and react to illegal fragments, for
example, as soon as they arrive. The packet inspection appli
cation may then include low reaction latency and may with
stand attacks specially designed to bring down standard IP
stacks. The IP Defragmenter for network Sniffer may provide
the following configurable options: minimum fragment size,
maximum number of fragments per packet, maximum reas
sembled packet size, packet reassembly timeout, etc. The IP
Defragmenter may be configured to perform equally well on
any fragment order.
0121 The defragmenter may include a low per-fragment
overhead, and may focus on per-fragment (and/or on per
packet overhead) to handle DoS attacks flooding the network
with illegal and/or randomly overlapping fragments. Minimi
zation of per-fragment overhead may be achieved by lower
ing the cost of initialization/finalization phases and/or distrib
uting the processing (e.g., evenly) between the fragments. As
a result, invalid fragment streams may be recognized early in
the process and almost no time may be spent on all the
fragments following the first invalid one. Minimizing initial
ization/finalization time may also positively effect the defrag
menter's performance on very short fragments, used in some
DoS attacks targeted at Security devices. This improvement
may be attributed to better utilization of buffering capabilities
provided by NIC and a packet capture library.
0122) The defragmenter's may provide a throughput, for
example, above 1 Gbps, and may reach, for example, 19 Gbps
on large invalid fragments. On invalid fragments, the defrag
menter's early invalid fragment detection may lead to 6-fold
performance gains. IP fragment order may have no impact on
the IP Defragmenter performance.
0123 For comparison, Snort v2.0's defragmenter, for
example, scores 3 times slower on average than the IP Defrag
menter performance. Low throughput on Small fragments
and/or invalid fragments is a bottleneck that may affect the
ability of the whole packet inspection application to handle
heavy loads and withstand DoS attacks on Gigabit networks.
0.124 One embodiment of the IP defragmenter (see, for
example, FIG. 4) may be configured to be an accurate and
high-speed IP packet defragmenter. A subroutine of the IP
defragmenter may be called once per each network packet
coming from the packet capture module. The Subroutine may
check the packet for IP fragment attributes. If attributes are

May 28, 2009

found, the packet may be considered a fragment and may be
sent to fragment processing/reassembling Subroutines. The
fragment may also be sent to the next processor module
packet processors like SNORTRAN may need to scan all
packets received, including fragments. After Successful reas
sembly, the reassembled IP packet may be submitted for
further processing. IP fragments that are deemed bad and/or
do not satisfy separately configured requirements may be
reported, for example, using an alerting facility. The IP
Defragmenter may also use a statistics memory pool to count
fragments received, packets defragmented, alerts generated,
etc.

0.125 IP Defragmenter Configuration Parameters
0.126 The IP defragmenter may accept the following con
figuration parameters:

0.127 mempool: sets the size of the memory pool and
corresponding hash table size. Values may be Small,
medium, large, huge.

0.128 maxsize: sets the maximum size for legal reas
sembled IP packet. The IP defragmenter may generate
an alert and dismiss the packet if reassembled length will
be larger than specified value. Default value may be 10
KB.

0.129 minsize: sets the minimum size for legal reas
sembled IP packet. The IP defragmenter may generate
an alert and dismiss the packet if reassembled length will
be smaller than specified value. Default value may be
1000 bytes. and/or

0.130 timeout: sets the timeout for IP packet reassem
bly. The IP defragmenter may generate an alert and
dismiss the packet if reassembly time for this particular
packet will go beyond specified value. Default value
may be 30 seconds.

I0131 IP Defragmenter Initialization Procedure
0.132. The IP Defragmenter's initialization subroutine,
ipdefrag init (), may be called during startup. The Subroutine
may read the configuration file and allocate a pool of defrag
menter session descriptors together with the corresponding
hash table (sizes may be set in the configuration file). The IP
defragmenter may not allocate memory dynamically during
the packet-processing phase: all requested resources may be
pre-allocated during the initialization stage. To improve per
formance, allocated memory may be excluded from Swap
ping, for example, by using Linux mlock () system call. After
calling mlock (), the allocated memory may be initialized
using bZero ()call, ensuring that all necessary pages are
loaded into memory and locked there, therefore no page faults
may occur during packet processing phase. ipdefrag init ()
may be called under Supervisor privileges to ensure that
mlock () call Succeeds.
I0133. After allocation, all session descriptors from the
pool may be sequentially inserted into one way free descriptor
chain (see, for example, FIG. 5). This chain may be used by
allocation and de-allocation Subroutines during packet pro
cessing phase.
0.134 One embodiment of the IP defragmenter's packet
processing (see, for example, FIG. 8) may include an entry
point, ip defrag (), that may be called every time new packet
data is coming from the packet capture module. ip defrag ()
may check that the packet has IP fragment attributes, for
example, either MF flag and/or fragment offset is not zero. If
the packet is recognized as an IP fragment, its length may be
verified: all IP fragments except the last one may have a

US 2009/O 138945 A1

payload length divisible by 8. An alert may be generated for
fragments of incorrect length; after that, Such fragments may
be ignored.
0135) If the incoming packet has not been recognized as an
IP fragment, ip defrag () may check the oldest elements in
the descriptor age chain (see, for example, FIG. 6) for the
elements that timed out and de-allocates them if found. The
de-allocation Subroutine may reset the defragmenter session
descriptor, remove it from the hash table and descriptorage
chain (see, for example, FIG. 6) and put it to the beginning of
the free descriptor chain (see, for example, FIG. 5), adjusting
free descriptor chain (“FDC) variable.
0136. Otherwise, fragment’s IP id and its protocol, source
and destination addresses may be used to calculate a hash
value to access the session descriptor for incoming fragment.
If no session descriptor is found for the fragment, the new one
is allocated. Allocation Subroutine may take the descriptor
from the head of the free descriptor chain referred to by FDC
variable (see FIG. 5); then switches FDC to the next descrip
tor in chain. The reference to the newly allocated descriptor
may be inserted into two places:

0.137 Hash table using calculated hash value; and/or
0.138. Two-way descriptor age chain, as the youngest
entry, adjusting variable TC young (see FIG. 6).

0.139. If the free descriptor chain is empty, an allocation
fault counter from the statistics shared pool may be incre
mented and the oldest descriptor from descriptor age chain
may be reused. This may ensures that:

0140 the method can handle a resource shortage with
out crash; and/or

0141 New IP packets may have higher priority than the
old ones. In modern networks, 30-second IP reassembly
timeout is seldom and usually indicates malicious activ
ity.

0142. A defragmenter session descriptor (see, for
example, FIG. 7) may include two parts: the control data and
the payload buffer. Payload data from the incoming IP frag
ment may be copied into the payload buffer of the corre
sponding session descriptor. Flags in the IP offset bitmask in
the descriptor may be set to identify precisely which 8-byte
chunks of reassembled IP packet are copied.
0143 Any new IP fragment carrying chunks that are
already marked may cause an alert. The corresponding
defragmenter descriptor may be marked as bad. Each Subse
quent fragment belonging to the bad descriptor may be
ignored. As previously described, the bad descriptor may be
deallocated eventually (e.g., when its timeout expires). This
approach may allow that:

0144. Malicious IP fragments (teardrop attack, etc) may
be identified even after the alert is sent;

0145 Only one alert may be generated per each mali
cious session; and/or

0146 Malicious IP fragments may not create a resource
shortage in the Free descriptor chain.

0147 The reassembled IP packet referred to by a defrag
menter session descriptor may be considered complete if:

0148 All fragments are copied (e.g., no gaps in IP offset
bitmask);

0149 Last IP fragment is received; and/or
0150. The resulting length of the reassembled payload

is equal to the sum all payload fragments from the cor
responding session.

May 28, 2009

0151. The reassembled packet may receive new IP and
Layer 4 checksums if necessary. Thereafter, it may be sent for
further processing to the rest of the pipeline.
0152. When packet delivery is completed, the correspond
ing defragmenter session descriptor may be de-allocated as
described before.

TCP Reassembler

0153. One embodiment of a TCP reassembler (see, for
example, FIG. 1) may be capable of multi-Gigabit data pro
cessing. It may feed reassembled network data to modules
Such as, for example, content Scanning and encryption detec
tion. It may also assign TCP stream attributes to each network
packet processed, for example, making it possible to analyze
the packet by deep packet inspection modules.
0154 The TCP reassembler may track TCP sessions, keep
a list of information describing each open session and/or
concatenate packets belonging to a session so that the entire
content of the client and server streams may be passed to
upper levels of content inspection. The TCP reassembler may
provide multi-layer reassembly and content inspection. Par
tial Solutions like “deep” packet inspection, handling of only
one side of a full-duplex connection, and/or reassembling
arbitrary regions within the data stream to improve the
chances of probabilistic detectors may not be adequate.
0155 The TCP reassembler may be sophisticated enough
to handle the intricacies of real-life packet streams. The prob
lems faced by packet inspector's reassembler may be quite
different from those of TCP/IP stacks: packets seen by sniffer
NIC in promiscuous mode do not come in expected order, so
traditional state diagrams may be of little use; standard tim
eouts may need to be adjusted due to various delays intro
duced by taps and routers; there may not be enough informa
tion in the packet stream to calculate internal states of the
client and server, etc.
0156 TCP stream reassembler for a packet sniffer may
operate in a harsh environment of the modern network, for
example, better than any standard TCP/IP stack. The TCP
reassembler may include TCP SYN flood protection, memory
overload protection, etc. The TCP/IP stream reassembler for
a packet Sniffer may be fast.
(O157. The TCP reassembler may be coupled to the packet
capture layer, allowing it to watch any number of NICs simul
taneously and/or interleaving data taken from different net
work streams. The packet capture layer may allow reliable
reassembly of both client and server data, for example, in
Full-Duplex TCP stream and/or asymmetrically routed pack
ets, where each stream may depend on the other for session
control information.

0158. The TCP reassembler may operate in one or more
modes:

0159. Session tracking only. This mode may suite appli
cations that only need to track TCP packet's direction
(e.g., client to server, or vice versa) and validity. In SMP
setting, direction information may be made available to
recipient applications via a packet-level API.

0.160 Session tracking and Partial TCP stream reassem
bly. The initial parts of client-server conversations may
be collected in buffers limited by a configurable cutoff
value. In SMP setting, the reassembled stream may be
made available to recipient applications via a stream
level API. This mode may be configured for application
logging initial segments of TCP sessions containing

US 2009/O 138945 A1

malicious packets. The default cutoff value may be 8 KB
for a server part of the conversation and 8 KB for the
client part. and/or

0.161 Session tracking and Advanced TCP Stream reas
sembly. Client-server conversation may be collected
into pre-allocated buffer chains. By default, up to 1600
KB of every conversation may be collected (e.g.,800 KB
per direction). The size parameter may be configurable
and may be increased as needed. Reassembled streams
may be made available to recipient applications in SMP
setting. TCP Sequence skip' effects usual for long TCP
sessions may be watched and distinguished from mali
cious and/or out-of-window packets. This mode may
deliver stream reassembly, for example, for an applica
tion where the reassembled stream is further decom
posed/decoded layer-by-layer and analyzed for content.

0162 The TCP reassembler may be based on simplified
state transition diagrams reminiscent of Markov Networks.
Each Socket pair may be mapped to a separate finite state
automaton that tracks the conversation by Switching from
state to state based on the type of the incoming packet, its
sequence number, and its timing relative to the most recent
“base point” (e.g., the previous packet or the packet corre
sponding to a key transition). Since the reassembler may have
to deal with out-of-place packets (e.g., request packet coming
after the reply packet), transitions may not rely exclusively on
packet type. At each state, the automaton may keep several
'guesses' at what the real state of conversation might be, and
may choose the “best” one on the basis of the incoming
packet. Whichever"guess' may better predict the appearance
of the packet may be taken as the “best characterization of
the observed state of the conversation and new “guesses' may
be formed for the next act.
0163 The TCP reassembler may also include planning
and transitions that are hard-coded; parameters that are fixed
and inline-substituted that allow for code optimization. The
resulting reassembler may include an average throughput of
1.5-2 Gbps (or more or less) on normal traffic. It may go down
to 250 Mbps on specially prepared SYN flood/DoS attacks,
when the average packet length may be 80 bytes.
0164. The TCP reassembler may be fast enough to deal
with fully saturated 1Gbps traffic. Combined with a separate
packet-level inspection process running on a second CPU in
SMP configuration or one or more separate TCP Stream
decoders/analyzers, the platform may provide the basis for a
wide range of Gigabit-capable network monitoring Solutions.
In comparison, presently available open-source Solutions like
Snort’s stream4 require cheats and tricks to keep up with
Gigabit traffic on commodity hardware. In Snort2, this means
restricted default settings (client only, several well-known
ports) and artificial filters such as HTTP flow control pro
cessor, ignoring as much as 80% of the traffic indefault mode.
Experiments with Snort2 settings make clear that stream4's
throughput is a real bottleneck; allowing more packets injust
changes the way Snort drops packets from predictable to
random.

(0165. A subroutine of the TCP Reassembler module (see,
for example, FIG. 9) may be called once per each network
packet coming from the IP defragmenter. The routine may
verify that the packet is a TCP packet. If it is, the packet may
be sent for TCP processing/reassembling. The packet may be
annotated by the address of the TCP session it belongs to (if
any) and may be submitted to the pipeline for further process
ing (depending on configuration).

May 28, 2009

0166 Packets and corresponding sessions may be checked
for illegal TCP flag combinations (requirements for what is
legal may be configured separately). Illegal packets and ses
sions may be reported, through an alerting facility, and/or
discarded, depending on configuration. The TCP Reassem
bler may reconstruct TCP sessions together with client-server
conversation data and may send them for further processing
to analysis modules, for example, using UNIX IPC-shared
memory and semaphore pool. The analysis modules may run
as separate UNIX processes. They may use IPC channels to
retrieve the TCP session data. TCP Reassembler may also use
a statistics memory pool to count reassembled sessions, gen
erated alerts, etc.
(0167 TCP Reassembler Configuration Parameters
0.168. The TCP Reassembler may accept the following
configuration parameters:

0.169 alert: generate alerts on illegal packets and TCP
sessions.

0170 evasion alert: generate alerts if a TCP packet
does not fit into predicted TCP window.

0171 noclient: do not reassemble client’s part of the
conversation (Socket pair).

0172 noserver: do not reassemble server's part of the
conversation.

0173 plimit: sets the maximum amount of memory
buffers used to reassemble a particular client-server con
Versation.

0.174 pring: sets the size of payload ring used to send
the reassembled data to analyzers.

0.175 mempool: sets the size of the memory pool used
for TCP session descriptors and the corresponding hash
table size. Values may be: Small, medium, large, huge.
and/or

0176 payload: sets the total amount of memory buffers
used to reassemble client server conversations and their
total size. Per-session limit may be set by the plimit
parameter.

0177) TCP Reassembler Initialization
0.178 An initialization subroutine, tcps init(), of the TCP
Reassembler may be called during startup. The subroutine
may read the configuration file and use UNIX shared memory
to allocate the following memory pools:

(0179 TCP session descriptors;
0180. Hash table for accessing the session descriptor
pool;

0181 Payload buffers; and/or
0182 TCP session ring buffer.

Memory allocation sizes may be calculated based on configu
ration parameters. UNIX semaphore set of size 32 may also
be allocated.
0183 The TCP Reassembler may not allocate memory
dynamically during the packet-processing phase; all
requested resources may be pre-allocated during the initial
ization stage. Allocated shared memory may be excluded
from swapping by using Linux SHM LOCK option inshmctl
() system call. After requesting the lock, the allocated
memory may be initialized using bZero ()call, ensuring that
all necessary pages may be loaded into memory and locked
there, therefore no page faults may occur during packet pro
cessing phase. tcp stream init () may be called under Super
visor privileges to ensure that shmctl() call may succeed.
0184. If the necessary segments are allocated already, and
all sizes are correct, tcp stream init () may attach to existing
memory pools without resetting them. In addition, the mod

US 2009/O 138945 A1

ule may not de-allocate memory if restarted. This may be
done to support the soft restart feature: reloaded application
may continue to use existing TCP session data, losing packets
just for the moment of reload.
0185. The TCP Reassembler may require memory (e.g.,
vast amounts of RAM). In order to get all the requested
memory, the application may utilize SySctl () to increase
SHMMAX system parameter during standard startup proce
dure.

0186. After allocation, TCP session descriptors and pay
load buffers may be sequentially inserted into the free session
chain and the free payload chain, respectively (see, for
example, FIG. 10). These chains may be used by allocation
and de-allocation Subroutines during the packet processing
phase.
0187 TCP Session Allocation and Status Transition
0188 To mirror the full-duplex nature of a TCP session,
the descriptor may contain two identical Substructures that
describe client and server streams. The states recognized for
each stream may include LISTEN, SYN RCVD, SYN
SENT, ESTABLISHED and CLOSED. The life cycles of
both streams may start in CLOSED state. For normal TCP/IP
traffic, the states may be upgraded to ESTABLISHED and
then, eventually, back to CLOSED. in accordance with the
Stream Transition Diagram (see, for example, FIG. 11).
(0189 Stream's descriptor field ISN may be used to save
SEQ numbers when SYN and SYN ACK packets are
received. This field may be later used for TCP payload reas
sembly and additional TCP session verification.
0190. The TCP session descriptor may follow its stream's
transitions with its own state flag, reflecting the general status
of the session: UNESTABLISHED, ESTABLISHED or
CLOSED.

0191 FIG. 12 illustrates one embodiment of a session
state transition diagram. Each session may start in the
UNESTABLISHED state. It may get upgraded to ESTAB
LISHED state when both client and server streams are
switched to ESTABLISHED state. The session may be
CLOSED when both Streams are Switched to CLOSED State.
0.192 Each session state may correspond to a particular
place in the session age chain (see, for example, FIG. 13). The
session allocation Subroutine may perform the following acts:

0193 the descriptor is initialized by calling bzero ();
0194 the descriptor is placed to the hash table;
0.195 the descriptor is removed from the free session
chain;

0196) the descriptor is placed to the head of the
UNESTABLISHED age chain; and/or

0.197 an unique session id is assigned to a descriptor's
sidfield.

0198 With every session upgrade, the descriptor may be
removed from the current age chain and placed to the head of
the next one, in accordance with session state transition dia
gram.

(0199 TCP Session De-Allocation
0200. The TCP session descriptor may include a field
called etime that keeps the time of the most recent packet
belonging to this particular session. With every packet
received by the TCP Reassembler, the sessions at the end of
the age chains may be tested for timeout, for example, by a
ses recycle () Subroutine. The timeout used may depend on
the session's state:

May 28, 2009

0201 UNESTABLISHED: 12 sec
0202 ESTABLISHED: 600 sec
0203) CLOSED: 30 sec

0204 The ses recycle () procedure may also look at a
module-wide RC LVL variable that determines the maxi
mum number of Stale sessions to de-allocate per received
packet. This number may start from two stale sessions per
packet and ends up, for example, as high as 30 sessions per
packet (there is a table to calculate number of sessions based
on RC LVL value, where the RC LVL itself may range from
1 to 7). The ses recycle () procedure calculates the limit,
decrements RC LVL if necessary (minimum value may be
1), then approaches the Session age chain from ASC old side
(see, for example, FIG. 13) in the following order:
UNESTABLISHED to CLOSED to ESTABLISHED. In each
chain it may de-allocate Stale sessions from the end, then it
may move to the next chain in sequence if necessary, until no
more stale sessions left or the limit is reached.

0205 RC LVL may be increased each time there is a
conflict during insertion of the new session into the hashtable.
It may also be assigned to the maximum value when the
reassembler is in a TCP Reassembler Overload Condition
mode.

0206. The de-allocation subroutine may remove a session
descriptor from the hash table and the session age chains and
transfer it to the end of the free session chain, for example,
using the FSC tail variable. No session data may be reset
during the de-allocation procedure; this way the data still may
be used by asynchronous modules until it is reset during a
Subsequent allocation.
0207. If a session has its payload data collected, the sub
routine may insert the session's address and sessionid into the
TCP Session ring buffer and reset the semaphore array, indi
cating that the session data is available for asynchronous
processing. The asynchronous processing module may com
pare the provided session id with the one assigned to the sid
field to verify that the data is not overwritten yet and com
mence processing.
0208 TCP Session information may also be inserted into
the TCP Session ring buffer if the session is upgraded to the
CLOSED state. After submission, payload buffers may be
detached from the session. The freed field in the session
descriptor may prevent the TCP Reassembler from submit
ting the data twice.
(0209 Handling TCP Reassembler Overload Condition
0210. One embodiment of a TCP Reassembler Overload
Condition may arise when there are no free session descrip
tors available to satisfy the allocation request. It can happen if
the mempool configuration parameter is inadequate for the
network traffic, or when the network segment is under TCP
syn-flood attack. When switched to this mode, the TCP Reas
sembler may set the RC LVL variable to its maximum value
and cease allocation of new sessions until the free session
amount becomes, for example, less than 10% of the total
session pool. It may continue tracking existing sessions and
collecting their payload data.
0211 TCP Session Queue API
0212 ATCP Session Ring Buffer and a semaphore array
may be allocated during TCP Reassembler initialization
phase, for example, using the UNIX IPC facility. The buffer
may be accessible to any process having permission. FIG. 14
illustrates each buffer sector including the TCP Session

US 2009/O 138945 A1

address, session id and an integer value that is treated as a
bitmask (e.g., 32 bits). The Semaphore array may contain 32
semaphores.
0213 Each asynchronous processing module may call a
topplcl init () Subroutine specifying a unique id number
between 0 and 31 in order to attach to the Ring Buffer and the
semaphore array. The id provided may be used by other API
functions to refer to the particular semaphore in the Sema
phore array and the corresponding bit in the bitmask. The
process may then call tcpplcl next () to get the next available
TCP session.
0214 TCP Reassembler may submit a new session for
processing by performing the following acts:

0215 puts the session address and session id into the
next sector of the ring buffer;

0216 resets the bitmask in this sector; and/or
0217 resets the semaphore array.

0218. The tcpplcl next () subroutine on the client side
may wait for the id-specific semaphore, for example, using
semwait () call. When the buffer is ready, it may walkthrough
the buffer segment by segment, setting the id-specific bit in
the bitmask until it finds that the bit in the next sector is
already set. This condition may mean that no more data is
available yet it is time to call semwait () again. The API
may supply the application with full information on TCP
session and the reassembled payload data. As soon as it
becomes available, the information may be processed.
0219 TCP Payload Reassembly
0220 Each time the session descriptor is switched to the
ESTABLISHED state, payload buffers may be taken from the
Free payload chain, initialized and assigned to client and/or
server stream descriptors, if permitted by noclient and
noServer configuration parameters.
0221 Each nonempty payload of a packet belonging to a
particular session may be copied to the corresponding place
in the Payload buffer, until the session is upgraded to the
CLOSED state or number of payload buffers exceeds the
limit, for example, as specified by the plimit parameter (see,
for example, FIG. 15). The position of packet's payload
within the buffer may be determined by combination of the
packet's SEQ number, stream's ISN and the value of stream's
base field. The latter may be calculated by a subroutine:
modern TCP stacks tend to randomly increase SEQ number
for long TCP sessions; base field compensates for those
changes.
0222 Apl. alloc () subroutine may be used to add Payload
buffers to the chain, for example, up to plimit value. In case of
empty Free payload chain, pl. alloc () may do the following:

0223 increments the payload fault counter in the statis
tics pool;

0224 marks the current payload chain as completed,
avoiding out-of-bound payload copying later, and/or

0225 returns the error to the caller.
0226. When the session reaches the CLOSED state, or if
Payload buffers are de-allocated from ESTABLISHED state
due to session timeout, a ses free () Subroutine may do the
following:

0227 submits the TCP Session to the TCP Session Ring
Buffer;

0228 adds the payload buffers to the end of Free pay
load chain; and/or

0229) sets session descriptor's freed field, so the session
may not be submitted twice.

May 28, 2009

0230 ses free() subroutine may not erase payload and/or
session data: it may merely mark the buffers as available
while they are processed by asynchronous applications via
the TCP Session Queue API.
0231 Packet Processing Cycle Overview
0232. The TCP Reassembler's entry point subroutine, tcps
(), may be called every time new packet data is coming from
the IP Defragmenter. First, tcps () may call ses recycle().
(see TCP session de-allocation section) then may check that
the data is indeed a TCP packet (see, for example, FIG.16). If
the incoming packet has not been recognized as a TCP packet,
tops () may end.
0233. The TCP packet may then be probed formultitude of
illegal TCP flag combinations (e.g., the presence of SYN and
FIN flags together). An alert may be generated for invalid
TCP packets if the alert configuration flag is set; after that,
Such packets may be ignored.
0234. Otherwise, packet's source and destination
addresses and ports (socket pair information) may be used to
calculate the hash value and identify the corresponding ses
sion descriptor for the packet. The Packet Analysis phase may
follow, based on flags the packet bears and whether or not the
session descriptor was found. This phase may attempt to
identify illegal packets; for example, if the packet contains
SYN flag and the session descriptor is already allocated, the
analysis may include comparison of stream's ISN with the
packet's SEQ number and examination of the corresponding
timeout. As the result of this particular analysis, this packet
may be recognized as:

0235 TCP retransmission attempt:
0236. The beginning of the new TCP session; and/or
0237) TCP session spoofing/hijacking attempt.

Illegal TCP packets determined by this analysis may be
ignored and/or reported.
0238. At this point, all illegal packets may be filtered out.
The session/packet combination may be analyzed next.
Depending on the session State and packet flags/payload, one
or more of the following actions may take place:

0239 packet's payload is stored in the Payload buffer;
0240 new session is allocated:
0241 stream's state is upgraded;
0242 session's State is upgraded;
0243 session is submitted to the TCP Session Ring
Buffer; and/or

0244 stream's base value is increased to compensate
for the sudden jump in the stream's SEQ value.

0245. At the end of tcps (), the packet may be annotated
with the address of the TCP session it belongs to and sent for
further processing to the rest of the pipeline.
0246 TCP Reassembler Unloading
0247 The TCP Reassembler may de-allocate shared
resources using atexit () facility during normal exit. If the
application has received a reconfiguration request, for
example, from the Process Manager during reconfiguration
cycle, the shared memory and semaphore array may be left
intact. The module may reread its configuration files, while all
other modules continue normal operation. The reload opera
tion may be quick; reloaded TCP Reassembler module may
attach to the shared resources again without resetting them
and continue its duties.

Payload Decoder
0248 One embodiment of the platform may operate on the
real-time network traffic (e.g., 100 Mbps and/or higher or

US 2009/O 138945 A1

lower) and may be supported by multiple layers of content
decoding that "peels off for example, common compres
Sion, aggregation, file formats, and encoding schemas and
extracts the actual content in a form suitable for processing.
One embodiment of a Payload Decoder (see, for example,
FIG.1) may work recursively inspecting a payload for known
data formats, decoding it with the help of the respective
decoders and repeating the same procedure for the decoded
content (see, for example, FIG. 17). The payload decoder may
include a plurality of decoders (e.g., 14 decoders, or more or
less), for example, for various Microsoft Office formats,
Email, HTML/XML, compressed data, HTTP, other popular
TCP-based protocols, etc. The Payload Decoder may stop
when it cannot decode its input data any further, or it reaches
its memory limit. In any case, decoded data chunks may be
sent, for example, to one or more content Scanners (e.g.,
keyword and/or MCP scanners) for inspection.
0249. The payload decoder may include one or more
decoders:

(0250 SMTP Mail Session;
(0251 Multipart MIME Envelopes;
0252) Quoted-printable Mail Attachments:
0253 Base64 Mail Attachments:
(0254 8-bit Binary Mail Attachments:
0255 ZIP Archives:
(0256 GZip Archives:
0257 TAR Archives:
0258 Microsoft Word Documents:
0259 Microsoft Excel Documents:
0260 Microsoft PowerPoint Documents:
0261 PostScript Documents;
0262 XML Documents; and/or
0263. HTML Documents.

0264 Plain text and/or binary documents may be scanned
directly and may not have any specialized decoding. Addi
tional decoders may be plugged into the system, for example,
with the help of the Decoder API.
0265. Initialization
0266 The initialization phase for the content decoder
module may start by calling the TCP Session Reassembler
API to get registered as a client and get access to reassembled
sessions. After that, memory may be allocated to store statis
tical information and the local memory management mecha
nism may be initialized. Individual decoders may get regis
tered by calling the init decoders () procedure that collects
the information about available decoders and may copy it to
the global statistical information area in shared memory. It
may also initialize each decoderby calling its init () method,
allowing decoders to have their own data initialized.
0267 Memory Allocation
0268 Decoders may allocate new data buffers for each
decoded component data block, for example, by calling the
dq alloc () procedure. Some decoders (e.g., Microsoft
Word's) may allocate a single data block for decoded data;
others (e.g., ZIP) may allocate multiple blocks—one block
per component. Each call to the dd alloc () may pass the
requested memory size together with location information
used to assemble hierarchical path uniquely identifying the
location of the decoded buffer within the original payload.
Decoding paths may be used to report Successful identifica
tions as well as to provide statistics and decoding progress
information.
0269. The memory requested by the dq alloc ()’s caller
may not be available for physical reasons or as the result of

May 28, 2009

artificial restriction. Each module may have its own memory
cap, so that every process may stay within its limits and the
overall system performance may not depend on the assump
tions that the incoming data is always correct. Some decoders
like ZIP may only provide estimated size for the decoded
memory block; one or more decoders may be ready to accept
smaller blocks and thus be limited to partial decoding. All
decoders may be written to Support partial decoding.
0270. Format Recognition and Decoding
0271 Decoders may be called via a common Decoder
API's decode () method. Each decoder may perform its own
format recognition and may return format not recognized
result in case of mismatch or internal decoding failure. If
decoder has allocated data blocks viadq alloc (), it may free
them via da clear () before returning the not recognized
result. A decoder can produce partial results due to memory
restrictions; this may not be considered a failure. As soon as
a buffer is decoded, its memory may be freed and excluded
from the loop (effectively replaced by one or more decoded
buffers).
0272. In addition to memory limits, the Content Decoder
may set a separate limit on the length of the decoding queue,
limiting the size of the decoding tree' (see, for example, FIG.
18) and, as a result, the time needed to decode all its elements.
In high-load setting this may allow to balance the need to
decode every component of the given payload with the need
to finish decoding before the next payload becomes available.
The default value of the queue length parameter (DQ MAX
LEN) may be 100 (or more or less).
0273. The fact that the decoding queue may be limited
may impact the decoding tree traversal strategy. The Content
Decoder may use depth first strategy, giving, for example,
preference to decoding at least some blocks to the end
instead of incomplete decoding of larger number of blocks.
0274 Scanning
0275 Data buffers for which no (more) suitable decoders
may be found or no more decoding is possible due to the
artificial limitations (e.g., leaves of the decoding tree) may
be sent for inspection Such as, for example, keyword and
MCP scanners. Each payload may get inspected in raw
and/or decoded form.

Content Scanning
0276 Content scanning may be aimed at preventing unau
thorized transfers of information (e.g., confidential informa
tion and intellectual property).
(0277 Keyword Scanner
0278 Keyword Scanning may be a simple, relatively
effective and user-friendly method of document classifica
tion. It may be based on a set of words, matched literally in the
text. Dictionaries used for scanning may include words inap
propriate in communication, code words for confidential
projects, products, or processes and/or other words that can
raise the Suspicion independently of the context of their use.
Some context information can be taken into account by using
multi-word phrases, but for larger contexts this may lead to
combinatorial explosion.
0279. One embodiment of an Automatic Keyword Discov
ery (AKD) tool can discover keywords and/or keyphrases; a
threshold on the length of the keyphrase can be entered as a
parameter. The AKD tool may accept a list of files, extract the
textual information, and prepare word and/or phrase fre
quency dictionaries for "positive' training sets (e.g., docu
ments belonging to the “protected class). These dictionaries

US 2009/O 138945 A1

may be compared against standard dictionaries and/or dictio
naries prepared from negative training sets (e.g., representing
“other documents). A standard Bayesian classification pro
cedure (see, for example, Cheeseman, P., Self. M., Kelly, J.,
Taylor, W., Freeman, D., & Stutz, J. (1988). Bayesian classi
fication. In Seventh National Conference on Artificial Intel
ligence, Saint Paul, Minn., pp. 607-611.) may be used to
assign weights to keywords and/or keyphrases whose fre
quencies on the positive sets are significantly different from
frequencies on the negative sets. In the end, normalized
weights may be assigned to one or more keywords and/or
keyphrases, they are sorted and the tool returns, for example,
top 100 (or more or less) for manual inspection.
0280 Lists of weighted keywords and/or keyphrases may
be loaded into Keyword Scanner component that may scan
each chunk of data coming out of the payload decoder for the
presence of keywords. Matching may be performed by a
single-pass matcher based on a setwise string matching algo
rithm (e.g., Setwise Boyer-Moore-Horspool) (see, for
example, G. A. Stephen. String Search Technical Report
TR-92-gas-01. University College of North Wales, October
1992). The matches, if any, may be evaluated by a scoring
function, and if a preset score threshold is reached, an alert
may be generated.
0281 AKD Tool Data Flow
0282. The AKD tool can discover both keywords and key
phrases based on customer-specific data such as, for example,
proprietary documents and/or databases. AKD may be based
upon the traditional naive Bayesian learning algorithm.
Although this algorithm is rather simple and its assumptions
are almost always violated in practice, recent work has shown
that naive Bayesian learning is remarkably effective in prac
tice and difficult to improve upon systematically. Probabilis
tical document classification may be one of the algorithm's
application area.
0283. The algorithm may use representative training sets
for both positive and negative data (e.g., documents) (see, for
example, FIG. 19). The sets may be used to assemble word/
phrase frequency dictionaries. The dictionaries for positive
and negative sets may then be compared and the words/
phrases may be assigned Bayesian probability estimates.
Words/phrases with high estimates can be used to guess the
type of the sample document because of their close associa
tion either with positive or with negative training samples.
Words/phrases from the combined dictionary may be sorted
by the resulting weights and the algorithm may return, for
example, the top 100 of them.
0284. The negative set may be large, for example, com
bining locally calculated frequency dictionary for the nega
tive set with a public frequency dictionary for business cor
respondence. In specific application areas, domain-specific
frequency dictionaries can be used to represent negative train
ing sets.
0285 Positive training set may be used to calculate posi

tive frequency dictionary. Since the dictionaries sizes can
vary, the frequency counts in both dictionaries may be nor
malized using respective counts for three most often used
English words (e.g., the’, ‘of’. and). Non-English applica
tion areas may use specialized normalization rules (e.g., nor
malize by total word counts).
0286. In addition to basic word frequency-based pass that
produces keywords, AKD may allow one to derive key
phrases. Key phrases may be more useful than keywords
because of their higher precision, but direct combinatorial

May 28, 2009

enumeration may result in enormous dictionaries of very low
practical value. AKD may use a non-combinatorial approach
that may be suited for mixed text/binary files such as, for
example, database records. It may be based upon the text
string extraction algorithm equivalent to the one provided by
Unix strings utility. Data files may be marked up to deter
mine the places where data stream is interrupted (for
example, switches from binary to text or vice versa); short
text strings between two interruptions are taken as key
phrases. These key phrases may then be identified in the
negative training set and the respective key phrase frequency
dictionaries may be created. These dictionaries may be used
in a manner, similar to keyword dictionaries described above.
0287. When the most useful keywords/key phrases are
identified and their weights are calculated, the last act may be
to calculate maximum frequencies. Maximum frequencies
may be used to limit the sensitivity of the Keyword Scanner to
high number of keyword matches that usually causes false
positive identifications.
0288 Maximum frequencies may be calculated using the
same normalized frequency dictionaries. To lower scanner's
sensitivity, the average number of matches per 1000 bytes of
training data multiplied by two may be taken as the limit for
useful keyword/key phrase matches. All matches that go
beyond this limit may be ignored (e.g., they do not contribute
to the final score).
0289
0290 Keyword Scanner may be based on a setwise string
matching algorithm. For example, the Keyword Scanner may
use setwise extension of Boyer-Moore-Horspool algorithm
that uses a Finite-State Automata (FSA). Set of input strings
(e.g., keywords and/or key phrases) may be turned into a FSA
using the same technique as in Lex Scanner tool. In addition,
Boyer-Moore-Horspool skip table may be added to achieve
Sublinear search time. The performance of the algorithm may
not grow with the number of the keywords/key phrases,
although the memory requirements may grow. Also, the algo
rithm's performance may depend on the length of the shortest
string in the set (e.g., really short Strings may turn the perfor
mance to linear and slow down the algorithm).
0291. The matching may be performed “in parallel”.
meaning that the algorithm may need only one pass over the
data (see, for example, FIG. 20). All matches may be flagged
in a separate match counts array. The array may contain one
counter per keyword/key phrase.
0292. Initially, all counters may be set to zero. For each
match, the respective counter may be incremented. When the
scanner reaches the end of the data block, the counters array
may be normalized to reduce the importance of frequent
matches according to the preliminary profiling done by the
AKD tool. This tool can discover both keywords and key
phrases based on customer-specific data such as, for example,
proprietary documents and databases. Each discovered key
word/key phrase may be returned with two associated num
bers: the score for each match and the maximum number of
matches per 1000 bytes of input data. Both numbers may be
calculated based on the training data; they may reflect the
relative importance of the keyword and its expected fre
quency.

0293 Normalization may limit each match counter to be
less than or equal to the maximum match count for the given
keyword/key phrase (e.g., adjusted to the size of the input
buffer). After that, the counters may be multiplied by the

Keyword Scanner Data Flow

US 2009/O 138945 A1

corresponding match scores, Summed up and normalized to
get a per-1000 bytes output score.
0294 To estimate document match, Keyword Scanner
may compare the output score with the configurable threshold
value.
0295. Initialization
0296. The module may be initialized by loading key
words/key phrases data from external files, specified via -k
parameter to the Extrusion Prevention module, for example,
via a loadkwV () routine. The command line may be stored in
the common configuration file; keyword files may be gener
ated by the AKD tool from user's sample data files. Each
keyword file may contain the identification information (e.g.,
training set name), one or more alert information records
(e.g., alert ID, description, and score threshold), and the list of
keyword/relative score/match limit triples. A new memory
block may be allocated for each keyword file; loaded keyword
files may be kept in a chain and used to calculate the corre
sponding scores.
0297. After loading keyword files, the module may regis

ter itself to accept data coming from the Content Decoder.
Also, to be able to generate alerts, it may establish the con
nection with the platform's Alert Facility.
0298. The last initialization act may be building FSAs for
keyword files. Each set of keywords may be used to calculate
a finite state automaton, for example, based on Aho-Corasick
prefix tree matcher. The automaton may be structured so that
every prefix is represented by only one state, for example,
even if the prefix begins multiple patterns. Aho-Corasick
style FSAs may be accompanied by Boyer-Moore-Horspool
skip tables calculated from the same string sets. An FSA
together with the corresponding skip table may scan the data
for all keyword matches in one pass. The algorithm used may
be Setwise Boyer-Moore-Horspool string search.
0299 For each incoming data block, the list of matching
scores may be calculated, one score per the loaded keyword
file. To calculate the score for a keyword file, afsa search ()
procedure may be called with the corresponding FSA and
skip table as parameters. The fisa Search () procedure may
register all keyword matches by incrementing match counters
in the counter array. The array may contain one counter per
keyword/key phrase; the counters may be initially set to Zero
and incremented on each match.
0300 When the search is over, counters may be used to
calculate the data block's score for the given keyword set. To
calculate the score, each counter may be checked against the
respective match limit, loaded from the keyword file. If a
counter is greater than its match limit, its value may be set to
the match limit. When all the counters are clipped this way,
they may be multiplied by the respective relative score values,
loaded from the keyword file. The counters multiplied by
relative scores may be added up and the result may be nor
malized, for example, to 1000-byte block size yielding the
final score for the given keyword file.
0301 The final scores may be compared with thresholds,
stored in the corresponding alert information record (AIR)
lists loaded from keyword files. The largest threshold less or
equal to the given score defines what alert may be generated;
all the necessary information to generate the alert may stored
in the corresponding AIR.
0302 Multidimensional Content Profiling (MCP) Scan

0303 Like keyword scanning, MCP can capture charac
teristics (e.g., essential characteristics) of a document and/or

May 28, 2009

a data file, while tolerating variance that is common in the
document lifetime: editing, branching into several indepen
dent versions, sets of similar documents, etc. MCP can com
bine the power of keyword Scanning and/or digital finger
printing (Tomas Sander (Editor), Security and Privacy in
Digital Rights Management, ACM CCS-8 Workshop DRM
2001, held Nov. 5, 2001 in Philadelphia, Pa., USA.).
0304 Content Profiling may be a combination of tech
niques targeted at identification of documents belonging to a
certain document class. Documents in the same class share
similar statistical characteristics, for example, determined in
the course of a preparatory process called profiling. An Auto
matic Content Profiler (ACP) tool may accepta representative
set of documents belonging to the class (positive training set),
accompanied, if necessary, with a negative training set (docu
ments similar to, but not belonging to the class). The profiling
process for a class may be performed only once; the resulting
set of statistical characteristics (e.g., the profile) may be used
to test for membership in the class.
0305 The quality of the profile may depend on the ability
of the profiling algorithm to capture characteristics common
to all documents in the class; it can be improved by use of
multiple unrelated characteristics of a different nature. Each
characteristic may define a dimension (e.g., a quantitative
measure varying from one document to another). The content
profiling component may use more (or less) than 400 different
characteristics calculated, for example, in real time for all
data passing through the network. Each document (e.g., data
chunk returned by the Payload Decoder) may be mapped to a
single point in a multi-dimensional space; its position in this
space may be used to calculate class membership (member
ship in more than one class can be identified) and may trigger
an alert and/or reactive measures.
0306 Content profiling methods has been used by crypto
analytics for many years. Although still valuable, simple sta
tistical characteristics work best when complemented by high
level statistical methods, operating on larger elements such as
words and sentences.
0307. A multi-dimensional profiler may operate with a
combination of about 200 low-level statistical measures and
100 or so high-level ones. High-level statistic properties may
be designed with certain business-related problem areas in
mind (e.g., protection of confidential personal information
related to individuals health records, bank account informa
tion, customer lists, credit card information, postal addresses,
e-mails, individual history, SSN, etc.); it can be re-targeted to
other areas by adding new domain-specific dimensions.
0308. In addition to individual high- and low-level char
acteristics Summarizing overall usage of the given elements,
the profiler may have over 100 dimensions dedicated to spa
tial structure of the document, including mutual co-occur
rence and arrangement of the elements. As an example, it can
capture the fact that in postal addresses, state names and ZIP
codes have very similar frequency, interleaving each other
with ZIP codes closely following state names. Spatial analy
sis may be used for capturing the overall structure of a docu
ment; indexes, lexicons, and other types of documents that
can have usage patterns similar to the target class may not
easily fool it.
0309 When the ACP tool profiles a training document set,

it may generate as many points in the multidimensional
attribute space, as are documents in the set. Each point rep
resents an individual document (or a section of a document)
and may be marked as '+' (in a class) or '-' (not in a class).

US 2009/O 138945 A1

The final learning act may calculate the simplest partitioning
of the attribute space that separates “+” and '-' points with
minimal overlap. This partitioning may be automatically
“digitized' into a data-driven algorithm based on Finite State
Automata (FSA) that serves as a fast single-pass scanning
engine.
0310. The FSA generated by the profiler may be loaded
into the MCPScanner component that inspects each chunk of
data coming out of the payload decoder. A probabilistic mea
sure of membership in the class of “protected documents
may be calculated for each data chunk. If a preset threshold is
reached, an alert may be generated.
0311 MCP-generated alerts may be combined with alerts
produced, for example, by Keyword Scanner on relative
weight basis, depending on document type. The combination
of content Scanning methods leads to reliable recognition of
protected data.
0312 The MCP module may work in first-in-class Extru
sion Prevention system. Prevention mode may mandate real
time analysis and malicious session termination before the
data is fully transferred. An API may allow for an arbitrary
(configurable) number of connection points, each point may
send reference to the reassembled session data to up to 32
content-scanning modules running in parallel with the main
packet capturing cycle. Each connection point may be Sup
plied with links to reassembled session data on a round-robin
basis. Connection Point itself may be implemented as a ring
buffer, for example, combining FIFO abilities with automatic
overflow protection. It may hold the last 128 sessions and
track each module's position in the buffer independently,
effectively smoothing out spikes in the traffic and differences
in content analysis module processing speed.
0313 Experience shows that for network traffic usual for
Small-to-medium companies it may be enough to use 2-pro
cessor Intel-based hardware with fast NICs. Larger compa
nies or congested network lines may use more processing
power in 4-processor servers.
0314 ACP Tool Data Flow
0315. The Automatic Content Profiler (ACP) tool may
accept a representative set of documents belonging to the
class (positive training set), accompanied, if necessary, with
negative training set (documents similar to, but not belonging
to the class). The profiling process for a class may be per
formed only once; the resulting set of statistical characteris
tics (the profile) may be used by the MCP Scanner.
0316 ACP tool may operate in three phases (see FIG. 21).
First, all documents in the positive and negative training sets
may be measured by the same algorithm used at run-time by
MCP Scanner. The algorithm may represent each document
as a point in a multidimensional space (one dimension per
statistical attribute, 420 dimensions (more or less) total). The
final scoring act of the scanning algorithm may not be used,
because scoring may require an existing profile. At the end of
the first phase there are two sets of points, for example, in
420-dimensional space; the sets may correspond to positive
and negative training sets.
0317. The resulting sets may overlap to various degrees
along different dimensions. The job of the second phase may
be to find practical set of hyperplanes to effectively separate
points representing positive and negative sets (see FIG. 22).
Since the algorithm may be statistical by nature, a probabi
listic criteria may be used to determine separation quality.
Bayesian conditional probability of improper classification
as a function of hyperplane position may be minimized by a

May 28, 2009

simple descent algorithm. To improve run-time performance
of the scanner, one may use only hyperplanes orthogonal to
one of the axes (one may work with the projection to a single
dimension). This method produces simple-to-execute pro
files; its quality may be sufficient in most cases due to the
number (e.g., large number) of dimensions considered. If the
minimal useful separation quality for the given dimension is
not achieved, the dimension may be ignored. The overall
quality of the combined set of separation hyperplanes may
also be evaluated by Bayesian probabilistic criteria.
0318 When the set of hyperplanes is calculated, the final
act may be to convert it to the format that can be loaded into
the scanner (e.g., a profile). MCP Scanner may interpret pro
files with the help of a machine (e.g., a virtual machine
(“VM) that can perform about 20 simple arithmetical opera
tions on normalized dimensions). Using VM instead of hard
coded parameterized score calculator allows some flexibility
in executable representation of separation Surface; it can be
used as-is for non-orthogonal hyperplanes or hand-coded
profiles (profiles may have readable ASCII representation
that can be edited manually).
0319. The resulting profiles can be loaded into MCPScan
neratinitialization time. MCP Scanner may support multiple
profiles; for each data block, the measurement algorithm may
run once; the score calculation algorithm may run as many
times as there are profiles loaded.
0320 Maximum frequencies may be calculated using the
same normalized frequency dictionaries. To lower scanner's
sensitivity, the average number of matches per 1000 bytes of
training data multiplied by two may be taken as the limit for
useful keyword/key phrase matches. All matches that go
beyond this limit may be ignored (they do not contribute to the
final score).
0321) MCP Scanner Data Flow
0322 MCP Scanner may be based on a Finite-State
Automata (FSA). FSA may be encoded as a set of code
fragments representing each state and a set of jumps that
transfer control from state to state (see, for example, FIG. 25.
showing level 1 states, tracking the calculations, related to
low-level features (e.g., character and numerical counters).
Additional state may be stored in extra state variables to allow
the calculation of high-level features.). FSA starts in the ini
tial state and may stop when the input stream is empty. Each
fragment representing a state encodes the set of actions
depending upon the value of the next data byte/character
extracted from the input stream. MCP’s FSA may be hard
coded; it may implement an algorithm that calculates a num
ber of running counters, for example, in parallel. MCP may
use 500 running counters (or more or less); each state may
update some of them, based on the input byte. There are
multiple MCP counters with different meaning:

0323 Character counters: Number of characters of a
certain class

0324 Character position counters: Last position of a
character of a certain class

0325 Character distance counters: Sum of distances
between characters of a certain class

0326 Numerical value counters: Running values of
decimal numbers (SSN/CCN/...)

0327 String value counters: Running values of strings
(e.g. top-level domain names)

0328 Feature counters: Number of high-level fea
tures of different types

US 2009/O 138945 A1

0329 Feature position counters: Last position of high
level features

0330. Feature distance counters: Sum of distances
between certain features

0331 MCP may update counters in order (see FIG. 23):
features may be calculated based on current FSA state, values
of character counters and contents of the numerical/string
value counters. Each feature may be validated either by look
ing it up inahash table of predefined features (this works with
two-letter state abbreviations, ZIP codes, top-level domain
names and e-mail addresses) and/or by a dedicated validator
algorithm (checksums or ranges for SSN and CCNs). When a
feature such as an SSN is calculated, the algorithm may
update respective high-level counters. Two-layer structure
may allow effective one-pass parallel calculation of mul
tiple characteristics of input data.
0332. When all data is processed, the counters may be
used to calculate the values of output dimensions: relatively
independent characteristics of input data. Each dimension
may be based on values of one or more counters. Dimensions
may be calculated by normalizing counter values; normaliza
tion may include the following operations:

0333 dividing counters by the total number of bytes
0334 subtracting counters from each other to get rela
tive delta measures

0335 dividing counters by each other to get relative
factor measures

0336 subtracting and dividing derived measures
0337 MCP's FSA may be tailored toward domain-spe
cific dimensions (e.g., customer/client information), but is
not specific to a particular customer. MCP’s FSA may calcu
late a plurality (e.g., 420) output dimensions.
0338. The last act may be calculating output score (see
FIG. 24). This act may use data prepared by a separate MCP
Profiling tool that builds statistical profiles based on customer
data. Profiles may be multidimensional Surfaces separating
the multi-dimensional (e.g., 420-dimensional) space onto
two subspaces, one of which corresponds to the set of target
documents (the data that needs to be identified). MCP may
represent the dividing Surface as a set of hyperplanes, each
cutting the space onto two subspaces, one of which contains
the target Subspace.
0339 Calculating target subspace membership may use a
series of calculations for each hyperplane; if the point in
question is on the right side of all hyperplanes, it belongs to
the target Subspace. The output score may be calculated as a
Sum of distances between the given point and all hyperplanes
(being on the wrong side of a hyperplane is treated as nega
tive distance). The score may be calculated by a simple virtual
machine (MCP Score VM, see Table 1 below), “pro
grammed by the ACP Tool. The positive score may not
guarantee proper subspace membership; the negative score
may guarantee non-membership. Since multidimensional
surfaces, calculated by the MCP Profiling tool may be just
approximations of the real document membership, proper
membership in target Subspace may not be a requirement. To
estimate document membership, MCPScanner may compare
the output score with the configurable threshold value.
0340 Implementation Details
0341 The module may be initialized by loading profile
data from external files, for example, specified via -fparam
eter to the Extrusion Prevention module via a loadfpV()
routine. A command line may be stored in the common con
figuration file; profile files may be generated by the ACP tool

May 28, 2009

from user's sample data files. Each profile file may contain the
identification information (profile name), one or more alert
information records (alert ID, description, and score thresh
old), and the list of MCP Score VM instructions. A new
memory block may be allocated for each profile; loaded pro
files may be kept in a chain and used to calculate the corre
sponding scores.
0342. After loading profiles, the module may register itself
to accept data coming from the Content Decoder. Also, to be
able to generate alerts, it may establish the connection with
the platform's Alert Facility.
0343 For each incoming data block, MCP Scanner may
calculate the set of output dimensions. Output dimensions
may be calculated from the array of running counters. This
array may include a plurality (e.g., 8) of Subdivisions:
0344) 1. Uppercase letter counters (UC division)
0345 2. Lowercase letter counters (LC division)
0346 3. Zip code counters (ZIP division)
(0347. 4. State abbreviation counters (STE division)
0348 5. Email address counters (AT division)
0349 6. Top-level domain names counters (TLD division)
0350 7. Credit card number counters (CCN division)
0351 8. Social Security number counters (SSN division)
0352 Each subdivision may include about 60 counters (or
more or less), tracking values, positions, and/or distances. All
counters may be 32-bit integers except for specialized ones,
used to track SSNs and CCNs (e.g., 64-bit integers may be
used for long numbers). High-level values may be validated
by specialized validation algorithms; for all divisions except
SSN and CCN, the validation part may include looking up the
collected information in a pre-Sorted array of legal values via
bsearch () routine. For SSNs and CCNs, specialized valida
tion code may make Sure that numbers are in allowed ranges,
do not contain impossible digits and pass the checksum test.
0353 Calculation of relative positions of low- and high
level elements may be based on distance counters. Each Sub
division, for example, may employ 50 distance counters (or
more or less), counting occurrences of two features of the
same type spaced out by 0-49 characters respectively. For
lowercase letter, the distances to the most recent uppercase
letter are counted; for high level features, additional counters
track the distances between ZIP codes, top level domain
names and email addresses. Taken together, the counters may
capture document structure, typical for user records, contain
ing a combination of a name, postal address, email address,
Social security and credit card numbers in correct order (some
elements can be absent).
0354) MCPScanner may interpret profiles with the help of
a simple virtual machine (MCP Score VM) that can perform,
for example, about 20 simple arithmetical operations on nor
malized dimensions. Using VMinstead of hard-coded param
eterized score calculator may allow some flexibility in
executable representation of separation Surface; it can be used
as-is for non-orthogonal hyperplanes or hand-coded profiles
(profiles have readable ASCII representation that can be
edited manually). Due to simple nature of multidimensional
surfaces, calculated by the MCP Profiling tool, only 5 opera
tions (or more or less) may be used:

US 2009/O 138945 A1

TABLE 1.

Common Score VM commands

VM Operation Description

Adds a difference between counteri and
constant c
Adds a difference between counteri and
constant c, scaled by S
Adds an inverted difference between counter
i and constant c
Adds a difference between counteri and
constant c, scaled by S
Adds an absolute difference between counters
i and, scaled by S

FPOP GTi, c)

FPOP GTS i, c, s.

FPOP LTDi, c)

FPOP LTS i, c, s)

FPOP DIFF i,j, s)

0355 Each command may add a certain value to the run
ning score counter, initially set to Zero. The resulting score
may be normalized to 1000 bytes and be compared with
thresholds, Stored in the corresponding alert information
record (AIR) lists. The largest threshold less or equal to the
score defines what alert may be generated; all the necessary
information to generate the alert may be stored in the corre
sponding AIR.

Rogue Encryption Detection
0356. The increased computing power of modern proces
sors together with the development of e-commerce technolo
gies brought to the desktop computer market many high
quality cryptography algorithms formerly available only for
special-purpose government projects. It is hard to overesti
mate the benefits of the new technologies for Internet shop
pers and high-tech businesses—increased confidentiality and
security became a necessity in the era of total computeriza
tion. Like many technological advances though, strong
encryption is a double-edged Sword: By guaranteeing privacy
and security to all communications, it conceals illegal activi
ties such as, for example, theft of intellectual property.
0357 “Rogue' encryption is recognized as a new threat to
computer networks. The proliferation of wireless LANs, ad
hoc setups, and “semi-public' and unsanctioned VPNs makes
networks more Vulnerable to unauthorized access from out
side. There is also a trend in businesses that rely on modern
computer technologies to encrypt every transaction and com
munication channel, making the situation even worse. IT
personnel can no longer tell which connections are autho
rized: An encrypted connection to Somebody's home com
puter is often indistinguishable from an authorized connec
tion to an e-commerce server. Setting up an unsanctioned
VPN becomes easier. The increasing popularity of P2P soft
ware adds to the corporate network's Vulnerability: Software
that masquerades as legal e-commerce traffic by tunneling
through HTTP can become installed even without the explicit
user's request (e.g., as a side effect of installing something
else). Unsanctioned VPNs create “holes' in perimeter
defense; as soon as it becomes possible to transfer proprietary
data to or operate intranet computers remotely from unautho
rized locations, the perimeter defense is effectively gone.
0358 Given this trend, some computer security experts
recommend focusing on internal defense by securing each
individual computer on the intranet as if it were directly
accessible from any point outside the company's firewall.
This strategy partially addresses the problem, but the total
cost of such a solution is usually prohibitive: While the num
ber of computers constituting the “perimeter' is usually very
Small and grows slowly, the entire intranet is much larger and
growth at higher speed and would require constant attention

May 28, 2009

(for example, patches and new service packs usually conflict
with security Software installed on the same host). Taking into
account the lack of properly trained security personnel, going
after each internal computer is not practical in most organi
Zations.
0359. In comparison, a more straightforward and eco
nomical solution is to monitor and control all outside connec
tions limiting encryption to sanctioned sessions only (for
example, inter-departmental VPNs and a limited amount of
well-known e-commerce sites). This solution preserves the
low total cost of maintaining perimeter defense; internal com
puters need to be secured in a regular way, as they used to be.
Controlling rogue communication channels adds only a small
fraction of the potential cost of a “total internal security”
Strategy.
0360. A solution for this problem may contain a Rogue
Encryption Detector (RED) component keeping track of all
secure connections and alerting security personnel when an
unauthorized VPN-like channel is established. As an addi
tional benefit, it may constantly check for encrypted sessions,
which parameters are outside the established range for
encryption strength, version of protocol, etc.
0361 RED component may be configured by providing a
set of legal parameters (Sources, destinations, protocols, key
length, etc.) for encrypted traffic crossing the boundaries of
the Sensitive Information Area; it may differentiate between
common e-commerce activity (such as buying a book on
Amazon's secure server) and attempts to establish secure P2P
channels. Authorized VPN can be specified in RED's allowed
Sources/destinations/ports lists so that normal inter-office
traffic may not cause any alerts.
0362 RED may operate as a dedicated process getting its
information, for example, from reassembled TCP session
data feed. On-the-fly TCP session reassembly may allow SSL
session and its attributes to be properly recognized. Each
session may be checked for encryption (e.g., all common
variations of SSL/TLS may be recognized) and if it is
encrypted, its parameters (client IP server IP ports, duration,
version, etc.) may be compared with a list of authorized
VPNs. Regular e-commerce traffic may be allowed by default
by treating short sessions initiated from inside separately.
0363 The information gathered by the RED component
may be sent to the centralized event processor and forwarded
to a console where it may be stored and processed together
with other related events coming from multiple sensors. This
allows for correlation between "rogue VPN attempts and
other network policy violations as well as providing for cen
tralized forensic information storage and data mining.
0364 RED Data Flow
0365 RED may operate on reassembled TCP sessions
provided, for example, by the TCP session reassembler mod
ule. RED may determine if the session being analyzed is
encrypted and if it is, determine if encryption parameters
match the policy specified in the configuration file.
0366 RED may be configured to detect SSL and/or TLS
sessions (e.g., SSL version 2.0 and above, TLS version 1.0
and above). RED may not have access to key material. So it
may not decrypt the contents of the session; however, the
initial handshake and cipher Suite negotiation messages may
be sent in the clear, so the session may be encrypted and the
chosen cipher suite may be available to the detector.
0367 RED may follow the layered structure of the proto
cols and decode the layers to get access to the information
being exchanged. SSL v2.0 and SSLv.3.0/TLS 1.0 have dif
ferent record and message formats and may be handled by
separate decoding procedures, but the overall decoder func
tionality may be the same (see FIG. 26).

US 2009/O 138945 A1

0368 First, RED may decode SSL/TLS record protocol
layer to examine messages carried on top of it. Next, RED
may identify ClientHello and/or ServerHello messages, con
taining the information on the negotiated cipher Suite.
0369. If on any of the above acts the decoding fails, RED
may consider the session unencrypted. Security protocols
may be strict and the connection may not be established with
incorrector missing data. If the decoding Succeeds, RED may
obtain the information on the initial cipher suite to be used to
encode the conversation (the cipher Suite can be changed in
the middle of the conversation, but since this is not done in the
clear, RED may not track the Subsequent changes).
0370 Given that the session is encrypted and the cipher
suite that is used to encrypt the content, RED may perform the
following checks:

0371 according to local policies, the given communi
cated parties can establish a secure connection

0372 the cipher suite may be strong by today's stan
dards

0373
range

0374 RED's configuration file may allow one to specify
which parties (IP addresses) can establish the secure channels
(client and server are distinguished, so there are separate
limits on initiators of secure connections). For each Such
record, there may be information on allowed ports, the limit
on total duration of the connection, and the minimum strength
of the cipher suite. Ports may be used to restrict the services
being encrypted (e.g. HTTP); limits on duration may be used
to distinguish short sessions used in SSL-based c-commerce
from longer, potentially illegal sessions. If a connection is
allowed, its cipher Suite strength can be compared to a mini
mal acceptable level specified for this connection.
0375 All attempts to establish connections not explicitly
allowed by the configuration may be detected and sent in a
form of alerts to the alert processing backend of the system.
Depending on its configuration, the alert can be reported to
the operator and/or immediate action can be taken (breaking
down the ongoing connection).

the duration of the communication is in allowed

Process Manager
0376 An application built on the Network Content Analy
sis Platform (“NCAP) may include, for example, several
UNIX processes working in parallel. The number of pro
cesses and their functions may vary. On the other hand, the
following functionality may be provided: start, stop, and
reconfigure. Reconfiguration may be needed just for a spe
cific group of processes representing some particular function
or module, while the rest of the application should continue
without losing any shared data.
0377 The start and stop requests may be issued by an
OS during the normal bootup/shutdown sequence. The
reconfigure request may come from an automated download
facility to perform on-the-fly reloading of a particular mod
ule, (e.g., ruleset update procedure). The total reconfiguration
time may be minimized: During this procedure the applica
tion may be only partially operational.
0378. The startup procedure may launch several NCAP
modules (see FIG. 27). These modules may allocate and/or
require different IPC resources to perform their functions.
Although IPC deadlock dependencies may be resolved at the
application planning stage, the start sequence may be auto
matic and reliable to allow for robust module recovery in case
the needed resource is not immediately available.
0379 Additional features that sometimes make the life of
a Support person easier: the ability to issue the reconfiguration
requests manually; the ability to manually start/stop the entire

May 28, 2009

application; and the ability to list currently running processes
with all the necessary internal information not available via
standard system utilities.
0380. One embodiment of a Process Manager may be
configured to provide a reliable process that serves as a
launcher/monitor for the entire NCAP-based application. Its
features may include:

0381 Flexible configuration; support for an arbitrary
number of programs.

0382 Standard error reporting facility.
0383 Automatic module recovery.
0384 Recovery overload protection: If a module dies
immediately after launch several times in a row, next
time it will be restarted after a delay until the underlying
issue is resolved.

0385 Standard reconfiguration facility restarts a speci
fied module group preserving the application's shared
data.

0386 A special control utility may also be developed that
connects to the main management process using yet another
IPC channel after proper authorization. It may support listand
reload group commands, providing a generic interface for
automatic upload facilities.

Event Spooler
0387. One embodiment of an Event Spooler may provide
a generic API for event handling. It may also collect statistics
and processes, filters, and reliably transfer data over the net
work using an encrypted channel. It may further work in start
and forget mode in the harsh conditions of real-life networks.
(0388 NCAP may deliver information in the form of
events. An event may be the minimal essential piece of infor
mation Suitable for independent processing and, later, storage
and data mining. Events generated may be transferred to an
Event Processing/Data Mining Console, for example, in a
timely and reliable manner. The Event Processing module
may apply additional layers of processing, storing the result
ing information in a database, and sending SNMP and/or
e-mail alerts if necessary.
0389 Events generated by various NCAP modules may be
stored in spool files. Modules may also use IPC to store
real-time statistical data (e.g., number of packets processed,
protocol distribution, module-specific information). Statisti
cal data may be reset in case of an accidental power outage.
Event data may have a file system level. As an additional
benefit, buffered event streams can be backed up in a com
pressed form to allow archive storage/reload to the central
ized event database.
0390 The Event Spooler can be configured to monitor an
arbitrary number of event spool directories and statistical data
blocks. It may independently monitor different data sources.
Each event spool file may be processed by a dedicated UNIX
process (Spool Monitor) in FIFO order. Each statistical block
may be polled regularly by a Status Collector process with
configurable intervals. Spool Monitors may generate inde
pendent binary checkpoint files containing complete infor
mation about the Monitor's current state. The Event Spooler
may be able to continue from the last incomplete transaction
on each queue in case of a power cycle.
0391 The Event Spooler may be a modular application. It
may collect and route data in the form of logical streams (e.g.,
event stream, statistical stream, etc.). It may have an API for
load on demand data-processing modules (plug-ins). Each
stream can be associated with an arbitrary number of plug
ins. Plug-ins may be the only modules that have knowledge
about a particular stream's internal structure. The Event

US 2009/O 138945 A1

Spooler may provide general-purpose MUTEX-like
resources that can be shared between several data processing
modules if so configured. Such architecture allows for easy
expandability and reduces code maintenance efforts. Adding
a new data type handling (e.g., TCP session data) into Event
Spooler translates to mere efforts of changing the configura
tion file and writing a plug-in that recognizes this data type.
0392. In addition to the event compression algorithm
working on the sensor side, the Event Processing module may
perform event processing (e.g., post-processing) and correla
tion upon receiving the data. A reliable and secure network
data transfer may be developed using UDP-based network
protocol with the following built-in features: checksum veri
fication, packet or session-level retransmits with a Retransmit
Time Calculation algorithm, server side ACL verification,
on-the-fly data compression and encryption. The Event Pro
cessing module may run the server part (Netspool) of the
Event Spooler listening, for example, on port 80/UDP. It may
accept data streams from each authorized sensor, tagged by
the sensor's name. Based on the logical stream type, NetSpool
may send the data to additional processing and call a plug-in
to store the data. Based on the configuration, it can also
generate e-mail/SNMP messages and send the original data
for further processing. In case of network outage, Spool
Monitor and/or Netspool may try to send the data for up to 30
minutes (with gradually increasing timeout interval) and then
exit. The finished process may be restarted by the main Event
Spooler process and continue the incomplete transaction. The
cycle may persist until the data is successfully sent.
0393 FIG. 28 shows one embodiment of a diagram of the
Event Spooler working in distributed mode. A Sensor also has
NetSpool process running; it may allow local client connec
tions only. Although Spool Monitor and Status Collector can
send data, it may have only one source of data stream per
appliance. The configuration may provide automatic
MUTEX-style locking for every module on the sensor host.
0394 The Event Spooler may collect and transfer events,
for example, generated by all modules within an NCAP
based application. The event spooler may be implemented as
a multi-process distributed application with specialized Sub
processes that may use UNIX IPC and networking to com
municate with each other and the rest of the system.
0395. A list of sub-processes that may be included in the
Event Spooler application follows:

0396 alerta: collects events from the analysis modules
using UNIX messaging. Filters out events that are dis
abled by the user

0397 evspool: the spooler process manager
0398 status collector: saves the shared statistics pool
0399 spool monitor: takes event data from a particular
spool directory

0400. The Process Manager may start the alertd process
(see FIG. 29), attaching to the IPC message pool and/or
mapping the alert map from a file. It may then wait for
incoming event frames. Receiving a frame, it may decode the
alert id information from the frame and check it against the
alert map set. If the alert id is permitted to send, the alerta
process may put the frame into the spool file.
04.01 The alert frame may be taken from the spool file by
the spool monitor, which may be running under evspool
Supervision. Spool monitor's task may be to pick up frames
from the spool file one by one, prepend each frame with a
stream label and sensor name, track current spool pointer in
the checkpoint file and send the resulting frame to the
netspool process. The data may be sent via proprietary, reli
able and secure UDP-based protocol. The event data may be
kept in the spool file until it is sent. The specially-developed

May 28, 2009

network protocol and checkpoint file may ensure that the
application withstands network outages and hardware
reboots.
0402 Netspool process may receive the frame and,
depending on the configuration, may send it to another
netspool or send it to local database plug-ins, or both. Data
base plug-ins may be implemented as load-on-demand
dynamic libraries. The additional layer of post processing
may includes event correlation.
0403 Netspool may also collect information from the sta
tus collector. Status collector may make a copy of the shared
memory segment allocated for NCAP-based application's
statistics pool, and send it to the database repeatedly (in
preconfigured time intervals).

TCP Killer

(0404 One embodiment of a TCP Killer module provides
the ability to react to malicious traffic by stopping TCP ses
sions, for example, in real time.
04.05 The TCP Killer module may utilize Linux packet
socket API. This interface provides an ability to connect
directly to a NIC driver and put an artificially generated
packet into its output queue. The driver accepts a complete
networkpacket (including Layer 2 headers) from a user-space
program, and injects it into the network without modification.
If the network analyzer is fast enough, it can generate TCP
RST packets to stop an ongoing TCP session if it is deemed
malicious.
0406. It can done so by sending a TCP RST packet with
proper SEQ and socketpair attributes to both client and server
computers. After receiving TCPRST packet on specific sock
etpair, host's TCP/IP stack may close the connection, flush
data buffers and return an error to the user application (Con
nection reset by peer may be the standard error message).
0407. Since a TCP Killer-equipped application can
actively interfere with normal network activities, it may have
a separate override control over the module's behavior. The
TCP Killer module may include control over which session
termination requests from an NCAP application are granted
and which are ignored. The control mechanism may include a
separate configuration file specifying destination address and
port ranges to include? exclude from possible reset targets list
(IP filters) and a bit map file that allows/disallows reset
packet generation for each alert ID, including RST packet
direction (alert map).
0408. The TCP Killer module may be implemented as a
separate UNIX process that communicates with its clients
(e.g., local applications) using UNIX messaging IPC. It may
read the IP filters list from the configuration file during startup
and map the alert map file to memory in shared mode, allow
ing changes from tcpkc to be accepted. Restart of the module
may be required only if the IP filter information needs to be
changed. The standard restart procedure may be provided by
the Process Manager. The restart may not affect other pro
cesses in a NCAP-based application.
04.09 TCP Killer Module API
0410. The TCP Killer API may use UNIX messaging facil

ity. TCP Killer may be attached to the message queue allo
cated by NCAP core during the startup procedure. The ID of
the queue may be known to all NCAP modules.
0411. The TCP Killer process may expect the message
buffer in the format described by the tcpk t structure. The
tcpk t structure may contain the alertid and layer 2/3/4 infor
mation necessary to create a TCP RST packet.
0412 TCP Killer Module Initialization
0413 TCP killer may be started by the Process Manager. It
may get the NIC name, alert map name and the name of the IP

US 2009/O 138945 A1

filter configuration file from the command line. It may then
read and interpret IP filter information and map the alert map
file to memory.
0414. The next act may be to open a control connection to
the NIC driver, for example, by opening a packet socket with
the specified NIC name. At the end of the initialization phase,
the module may set the specified NIC to NOARP mode.
0415. After initialization, the TCP killer may enter an
infinite loop that includes waiting for session termination
requests, accepting them, filtering the received requests using
the IP filter and the alert map, and, if allowed, generating TCP
RST packets using information provided in the requests.
0416. As mentioned above, alert map may also specify the
direction where to send the packet: client side, server side or
both. If both sides are specified, the TCP Killer module may
generate and send two packets in a sequence: one is created
for the server's side of connection, the other for the client's
side.
0417. TCP Killer Module Reconfiguration
0418. The tcpkc command-line utility may provide a way
to update the Alert map information. It may modify the speci
fied binary map file; the changes may be instantly available to
the running TCP Killer process that keeps this file mapped to
its memory.
0419. In order to change the IP filter information, the TCP
Killer module may need to be restarted. It may be done by the
standard mechanism provided by the Process Manager.
Restarting the TCP Killer module may not affect other
NCAP-based modules.
0420 TCP Killer Module Unloading
0421. The TCP Killer module may stop when an NCAP
based application finds a reason to exit. The module may not
take any specific action, because the UNIX standard exit
procedure closes all communication channels and reclaims
all the memory used by the process.
0422. A machine-readable medium may include encoded
information, which when read and executed by a machine
causes, for example, the described embodiments (e.g., one or
more described methods). The machine-readable medium
may store programmable parameters and may also store
information including executable instructions, non-program
mable parameters, and/or other data. The machine-readable
medium may comprise read-only memory (ROM), random
access memory (RAM), nonvolatile memory, an optical disk,
a magnetic tape, and/or magnetic disk. The machine-readable
medium may further include, for example, a carrier wave
modulated, or otherwise manipulated, to convey instructions
that can be read, demodulated/decoded and executed by the
machine (e.g., a computer). The machine may comprise one
or more microprocessors, microcontrollers, and/or other
arrays of logic elements.
0423. In view of the foregoing, it will be apparent to one of
ordinary skill in the art that the described embodiments may
be implemented in software, firmware, and/or hardware. The
actual software code or specialized control hardware used to
implement the present invention is not limiting of the inven
tion. Thus, the operation and behavior of the embodiments is
described without specific reference to the actual software
code or specialized hardware components. The absence of
such specific references is feasible because it is clearly under
stood that artisans of ordinary skill would be able to design

May 28, 2009

software and/or control hardware to implement the embodi
ments of the present invention based on the description
herein.
0424 The foregoing presentation of the described
embodiments is provided to enable any person skilled in the
art to make or use the present invention. Various modifica
tions to these embodiments are possible, and the generic
principles presented herein may be applied to other embodi
ments as well. For example, the invention may be imple
mented in part or in whole as a hard-wired circuit, as a circuit
configuration fabricated into an application-specific inte
grated circuit, or as a firmware program loaded into non
Volatile memory or a software program loaded from or into a
data storage medium as machine-readable code, such code
being instructions executable by an array of logic elements
Such as a microprocessor or other digital signal processing
unit, or some other programmable machine or system. As
such, the present invention is not intended to be limited to the
embodiments shown above, any particular sequence of
instructions, and/or any particular configuration of hardware
but rather is to be accorded the widest scope consistent with
the principles and novel features disclosed in any fashion
herein.

1.-10. (canceled)
11. A method comprising:
receiving network communications; and
preventing an unauthorized and/or malicious transfer,

through the network communications, of data by pro
viding at least content reassembly, Scanning and recog
nition to the network communications in real time.

12. The method of claim 11, wherein the content scanning
and recognition includes multi-dimensional content profil
ing.

13. The method of claim 11, wherein the content scanning
and recognition is tailored to local data.

14. The method of claim 11, wherein the method is capable
of preventing the unauthorized and/or malicious transfer,
through the network communications, of data on fully satu
rated Gigabit speeds.

15-18. (canceled)
19. A machine-readable medium having encoded informa

tion, which when read and executed by a machine causes a
method comprising:

receiving network communications; and
preventing an unauthorized and/or malicious transfer,

through the network communications, of data by pro
viding at least content reassembly, Scanning and recog
nition to the network communications in real time.

20.-21. (canceled)
22. An apparatus comprising:
a receiver to receive network communications; and
a processor, coupled to the receiver, to prevent an unautho

rized and/or malicious transfer, through the network
communications, of data by providing at least content
reassembly, Scanning and recognition to the network
communications in real time.

23-36. (canceled)

