I*I Innovation, Sciences et Innovation, Science and CA 2969141 C 2023/10/03

Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 969 1 4 1
12 BREVET CANADIEN
CANADIAN PATENT
13 C
(86) Date de dépdt PCT/PCT Filing Date: 2015/12/17 (51) ClLInt./Int.Cl. GO6F 9/54 (2006.01)
(87) Date publication PCT/PCT Publication Date: 2016/06/30 | (72) Inventeur/Inventor:
(45) Date de délivranceflssue Date: 2023/10/03 KATIEB, RALPH, US
(85) Entrée phase nationale/National Entry: 2017/05/26 (73) Propriétaire/Owner:

DOCUMENT STORAGE SYSTEMS, INC., US

(86) N° demande PCT/PCT Application No.: US 2015/066303
(74) Agent: BERESKIN & PARR LLP/S.ENN.CRL..SR.L.

(87) N° publication PCT/PCT Publication No.: 2016/106064
(30) Priorité/Priority: 2014/12/23 (US14/581,417)

(54) Titre : SUPPORT DE STOCKAGE LISIBLE PAR ORDINATEUR POUR LE DEPLOIEMENT DE SERVICE
DYNAMIQUE ET PROCEDES ET SYSTEMES D'UTILISATION DE CELUI-CI

(54) Title: COMPUTER READABLE STORAGE MEDIA FOR DYNAMIC SERVICE DEPLOYMENT AND METHODS AND
SYSTEMS FOR UTILIZING SAME

PUBLISHED PUBLISHED PUELISHED PUBLISHED PUBLISHED
ENDPOINT ENDPOINT ENDPOINT ENDPOINT v oo ENDPOINT
526A 5268 526C 526¢ 526N

SERVICE APt 520
PACKAGE API PACKAGE API PACKAGE API
§32 532 532
DPERATIONS AND DPERATIONS AND e OPERATIONS AND
BUSINESS LOGIC BUSINESS LOGIC BUSINESS LOGIC
534 534 534
PACKAGE ~ 530A PACKAGE ~ 530B PACKAGE 530N
PACKAGES AND SERVICES 525

SERVICE DEPLOYMENT ENGINE 527

COMPUTER-READABLE MEDIA 123

(57) Abrégé/Abstract:

Systems and methods for service deployment are disclosed herein. Certain implementations may include a memory encoded with
computer executable instructions that when executed cause a processing unit to operate a service deployment engine and use
consistent APIs both (a) internally via a package API when consuming deployment packages in order to expose them, and (b)
externally via a service APl when exposing available packages and services to the outside world or enterprise server. By doing so,
calling applications can depend on the consistency of the service APl engine while the enterprise server itself can reliably consume
and interact with a dynamic set of packages organized in a consistent and predictable way. The service deployment engine may be
configured to act as a dynamic library loader to interrogate, deploy, start/stop, and/or uninstall packages and services in real time.
The packages and services may all implement the same package API.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

ABSTRACT
Systems and methods for service deployment are disclosed herein. Certain
implementations may include a memory encoded with computer executable instructions
that when executed cause a processing unit to operate a service deployment engine and use
5 consistent APIs both (a) intemally via a package API when consuming deployment
packages in order to expose them, and (b) externally via a service API when exposing
available packages and services to the outside world or enterprise server. By doing so,
calling applications can depend on the consistency of the service API engine while the
enterprise server itself can reliably consume and interact with a dynamic set of packages
10 organized in a consistent and predictable way. The service deployment engine may be
configured to act as a dynamic library loader to interrogate, deploy, start/stop, and/or
uninstall packages and services in real time. The packages and services may all implement

the same package API.

Date Recue/Date Received 2022-12-02

10

15

20

25

30

COMPUTER READABLE STORAGE MEDIA
FOR DYNAMIC SERVICE DEPLOYMENT AND METHODS AND SYSTEMS FOR
UTILIZING SAME
TECHNICAL FIELD

Embodiments of the present disclosure relate generally to network services, and
more specifically to dynamic deployment of network services.
BACKGROUND

In typical enterprise systems, an enterprise server connects to a back-end resource
(e.g., an application, data server, or service provider) in response to a request from a client
application via a web service. Typically, the web service is published to the enterprise
server in such a way that allows clients to treat the service as a remote procedure call rather
than as a discrete request to an outside caller. This is done, in part, because most integrated
development environments allow developers of client applications to easily embed such
services into applications. While casy for the developer, this act introduces hidden hard
links between the application and the remote service. The hard links may be described as a
kind of contract between the application and the service that is memorialized in a specific
description. While this contract may be beneficial in some circumstances, changes to the
service or client may invalidate the contract held between the devices and break links. This
may result in buggy, incompatible software and a poor user experience, which is
problematic in an ever-shifting enterprise landscape. Repairing or updating the hard links
may take time and resources and may result in an interruption of services provided by the
server. Therefore, there exists a need in the art to provide robust client-server capabilities
that reduces the risk of invalidating remote service contracts.
SUMMARY

Certain implementations may include a computer system comprising at least one
processing unit coupled to a memory, wherein the memory is encoded with computer
executable instructions that when executed cause the at least one processing unit to:
receive a client message at a published endpoint, the message formatted according to a first
description of a first application programming interface; parse an instruction from the
message according to a second description; pass the instruction to a package via a function
of the first application programming interface, the package having a second application
programming interface and a logic; receive, over the second application programming
interface, a result based on the instruction and the logic; and respond to the client message

based on the result. The first description may have a substantially generic format, for

1

Date Regue/Date Received 2022-03-24

10

15

20

25

30

example, in the form of a jagged string array. In addition, the first application
programming interface may be substantially more generic than the second application
programming interface. The first and second descriptions are formed from an interface
description language (e.g., Web Services Description Language). The client message may
be formatted in plain text.

In addition or altemmatively, implementations may include a computer hardware
system comprising: a processor; a plurality of published endpoints; a memory comprising
a package application programming interface; a description of the functionality of a
service application programming interface; a service deployment engine, comprising
computer cxecutable instructions that when executed cause the processor deploy a
plurality of packages to a plurality of endpoints without substantially modifying the
description, each package implementing the package application programming interface; a
service application programming interface, comprising computer executable instructions
that when executed cause the processor to, upon receipt of a client message formatted
according to the description at one of the plurality of published endpoints: parse an
instruction from the message using the description; and pass the instruction to one of the
plurality of packages via the package application programming interface. The service
deployment engine may further comprise instructions that when executed cause the
processor to detect when a previous version package of the plurality of packages has
completed all outstanding operations, prevent the previous version package from
accepting new operations, and remove the previous version package. The substantially
generic format may be, for example, a jagged string array. The first and second
description may be formed from an interface description language, such as Web Services
Description Language. The client message may be formatted in plain text.

In addition or altemnatively, implementations may include a networked system
comprising a plurality of user devices executing client applications and an enterprise
server connected to the plurality of client devices via a network. The server may have a
processor and a memory comprising a plurality of packages and a set of instructions. Each
package may have a service and implement the same package application programming
interface. The enterprise server may enable the client applications to access the service
through the execution of the set of instructions by the processor. The set of instructions
may be computer executable instructions that when executed cause the at least one
processor to parse a message from the client application containing arguments formatted

according to a generic description of a simple application programming interface and pass

2

Date Regue/Date Received 2022-03-24

10

15

20

25

30

the instruction to one of the plurality of packages.
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic block diagram of certain implementations of a
networked client application and a remote service.

FIG. 2 illustrates certain implementations of a generic format in the form of a
multi-dimensional array.

FIG. 3 illustrates a schematic block diagram of certain implementations of a
computer networking environment.

FIG. 4 illustrates a schematic block diagram of particular modules located on a
computer readable media according to certain implementations.

FIG. 5 is a flowchart of a method for processing requests according to certain
implementations.

FIG. 6 is a flowchart of a method for acting on a package according to certain
implementations.

DETAILED DESCRIPTION

Systems and methods for dynamic service deployment are disclosed herein.
Certain details are set forth below to provide a sufficient understanding of embodiments of
the disclosure. However, embodiments of the disclosure may be practiced without these
particular details. Moreover, the particular embodiments are provided by way of example
and should not be construed as limiting. In other instances, well-known circuits, control
signals, timing protocols, and software operations have not been shown in detail to avoid
unnecessarily obscuring the invention.

Disclosed embodiments generally relate to services provided by a server to a client
over a network. For example, a user may direct the client to interact with a service to
access a server’s resources or functionality to produce desired results. Servers are often
configured to interact with clients of various hardware and software architectures, which
introduces compatibility concerns. As such, servers may define various layers of
abstraction in order to achieve greater compatibility with different client architectures.
However, if the abstraction layers are too flexible or abstract, the client and server may
encounter difficulties ensuring consistent understanding of requests and formatting. As
such, mutual definitions and formatting may be beneficial. This may be accomplished
through the use of delivery protocols formatted according to an interface description
language (IDL) description.

An IDL may be a language or format used to describe functionality offered by a

3

Date Regue/Date Received 2022-03-24

10

15

20

25

30

service, such as a web service provided by a server. In particular, the IDL may be used to
specify, often via a file containing an IDL description, the manner in which the service
may be called, parameters expected by the service, types of responses provided by the
service in response to the call (e.g., types of data structures retumed), and/or other
functionality. The IDL may be its own unique language, a way of formatting or preparing
a description in a known or existing language (e.g., Extensible Markup Language (XML)),
or a combination therecof. Examples of IDLs include Web Service Description Language
(WSDL), Web Application Description Language, and Android™ Interface Definition
Language.

In some instances, an IDL description may be used in combination with one or
more delivery protocols specifying the manner in which data are exchanged between two
or more applications over a network. Each protocol may, for instance, provide a structured
messaging framework. These protocols may include but are not limited to simple object
access protocol (SOAP) and representational state transfer (REST). In tum, these delivery
mechanisms may rely on one or more application layer transport protocols, such as
hypertext transport protocol (HTTP) or simple mail transport protocol (SMTP).

FIG. 1 illustrates an embodiment of a system 10, including an application 50
configured to communicate with a remote service 70 over a network 110. As an example,
the application 50 may comprise instructions executing on a user computing device and
the remote service 70 may comprise instructions executing on an enterprise server. In
certain implementations, the application 50 may have three primary functions: provide a
user interface to a user, prepare and format messages 90 (e.g., calls) to the remote service
70, and receive and process responses from the remote service 70. The user interface may
be a way of providing output to and receiving input from the user. This input and output
may be related to requests to and responses from the remote service 70.

In certain implementations, the application 50 may format and provide a message
90 over the network 110 to the remote service 70 according to an IDL description 60
known or accessible to the client application 50. The remote service 70 may include an
IDL description 80 that is compatible with the IDL description 60 (e.g., the IDL
description 60 and the IDL description 80 arc the same). The remote service 70 may
receive the message 90 and parse the message 90 according to the protocol and the IDL
description 80.

The message 90 may be formatted in various ways. For example, the message 90

may be formatted as plain text. Plain text may be described as a format that lacks

4

Date Regue/Date Received 2022-03-24

10

15

20

25

30

significant processing or formatting. For example, plain text may be encoded according to
ASCII, UTF-8, or the like. Plain text does not require interpreting as binary objects as
would be done with, for example, images and encoded numbers.

Depending on the contents of the message 90, the remote service 70 may take a
certain action, including but not limited to accessing particular resources, performing a
process, and preparing a response to the client application 50 according to an agreed upon
format. In this manner, the application 50 and the remote service 70 may operate in
accordance with a remote service contract defined by the complimentary IDL descriptions
60, 80.

In some instances, however, the remote service 70 or client application 50 may be
modified (c.g., upgraded). If the IDL descriptions 60, 80 were formatted in a particularly
specific manner, then the IDL descriptions 60, 80 may no longer accurately describe the
services offered. As a result, the contract between the application 50 and the remote
service 70 may be invalidated because the application 50 and service 70 may be unable to
format and parse messages 90 according to compatible IDL descriptions 60, 80. The
incompatibility may result in the application 50 no longer providing valid requests to the
remote service 70 and receiving valid responses. The communication according to the
incompatible IDL descriptions 60, 80 may result in erroneous data, application instability,
or other problems. However, generic IDL descriptions 60, 80 may be implemented such
that contracts may remain intact despite modifications and/or upgrades to the underlying
service. The IDL descriptions 60, 80 may be written in a generic format to serve as an
entry point for various services. Certain implementations of the generic format may
include the use of data structures including but not limited to a multidimensional array of
strings.

FIG. 2 illustrates certain implementations of a generic format in the form of a
multi-dimensional array 210. The multi-dimensional array 210 includes elements 230,
231, 232 which may contain references 240, 241 to other arrays 250, 251. The other arrays
250, 251 may also themselves define elements. These elements may comprise references
to yet other data structures or data. In the certain illustrated implementations, the other
arrays 250, 251 may contain character data, making the multi-dimensional array 210 a
jagged string array. The element 232 does not contain a reference to another array and may
be described as having a null reference. The multi-dimensional array may have various
qualities including but not limited to: having a fixed length, having a variable length, cast

to a particular type (e.g. a string), and other attributes typically found in multi-dimensional

5

Date Regue/Date Received 2022-03-24

10

15

20

25

30

arrays.

FIG. 3 illustrates a schematic diagram of certain implementations of a computer
networking environment 100, including a user device 102, the network 110, and an
enterprise server 120. The user device 102 may comprise a computing device, including
but not limited to a modem, a router, a gateway, a server, a thin client, a laptop, a desktop,
a computer, a tablet, a media device, a smart phone, a television, a phablet, a cellular phone
or other mobile device, or any combination or sub-combination of the same. The user
device 102 may include a computer-readable media 62 encoded with executable
mstructions that may operate in conjunction with one or more processing umits 64 of the
user device 102 to provide functionality allowing execution of an application 50. The
computer-readable media 62 may also include the IDL description 60. The application 50
may be an application, such as an executable program, that may interface with one or more
services provided by the enterprise server 120. The user device 102 may be configured to
communicate over a network 110 with any number of devices, including but not limited to
the enterprise server 120.

The network 110 may comprise one or more networks, such as local area networks
(LANs), wide arca networks (WANSs), metropolitan area networks (MANSs), cellular
networks, and/or the Interet. Communications provided to, from, and within the network
110 may wired and/or wireless, and further may be provided by any networking devices
known in the art, now or in the future. Devices communicating over the network 110 may
communicate with a communication protocol, such as Transmission Control
Protocol/Internet Protocol (TCP/IP) or User Datagram Protocol (UDP). Additionally, the
user device 102 and the enterprise server 120 may be configured to communicate using
known protocols such as Hypertext Transfer Protocol (HTTP), Hypertext Transfer
Protocol Secure (HTTPS), Secure Sockets Layer (SSL), server-resident protocols, or other
protocols. Server-resident protocols may include named pipes, shared memory, and other
protocols. Such protocols may also be used to share information between an application
server (e.g., a server that manages, runs back end processes, or hosts an application) and
the enterprise server 120 in the same physical unit.

The enterprise server 120 may include one or more processing units 121 operably
coupled to one or more computer readable media 123. Computer readable media 123 may
include any form of computer readable storage or computer readable memory, transitory
or non-transitory, including but not limited to, externally or internally attached hard disk

drives, solid-state storage (such as NAND flash or NOR flash media), tiered storage
6

Date Regue/Date Received 2022-03-24

10

15

20

25

30

solutions, storage area networks, network attached storage, and/or optical storage.

The computer readable media 123 may store various modules, including but not
limited to executable instructions for operating a service deployment engine 527, the IDL
description 80, and a plurality of packages and services 525. As described, the instructions
stored on the computer readable media 123 may be executed on the one or more
processing units 121 or other processing units.

The executable instructions for operating the service deployment engine 527 may
include instructions that, when executed on a processing unit 121, enable the operation of
the service deployment 527 on the enterprise server 120 to act as a dynamic library loader
to interrogate, deploy, start/stop, and/or uninstall packages and services 525 in real time,
further examples of which are provided below. Although the executable instructions for
the service deployment engine 527 are shown on a same computer readable media 123, in
some embodiments any or all sets of instructions may be provided on multiple computer
readable media and may not be resident on the same media.

The packages and services 525 may be one or more software components and
resources that have been packaged together in order to provide particular functionality or
services when executed on the processing unit 121 of the enterprise server 120. With
reference to Fig. 4, packages and services 525 may comprise a plurality of individual
packages 530 (e.g., 530A through 530N). The packages 530 may be organized according
to package self-assigned version numbers, and allow multiple versions of the same
package to exist simultancously. For large enterprises especially, this built-in versioning
functionality enables scaling into a new version of a critical package 530 rather than
requiring a cut-over approach, the latter often being fraught with hidden traps and the
dangers of service interruptions. Allowing multiple versions of the same package 530 to
exist simultaneously, enables the two versions to exist and be used simultaneously on the
enterprise server 120 by different user devices 102.

With continuing reference to FIG. 4, this figure illustrates a detailed view of
particular modules located on the computer readable media 123, and includes a service
application programming interface (API) 520, packages and services 525, publishing
endpoints 526 (e.g., 526A through 526N) and a service deployment engine 527.

The publishing endpoints 526 may be locations (e.g. a port, Uniform Resource
Identifier (URI) such as a Uniform Resource Link (URL), named tokens, a named pipe, a
block of shared memory, or other locations) exposed by the enterprise server 120 where

the client application may access a function (c.g. an API) implemented by the enterprise

7

Date Regue/Date Received 2022-03-24

10

15

20

25

30

server 120. Different types of communication may be enabled over different endpoints.
For example, there may be a TCP/IP endpoint, a SOAP endpoint, etc. During calls to
various services, a specific type of endpoint 526 (e.g., Windows™ Communication
Foundation (WCF), JavaScript Object Notation (JSON), SOAP, REST, TCP/IP, named
pipes) may be chosen by the communication capabilities of application 50 sending the
message 90. The enterprise server 120 may publish its own IDL description 80 on all
publishing endpoints 526 concurrently, and publish live changes (i.c. zero-downtime) out
to all of these concurrently as well. This means that when a package 530 is deployed into
the enterprise server 120, it is simultancously and instantancously available and reachable
via any and all of the desired endpoints 526.

The service API 520 may be a simple interface that enables a set of basic functions
(e.g. create, read, update, delete, and invoke) to be performed. The IDL description 80
may describe the functionality of the service API 520. For example, the IDL descriptions
60, 80 may describe a generic “InvokeOp” function that allows a client application 50 to
send a message 90 that instructs the enterprise server 120 to execute a specific function
according to an addressing scheme. For example:
“InvokeOp(“company.package[20].operation”)”, which may execute operation
“operation” from version 2.0 of the package “package” from company “company”. The
enterprise server 120 may be configured such that if the caller would instead like the latest
version, they simply need to request version [*] (i.e. wildcard version), which always
resolves internally in the enterprise server 120 to the latest version of the package
installed. The enterprise server 120 may be configured such that if no version is specified,
to assume that the application 50 would simply like the latest or highest-versioned package
to perform the requested operation.

The service API 520 may exposc the same IDL description 80 to all client
applications 50 and implement operation dynamism as a function of the enterprise server
120 itself. This structure enables the client application 50 and the enterprise server 120 to
keep the contractual agreement made between the IDL descriptions 60, 80. The enterprise
server 120 may expose a simple IDL description with a simple entry point (e.g. only a
single entry point) into the published packages and services 525 that utilizes a generic
format (c.g. an array-of-arrays or a jagged string array described in connection with Fig. 2)
in order to guarantee that the communication mechanism between the client application 50
and the enterprise server 120 will not change in such a way as to invalidate the IDL

description contract between the enterprise server 120 and the client application 50. Client

8

Date Regue/Date Received 2022-03-24

10

15

20

25

30

applications 50 that are dependent on the IDL description 80 remaining consistent across
multiple messages can do so and will not be affected by the deploy/undeploy operations
taking place beneath the surface exposed to the enterprise server 120 itself.

FIG. 5 illustrates a flowchart of a method 5000 for processing messages 90
according to certain implementations. At step 5100, the enterprise server 120 receives a
message at a published endpoint 526. Next, at step 5200, preliminary processing may be
performed on the message. This step 5200 may include handling networking tasks
associated with receiving the message 90, including waiting for additional packets,
performing error correction on the packet, preliminary packet parsing, and other
processes. Additionally, the enterprise server 120 may perform authentication steps such
as ensuring that the message is from an authenticated user, or ensuring that the calling
application 50 is using a legitimate session identifier to identify itself or the user. Next, at
step 5300, the message 90 is parsed according to the IDL description 80. After parsing the
message 90, at step 5400, the enterprise server 120 performs an operation based on the
contents of the message 90, including but not limited to passing the message 90 to a
package 530, passing a particular content of the message 90 to a particular package 530,
responding to the message 90 without passing the contents to a package 530, and detecting
whether the message 90 contains a valid request (e.g., testing whether the contents are
directed to a valid package). In certain implementations, message passing may be
performed according to a package API 532 implemented by the particular package 530.
Additionally, according to certain implementations, once the service API 520 receives the
call, the service API 520 performs no conversion on the calling request object. This
process may decrease latency between receiving a message and acting on it.

Returning to FIG. 4, the enterprise server 120 may use its own addressing
nomenclature in order to provide access to individual packages 530 and their operations
534 without having to change the IDL description 80. The IDL description 80 may
describe or expose a generic method for invoking an operation. The arguments may
change in order to specify parameters. The syntax may be extended in order to support
versioned and/or unversioned calls. Certain implementations may do so without adding
additional parameters to the IDL. Instead, the certain implementations may define the
operation to allow specific versions to be embedded in the addressing nomenclature itself,
for example, by including the desired version number in the addressing nomenclature
itself.

This approach to IDL-independent version calling presents several advantages.

9

Date Regue/Date Received 2022-03-24

10

15

20

25

30

For example, the user device 102 may be programmed to request the highest version
number and test the result for accuracy or errors. If the result contains an error, then the
client may request a series of incrementally lower version numbers until it receives an
accurate/error-free result or it runs out of version numbers to call. This may be useful if,
for example, an undiscovered error is present in a newer version of the package. In
addition, this system could be used to configure the client application to utilize functions
from across different versions of the operation. For example, a user may prefer some
features found in one version (c.g. version 1.0) of an application, but prefers other features
found in another version (c.g. version 2.0). The user or the application may specify to
utilize version 1.0 for some features and to utilize version 2.0 for all other features. In
addition, the separate nature of the packages enables a particular version to be recalled or
discontinued as many times as needed without interrupting users of different versions.

Additionally, a custom solution could be created that wraps other services in a
master service and requires that all calling applications use this wrapper service instead of
depending on breakable linkages to the individual services themselves. However, this
approach may introduce overhead since the master service may be unlikely to insulate
current callers from dependent-service interruptions. It may also be time-intensive
because the link between the wrapper/master service and its dependencies introduces a
web of connection-to-connection calls that may increase the load on the network between
the wrapper and wrapped services.

With continued reference to Fig. 4, in certain implementations, each package 530
may implement a package API 532 and an operations and business logic 534. The package
API 532 is the particular interface through which the package 530 and the enterprise server
120 communicate, which may include providing access to the underlying operations and
business logic 534 of the package 530. The package API 532 and the operations and
business logic 534 may also enable the enterprise server 120 to provide the remote service
70. As such, the enterprise server 120 may be configured to pass parsed arguments from
the message 90 via the package API 532 to the operations and business logic 534.

In certain implementations, the enterprise server 120 may simultancously deploy
any package and any operation across any publishing endpoint 526 capable of interacting
with a generic format (e.g. a simple string-of-strings) calling pattern. This may be
accomplished, for example, by exposing a consistent and simple service API 520
externally and leveraging a consistent package API 532 internally that package developers

must use in order to deploy to the enterprise server 120. The consistent package API 532

10

Date Regue/Date Received 2022-03-24

10

15

20

25

30

allows exposure to client applications 50 using various protocols to communicate with the
enterprise server 120.

This functionality may be achieved by, for example, utilizing consistent package
APIs 532 internally to the enterprise server 120 in order to install business logic 534 as a
recognized package 530 on the enterprise server 120. The package API 532 may provide
the internally-consistent abstraction layer that allows the enterprise server 120 to
dynamically adjust and respond to various service requests without allowing those
changes to be scen or felt by a calling application 50. Specifically, packages 530 may be
deployed and undeployed without having to alter the IDL description 80. The abstraction
provided by the service API 520 may be substantially broader, more generic, and/or more
flexible than the package API 532 such that the IDL description 80 may remain consistent
despite changes to the packages and services 525 (e.g., a package 530 being deployed,
redeployed, or undeployed). This arrangement may enable the package API 532 to operate
independently of the IDL description 80 by insulating the “what to do” described by the
IDL description 80 from the “how it is being done” of the package API 532 and other
underlying functionality. In certain implementations, the package API 532 enables a fixed
contract on a binary level without the risk of breaking links by implementing a dynamic
registration concept that parallels IDL description functionality (e.g. operation lookup
functionality, operation invocation, and other functions).

Because the system 100 utilizes a consistent internal package API 532 and does not
expose these packages 530 outright to calling client applications 50 (e.g., without the
abstraction provided by the service API 520), the system 100 is able to expose the
operations and services provided by the package 530 through many client routes
simultancously. For example, an installed package 530 with operations 534 may be
automatically and simultancously published and made available to the enterprise via a
plurality of endpoints 526, such as WCF, SOAP, JSON, REST, named pipes, TCP/IP, and
others. Since the enterprise server 120 and packages 532 both use the same proprietary
and well-known package API 532 (the server 120 consuming or expecting it and the
package developer consuming or implementing it), the packages 530 may act as dynamic
real-time extensions to the enterprise server 120 itself. The installed packages 530 may
also be published and made available to other packages 530. This wide-publish
functionality may be provided without the package developer having to perform extra
steps, request it, or write any additional/different code.

Certain embodiments may enable a consistent package API 532 by having the
11

Date Regue/Date Received 2022-03-24

10

15

20

25

30

enterprise server 120 itself publish and consume a low-level “abstract interface” in the
form of a library (e.g., a Dynamic Link Library (DLL)). The binary image of that abstract
class may be located in the same directory on the enterprise server 120 as the server
executable itself, as well as an identical version of that interface library being published to
package developers via a package interface software development kit. By linking their
respective projects directly to the package interface library and instantiating the abstract
classes therein, the enterprise server 120 can detect what a package developer’s package
(binary image) will contain when it arrives in an internal directory for deployment.

In addition, the enterprise server 120 may verify that the developer of the package
530 implemented all required abstract class methods by querying the library for validity
and completeness (e.g., using Microsoft™ NET introspection to query a DLL) prior to
linking with it and loading/deploying it as a live package on the enterprise server 120.
While a developer would be hard-pressed to try to create or build an incomplete library
using the standard developer tools, a developer could potentially construct a
partial/fragmented library with non-standard developer tools. In certain implementations,
querying for validity may be combined with internal (e.g. within the same enterprise
server) binary hard-links to published or expected library class interface implementations.
This may aid the package API 532 to enable the enterprise server 120 to publish a package
530 and simultancously provide the package 530 with myriad services (e.g. single sign on,
enterprise metadata dictionaries, Health Level-7 integration points, and other services).

In certain implementations, the service API 520 may perform a look-up of the
options available and return them to a calling application 50. This may be performed
through a dynamic IDL function. The look-up may give a real-time update as to what
packages and services 525 are installed or available to the application 50. For example,
the application 50 may request the packages and services 525 available, and the service
API 520 may return a list of options based on a dot-notation to specify the programming
level for which the user or calling application 50 wants to know what options are available.
As an example, a user may be running a 1.1 version of software of which versions 1.0, 1.1,
and 2.0 are available on the server. The user may request the available operations relating
toa 1.1 version and receive a list of the publishing endpoints available to the 1.1 version of
the software.

An alternate way of implementing this approach would be to allow applications 50
to index or interrogate a dynamic list of services available on any given enterprise server

120 and then consume those services ad-hoc. This type of functionality is achicvable

12

Date Regue/Date Received 2022-03-24

10

15

20

25

30

through, for example, a directory listing of available binary extensions (e.g. PHP:
Hypertext Preprocessor (PHP) executables) or using XML and Universal Description,
Discovery and Integration (UDDI). The deployment of these services may be
one-dimensional and only available on the enterprise server 120 and protocol of original
deployment.

In addition, certain implementations of the service deployment engine 527 may
isolate and integrate all packages 530 dynamically in order to expose their operations (e.g.
SOAP-invoked business logic) to clients in an orderly manner without affecting the
delivery of other services or operations currently in progress. This isolation may be
accomplished by providing a predetermined, controlled set of resources (e.g., memory,
processor cycles, etc.) to the package 530 in order to prevent or limit damage in case the
packages crashes. In addition, this isolation enables the package 530 to be executed
without substantially interfering or substantially being affected by other operations
occurring on the enterprise server 120. In certain implementations, the service deployment
engine 527 may also wrap the individual packages in a robust in-process exception and/or
error scope to ensure that no package has the capability of crashing the server. In addition,
packages may be monitored by the enterprise server 120 to ensure that resource-hungry
processes arc throttled to allow all concurrently-executing processes to have proper
resources to complete their functions.

FIG. 6 illustrates a flowchart of a method 6000 for undeploying or redeploying a
package 530 according to certain implementations. First, at step 6100, the service
deployment engine 527 may receive an instruction to perform a particular operation on a
package 530. This instruction may be received from various sources. The instruction may
be transmitted over one of the published endpoints 526 and be processed according to, for
example, the method of FIG. 5. In certain embodiments, the instruction may be received
from a user interacting directly with the enterprise server 120 over, for example, a terminal
or workstation attached to the enterprise server. The instructions may describe a particular
method to be performed on a specific package 530, which may include an undeploy or
overwrite command.

At step 6200, the service deployment engine 527 may monitor the specific package
530 to detect whether the package 530 has completed all outstanding operations. Acting
on a currently operating package 530 (e.g. removing the package 530) may cause
instability for the client application 50 or a loss of data. This detection may be performed

by, for example, monitoring the resource usage of the package 530 or monitoring an active

13

Date Regue/Date Received 2022-03-24

process list.

At step 6300, the package 530 may be prevented from accepting new operations.
This step may include certain substeps, including but not limited to preventing the package
530 from using any resources, making the package 530 invisible to additional requests,

5 changing a permission level of the package 530, and locking the package 530.

At step 6400, the package may be removed. This step 6400 may include deleting
the package 530 entirely. However, in certain implementations, the package 530 may
remain stored on the computer readable media 123 but remain in a substantially unusable
state, for example, as a result of performing one of the certain substeps of step 6300.

10 At step 6500, depending on the instructions received, a new package 530 may need
to be added or deployed. This may include the substeps of verifying the validity of the
package, publishing the package to endpoints 526, installing the package 530, and other
such substeps.

The described method may be utilized to perform dynamic deployment that

15 respects the versioning of the packages and services 525. For example, if the method is
used to redeploy version 3 of a particular package, then the previous version 3 finishes its
calls and is gracefully replaced with a new version 3 of the particular package.

From the foregoing it will be appreciated that, although specific embodiments of
the invention have been described herein for purposes of illustration, various

20 modifications may be made without deviating from the spirit and scope of the invention.

Accordingly, the invention is not limited except as by the appended claims.

14

Date Regue/Date Received 2022-03-24

10

15

20

25

30

CLAIMS

What is claimed is:

1. A computer hardware system comprising at least one processing unit
coupled to a memory, wherein the memory is encoded with computer executable
instructions that when executed cause the at least one processing unit to:

receive a client message at a published endpoint, the message formatted
according to a first description of a first application programming interface, wherein the
message includes an instruction specifying an operation and a package capable of
executing that operation;

parse the instruction from the message according to a second description;

pass the instruction to the package via a function of the first application
programming interface, the package having a second application programming interface
and a logic, wherein the package is one of a plurality of packages;

receive, over the second application programming interface, a result based on the
operation and the logic; and

respond to the client message based on the result,

wherein the first description has a substantially generic format.

2. The system of claim 1, wherein the first application programming

interface is substantially more generic than the second application programming

interface.

3. The system of claim 1, wherein the substantially generic format is a
jagged string array.

4. The system of claim 1, wherein the first and second descriptions are

formed from an interface description language.

5. The system of claim 4, wherein the interface description language is Web

Services Description Language.

6. The system of claim 1, wherein the client message is formatted in plain

text.

15

Date Recue/Date Received 2022-12-02

10

15

20

25

30

7. A computer hardware system comprising:
a processor;

a plurality of published endpoints;

a memory comprising

a package application programming interface;

a description of a functionality of a service application programming
interface;

a service deployment engine, comprising computer executable
instructions that when executed cause the processor to deploy a plurality of
packages to a plurality of endpoints without substantially modifying the
description, each package implementing the package application programming
interface;

wherein the service application programming interfacecomprises
computer executable instructions that when executed cause the processor to, upon
receipt of a client message formatted according to the description at one of the
plurality of published endpoints:

parse an instruction from the message using the description; and
pass the instruction to one of the plurality of packages via the

package application programming interface.

8. The system of claim 7, wherein the service deployment engine further
comprises instructions that when executed cause the processor to:

detect when a previous version package of the plurality of packages has
completed all outstanding operations;

prevent the previous version package from accepting new operations; and

remove the previous version package.

9. The system of claim 8, wherein the description comprises a jagged string

array.

10. The system of claim 8, wherein first and second descriptions are formed

from an interface description language.

16

Date Recue/Date Received 2022-12-02

11. The system of claim 10, wherein the interface description language is

Web Services Description Language.

12. The system of claim 8, wherein the client message is formatted in plain

5 text.

13. A networked system comprising

a plurality of user devices executing client applications; and

an enterprise server connected to the plurality of user devices via a network, the

10 server having a processor and a memory, wherein the memory comprises:

a plurality of packages;

a service deployment engine, comprising computer executable instructions that
when executed cause the processor to deploy the plurality of packages to a plurality of
endpoints without substantially modifying a generic description of a simple application

15 programming interface; and

a set of instructions,

wherein each package has a service and implements the same package application
programming interface;

wherein the enterprise server enables the client applications to access the service

20 through execution of the set of instructions by the processor; and
wherein the set of instructions are computer executable instructions that when
executed cause the processor to:
parse a message from the client application containing arguments
formatted according to the generic description of the simple application
25 programming interface; and

pass the set of instructions to one of the plurality of packages.

14. A computer hardware system comprising at least one processing unit
coupled to a memory, wherein the memory is encoded with computer executable
30 instructions that when executed cause the at least one processing unit to:
receive a client message at a published endpoint, the message formatted
according to a first description of a first application programming interface, wherein the
message includes an instruction specifying an operation and a package capable of
executing that operation;

17

Date Recue/Date Received 2022-12-02

10

15

20

25

30

parse the instruction from the message according to a second description;

pass the instruction to the package via a function of the first application
programming interface, the package having a second application programming interface
and a logic, wherein the package is one of a plurality of packages;

receive, over the second application programming interface, a result based on the
operation and the logic; and

respond to the client message based on the result,

wherein the first description comprises a multi-dimensional array.

15. The system of claim 14, wherein the first application programming
interface provides an abstraction layer relative to the second application programming

interface.

16. The system of claim 14, wherein the multi-dimensional array is a jagged

string array.

17. The system of claim 14, wherein the first and second descriptions are

formed from an interface description language.

18. The system of claim 17, wherein the interface description language is

Web Services Description Language.

19. The system of claim 14, wherein the client message is formatted in plain

text.

20. A computer hardware system comprising:
a processor;
a plurality of published endpoints;
amemory comprising

a plurality of packages implementing a package application programming
interface;

a description of the functionality of a service application programming
interface; and

a service deployment engine, comprising computer executable

18

Date Recue/Date Received 2022-12-02

10

15

20

25

30

instructions that when executed cause the processor to deploy the plurality of
packages to a plurality of endpoints according to the description of the
functionality of the service application programming interface,
wherein the service application programming interface, comprises

computer executable instructions that when executed cause the processor to, upon
receipt of a client message formatted according to the description at one of the
plurality of published endpoints:

parse an instruction from the message using the description; and

pass the instruction to one of the plurality of packages via the

package application programming interface.

21. The system of claim 20, wherein the service deployment engine further
comprises instructions that when executed cause the processor to:

detect when a previous version package of the plurality of packages has
completed all outstanding operations;

prevent the previous version package from accepting new operations; and

remove the previous version package.

22. The system of claim 20, wherein the description comprises a jagged string

array.

23. The system of claim 20, wherein the description is formed from an

interface description language.

24. The system of claim 23, wherein the interface description language is

Web Services Description Language.

25. The system of claim 20, wherein the client message is formatted in plain

text.

26. A networked system comprising:
a plurality of user devices executing client applications; and
an enterprise server connected to the plurality of client devices via a network, the

server having a processor and a memory, wherein the memory comprises:

19

Date Recue/Date Received 2022-12-02

10

15

20

25

30

a plurality of packages;
a service deployment engine, comprising computer executable
instructions that when executed cause the processor to deploy the plurality of
packages to a plurality of endpoints according to a description of a service
application programming interface; and
a set of instructions,
wherein each package has a service and implements a consistent package
application programming interface,

wherein the enterprise server enables the client applications to access the service
through the execution of the set of instructions by the processor, and

wherein the set of instructions are computer executable instructions that when
executed cause the at least one processor to:

parse a message from the client application containing arguments
formatted according to the description of the service application programming
interface; and

pass the sct of instructions to one of the plurality of packages.

27. A computer hardware system comprising at least one processing unit
coupled to a memory, wherein the memory is encoded with computer executable
instructions that when executed cause the at least one processing unit to:

receive a client message at a published endpoint, the message formatted according

to a description of a first application programming interface, wherein the
description comprises a multi-dimensional array;

parse the message; and

pass parsed content of the message to a package capable of executing an

operation associated with the passed parsed content, wherein the package
comprises a second application programming interface and a logic, the
second application programming interface configured to receive and

respond to results based on execution of the operation and the logic.

28. The system of claim 27, wherein the description is formed from an

interface description language.

20

Date Recue/Date Received 2022-12-02

10

15

20

25

30

35

29. The system of claim 27, wherein the at least one processing unit is further

caused to authenticate the client message.

30. The system of claim 27, wherein the package is one of a plurality of

packages.

31. The system of claim 30, wherein the plurality of packages are organized

according to package self-assigned version numbers.

32. Thesystem of claim 31, wherein multiple version numbers of each package

exist simultancously.

33. Thesystem of claim 27, wherein the published endpoint is one of a plurality
of published endpoints.

34. The system of claim 33, wherein the published endpoints comprise client-
accessible locations, the client-accessible locations comprising one or more of a port, a

Uniform Resource Identifier, a named token, a named pipe, or a block of shared memory.

35. The system of claim 33, wherein different types of client-communication

are enabled simultaneously across different published endpoints.

36. The system of claim 27, further comprising the step of detecting whether

the message contains a valid request.

37. The system of claim 36, wherein the step of detecting comprises testing

whether the contents of the message are directed to a valid package.

38. The system of claim 27, wherein the first application programming
interface provides an abstraction layer relative to the second application programming

interface.

39. A computer hardware system comprising:

a processor;

a plurality of published endpoints;

a memory comprising a plurality of packages implementing a package application

21

Date Recue/Date Received 2022-12-02

10

15

20

25

30

programming interface;
a description of the functionality of a service application programming interface;
and
a service deployment engine, comprising computer executable instructions that
when executed cause the processor to deploy the plurality of packages to a plurality of
endpoints according to the description of the functionality of the service application
programming interface,
wherein the service application programming interface comprises compuier
executable instructions that when executed cause the processor to, upon receipt of a client
message formatted according to the description of at least one of the plurality of published
endpoints,
parse an instruction from the message using the description; and
based on the instruction, perform an action comprising one or more of:
responding to the client message, detecting whether the client message contains a
valid request, or passing the instruction to one of the plurality of packages via the

package application programming interface.

40. The system of claim 39, wherein the service deployment engine further
comprises instructions that when executed cause the processor to:

detect when a previous version package of the plurality of packages has completed
all outstanding operations;

prevent the previous version package from accepting new operations; and

remove the previous version package.

41. The system of claim 39, wherein the description comprises a jagged string

array.

42. Thesystem of claim 39, wherein the description is formed from an interface

description language.

43. The system of claim 42, wherein the interface description language is Web

Services Description Language.

22

Date Recue/Date Received 2022-12-02

10

15

20

25

30

44, The system of claim 39, wherein the client message is formatted in plain

text.

45. A networked system comprising:

a plurality of user devices executing client applications; and

an enterprise server connected to the plurality of client devices via a network, the
server having a processor and a memory, wherein the memory comprises:

a plurality of packages;

a service deployment engine, comprising computer executable instructions that
when executed cause the processor to deploy the plurality of packages to a plurality of
endpoints according to a description of a service application programming interface; and

a set of instructions,

wherein each package has a service and implements a consistent package
application programming interface,

wherein the enterprise server enables the client applications to access the service
through the execution of the set of instructions by the processor, and

wherein the set of instructions are computer executable instructions that when
executed cause the at least one processor to:

parse amessage from the client application containing arguments formatted
according to the description of the service application programming interface; and
perform an action comprising one or more of: responding to a client
message, detecting whether the client message contains a valid request, or passing

the client message to the service via the service application programming interface.

46. The networked system of claim 45, wherein responsive to the client
message, the service is configured to access a resource, perform a process, prepare a

response to the client message according to a defined format, or combinations thereof.

47. A networked system comprising:

a plurality of user devices executing client applications; and

an enterprise server connected to the plurality of client devices via a network, the
server having a processor and a memory, wherein the memory comprises:

a plurality of packages comprising a plurality of version packages, each version

package capable of being used simultaneously on the enterprise server by different user

23

Date Recue/Date Received 2022-12-02

10

15

20

25

30

devices;

a service deployment engine, comprising computer executable instructions that
when executed cause the processor to deploy the plurality of packages to a plurality of
endpoints according to a description of a service application programming interface; and

a set of instructions,

wherein each package has a service and implements a consistent package
application programming interface,

wherein the enterprise server enables the client applications to access the service
through the execution of the set of instructions by the processor, and

wherein the set of instructions are computer executable instructions that when
executed cause the at least one processor to:

parse a message from the client application containing arguments formatted
according to the description of the service application programming interface; and

perform a requested operation from one of the plurality of version packages.

48. The system of claim 47, wherein the service deployment engine further
comprises instructions that when executed cause the processor to:

detect when a version package of the plurality of packages has completed all
outstanding operations; and

prevent the version package from accepting new operations.

49. The system of claim 48, wherein the processor prevents the version
package from accepting new operations by one or more of: preventing the version
package from using resources, making the version package invisible to additional
requests, changing a permission level of the version package, or locking the version

package.

50. The system of claim 47, wherein the service deployment engine further
comprises instructions that when executed cause the processor to:

detect when a version package of the plurality of packages has completed all
outstanding operations; and

remove the version package.

51. The system of claim 50, wherein the processor removes the version

24

Date Recue/Date Received 2022-12-02

10

15

20

25

30

package by one or more of: deleting the version package or storing the version package

in an unusable state.

52. The system of claim 50, wherein the processor installs a new version

package.

53. The system of claim 52, wherein the processor installs the new version
package by one or more of: verifying the version package is valid or publishing the

version package to endpoints.

54. The system of claim 47, wherein the processor installs a new version

package.

55. The system of claim 54, wherein the processor installs the new version
package by one or more of: verifying the version package is valid or publishing the

version package to endpoints.

56. The system of claim 47, wherein the server is configured to cause a
highest-versioned package to perform the requested operation where no version is

specified.

57. The system of claim 47, wherein the server is configured to perform the
requested operation from a series of incrementally lower versions in response to client

requests.

58. The system of claim 47, wherein the server is configured to perform the
requested operation from a first version package of the plurality of packages and perform

a further requested operation from a second version package of the plurality of packages.

59. The system of claim 47, wherein the service deployment engine further
comprises instructions that when executed cause the processor to:
recall or discontinue a version package of the plurality of packages; and

perform the requested operation from one of another of the plurality of packages.

25

Date Recue/Date Received 2022-12-02

10

15

20

25

30

array.

60. The system of claim 47, wherein the description comprises a jagged string

61. A computer hardware system comprising:
a processor;

a plurality of published endpoints;

amemory comprising:

a plurality of packages implementing a package application programming
interface, the plurality of packages comprising a plurality of version packages,
each version package capable of being used simultaneously by different user
devices;

a description of the functionality of a service application programming
interface; and

a service deployment engine, comprising computer executable
mstructions that when executed cause the processor to deploy the plurality of
packages to a plurality of endpoints according to the description of the
functionality of the service application programming interface,

wherein the service application programming interface comprises
computer executable instructions that when executed cause the processor to, upon
receipt of a client message formatted according to the description at one of the
plurality of published endpoints:

parse an instruction from the message using the description; and

perform a requested operation from one of the plurality of version

packages.

62. The system of claim 61, wherein the service deployment engine further

comprises instructions that when executed cause the processor to:

detect when a version package of the plurality of packages has completed all

outstanding operations; and

prevent the version package from accepting new operations.

63. The system of claim 61, wherein the processor prevents the version

package from accepting new operations by one or more of: preventing the version

package from using resources, making the version package invisible to additional

26

Date Recue/Date Received 2022-12-02

10

15

20

25

30

requests, changing a permission level of the version package, or locking the version

package.

64. The system of claim 61, wherein the service deployment engine further
comprises instructions that when executed cause the processor to:

detect when a version package of the plurality of packages has completed all
outstanding operations; and

remove the version package.

65. The system of claim 61, wherein the service deployment engine further
comprises instructions that when executed cause the processor to:
recall or discontinue a version package of the plurality of packages; and

perform the requested operation from one of another of the plurality of packages.

66. A networked system comprising:

a plurality of user devices executing client applications; and

an enterprise server connected to the plurality of client devices via a network, the
server having a processor and a memory, wherein the memory comprises:

a plurality of packages comprising a plurality of version packages, cach version
package capable of being used simultaneously on the enterprise server by different user
devices;

a service deployment engine, comprising computer executable instructions that
when executed cause the processor to deploy the plurality of packages to a plurality of
endpoints according to a description of a service application programming interface; and

a set of instructions,

wherein each package has a service and implements a consistent package
application programming interface,

wherein the server uses its own addressing nomenclature to provide access to the
plurality of packages, and

wherein the set of instructions are computer executable instructions that when
executed cause the at least one processor to:

parse a message from the client application containing arguments formatted
according to the description of the service application programming interface; and

perform a requested operation from one of the plurality of version packages.

27

Date Recue/Date Received 2022-12-02

10

15

20

25

30

67. A computer hardware system comprising at least one processing unit
coupled to a memory, wherein the memory is encoded with computer executable
instructions that when executed cause the at least one processing unit to:

receive a client message at a published endpoint, the message formatted
according to a description of a first application programming interface;

parse the message; and

pass parsed content of the message to a package capable of executing an
operation associated with the passed parsed content, wherein the package comprises a
second application programming interface and logic, the second application
programming interface configured to receive and respond to results based on execution
of the operation and the logic, and wherein the description of the first application
programming interface is more generic than a description of the second application

programming interface.

68. The system of claim 67, wherein the description of the first application
programming interface and the description of the second application programming

interface are formed from an interface description language.

69. The system of claim 68, wherein the interface description language is
Web Services Description Language, Web Application Description Language, or
Android™ Interface Definition Language.

70. The system of claim 68, wherein the interface description language is

used in combination with one or more delivery protocols.

71. The system of claim 68, wherein the message is parsed according to the

interface description language.

72. The system of claim 67, wherein the package is one of a plurality of

packages.

73. The system of claim 72, wherein the plurality of packages are organized
according to package self-assigned version numbers.

28

Date Recue/Date Received 2022-12-02

74. The system of claim 73, wherein multiple version numbers of each

package exist simultaneously.

5 75. The system of claim 67, wherein the published endpoint is one of a

plurality of published endpoints.

76. The system of claim 75, wherein the published endpoints comprise client-
accessible locations, the client-accessible locations comprising one or more of a port, a

10 Uniform Resource Identifier, a named token, a named pipe, or a block of shared memory.

77. The system of claim 75, wherein different types of client-communication

are enabled simultaneously across different published endpoints.

15 78. The system of claim 67, further comprising the step of detecting whether

the message contains a valid request.

79. The system of claim 78, wherein the step of detecting comprises testing
whether the contents of the message are directed to a valid package.
20
80. An enterprise server comprising at least one processing unit coupled to a
memory, wherein the memory is encoded with computer executable instructions that
when executed cause the at least one processing unit to:
receive a client message at a published endpoint, the message
25 formatted according to a description of a first application programming
interface;
parse the message; and
pass parsed content of the message to a package capable of
executing an operation associated with the passed parsed content, wherein
30 the package comprises a second application programming interface and
logic, the second application programming interface configured to receive
and respond to results based on execution of the operation and the logic,
and wherein the description of the first application programming interface

is more generic than a description of the second application programming

29

Date Recue/Date Received 2022-12-02

10

15

20

interface.

81. The server of claim 80, wherein the description of the first application
programming interface and the description of the second application programming

interface are formed from an interface description language.
82. The server of claim 81, wherein the interface description language is Web
Services Description Language, Web Application Description Language, or Android™

Interface Definition Language.

83. Theserver of claim 81, wherein the interface description language is used

in combination with one or more delivery protocols.

84. The server of claim 81, wherein the message is parsed according to the

interface description language.

85. The server of claim 81, wherein the package is deployed and undeployed

without altering the interface description language.

30

Date Recue/Date Received 2022-12-02

1/5

08
NOLE4IYI530
a3

14
JOIAN3S
310NN

ott

HHOMIIN

e

06

F9YSSIN

%

89
NOLLJAM2S3d
1at

85
NOUYIINddY
LN3TD

Date Regue/Date Received 2022-03-24

275

3
/
© /
[bbd
e =
P O
o N\ -t
N N
® [J
/ ;Y
&2 wood (o]
& & 2

210

Date Regue/Date Received 2022-03-24

3/5

0zl YIAYIS ISINdUTLNT
_)
$2 VIO T1EVAYIN-EILNGINGD 201 33IA30 ¥ISA
§25
SIINANIS ONY STSVNIVd £9 YIA3W N8YOVIE-HILNANGD
” 05 NOLLYONddY
N |~ Ny
NOILdINDS$3C 10 e ot
{shiomian 08 NOILAIYI53C Tl
LE5
INIDNI ININACTAIA THAYIS N
v
9 {SHLINN DNISSIDOM
7
1zt {SILINM DNISSTDOU

00t

Date Regue/Date Received 2022-03-24

4/5

¥ "Oid

€1 VIGIW 1gVAVI-HALNdINGD

LEs

ANIDND INZWAOTA3A 30IAY3S

§2% SIOIAYIS ONY 53DV

NpoEs 3DVIOV g0gs 30VIOVd VOES 3DVHOVd
PES bES VES
SIDGT SS3NISNE e o o 21907 55INISNG JID0T SSANISNE
NV SNOUYYIdO ANV SNOLLYH3dO ANV SNOIWY340
43 A (43
{dV 3OV 1dV 3DVAIYd idY 3DVH0Vd
0zs IV 3AYTS
NaZS J928 J9T5 89¢% L T4
ANIC4ANI ¢ 0 ANICONT INIOdONT INIOdUONT LNIOdONG
daHsingnd d3IHsnand J3aHshgnd daHsngnd a3Hshdand

Date Regue/Date Received 2022-03-24

FOVHIVE MAN YV AaY

3DVAOVd 3HL JAOWIY

5/5

SNOUYY3dO M3IN DNILJIZOV
INOHD 300V 3HL LINJAIYd

SNOLYHId0 DNIQNYLSLNG
TV Q3L3dINGCO SVH
FOVHN0V 3HL NIHM 133130

3
&)

SNOLLONYLSNI JAI303Y

FDVSSIN HL
40 SINZINQD IHL NO G35vY
NOLIYHIdO NV NHOdHEd

/]

NOIL4IHOS3A 101 3HL QL
DNIGHOOOV 3DVSSIA 384V

mmwm/

IDVSSIN 3HL NG DNISSIOO0Hd
AHYNINTIYG IWHOLH3d

ANIO4GND G3HSNHENd
¥ 1V 39553 A0

Date Regue/Date Received 2022-03-24

PUBLISHED PUBLISHED PUBLISHED PUBLISHED PUBLISHED
ENDPOINT ENDPOINT ENDPOINT ENDPOINT LI ENDPOINT
526A 5268 526C 526C 526N

SERVICE AP 520
PACKAGE API PACKAGE API PACKAGE AP
532 532 532
OPERATIONS AND DPERATIONS AND e e e OPERATIONS AND
BUSINESS LOGIC BUSINESS LOGIC BUSINESS LOGIC
534 534 534
PACKAGE 530A PACKAGE 5330B PACKAGE 530N
PACKAGES AND SERVICES 525
SERVICE DEPLOYMENT ENGINE 527

COMPUTER-READABLE MEDIA 123

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - CLAIMS
	Page 18 - CLAIMS
	Page 19 - CLAIMS
	Page 20 - CLAIMS
	Page 21 - CLAIMS
	Page 22 - CLAIMS
	Page 23 - CLAIMS
	Page 24 - CLAIMS
	Page 25 - CLAIMS
	Page 26 - CLAIMS
	Page 27 - CLAIMS
	Page 28 - CLAIMS
	Page 29 - CLAIMS
	Page 30 - CLAIMS
	Page 31 - CLAIMS
	Page 32 - CLAIMS
	Page 33 - DRAWINGS
	Page 34 - DRAWINGS
	Page 35 - DRAWINGS
	Page 36 - DRAWINGS
	Page 37 - DRAWINGS
	Page 38 - REPRESENTATIVE_DRAWING

