0 01/17163 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

0 OO

(10) International Publication Number

WO 01/17163 Al

8 March 2001 (08.03.2001) PCT
(51) International Patent Classification’: HO04L 9/06, (74)
9/08, 9/10
(21) International Application Number: PCT/US00/13427 @81

(22) International Filing Date:

(25) Filing Language:

(26) Publication Language:

16 May 2000 (16.05.2000)

English

English

Agents: LAURIE, Ronald, S. et al.; Skadden, Arps, Slate,
Meagher & Flom LLP, 525 University Avenue, Palo Alto,
CA 94301 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE,
DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU,
1D, IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR, LS,
LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ,
PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT,
TZ, UA, UG, UZ, VN, YU, ZA, ZW.

L (84) Designated States (regional): ARIPO patent (GH, GM,

(30) Priority Data: KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent

09/389,268 2 September 1999 (02.09.1999) US (AM, AZ, BY KG, KZ, MD, RU, TJ, TM), European patent

(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

(71) Applicant: CRYPTOGRAPHY RESEARCH, INC. MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
[US/US]; 607 Market Street, Sth Floor, San Francisco, CA GA, GN, GW, ML, MR, NE, SN, TD, TG).

94105 (US).
Published:

(72) Inventors: KOCHER, Paul, C.; 143 Fillmore Street, San —

With international search report.

Francisco, CA 94117 (US). JAFFE, Joshua, M.; 80 Cum-
berland Street, San Francisco, CA 94110 (US). JUN, Ben-
jamin, C.; 1081-B Tanland Drive, Palo Alto, CA 94303

For two-letter codes and other abbreviations, refer to the "Guid-

(US).

ance Notes on Codes and Abbreviations" appearing at the begin-

ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR PREVENTING PIRACY OF DIGITAL CONTENT

210

200 208 PLAYBACKDEVICE |
; o o | G2
| CONTENT el 20 N kil
; PROVIDER | Audit data, etc. 0~ 5 BULK I
)
| DECODER | |
g 205 7 Tq] !
o i 1
g |-2% “g |
5 — 3
225 153
<l I . £§;/275 ~
T INTERFACE | w0 S
' CONTROL |\——=)| INTERFACE | !

] |‘ 240

PROCESSOR (ICP) ouTeuT
lﬁ.—
U T ™38 230 | DEVICE
i [

LI — r__E'*’]
V4 255 260
@] EEPROM 265 | CRYPTO
2457 250 FIREWALL
TProtected
| memery |—
CRYPTOGRAPHIC RIGHTS UNIT

(57) Abstract: A secure cryptographic rights unit (225) for cryptographically regulating access to digital content (215) includes an
interface control processor (235) and a specialized cryptographic unit (260) that protects access to a memory (265). The crypto-
graphic unit produces content decryption keys (267) by using stored rights keys to transform other data received from the control
processor (235). Because the control processor (235) does not have the ability to directly access the protected memory (265), the
security can remain effective even if the control processor (235) is compromised. To prevent reverse engineering of the cryptographic
transformations, the invention provides for an algorithm generator that uses random sources to produce algorithm definitions in ma-
chine-readable form. Because the generator itself does not contain any secrets, it can be submitted for open review. Other features
allow for the content provider (200) to audit the access (296) of the user (290) who can obtain the decrypted content (275) through

an output device (280).

10

15

20

25

WO 01/17163 PCT/US00/13427

METHOD AND APPARATUS FOR PREVENTING
PIRACY OF DIGITAL CONTENT

Field of the Invention

The present invention relates to systems for distributing digital content, and more
specifically to methods and apparatuses for improving the security of systems for

distributing digital content.

Backeground of the Invention

Introduction

Systems that protect valuable content require effective security. For content
distributed in physical form, such as film being transported to movie theaters, physical
security measures can be sufficient. Unfortunately, traditional physical security techniques
are slow, expensive, cumbersome, and cannot be used with non-physical content
distribution models. As a result, content providers rely on cryptographic hardware to
ensure that only authorized users can access their data.

To prevent misuse of decryption keys, cryptographic hardware used to manage
content decryption keys must be tamper-resistant. Building effective tamper resistant
hardware has proven extremely difficult, especially for systems that are the subject of
determined attacks, because they are large or protect high-value content. As a result, many
systems (including most satellite television systems) use replaceable security devices,
such as smartcards, so that security can be re-established after an attack without replacing
the entire playback system. Nevertheless, smartcards used for prepaid telephone, pay-TV,
and transit applications are broken regularly. For example, prepaid telephone cards used
in Germany were attacked in 1998 with estimated losses of US$38 million (“Pirates Cash
in on Weak Chips,” Wired News, May 22, 1998). Similarly, access cards and systems for
cable and prepaid satellite television services are regularly “hacked,” necessitating
repeated costly card replacements.

Smartcards must resist a variety of attacks against cryptographic algorithms,

protocols, software, and chip hardware. Unfortunately, designing a smartcard that

10

15

20

25

30

WO 01/17163 PCT/US00/13427
2

implements sophisticated protocols yet contains no security flaws has proven to be a very
difficult task, since unexpected problems or errors in any portion of the design can render
the entire card insecure. Cost considerations also favor attackers, since smartcards
typically cost between $1 and $15, yet may be trusted to protect services or information
worth thousands of dollars.

A smartcard system will only be attacked seriously if it is in the attacker’s interest
to break it. With smartcard designs of the background art, once attackers develop a means
to compromise one card, the incremental cost to break a large number of cards is usually
very small. As a result, smartcard security efforts typically focus on preventing the initial
attack by making the card more difficult to break. For example, vendors try to increase the
cost of reverse-engineering the device or imaging the card’s ROM. Such techniques are
helpful because they increase the cost required to break the system the first time, but for
very large systems they are ineffective because attackers will devote enough effort to

attacks that they will eventually succeed.

Prepayment and Post-Payment

In many systems of the background art, digital content is distributed in encrypted
form. Access to the keys or algorithms required to decrypt the content is regulated by a
rights management system that enforces the content owner’s access policies. These access
policies vary greatly in complexity. For example, the simplest schemes simply involve
providing a decryption key upon payment, while the approaches described in U.S. patent
5,915,019 to Ginter et al. provide for rather sophisticated and flexible distribution
mechanisms.

The two most common payment methods present in such schemes are prepayment
and post-payment. Because these approaches have different security requirements, their
architectures and typical requirements will be described separately.

In prepayment schemes, the user obtains prior authorization from the content
provider. In typical prepayment systems, the user provides a payment (or a commitment to
pay) then receives a content decryption key that allows access to the purchased content.

Prepayment systems must be able to resist a variety of attacks. One class of attacks
involves directly breaking the encryption (or any other protection mechanisms used to

prevent unauthorized use of the content). Another attack involves capturing and

10

15

20

25

30

WO 01/17163 PCT/US00/13427
3

redistributing the digital content after it has been decrypted. Other attacks involve
unauthorized redistribution of the content decryption keys. Still other attacks involve
capturing the content in analog form (e.g., as it is presented to the user).

Some of these attacks can be prevented effectively and others do not present a
serious financial threat to content distributors. Strong encryption algorithms (such as triple
DES) can reliably thwart attackers who do not have the correct decryption keys. Attacks
against the decrypted content are not very serious if the content’s value decreases rapidly
with time or if the re-recording process significantly degrades the quality of the content.
Watermarking techniques can also prevent, detect or trace some content recording attacks.
Attacks that involve copying decryption keys are serious and have proven challenging to
prevent. Because it is usually impossible or too expensive to transmit a different
ciphertext to each potential user, attackers can purchase a decryption key once, then
redistribute it to unauthorized parties.

Systems known in the background art distribute content decryption keys in
encrypted form to a tamper-resistant cryptographic unit connected to (or part of) the user’s
playback device. Because decryption keys with long-term value are never exposed in
unencrypted form, many attacks can be prevented — if the tamper-resistant module is
unbreakable.

Because smartcards and other tamper-resistant cryptographic hardware commonly
used to implement the cryptographic unit often have limited performance and bandwidth,
the cryptographic unit is often used to generate short-lived subkeys from the main content
decryption key. These subkeys are then transmitted to a less secure portion of the system,
such as the main playback device, and used to decrypt the content itself.

The security of the system thus depends on the security of the cryptographic unit.
If the cryptographic unit is compromised, attackers can determine the decryption keys and
algorithms and use these to access content without authorization (e.g. by emulating an
authorized cryptographic unit and/or the entire playback device).

In post-payment schemes, the user can decide to access some content without
notifying the content provider or obtaining permission in advance. Instead, the content
provider later audits the user’s usage and determines the appropriate fees to charge. In

some systems of the background art, post-payment is referred to as pay-per-view.

10

15

20

25

30

WO 01/17163 PCT/US00/13427
4

In addition to being susceptible to the attacks described above against prepayment
systems, post-payment schemes are vulnerable to a variety of additional attacks. For
example, the user’s purchase audit records must be stored until the content provider
retrieves them. Modification or destruction of these records can make it impossible for the
content provider to determine the correct amount to charge. As a result, secure storage is
required in the cryptographic unit for the audit data.

Although cryptographic techniques can secure the audit data from tampering
(provided that the cryptographic unit has not been compromised), users generally do have
the ability to prevent the audit process altogether. For example, in many consumer
systems, two-way communication requires a telephone call, which users can prevent by
simply disconnecting the telephone line. Users can often even destroy the cryptographic
unit to conceal their purchases. As a result, measures are generally required to make users
allow audits. For example, it is possible to penalize users by terminating service or
preventing access to additional post-payment (pay-per-use) content if successful audits are
not performed in a timely manner. Back-end systems can also charge users with penalties
or other fees for audit noncompliance.

Post-payment systems involve more risk because purchases occur without live
interaction with the content provider. As a result, each cryptographic unit must be
preprogrammed with the cryptographic keys for viewing all content the user might
possibly purchase. As a result, compromise of a single cryptographic module can
potentially compromise all post-payment content in a system.

Many systems combine prepayment and post-payment approaches. Prepayment is
generally used to regulate access to content sold on a subscription basis. For example,
access to electronic news services, music channels, subscription television channels, etc.
are commonly sold on a prepayment basis. Premium content is often provided on a post-
payment (pay-per-use) basis, where users can use content at any time but their
cryptographic modules periodically provide the content provider with a list of the
premium content that has been used. Post-payment of this type is used in the “Divx” video
playback system as well as most cable and satellite television “pay-per-view” schemes.
Prepayment protocols can be used for extremely high value pay-per-view content if

penalties are insufficient to ensure successful auditing or if the risks are great enough to

10

15

20

25

30

WO 01/17163 PCT/US00/13427
5

offset the cost and effort to initiate two-way communication with the content provider

before access is authorized.

The Cryptographic Rights Unit (CRU)

A variety of designs and architectures have been proposed and used for
cryptographic units that manage and protect the secret keys and algorithms used in content
distribution systems. If legitimate users can be trusted to protect their keys, software-only
approaches can be acceptable and have the advantage of avoiding the cost and expense of
building and distributing specialized hardware. In many cases, however, tamper-resistant
modules are required.

No architecture can provide perfect security. For example, an exact replica of an
authorized satellite television receiver (including the receiver’s cryptographic rights unit)
will be able to view the same signals as the original. As a result, the security depends on
preventing attackers from building working copies or emulators of authorized playback
devices.

Commercially-deployed approaches usually use tamper-resistant hardware
modules to enforce the content provider’s access policies. Figure 1 shows a smartcard of
the background art for regulating access to encrypted content. The exemplary system
includes three types of memory 110: ROM 115, EEPROM 125, and RAM 120. Each type
of memory has advantages and disadvantages. ROM is fast and inexpensive, but cannot be
modified and can often be read using advanced imaging techniques. RAM is fast and can
be updated quickly, but loses its contents when power is lost. EEPROM retains its
contents even when power is disconnected, but is relatively expensive to manufacture and
is quite slow to modify.

The ROM and/or EEPROM generally include software, which is executed by
microprocessor 140. The software includes instructions that implement and/or manage
protocols and cryptographic keys involved in decrypting content. Because cost, memory,
and I/O bandwidth limits make it difficult to decrypt a large amount of data in the tamper-
resistant module, the tamper-resistant module can supply content decryption keys for
individual blocks or streams of content to the playback system, which performs the bulk
data decryption. A cryptographic processor 150 can optionally assist with the

cryptographic computations by reducing the amount of time or program code required for

10

15

20

25

30

WO 01/17163 PCT/US00/13427
6

the computation or by implementing obfuscated algorithms that are difficult to reverse
engineer.

To support both prepayment and post-payment, at least four basic operations are
supported over I/O interface 145: adding new prepaid rights keys or privileges, recording
purchases (for post-payment), deriving content decryption keys (for either prepayment or
post-payment), and post-payment auditing.

The device of Figure 1 can potentially be attacked in a variety of ways. Attackers
typically begin by extracting the software code from one device using any of a wide
variety of techniques, such as physically imaging a chip or modifying a target chip using
ion beam lithography. Although many techniques for performing the ROM and/or
EEPROM extraction are relatively expensive, the operation only has to be performed
once, since all units in the system normally have the same or similar software. Some
techniques, such as tamper-resistant chip coatings, memory encryption, etc. can
complicate memory extraction attacks, but such techniques are expensive to implement
and only increase the cost for performing the software extraction.

Once the software is known, attackers can reverse engineer the code, yielding all
cryptographic algorithms and keys contained in the extracted regions. Again, some
techniques, such as the use of obfuscated or nonstandard software, can complicate this
process somewhat.

If cryptographic processor 150 is not present, the attacker can then produce an
emulator of the target device. Once an emulator has been developed, it is often difficult
for the provider of the system to re-establish security without replacing all CRUs. Even if
legitimate devices are configured to allow updates to the portions of their software or keys
in EEPROM, the emulator will simply accept the same updates and continue operating
unless the content provider manages to identify the compromised keys and stop providing
service to the corresponding accounts.

If the emulator is imperfect and legitimate devices are configured to allow
software updates, it may be possible to modify legitimate devices in a way that the
emulator will not process correctly. Unfortunately, all the attacker has to do is correct the
emulator. For example, pirates have produced CRU emulators that operate a personal
computer and updated their emulator software to fix any errors in the emulator’s

operation.

10

15

20

25

30

WO 01/17163 PCT/US00/13427
7

Code update capabilities are a double-edged sword — although they can thwart
some attacks, attackers may be able to subvert them to inject malicious code into
legitimate devices. Although code updates can be protected with digital signatures and/or
MACs (Message Authentication Codes), attacks against the hardware, software, and/or
cryptography pose a significant risk. It may also be possible for attackers to insert code in
other ways, for example by exploiting pointer errors to redirect memory updates to code
regions.

For example, if the attacker is able to trick microprocessor 140 into executing
malicious (i.e., attacker-written) code, then the attacker can use the first code to load more
malicious code into EEPROM 125 or RAM 120. This malicious code can then further
modify the device, for example by adding unauthorized functions that bypass non-
cryptographic protections, delete post-payment audit records, add/modify/output
cryptographic keys such as rights keys, etc. Although some techniques (such as hashing
EEPROM contents as part of key derivation processes) have been attempted to detect
some such attacks, these techniques tend not to be very effective and have been evaded by
clever attackers. Although it would be possible to make microprocessor 140 execute only
code from ROM 115, the system designers would then be unable to patch problems or
transmit code updates to address bugs.

It is extremely difficult or impossible to reliably prevent all major attacks using
architectures of the background art. Once attackers reverse engineer the software executed
by microprocessor 140, they can identify and exploit software flaws or other
implementation weaknesses. If these weaknesses in turn allow unauthorized modification
of the device’s software, the content provider’s own cryptographic rights units (CRUs)
and/or playback hardware can even be used to attack the system. The book European

Scrambling Systems 5 by John McCormac (Baylin Publications, 1996) contains more

information about how some existing systems have been designed and attacked and why
architectures of the background art have proven ineffective.

Using architectures of the background art, any weakness in the cryptographic unit
thus tends to cause a serious compromise of the entire device. Building a device that
resists all known invasive and non-invasive hardware attacks, software attacks, protocol
attacks, cryptographic attacks, fault induction attacks, etc. is extremely difficult — and new

attacks may be discovered after a device is deployed. As a result, many content providers

10

15

20

25

WO 01/17163 PCT/US00/13427
8

suffer from high piracy rates and the expense of replacing cryptographic units when they

are broken.

Summary of the Invention

The present invention can improve the security of systems used to distribute and
protect digital content. One embodiment of the invention, in a tamper-resistant device for
regulating access to encoded digital content, includes an external interface, a
microprocessor for controlling the external interface, a memory, a cryptographic unit
connected between the microprocessor and memory configured to protect the memory
from the microprocessor by cryptographically transforming data communicated between
the microprocessor and the memory, and a device key accessible by the cryptographic unit
and inaccessible by the microprocessor. The device is configured such that the
cryptographic unit uses the contents of the memory to transform at least one data value
received from the microprocessor, where the result of the transformation is required to
decode the digital content.

Although it is impossible to design a content distribution system that is immune to
all possible piracy attacks, the main objective of the present invention is to minimize the
probability that attackers will profit from attacks. A system does not need to be immune to
all attacks; attackers are generally rational and driven by a profit motive, so illogical
attacks will not proliferate widely. For example, if the attacker’s cost and risk exceed the
cost of purchasing the content legitimately, piracy is not a serious threat.

Attackers have both advantages and disadvantages as compared to legitimate
service providers. Because their acts are often illegal, they incur higher risks. Their
distribution costs and customer acquisition costs tend to be higher, since they generally
cannot use traditional (legitimate) channels. The quality and reliability of pirate services
also tends to be inferior. On the other hand, attackers have several major advantages. Most
important, they obtain their content for free (i.e., by pirating it). In many cases they also
co-opt part or all of a content provider’s distribution channel (e.g., sales of encrypted
optical discs, satellite broadcasts, Internet services, etc.), playback mechanisms (cable TV

set-top boxes, DVD players, etc.), and other infrastructure. Finally, pirates’ customers

10

15

20

25

WO 01/17163 PCT/US00/13427
9

may be able to avoid cumbersome procedures imposed by the legitimate content provider
for security, billing, etc.

Although attacker business models vary, the present invention is based on the
premise that content providers can effectively eliminate piracy by making it unprofitable.
It is thus an objective of the present invention to increase the costs and risks incurred by
attackers who steal content.

The present invention is also based on the premise that content providers will only
invest in anti-piracy measures that make business sense. When estimating the cost of
content piracy to content providers, several factors that must be considered. Direct
revenue losses occur when potential subscribers instead buy pirated content. In cases
where content providers subsidize the costs of media, distribution, playback hardware,
technical support, etc., illegitimate users can also increase expenses. If piracy is
widespread, content providers may be unable to obtain premium content or will have to
pay more to content owners to compensate them for lost royalties. Costs for enforcement
and prosecution can also be significant. Paying users may even feel discouraged if they
see others getting for free what they are paying for, reducing the perceived value of a
service. It is thus a primary objective of the present invention to achieve improved
security without unduly increasing costs or hassles for content providers or legitimate
users.

Traditional content protection schemes generally seek to maximize the cost of any
unauthorized access, but do little to increase the cost of decoding messages once the
decryption scheme has been broken. In addition to preventing attacks, the present
invention also seeks to minimize the proliferation of unauthorized decoding devices if an
attack does occur, since the damage due to piracy increases with the number of
unauthorized users. It is thus an objective of the present invention to maximize the cost of
producing multiple unauthorized pirate devices even after one device has been
compromised. This objective is attained in part by forcing attackers to repeat complex and

expensive physically-invasive attacks for each pirate device that is produced.

10

15

20

25

WO 01/17163 PCT/US00/13427
10

Brief Description of the Drawings

Figure 1 shows a smartcard of the background art for regulating access to
encrypted content.

Figure 2 shows an exemplary system using the Cryptographic Rights Unit (CRU)
of the present invention.

Figure 3 outlines an exemplary embodiment of a process for adding rights using
prepayment.

Figure 4 outlines an exemplary embodiment of the rights addition process using
post-payment.

Figure 5 shows an exemplary method of the present invention for deriving CDKs
using rights keys stored in the CryptoFirewall’s protected memory.

Figure 6 shows exemplary processes for auditing and clearing audit data.

Figure 7 diagrams an exemplary multi-targeting technique of the present invention
and shows how it can be used to renew rights keys.

Figure 8 illustrates one embodiment of a pseudoasymmetric function generator
(PAFG) of the present invention.

Figure 9 diagrams the operation of an exemplary CryptoFirewall that implements
prepaid rights and can be easily extended to support post-paid rights.

Figure 10 shows an exemplary CryptoFirewall embodiment using a small volatile
protected memory and using batch keys to minimize the bandwidth required for REMs.

Figure 11 diagrams the content decryption key computation process of Figure 10.

Detailed Description of the Invention

The following description is presented to enable any person skilled in the art to
make and use the invention, and is provided in the context of a particular application and
its requirements. Various modifications to the disclosed embodiments will be readily
apparent to those skilled in the art, and the general principles defined herein may be
applied to other embodiments and applications without departing from the spirit and scope

of the present invention.

10

15

20

25

30

WO 01/17163 PCT/US00/13427
11

Definitions

Asymmetric Function: An easy-to-compute function for which a complementary
operation (such as its inverse) is computationally hard without a private key, but easy to
compute with the private key. The RSA cryptosystem is thought to be asymmetric, since
inverting the public key operation (i.e., performing the private key operation) is only easy
with if the private key 1s known.

Content Decryption Key (CDK): A key required to decrypt some encrypted digital
content.

Content Provider: An entity that manages the cryptographic portions of a content
distribution system. The content provider is also generally responsible for distributing or
broadcasting the content, billing, customer service, etc. The content provider tasks can be
divided among many companies.

CryptoFirewall: A specialized circuit placed between the interface control processor
(ICP) and a protected memory which is designed to control access to (and use of) the
protected memory even if the ICP is compromised. In addition, the CryptoFirewall uses
the protected memory to derive content decryption keys.

Cryptographic Rights Unit (CRU): A tamper-resistant hardware device designed to
perform cryptographic operations that allow authorized users to gain access to digital
content.

Device key: A cryptographic key or other security-related parameter that is preferably
specific to a particular device, but may also be shared by a small number of similar
devices.

Digital content: A digital representation of human-interpretable material, such as
pictures, audio tracks, video segments, text (such as books, magazines, news feeds, stock
quotes, etc.), etc. Digital content is often encrypted and/or compressed and may include
error correcting codes and other auxiliary data.

Interface Control Processor (ICP): A microprocessor responsible for processing
communications between the cryptographic rights unit and a playback device. The ICP is
also generally responsible for communicating with the CryptoFirewall.

I1SO 7816 Smartcard: A device complying with at least the physical dimensions and
contact configurations specified in ISO standard 7816-1 and 7816-2. Smartcards are

10

15

20

25

30

WO 01/17163 PCT/US00/13427
12

commonly used to implement CRUS, as they provide a reasonable degree of tamper
resistance at relatively low cost.

Key Derivation Message (KDM): A message generated by a content provider to allow a
CRU to derive a decryption key corresponding to some digital content. KDMs are usually
transmitted with the corresponding content.

Playback Device: A device that receives digital content via an untrusted mechanism (such
as radio, optical disc, digital audio tape, cable, satellite broadcast, Internet connection,
etc.) and, using a CRU, decodes the content. The bulk data decryption operation can be
performed by the CRU itself or by the playback device using a key generated by the CRU.
Pseudoasymmetric Function: A function (transformation) designed such that attackers
cannot easily perform the inverse transformation even with direct access to the forward
transformation. For example, an attacker with access to a pseudoasymmetric encryption
function does not necessarily have the ability to decrypt meaningful messages. Unlike
traditional asymmetric cryptographic functions, however, the noninvertability of a
pseudoasymmetric function relies on the difficulty of completely reverse engineering the
“public” function instead of the difficulty of performing a mathematically hard operation
such as factoring. A block cipher implementation with a physically-protected key and/or
algorithm that only supports encryption is an example of a pseudoasymmetric function,
since unrestricted access to the encryption operation alone does not allow decryption of
messages.

Rights Enablement Message (REM): A message generated by a content provider that
gives a CRU the ability to access new content. The REM itself is usually transmitted via
the same untrusted mechanism as the content itself, although in some cases REMs may be
exchanged through other channels (such as separate telephone or Internet connections).
Rights Key: A value (such as a cryptographic key) that allows a CRU to generate or
decode the decryption keys for some content. Rights keys are generally required to
decrypt KDMs and obtain content decryption keys.

Tamper-Resistant Device: A hardware device whose operation is relatively difficult to
monitor and/or modify. Examples of tamper-resistant devices include without limitation
PCMCIA cards filled with epoxy, circuits covered with tamper-resistant coatings, circuits
wrapped in tamper-detecting wire, integrated circuits (which are tamper resistant due to

their small feature size), and circuits in enclosures that detect opening.

10

15

20

25

30

WO 01/17163 PCT/US00/13427
13

System Architecture

Figure 2 shows an exemplary system using the Cryptographic Rights Unit (CRU)
of the present invention. Content Provider 200 obtains content and prepares it for
distribution, for example by compressing and encrypting content data, multiplexing
multiple content streams, and adding control messages such as KDMs and REMs. (A
more detailed explanation of the content preparation process is provided in the section
below entitled “Preparing Content.”)

The encrypted content data is then distributed (process 205) by the Content
Provider in a manner such that it can be received by authorized (e.g., paying) users as well
as potential attackers. A variety of distribution methods may be employed, including
without limitation distribution of physical media (such as optical discs), radio or satellite
transmission, wired networks (such as telephone, ADSL, cable television, etc.), and
distribution over computer networks (such as publication on a web site, multicast, etc.)

Playback device 210 receives the distributed data for some content to be decoded.
In the exemplary embodiment shown in Figure 2, Key Distribution Messages (KDMs) and
Rights Enablement Messages (REMs) are distributed with content 205. Playback device
210 thus separates the desired content 215 and control messages 220 in the received data.

In the exemplary embodiment, control messages 220 include Key Derivation
Messages (KDMs) and Rights Enablement Messages (REMs). These messages are
transferred by playback device 210 to Cryptographic Rights Unit (CRU) 225. Playback
device 210 can optionally perform processing or filtering before sending messages to
CRU 225.

CRU 225 includes an interface control processor (ICP) 235, which is responsible
for communication with playback device 210 via I/O interface 230. In addition, CRU 225
includes several types of memory connected to interface control processor 235 via bus
240. In particular, fixed data and code are stored in ROM 245, temporary data (and
possibly code) are stored in RAM 250, and additional code and/or data are stored in
EEPROM 255 which can be modified by processor 235. Also attached to bus 240 is
CryptoFirewall 260, a specialized cryptographic processing unit whose operation is
explained in detail below. CryptoFirewall 260 regulates and cryptographically modifies

data written to or read from protected memory 265.

10

15

20

25

30

WO 01/17163 PCT/US00/13427
14

To decode some content, playback device 210 transmits to interface 230 a KDM
corresponding to some content 215 to be decoded. Interface control processor 235
receives the KDM and, as described below, uses CryptoFirewall 260 to derive one or more
content decryption keys 267, which are transferred to bulk decoder 270 via playback
device 210. With the correct keys 267, bulk decoder 270 can correctly decrypt content
215. The decrypted content 275 is then sent to an output device 280, which presents the
content to user 290 by converting it into a human-readable form (process 285). For
example, if the system is configured to play audio content, decrypted content 275 could be
an analog or digital representation of a sound, and output device 280 could be an amplifier
and speakers. Similarly, if the system is configured to play movies on a television set, bulk
decoder 270 could perform decryption and MPEG decompression, outputting decrypted
content 275 as an NTSC-compatible video signal so that output device 280 can be an
ordinary television set.

A communication channel from CRU 225 to content provider 200 is also provided
for auditing post-payment purchases. This channel can also be used for transmitting
REM:s, other usage data, code updates, etc. Communication from the CRU to the content
provider can be direct 296 or (more commonly) indirect 295, e.g. passing through
playback device 210 which can (for example) establish a connection with content provider
200 as needed. Any communication method (including without limitation modem, radio,

satellite, cable, etc.) can be employed.

CryptoFirewall Operation

The CryptoFirewall cryptographically regulates access to a protected memory.
Unlike conventional memory encryption devices (such as the encrypted memory device of
U.S. patent 5442704 to Holtey), the CryptoFirewall does not act transparently or allow
arbitrary read or write operations to be performed by the microprocessor. In particular, the
CryptoFirewall does not need to provide the microprocessor with the ability to store data
values in the protected memory and read the same values out later. Conventional secure
memory schemes are typically used to allow a trusted computational device to access
memory that is less secure. In contrast, the CryptoFirewall is designed with the opposite
assumption, that the interface control processor is untrusted but attackers do not have

direct read/write access to the memory behind the CryptoFirewall. In other words, the

10

15

20

25

30

WO 01/17163 PCT/US00/13427

15

CryptoFirewall can allow the cryptographic rights unit to remain secure even if the CRU’s
main microprocessor is compromised, provided that attackers do not completely breach
the firewall and gain unrestricted access to the protected memory.

The CryptoFirewall implements a set of basic operations involved in adding and
using content access rights. In the exemplary embodiment described with respect to
Figures 3, 4, 5, 6, and 7, these operations include adding new rights by prepayment,
adding new rights for post-payment, accessing content, auditing/clearing post-paid
purchase audit records, and renewing rights. The interface control processor is responsible
for supplying data to the CryptoFirewall for each of these commands and assisting with
non-security critical tasks.

The exemplary CryptoFirewall uses several keys, which are stored in protected
memory 265 and loaded during personalization (described below). In one embodiment,
the protected memory is an EEPROM containing a device key (CHIP_KEY), at least one
group key shared by (for example) 32 cards (BATCH_KEY), a post-payment
authorization key (POSTAUTH_KEY), and several rights keys. Portions of the protected
memory containing device keys and group keys can be written during personalization,
then locked (write protected) to prevent future modification. Alternatively, these values
can be stored in ROM, within or accessible by the CryptoFirewall.

Adding new rights by prepayment: Figure 3 outlines an exemplary embodiment
of a process for adding rights using prepayment. When a user purchases (or otherwise
obtains) permission to use some content, the playback device receives an appropriate
rights enablement message (REM) at step 300. The REM is optionally processed and/or
validated by the interface control processor, which locates an encrypted rights key in the
REM. The interface control processor also selects a destination address in the protected
memory. At step 310, the encrypted rights key and address are transferred to the
CryptoFirewall, which performs the subsequent processing steps (labeled 320). At step
330, the CryptoFirewall validates that the address specified is valid for storing prepaid
rights. At step 340, the CryptoFirewall reads CHIP_KEY (a chip-specific key or device
key) from the protected memory. At step 360, the encrypted rights key is transformed
using pseudoasymmetric function F, keyed using CHIP_KEY. At step 370, the
CryptoFirewall stores the result of transformation F, (i.e., the rights key) in the protected

memory at the validated address. Note that the process of Figure 3 can also be used to

10

15

20

25

30

WO 01/17163 PCT/US00/13427
16

delete or replace rights keys (e.g., by over-writing them), although key deletion is not
essential for broadcast systems (such as cable or satellite television) since content
providers can simply stop distributing content protected using expired keys.

Adding new rights by post-payment: Rights added by post-payment are different
from prepaid rights because no explicit communication or prior authorization is available
from the content provider. Figure 4 outlines an exemplary embodiment of the rights
addition process using post-payment. When a user wishes to gain access to content on a
post-paid basis, the interface control processor obtains at step 400 a rights enablement
message corresponding to the content access right to be added. The REM includes an
identifier of the content. (The content identifier can be a simple identifier, a randomly
produced or cryptographically generated value, a counter, a combination of parameters,
etc. and may be generated by the content provider, ICP, playback device, CryptoFirewall,
etc.) At step 410, the content identifier and a destination address are passed to the
CryptoFirewall, which performs the subsequent processing steps (labeled 420). At step
430, the CryptoFirewall verifies that the address is valid for storing post-paid rights. At
step 440, the CryptoFirewall verifies that storing audit data at the specified address will
not replace an existing post-payment purchase record in the protected memory. At step
460, the CryptoFirewall uses a pseudoasymmetric function F, to transform the content
identifier. (The function F, can, for example, be keyed with a post-payment authorization
key POSTAUTH_KEY or a global key or, if separate post-payment KDMs are distributed
for batches of CRUs, a batch key.) At step 470, the CryptoFirewall stores the result (the
rights key) in the protected memory.

Accessing content: Before a user can access some content, the playback device
must obtain the correct content decryption key (CDK) so that the content can be
decrypted. Figure 5 shows an exemplary method of the present invention for deriving
CDKs using rights keys stored in the CryptoFirewall’s protected memory. At step 500, the
interface control processor (ICP) receives a key derivation message (KDM) from the
playback device. At step 510, the ICP uses the KDM to obtain a CDK generator value.
(The CDK generator is typically an encrypted form of the CDK and is part of the KDM.)
The ICP then sends the CDK generator and an address in the protected memory
corresponding to the appropriate rights key to the CryptoFirewall, which performs steps
520 through 560. (To assist with selecting the correct address, the ICP can use its

10

15

20

25

30

WO 01/17163 PCT/US00/13427
17

nonvolatile memory to keep track of the rights keys and their locations. The KDM also
can identify which rights key is appropriate for processing each CDK generator.) At step
520, the CryptoFirewall verifies that the address is valid, then, at step 530, retrieves the
corresponding value (the rights key) from the protected memory. At step 550, the
CryptoFirewall uses pseudoasymmetric function F;, keyed with the rights key that was
read from the protected memory at step 530, to transform the CDK generator. (In an
alternate embodiment, F, can be keyed with the CDK generator and used to transform the
rights key itself. Also, F; does not necessarily need to be a pseudoasymmetric or
invertable function. For example, F3 can be a hash) At step 560, the CryptoFirewall
returns the transformation result to the ICP. At step 570, the ICP optionally performs any
final processing required to produce the final CDK from the F; result. At step 580, the ICP
transmits the CDK to the playback device, which, at step 590, uses the CDK to decrypt the
content.

Auditing and Clearing Post-Payment Rights: A secure audit process is required
to allow the content provider to charge users for post-payment purchases. To perform an
audit, the content provider must be able to receive data from the cryptographic rights unit,
for example through a modem or computer network connection with the playback device.
The audit process can be controlled by the interface control processor, which in turn
communicates with the CryptoFirewall. Figure 6 shows exemplary processes for auditing
and clearing audit data. At step 600, the content provider transmits an audit initiation
request message to the interface control processor. (The process used to initiate audits is
implementation-specific. For example, the CryptoFirewall or ICP can alternatively notify
the playback device that an audit is needed so that the playback device can establish a
connection with the content provider. In another embodiment the content provider can
broadcast a message to the CRU requesting that it perform an audit. In another
embodiment, the content provider can directly establish a connection with the CRU or
playback device.) The exemplary audit initiation message includes an unpredictable
and/or unique challenge value generated by the content provider. At step 610, the
CryptoFirewall receives an address value and the challenge value corresponding to a first
address to audit. At step 620, the CryptoFirewall verifies that the address is valid for
auditing. At step 630, the CryptoFirewall retrieves the contents of the protected memory
corresponding to the specified address and a device key (e.g., CHIP_KEY). At step 640,

10

15

20

25

30

WO 01/17163 PCT/US00/13427
18

the CryptoFirewall combines the memory contents and the address (for example by
concatenating them or replacing part of the memory contents with the address) and
transforms the result using pseudoasymmetric function F,keyed with the CHIP_KEY
XORed with the challenge value. The ICP then receives the F, result and sends it to the
content provider via the playback device. At step 650, the content provider uses F, ! (the
inverse of F,) keyed with the CRU’s CHIP_KEY XORed with the challenge value to
determine the actual contents of the memory at the specified address. Because F, is
pseudoasymmetric and keyed using the CHIP_KEY, the content provider (and only the
content provider) should be able to perform F,". Unless an attack or computational error
has occurred, the decryption result should correspond to either an unused (empty) post-
paid rights slot or a rights key for content sold on a post-payment basis. At step 660, the
content provider decides whether to clear the slot that was audited. (Post-payment
purchase records that are no longer needed by the CRU should be cleared to make room
for new purchases.) If no clearing is to be performed, processing continues at step 690.
Otherwise, at step 670, the content provider applies F," again (keyed using CHIP_KEY)
to the result of the first F, ! transformation. The result is transferred to the CryptoFirewall
via the playback device and the ICP. At step 675, the playback device applies F, (keyed
using CHIP_KEY) to the value received. At step 680, the playback device compares the
result with the value read from the protected memory at step 630. If the values match, the
CryptoFirewall performs step 685 and clears the protected memory slot. At step 690, the
audit process repeats back to step 610 if more addresses in the protected memory need to
be audited. Otherwise, the audit process concludes. After a successful audit, the content
provider performs post-audit actions such as charging the customer for purchases and
refreshing pre-paid keys in the CRU. If the audit fails or indicates inappropriate (or
unknown) values in the protected memory, actions might include terminating service to
the playback device (or CRU), requiring the user to return the CRU for replacement,
billing the user for noncompliance, and/or sending messages to cause the CRU to disable
itself. The embodiment shown in Figure 6 is exemplary; alternative embodiments can, for
example, perform auditing before audit record clearing begins, use risk management
techniques in the CryptoFirewall to require audits and determine when they should occur,
corrupt audit records if audit clearing authorizations are invalid, accumulate a hash of the

audit data in the protected memory so that insecure memory can be used to store audit

10

15

20

25

30

WO 01/17163 PCT/US00/13427
19

records, modify protected memory fields during the auditing process as well as during the
record clearing process, etc.

Multiple Targeting: In some environments, it may not be feasible to broadcast
different REMs to all users. For example, if REMs are distributed with content stored on
optical discs, broadcast by radio, or sent via satellite, the data required for REMs is
typically distributed to all users. As a result, the bandwidth and cost for distributing REMs
increase as the system grows larger and can eventually become prohibitive. It is possible
to reduce the amount of REM data by allowing multiple authorized CRUs to use each
REM. Figure 7 diagrams one exemplary multi-targeting technique of the present invention
and shows how it can be used to renew rights keys. At step 700, the playback device
receives a REM, which includes a rights key fixup value encrypted with a key shared by a
batch of CRUs as well as several smaller (e.g., 3-bit) chip-specific fixup values. For
example, if a BATCH_KEY is shared by 256 CRUs, a separate 3-bit chip fixup value is
included for each of these CRUs authorized to use the REM. At step 710, the
CryptoFirewall receives the rights key fixup value, the address to update, and the chip-
specific fixup value designated for this CRU. At step 720, the CryptoFirewall validates the
address received from the interface control processor to ensure that it corresponds to an
updateable key in the protected memory. At step 730, the CryptoFirewall reads the
CHIP_KEY from the protected memory. At step 740, the CryptoFirewall uses
pseudoasymmetric function F; keyed with CHIP_KEY to transform the rights key fixup
value. At step 750, the F result is truncated or compressed to a 3-bit quantity and the
truncated value is combined with the 3-bit chip-specific fixup value received at step 710.
(The combining can be done, for example, by XORing the two 3-bit values together,
adding them modulo 8, etc.) Note that the result of step 750 will match a value chosen by
the content provider if the chip-specific fixup value is correct, but otherwise produce a
different value. An attacker who attempts to guess the chip-specific fixup value will cause
the result of step 750 to be incorrect 7/8 (87.5 percent) of the time. At step 760, the 3-bit
result of step 750 is combined with the rights key fixup value received at step 710, for
example by XORing the result of step 750 onto the first 3 bits of the rights key fixup
value. At step 770, the CryptoFirewall reads from the protected memory the data at the
address received at step 710 and XORs with the BATCH_KEY. (If the BATCH_KEY is
stored in the protected memory, it is also read at this step.) At step 780, the

10

15

20

25

30

WO 01/17163 PCT/US00/13427
20

CryptoFirewall transforms the result of step 760 using pseudoasymmetric function F,
keyed with the result of step 770. Finally, at step 790, the result is written to the protected
memory at the specified address. Because the attempts to perform an unauthorized key
update will corrupt the key most of the time (i.e., with probability 2* for a k-bit chip-
specific fixup value), attackers will not be able to perform unauthorized key updates with
a high enough success rate to produce a commercially-viable attack. Note: another
embodiment of group targeting is described below with respect to Figures 10 and 11.
Many variants of the embodiment shown in Figure 7 are also possible; see (for example)

the section below entitled “Variations.”

Personalization

During personalization, keys including the CHIP_KEY and BATCH_KEY are
added. If manufacturing processes allow, these keys can be stored in the CryptoFirewall
during manufacture, for example by blowing on-chip fuses. They can also be stored in the
protected memory, but care should be taken, however, to prevent attackers from being
able to store key values from one CRU in another. Methods usable to prevent such attacks
include preventing write access to the key regions after personalization (e.g., by blowing a
write-protect fuse), cryptographically regulating access to these regions, and disabling
either bit clearing or bit setting operations to prevent attackers from transforming one key
into another. (Valid keys can be chosen with equal numbers of set and clear bits to ensure
that key changes will require both setting and clearing bits.) It is even possible to allow
modification of the keys, provided that changes performed using non-invasive attacks

have a high probability of corrupting the key without producing useful results.

Pseudoasymmetric Function Generation

Pseudoasymmetric functions are included in preferred architectures as they can
help limit the consequences if a single device is compromised. Cryptographic protocols
alone (without hardware tamper resistance) cannot prevent many attacks against broadcast
content distribution systems, since an unauthorized replica of an authorized playback
system will be able to decode signals. As a result, the hardware implementation should be

difficult to reverse engineer or clone.

10

15

20

25

30

WO 01/17163 PCT/US00/13427
21

In one embodiment, a pseudoasymmetric algorithm is produced using a software-
implemented generator. The generator constructs a randomized algorithm using data from
a random number source, such as a true random number generator, a pseudorandom
number generator (such as a stream cipher), a pre-computed randomized input file, etc.
The generator uses the random data to automatically design a hardware circuit that
performs a cryptographic transformation. The purpose of the random source is to ensure
that the circuit construction and the function it performs are unknown to attackers.

Figure 8 illustrates one embodiment of a pseudoasymmetric function generator
(PAFG) of the present invention. The input message is stored in a 128-bit shift register
800. The contents 810 of shift register bits 1 though 127 are labeled U, through U,,,. In
addition, the 128-bits of a permutation selector (key) K are also available as K, through
K,,, (labeled 802) and a clock cycle counter C is available as C, through C,; (labeled 804).
The computation circuit includes a series of sixty-four NAND gates 820 having inputs V,
through V ,, (labeled 815). For each NAND gate, the PAFG uses its random source to
randomly select one input bit from U, through U,,; and to randomly select the other input
bit from among C,...C,s, K,...K 37, and U,...U,,,. (To ensure that the transformation in
this exemplary embodiment is a permutation, the leftmost shift register bit, labeled 805, is
not used here.)

The outputs of NAND gates 820 are labeled W, through W ;. Each of these is
connected to one or more of X, through X,,, (labeled 835), where the specific choice of
connections is made by the PAFG. The remaining inputs to XOR gates 840 are connected
to randomly-selected bits from C,...Cs, K. .. K55, and/or U,...U},,. The XOR gate
outputs 850 (labeled Y, through Y ;) are connected by the PAFG to inputs randomly
selected from Z, through Z,,, (labeled 855). The remaining inputs to the final set of
NAND gates 860 are selected from among C,...Cys, K,...K 5, Uj...Ujpy, W.. . W, and
Y,...Y,. Finally, the outputs of NAND gates 860 and the original 128-bit shift register’s
left-hand bit 805 are XORed together by XOR gates 870, producing a single-bit result
880. The 128-bit shift register 800 is then shifted left one position (i.e., storing the
contents of bit 1 into bit 0, bit 2 into bit 1, but 127 into bit 126, etc.) and the single result
bit 880 is placed in bit position 127. To transform an input block, the operation shown in
Figure 8 is performed repeatedly with a corresponding increment or update to clock

counter 804 after each operation. The key 802 can also be updated, for example by

10

15

20

25

30

WO 01/17163 PCT/US00/13427
22

transforming it with a maximal-length shift register. The number of iterations performed 1s
implementation-specific and may be variable, depending on factors such as performance
requirements and the quality of the mixing function.

Of course, the implementation illustrated in Figure 8 is substantially simplified,
since a real hardware implementation could be comprised of many thousands of gates. In
addition, the exemplary embodiment uses only two types of gates (XOR and NAND), but
other logic operations may be employed in addition or instead. Additional inputs may also
be incorporated into the computation or some inputs may be omitted (such as the counter
C).

Figure 8 uses a 128 bit to 1 bit basic transformation function, but other
embodiments may also use other constructions for the transformation. For example, the
constructed function can have a Feistel structure (which may be balanced or unbalanced).
Constructions without the regularity of a Feistel or shift register may also be used (and
may be advantageous since attacks such as microprobing the circuit for computation
intermediates can made more difficult if there are a large number of interrelated internal
intermediates). Even though it is usually advantageous that the pseudoasymmetric
function be a permutation, some embodiments may produce functions that are not strict
permutations. Although the embodiment shown in Figure 8 uses two input parameters (a
data block and a key block), alternate embodiments can combine these, eliminate the key,
or include additional parameter values.

In some CryptoFirewall embodiments it is advantageous to use multiple
pseudoasymmetric functions to ensure that outputs from one operation cannot be used to
attack other operations. To reduce the size of an implementation, it is possible to share
many or all logic components between these functions. A single transformation circuit can
provide multiple operations if a transformation selector is used. For example, a 3-bit
function identifier placed in the most significant 8 bits of the counter in C,...C;; shown in
Figure 8 could provide for eight separate transformation operations.

The output of the PAFG can have any form, but is typically a circuit representation
that can be included directly in an application-specific integrated circuit (ASIC). For
example, standard languages (such as Verilog and VHDL) for designing integrated

circuits may be used as the output format. Additional automated or manual modification

10

15

20

25

WO 01/17163 PCT/US00/13427
23

of the output (such as adding basic structures around the function, optimizing the
operation, etc.) can be performed if required.

In a preferred embodiment, the PAFG also outputs a circuit definition for the
inverse function in addition to the “forward” function. A hardware implementation of the
forward function is distributed to untrusted parties, for example in the CryptoFirewall,
while the inverse is typically managed securely by the content provider(s) and used to
prepare content, REMs, KDMs, etc. for distribution. Because the devices that contain the
inverse function are operated by the content provider, they can be stored in physically-
secure locations. As a result, tamper-resistance is not required, so the inverse may (for
example) be implemented in software or in programmable integrated circuits (such as
FPGAs).

It is possible for the PAFG to be configurable to produce output tailored to the
implementation. For example, output can be tailored to accommodate different circuit
description languages, circuit sizes, layouts, logic gate (or logic cell) types, and wiring
limitations. For example, in one embodiment, the PAFG is configured to produce a circuit
of variable size so that a system designer can select an output circuit whose size
corresponds to the amount of space available on a chip’s die.

One major advantage of the PAFG architecture is that it can produce circuits that
are difficult to reverse engineer while still allowing open cryptographic evaluation. The
PAFG itself does not need to contain any secrets because it constructs the output circuit
using interconnects and other design parameters generated using a random source. As a
result, the PAFG design and implementation can be analyzed — or even published for open
review — to assess whether there is any significant chance that the PAFG will generate a
cryptographically insecure function. The PAFG architecture thus allows for unrestricted
use of outside review and does not require burdensome security precautions on the
reviewers typically required when using obfuscated algorithms. The PAFG thus provides
resistance to reverse engineering without relying on security by obscurity. (Of course,
PAFG implementations that do not use good random sources can be constructed as well,

but are not preferred.)

10

15

20

25

30

WO 01/17163 PCT/US00/13427
24

An Exemplary Simplified Architecture

The complexity of the CryptoFirewall described with regard to Figures 2 through 7
can be reduced significantly. This section outlines one such simplified architecture that
maintains the general memory protection and security features. In the first embodiment
presented, the CryptoFirewaH supports only prepaid rights, leaving other security features
(such as post-payment purchase auditing) to be enforced by the (less secure) ICP. A
disadvantage is that attackers who compromise the ICP could potentially erase post-
payment audit records, but an advantage is that the CryptoFirewall implementation is
significantly simplified.

Figure 9 diagrams the operation of an exemplary CryptoFirewall that implements
prepaid rights but can be easily extended to support post-paid rights. The nonvolatile
protected memory behind the CryptoFirewall contains a device key (CHIP_KEY) as well
as memory locations for storing prepaid rights keys. At step 900, the CryptoFirewall
receives a key address from the ICP and makes sure that the address corresponds to a valid
key offset in the protected memory. (For example, if keys are 8 bytes long, zeroing the
three least significant address bits ensures that the base address is not mis-aligned.) At
step 910, the CryptoFirewall loads from the protected memory the data stored at the
specified address and places the result in a key register. At step 920, the CryptoFirewall
receives a data block from the ICP. At step 930, the CryptoFirewall uses the key read at
step 910 with a pseudoasymmetric function to transform the data block obtained at step
920. At step 940, the CryptoFirewall tests whether if the address read at step 900
corresponds to the location of the CHIP_KEY in the protected memory. If not, at step 950,
the CryptoFirewall outputs the pseudoasymmetric transformation result to the ICP and
concludes. (Results produced using keys other than CHIP_KEY - i.e., rights keys — are
used to derive content decryption keys, so the results are not stored. Transformations
protected with the CHIP_KEY are used to add new rights keys to the protected memory.)
Otherwise, at step 960, the CryptoFirewall reads a second address from the ICP. At step
970, the CryptoFirewall optionally tests whether the result of the transformation is valid
for writing at the address specified at step 960 to prevent attackers from inappropriately
modifying values in the protected memory. This check is primarily required to prevent
over-writing of CHIP_KEY values stored in updateable memory. (For example, before

allowing a write to the CHIP_KEY, the CryptoFirewall can verify that the result of the

10

15

20

25

30

WO 01/17163 PCT/US00/13427
25

pseudoasymmetric transformation has a predefined characteristic — for example, that its
first 56 bits equal “10” repeated 28 times.) Alternatively or in addition, the CryptoFirewall
should verify that the destination address value is appropriate (e.g., not pointing to the
CHIP_KEY). If the CryptoFirewall determines at step 970 that the write is authorized, it
performs the write at step 980.

The embodiment of Figure 9 has the advantage of being very simple, and hence
relatively easy to implement and test, but relegates some security tasks (particularly
tracking of post-paid purchases) to the ICP. As a result, attackers who compromise the
ICP could tamper with post-payment auditing. As noted, the risk of such attacks can be
mitigated by requiring the presence of a prepaid rights key to access post-paid content.
This prepaid rights key can be updated when an on-line audit completes successfully,
thereby preventing devices that have not been audited recently from accessing post-paid
content. (Using a “hacked” CRU to perform an audit is relatively risky, particularly if
audits suggesting illegal activity can be traced back to specific users through Internet IP
addresses, Caller ID/ANI, etc. As a result, the actual and perceived risk can be high
enough that attacks on the post-payment audit data will not present a serious piracy
threat.)

With a modest addition of complexity, the Figure 9 architecture can be expanded
to include support for post-payment purchases. At step 940, the CryptoFirewall checks
whether the address points to the unique chip-specific key or a post-payment authorization
key. If neither, processing continues at step 950, as shown. Otherwise, step 960 is
performed normally then step 970 is performed as follows:

(a) If the key loaded at step 910 is the post-payment authorization key then the
CryptoFirewall tests whether the address received at step 960 corresponds
to an empty post-paid rights slot. If it does, the transformation result is
written at step 980. (This corresponds to a normal addition of a post-paid
rights key.) Otherwise, if the address does not correspond to a post-paid
rights slot or if the slot is not empty, no write 1s performed.

(b) If the key loaded at step 910 is the chip-specific key AND the address
received at step 960 corresponds to a prepaid rights slot, then the
transformation result is written. (This corresponds to a normal addition of a

pre-paid rights key.) The CryptoFirewall can optionally allow replacement

10

15

20

25

30

WO 01/17163 PCT/US00/13427
26

of the post-payment authorization key as well (i.e., if the address received
at step 960 corresponds to the post-payment authorization key).

(©) If the key loaded at step 910 is the chip-specific key AND the address
received at step 960 corresponds to a post-paid rights slot, then the
CryptoFirewall tests whether the transformation result from step 930
matches the value of the post-paid rights slot. If there is a match, the
memory slot is cleared. Otherwise, no write is performed.

Post-paid rights slots can be designated as empty if all bits are cleared (or set). In
this case, the update processes used in (b) and (c) above require only writing (or clearing)
bits in the protected memory. If the protected memory uses a technology such as
EEPROM where bit clearing and bit setting operations are performed separately, the post-
payment addition process can be implemented so that purchasing and clearing each use
one type of bit operation.

To audit post-paid purchases, the content provider can (for example) use the
standard key generation process and provide a random challenge for the data block at step
920. The output from step 950 is compared with expected values for post-paid purchase
keys to identify the key in the protected memory. (Alternatively or in addition, purchase
data can be obtained from the ICP or additional logic can be provided in the
CryptoFirewall for audits.) Because the audit clearing process is secured using a chip-
specific key, attacks that modify audit data will have limited effectiveness. In particular,
audit records will only be cleared if the content provider has correct audit data. As a resuit,
the number of purchases that can be performed without paying is limited by the number of
post-payment audit record slots in the CryptoFirewall. For risk management, the content
provider can initially ship CRUs with only a few empty slots, then gradually clear slots as

customers establish their trustworthiness.

Another Exemplary Simplified Architecture

This section outlines a simplified CryptoFirewall architecture that only provides
security for pre-paid content purchases. This embodiment has the advantage of being able
to use volatile memory instead of writeable nonvolatile memory behind the
CryptoFirewall. Because volatile memory is often easier to implement (e.g., because only

standard logic components are required), manufacturing and design costs can be reduced.

10

15

20

25

30

WO 01/17163 PCT/US00/13427
27

Embodiments of the present invention that use only volatile memory require
access to a unique parameter that cannot be replaced by attackers. This unique parameter
is preferably embedded into the circuit, for example using ROM or blown fuses.
Techniques for embedding unique parameters in chips are known in the background art.
For example, U.S. patent 5,799,080 to Padmanabhan et al. describes techniques for
embedding serial numbers and cryptographic keys in integrated circuits.

Figure 10 shows an exemplary CryptoFirewall embodiment using a small (for
example, 64-bit) volatile protected memory and using batch keys to minimize the
bandwidth required for REMs. During manufacture (i.e., prior to the process of Figure
10), the CryptoFirewall is personalized by permanently embedding a 64-bit BATCH_KEY
and a 6-bit BATCH_OFFSET. For example, 64 pairs of fuses may be used to store a 64-
bit BATCH_KEY where the personalization process blows one fuse of each pair. To
ensure that attackers will not benefit from attacks or manufacturing defects that only
connect or only blow fuses, self-test logic can be incorporated to ensure that exactly one
fuse of each pair is blown. (Of course, other self-test or verification techniques can also be
used. Multiple fuses can also be used to help obfuscate the value of the key bits, for
example by making each bit or group of bits the XOR or hash of many fuses.) It is
strongly preferable although not strictly required that the combination of BATCH_KEY
and BATCH_OFFSET be unique per CryptoFirewall.

In Figure 10 at step 1000, the interface control processor (ICP) loads a 64-bit key
mask value into an externally-accessible 64-bit register in the CryptoFirewall.

At step 1010, the CryptoFirewall verifies that the bit in the key mask
corresponding to its BATCH_OFFSET is set. For example, if the CryptoFirewall’s
embedded BATCH_OFFSET is binary 101110 (46 decimal), the CryptoFirewall will
verify that bit 46 of the key mask value is set and, if not, the processing terminates. In an
alternate embodiment, the CryptoFirewall sets the bit corresponding to the
BATCH_OFFSET if it is not already set. (Of course, alternate embodiments can use
encodings other than binary “1” for valid, use other testing processes, decrypt or otherwise
process the key mask before testing, corrupt the key mask if the BATCH_OFFSET bit is
not set, use batch offsets that involve multiple bits in the key mask, use multiple key

masks, etc.)

10

15

20

25

30

WO 01/17163 PCT/US00/13427
28

At step 1020, the CryptoFirewall copies the validated key mask value from the
input register to the CryptoFirewall’s protected memory. The CryptoFirewall can
optionally perform some cryptographic processing of the value during this copying.

At step 1030, the ICP loads a 64-bit encrypted rights key into the CryptoFirewall’s
externally-accessible register. Under normal operation, this key corresponds to some
content a user wishes to decode. Encrypted rights keys are normally obtained by the ICP
from a REM that was transmitted by the content provider. Because rights keys may last a
considerable period of time (e.g., 30 days for a month-long subscription to a cable TV
channel), encrypted rights key values can be cached (with the corresponding key mask) in
nonvolatile memory external to the CryptoFirewall.

At step 1040, the CryptoFirewall applies a pseudoasymmetric transformation to
the encrypted rights key. The pseudoasymmetric transformation is keyed using the XOR
of the protected memory contents (i.e., the verified key mask value) and the
BATCH_KEY loaded during manufacture. The transformation result is stored in the
protected memory, replacing the key mask.

At step 1050, the ICP stores an encrypted content decryption key in the
CryptoFirewall’s externally-accessible register. The encrypted content decryption key is
typically obtained from a KDM distributed by the content provider with the content to be
decoded.

At step 1060, the ICP applies a pseudoasymmetric transformation to the encrypted
content decryption key. As in step 1040, the pseudoasymmetric transformation is keyed
using the XOR of the protected memory contents (i.e., the decrypted rights key) and the
BATCH_KEY loaded during manufacture. The transformation result is stored in the
externally-accessible register, where it can be read by the ICP at step 1070 and used to
decode the content.

Figure 11 diagrams the same content decryption key computation process. Key
mask 1100 identifies which CryptoFirewalls in a batch are authorized to decrypt an
encrypted rights key 1125. (Encrypted rights keys are distributed with an associated key
mask.) The key mask is checked by key mask validator 1105, which verifies that the
CryptoFirewall is among the authorized devices in the batch as specified by the key mask.
If valid, a representation of key mask 1100 is stored in protected memory 1110. (If it is

invalid, the value is not stored or it is stored in corrupted form.) Combination logic 1115

10

15

20

25

30

WO 01/17163 PCT/US00/13427
29

XORs (or otherwise combines) protected memory contents 1110 with BATCH_KEY 1120
and provides the result as a key to pseudoasymmetric function 1130.

The data input to pseudoasymmetric transformation 1130 is encrypted rights key
1125, which is transformed and the result is stored in protected memory 1135 (which is
the same as protected memory 1110). Combination logic 1140 optionally combines
BATCH_KEY 1145 (which is the same as BATCH_KEY 1120) with the protected
memory contents and provides the result as a key to pseudoasymmetric transformation
1155. Combination logic 1140 is optional; for example, the output of pseudoasymmetric
transformation 1130 can be used directly to key transformation 1155. Note that
transformation 1155 does not need to be invertable. For example, a keyed hash function
such as HMAC can be used instead of a pseudoasymmetric function.

Encrypted content decryption key 1150 is transformed by pseudoasymmetric
transformation 1155, yielding content decryption key 1160. (In an alternate embodiment
of the invention where the CryptoFirewall directly decrypts the content itself, the content
itself or a portion of the content may be supplied instead of encrypted content decryption
key 1150.) Note that further processing on the content decryption key 1160 can be
performed (e.g., by the ICP, playback device, etc.) before the actual content decryption is
performed.

To ensure that operations are performed in the correct order, the CryptoFirewall
should keep track of the current state in the transaction processing. For example, the
CryptoFirewall should not allow reading of any results until it has completed processing.

To distribute a rights key, the content provider first chooses the value of the rights
key and identifies one or more CRUs in a batch that will be authorized receive the key.
Next, the content provider constructs a key mask by setting the bits corresponding to the
authorized CRUs’ BATCH_OFFSET values. From the mask and the BATCH_KEY, the
content provider can assemble the output of logic 1115. Using the inverse of
pseudoasymmetric transformation 1130 (e.g., as prepared by the PAFG) with the output of
logic 1115 as the key, the content provider can compute encrypted rights key 1125 for
distribution.

If bandwidth for key distribution is not limited, the batch key capability included
in Figures 10 and 11 is not required. Instead, device-specific keys can be used and (for

example) supplied directly into the pseudoasymmetric transformation in Figure 10 at step

10

15

20

25

30

WO 01/17163 PCT/US00/13427
30

1040. As a result, the CryptoFirewall is somewhat simpler but separate encrypted rights
keys need to be distributed for each user. CryptoFirewall architectures can also include
both device-specific keys and shared keys.

The architecture of Figures 10 and 11 prevents a variety of attacks that involve
submitting key masks and/or encrypted rights keys to unauthorized CRUs. For example, if
the key mask value is modified in any way (e.g., by setting the bit for an unauthorized
CryptoFirewall in the batch), the input to pseudoasymmetric transformation 1130 will be
modified, preventing the correct decryption of encrypted rights key 1125. Similarly, if an
encrypted rights key from a different batch is submitted, the rights key will also fail to
decrypt correctly.

Many variant embodiments are possible. For example, other combination
processes (such as encryption, pseudoasymmetric transformations, modular addition, etc.)
can be substituted for XOR logic 1115 or logic 1140 in Figure 11. Combination function
1115 can be omitted altogether or replaced with concatenation if pseudoasymmetric
transformation 1140 takes a large enough key. Specified parameter sizes are exemplary.
For example, 160-bit keys can be used to provide better security than 64-bit keys against
some attacks. Larger key mask sizes can increase efficiency of bandwidth use. Operations
can be reordered and additional transformations can be added. (Additional variations are

described below in the section entitled “Variations™.)

Physical Implementations

The physical implementation of the CRU can have several forms. A preferred
implementation involves combining the interface control processor (as well as its
memory) with the CryptoFirewall and protected memory on a single chip, which is then
placed in a smartcard or PCMCIA card (PC card). Because the CryptoFirewall security
model does not assume that the interface control processor (ICP) is completely secure, the
CryptoFirewall should be implemented in hardware separate from the ICP, for example as
a separate circuit on the same integrated circuit.

The protected memory used by the CryptoFirewall can be separate from, or part of,
nonvolatile and/or volatile memory accessible by the ICU. If the CryptoFirewall and ICP
share memory regions, the CryptoFirewall is responsible for ensuring that the ICP cannot

inappropriately access the protected memory without the required cryptographic

10

15

20

25

30

WO 01/17163 PCT/US00/13427
31

transformations. In particular, the CryptoFirewall should intercept and process accesses to
protected regions while allowing other accesses to pass through it.

The CryptoFirewall architecture can be combined with hardware and chip card
security features known in the background art. For example, detectors can be included to
reset the device if unusual operating conditions (such as high/low operating voltage,
high/low temperature, high/low/irregular clock signals, radiation, etc.) are encountered.
Tamper-resistant coatings, chip obfuscation techniques, conventional memory encryption
techniques, error detection/correction logic, intrusion detectors, etc. can also be used. If
potential attacks are detected, the CryptoFirewall can (for example) erase any internal
registers, reset itself, reset the ICP, and optionally even erase the protected memory.

The CryptoFirewall may be implemented using dedicated hardware (discrete logic)
or using a separate microprocessor. In one preferred embodiment, two microprocessors
(each with its own RAM, ROM, and EEPROM) are integrated onto a single chip, which is
then embedded in smartcard packaging. One microprocessor serves as the ICP and
communicates with the second microprocessor which is the CryptoFirewall. Although a
dual-microprocessor CRU is somewhat more expensive to manufacture than the single-
microprocessor CRUs in use today, it has the important advantage that the inner
microprocessor (CryptoFirewall) is shielded from many attacks by the outer
MiCroprocessor.

The clock signal used to drive the CryptoFirewall can be taken from (or derived
from) an external clock interface, generated internally, or supplied by the ICP. If present,
clocks derived internally by the EEPROM circuit for timing write operations can also be
used. External clocks should be used with caution to ensure that disruptions in the clock
signal will not cause computation errors that could be used to attack the circuit. Clock
dividers and multipliers can also be used.

The CRU of the present invention can be implemented in a wide variety of forms.
For example, components 210, 270, 280, and 225 in Figure 2 can be physically located in
the same unit or can be individual components that communicate with each other. The
entire CRU can be implemented in a single chip or using multiple chips enclosed in a
tamper-resistant packaging. (Single chips themselves are sufficiently tamper resistant for
many systems, although features such as tamper resistant coatings can be included if

desired.)

10

15

20

25

30

WO 01/17163 PCT/US00/13427
32

In one preferred embodiment, the entire CRU is implemented in a single
smartcard. Alternatively, the CRU can be a PCMCIA card. The CRU can also be a part of
the playback device and can be integrated with other portions of the playback system such
as bulk decryption, content decompression, and/or output. For security reasons, the
CryptoFirewall needs to be an independent circuit from the interface control processor,
but can have any form (e.g., 2 hard-wired circuit, an independent microprocessor, etc.)

The CRU can be integrated into the playback device, providing the benefit of
making it more difficult for attackers to capture or insert content decryption keys
exchanged between the playback device and the CRU. As a result, some key redistribution
attacks can be prevented. (For content whose value is not time-sensitive or for systems
operating in jurisdictions where anti-piracy laws are unavailable or unenforced, such
attacks are of particular concern. Key redistribution attacks may also become more
dangerous as computer networks such as the Internet can provide attackers with new
methods for redistributing keys.) Physical integration of the CRU with the playback
device has the disadvantage of making it more difficult to replace the CRU if an attack
does occur. Alternatively or in addition, the content provider can withhold key derivation
messages until they are actually required by the playback device to minimize the amount
of time available for attackers to redistribute keys. Playback devices can also halt if keys

are not received in a timely fashion.

Preparing Content

Digital content is usually distributed in compressed form. Processes for creating,
formatting, and compressing content of different types are well known in the background
art. In most situations, content is encrypted after it is compressed, since encrypted material
does not compress well. Occasionally, however, compression and encryption are
combined or simple encryption is applied before compression.

The key(s) used to encrypt the content are carried in the content’s KDMs, which
are secured with rights keys distributed in REMs sent to authorized users. KDMs can
specify combinations of rights keys required to access content. For example, if two rights
keys should be required to access a particular block of content, the content provider can
first generate an encrypted key block (e.g., corresponding to encrypted content decryption
key 1150 in Figure 11). The content provider then constructs a KDM instructing the ICP

10

15

20

25

30

WO 01/17163 PCT/US00/13427
33

to (for example) process the encrypted content decryption key twice (each time using the
process described with respect to Figure 10) and combine the results (e.g., by XORing
them together) to produce the decrypted content decryption key. The content provider also
computes the content decryption key and uses it to encrypt the content. Next, the content
provider typically associates KDMs with the content, for example by interspersing KDMs
at appropriate places in the content or by making other arrangements for the KDMs to be
communicated to playback devices. REMs can also be added if they are distributed with
the content. Finally, the content is sent to end users.

In an alternative embodiment, the content provider can begin by selecting a
content decryption key. This key may be (but is not required to be) random. The content
provider then uses the inverse of the CryptoFirewall pseudoasymmetric function to
encrypt the content decryption key with a first rights key. If a second rights key is also
required to access the content, the content provider can then use a second rights key to
encrypt the content decryption key. The content provider then packages the encrypted
CDK into a KDM for distribution and encrypts the content.

Content providers can also broadcast “fixup” values in KDMs that can enable
CRUs with any of several rights keys to decode the content. In such cases, the ICP
typically locates the address of a valid rights key, uses the CryptoFirewall to process an
encrypted rights key, and XORs (or otherwise combines) the CryptoFirewall result with
the key fixup value to derive the actual content decryption key. For example, if any of
three rights keys (K1, K2, and K3) should allow access to some content and the
CryptoFirewall key derivation process is denoted F(K;,X) where X is a data block and K;
is a BLOCK_KEY, the content provider can choose F(K;,X) as the content decryption
key. The KDM can then include F(K;,X) XOR F(K,, X) to enable CRUs with only K, to
derive the content decryption key. Similarly, including F(K,,X) XOR F(K,, X) allows
CRUs with K, to decode the content. This “cither/or” rights key selection operation can be
combined with the “and” operation described above to allow the content provider to
establish sophisticated rules as to which CRUs can decode content. Fixups can also be
used to produce compatibility between CRUs of different types (e.g., during periods
where CRUs are being replaced and two versions are supported). Because the key
combination rules are secured cryptographically, the KDM parsing and key construction

processes can be implemented in the ICP.

10

15

20

25

30

WO 01/17163 PCT/US00/13427
34

It is possible (and often advantageous) to change content decryption keys
frequently, for example by requiring a new KDM and a new key for each one-second or
one-minute block of content. If desired, blocks can be protected with different
combinations of rights keys. To reduce the latency experienced by users when they begin
to decode some content, the content provider can make key changes coincide with places
where the decompression algorithm can resynchronize. For example, with MPEG-2

compressed video, key changes can be made to coincide with I pictures.

Comments and Considerations

Under the architecture outlined in Figure 2, the system remains robust even if the
ICP and its RAM, ROM, and EEPROM are compromised. This is an extremely important
feature of the present design, since these components of a chip are particularly vulnerable
to both invasive and non-invasive attacks. The CryptoFirewall controls the addition of
rights keys to the protected memory and thereby prevents information obtained from one
CRU from providing attackers with the ability to add rights keys to other CRUs without
breaking the cryptography or performing an invasive attack. Even if rights keys are
compromised, attackers cannot insert them behind the CryptoFirewall.

In order to compromise the system, the attacker must do one of two things: either
duplicate the functionality of the CryptoFirewall’s pseudoasymmetric transformation or
gain the ability to use a CRU’s CryptoFirewall for unauthorized purposes. The former
attack is prevented by making it difficult to reverse engineer the randomized
transformation circuit. In addition, for large deployments, groups of CRUs can contain
different pseudoasymmetric functions to reduce the consequences of a successful reverse
engineering attack. Use of group-specific keys (such as BATCH_KEY values) to
broadcast periodic rights keys (such as hourly or daily keys) can also reduce the
consequences of many reverse engineering attacks.

If the CryptoFirewall is implemented properly, a physically-invasive attack should
be required to gain unauthorized control over the protected memory. If the CRU is
implemented as a single-chip device (such as a smartcard) with reasonable physical
security measures, physically-invasive attacks pose relatively little risk of being
performed on a large number of devices because, even after such an attack has been

identified, attackers still have to perform the time-consuming and expensive process of

10

15

20

25

30

WO 01/17163 PCT/US00/13427
35

decapping, modifying, and remounting each target chip. These techniques also require
expensive equipment and have a fairly high chance of damaging the target chip. As a
result, most systems will not experience significant amounts of piracy even if attackers
discover a physically-invasive attack that breaches the CryptoFirewall.

The architecture does assume that some devices will be attacked invasively, and
therefore minimizes the usefulness of the keys and other data that could be obtained. In
particular, a physically invasive attack will potentially provide an attacker with the ability
to read from and/or write to the protected memory of the compromised device. Embedded
keys (such as BATCH_KEY or BATCH_OFFSET) could be read and/or modified. Simply
reading the protected memory contents provides no particular value, since the keys stored
in the memory are not useful without the algorithms implemented in the cryptographic
unit. The ability to write to the memory can, however, enable some significant attacks,
since it then becomes possible for the attacker to delete post-payment records, insert new
authorization keys, or modify batch offsets. A properly-functioning CryptoFirewall is still
required, however, to process these values into content decryption keys. As a result, the
attacker’s work modifying one chip can yield one fully-functional pirate device, but

should not lead to a general attack that can be marketed on a wide scale.

Variations

This section presents several examples of modified embodiments of the present
invention, and other variants will be evident to one of ordinary skill in the art.

The present invention may be used in conjunction with other content protection
mechanisms. Content can be watermarked to trace compromises, identify copyright
owners, etc. Non-cryptographic security measures can be added in the CRU, playback
device, etc. and can help by increasing the effort required for an attack. Tamper evidence
(in addition to tamper resistance) in the CRU can help to discourage attacks and prosecute
pirates.

In addition to providing a “positive” benefit of adding rights, REMs can also have
negative effects such as disabling a CRU by deleting or corrupting a rights key. Such
negative effects can be implemented by the ICP and/or by the CryptoFirewall. To prevent
attackers from blocking all REMs, the content provider can combine KDMs and REMs or
make them indistinguishable (e.g., by encrypting them).

10

15

20

25

30

WO 01/17163 PCT/US00/13427
36

Data blocks in KDMs (e.g., such as the data block received by the CryptoFirewall
in Figure 9 at step 920) can have additional meaning to the ICP or CryptoFirewall, such as
a code update or self-check. The content provider can also specify to the ICP that it should
supply a portion of the ICP’s nonvolatile memory as the encrypted CDK or specify other
methods for deriving such values. If KDMs do not need to carry new information from the
content provider, they can be generated by the CRU, playback device, etc. For example, a
timer can be used to generate unique values for the data block used for content decryption.
(Implementers of such embodiments may need to be careful, however, to prevent attackers
from generating and distributing content decryption keys before the content is actually
broadcast.)

The process performed to derive the content decryption key can include multiple
rights keys and/or transformations. For example, multiple iterations of the process shown
in Figure 5 can be performed and the results can be XORed, added, concatenated, hashed,
or otherwise combined. (The ICP can manage this process.) The output from a first
iteration can be used as the input to subsequent iteration(s).

A content provider can, for example, require that CRUs contain multiple rights
keys to access some content. For example, a block of content might require a general
rights key that is updated frequently (e.g., hourly), a stream-specific rights key, a post-
payment purchase authorization key, a post-payment audit key (indicating that a
successful audit was performed recently), a region key (to enforce sports programming
blackouts or other geographic restrictions), and/or a premium service rights key.

The ICP can be involved in cryptographic computations. For sophisticated KDMs,
the ICP can identify and extract the components usable by the CryptoFirewall, manage I/O
with the playback device and CryptoFirewall, and combine results to produce valid
content decryption keys. The ICP can also perform additional cryptographic processing on
REMs and/or CDKs. Although the CryptoFirewall may be designed with the assumption
that the ICP is not a trusted part of the system, it does not cause any harm to also include
security in the ICP so that attackers will not succeed unless they compromise both. Some
security-related operations (such as local blackouts of sporting events) are relatively
unlikely to be the focus of concerted attacks and are difficult to implement in dedicated

circuitry, and therefore can be performed by the ICP.

10

15

20

25

30

WO 01/17163 PCT/US00/13427

37

Not all data needs to be protected to the maximum possible level of security.
Occasional deletions, for example, are usually sufficiently irritating to prevent attacks that
do not decode all of the content. Because compression techniques can make even single
bit errors disrupt playback, strong protection over just a few percent (or less) of the total
content can be sufficient. As a result, adequate security can often be obtained despite
challenging bandwidth or performance limits on the CRU or decryption system. Different
portions of the content can also use different levels of protection. For example, relatively
weak security can be applied to most of the content but much stronger protection can be
applied to a small fraction of the material.

Content providers should change rights keys periodically to ensure that users who
have lost their authorization cannot access content. For example, if a user terminates a
subscription, the CRU may continue to operate unless the rights key is deleted/disabled or
mechanisms outside the CryptoFirewall disable access. Content providers can limit the
maximum duration of such use by making rights keys expire periodically (e.g., hourly,
daily, weekly, monthly, annually, etc.) To ensure that key changeovers do not disrupt
legitimate viewers, new rights keys can be distributed before the old ones are
discontinued. During the changeover period, content can also be broadcast with KDMs
that can operate using both the old rights key and the new one. An additional option is to
queue the REM that updates the key until the key change is required. (Such queuing can
be done by the playback device, ICP, etc.)

The memory technology used for nonvolatile protected memory does not need to
be conventional EEPROM. For example, PROM, flash memory, battery-backed RAM,
FeRAM, etc. all provide nonvolatile storage. Embodiments can even use hard drives or
other media-based storage systems, although such approaches are generally infeasible due
to their high cost and the difficulty of adding sufficient physical security. (Variants where
a hard drive, or a portion of the hard drive, is protected can be useful in environments
where the data itself must be stored and protected in the CRU.) Volatile protected memory
can also be implemented using a variety of techniques, including registers implemented
using standard logic, SRAM, DRAM, etc.

Although it is strongly preferable that values stored in the protected memory be
cryptographic keys of sufficient length and quality to prevent attacks such as exhaustive

search, it is possible to store shorter values. In one extreme case, individual bit flags that

10

15

20

25

30

WO 01/17163 PCT/US00/13427
38

correspond to access rights can be stored in the protected memory. Valid REMs cause the
CryptoFirewall to set and/or clear rights bits in the protected memory. When producing
content decryption keys, the CryptoFirewall tests the value(s) of rights bits (or
incorporates these bit values in the cryptographic transformations) so that valid content
decryption keys are only produced if the appropriate bit(s) are set. Such embodiments,
although possible, involve more risk because invasive attacks will tend to have more
severe consequences.

The components of the CRU do not need to be connected by a bus. In fact,
eliminating the bus and directly connecting components can have the advantage of
increasing the effort required for physically-invasive attacks as buses can be attacked
using (for example) microprobing techniques.

CRUs can contain any number of batch keys or device keys. Also, batch keys do
not need to be assigned sequentially during the manufacturing process. (In fact, shuffling
key assignment can be beneficial to make it more difficult for attackers to obtain cards
with identical batch keys.) Batch keys (and other keys) also do not need to be static; they
can be replaced or updated using, for example, a key update process such as the one
described with respect to Figure 7. By including keys for multiple independent batches in
each CRU, the consequences of an attack against a single CRU (or small number of
CRUs) can be minimized since future REMs and KDMs can be protected using keys that
were not in the compromised device(s). If a clone is produced, it is possible to replace
legitimate cards in the compromised device’s batch then discontinue sending REMs for
that batch.

Techniques such as those described in “Tracing Traitors” by Benny Chor, Amos
Fiat, and Moni Maor (Advances in Cryptology — Crypto *94, Springer-Verlag, August
1994, pp. 257-270) can be used to identify the source of rebroadcast keys. The CRU can
also encrypt content decryption keys, for example using an RSA public key corresponding
to the playback device’s private key or, preferably, using a unique symmetric key shared
between the CRU and the playback device added during manufacturing. Such techniques
can help prevent key redistribution attacks that involve using keys produced by one CRU
in many playback devices. If the CRU has sufficient I/O bandwidth and computational

speed, it can decode the content itself.

10

15

20

25

30

WO 01/17163 PCT/US00/13427
39

The pseudoasymmetric transformations can be implemented using (or replaced
with) a variety of cryptographic operations. Methods for building randomly-constructed
logic operations are described with respect to Figure 8, but other constructions can be used
instead. For example, standard algorithms (such as Triple DES), one-way hash operations,
etc. can be substituted. It is also possible to use a combination of functions, such as Triple
DES with randomized pre- and/or post-processing to ensure that the cryptographic
security is demonstrably as robust as Triple DES. Pseudoasymmetric functions can also be
replaced by true asymmetric functions, which can provide better security but require
longer messages and take larger circuits to implement (e.g., increasing the cost of the
CryptoFirewall).

Although it is generally simplest to have the interface control processor determine
which memory addresses to use when storing and using rights keys, addresses can also be
chosen by the CryptoFirewall, by the content provider, by the playback device, etc.

If errors occur in the CRU or CryptoFirewall, a failure counter can be incremented
and, if the failure counter reaches a threshold value, the CRU may trigger an audit or cease
to work. Examples of failures include torn operations (i.e., where processing is
interrupted, for example due to a power loss), invalid commands (e.g., where invalid
addresses are supplied), attempts to perform excessive numbers of transactions, and
incorrect cryptographic parameters (such as failed attempts to clear post-payment audit
records).

Communication processes do not need to be real-time. For example, an auditing
process can work as follows: The CRU first receives a message broadcast with some
content that initiates an audit. The CRU then outputs audit data to the playback device,
which queues the data. Next, the playback device sends the audit data to the content
provider, for example by broadcasting it using low-speed radio communication. After
verifying the audit data, the content provider finally sends post-payment clearing
commands with new content broadcasts.

Some steps, such as address verification by the CryptoFirewall, are recommended
but may be omitted as they are not always essential. Steps can also be substituted with
other operations that are functionally similar. For example, address verification can be
performed by forcing invalid addresses to valid values (e.g., by setting or clearing bits in

the address to ensure that the address is in a proper range and aligned appropriately).

10

15

20

25

30

WO 01/17163 PCT/US00/13427
40

Many steps can also be reordered. For example, the chip-specific portion of the
computation described with respect to Figure 7 can be XORed with the BATCH_KEY
computation result instead of with the BATCH_KEY computation input. Many other such
simple variants will be evident to one of ordinary skill in the art.

The pseudoasymmetric function generator (and functions it produces) can be used
in applications other than content distribution. For example, stored value cards, electronic
transit passes, software copy protection, challenge-response authentication tokens, and
other applications where low-cost devices must carry secrets can all benefit from secure
cryptographic transformation circuits that are difficult to reverse engineer.

The CryptoFirewall can include multiple cryptographic algorithms, some of which
can be specific to a given CryptoFirewall or batch, and others that are more general. For
example, in a large system with 25 million CRUs, it may be advantageous to minimize the
consequences if any individual CryptoFirewall is reverse engineered. As a result, groups
of (for example) 100,000 CryptoFirewalls may be constructed with different algorithms.
KDMs and/or REMs are transmitted separately to each of the 250 groups.

Any components that include microprocessors can receive code updates. For
example, code in the playback device, ICP, or the CryptoFirewall can be updated by the
content provider. Code updates should be cryptographically protected (e.g., with digital
signatures, MACs, etc.)

To ensure that interrupted memory updates do not compromise security, the
CryptoFirewall can store memory update data and addresses in a pending-write buffer, set
a write-pending bit, perform the write, then clear the write-pending bit. If the write
operation is interrupted (e.g., due to a loss of power), the write will either be lost
completely or can be completed from the pending buffer when the device is reset. Write
operations can be verified to detect errors. Checksums or other verification fields can be
included in stored data to detect memory corruption.

All of the foregoing illustrates exemplary embodiments and applications of the
invention, from which related variations, enhancements and modifications will be
apparent without departing from the spirit and scope of the invention. Therefore, the
invention should not be limited to the foregoing disclosure, but rather construed by the

claims appended hereto.

10

15

20

25

WO 01/17163 PCT/US00/13427

41
CLAIMS
We claim:
1. A tamper-resistant device for regulating access to encoded digital content,
comprising;:
(@) an external interface;

(b) a microprocessor for controlling said external interface;

(©) a memory;

(d) a cryptographic unit connected between said microprocessor and said
memory that protects said memory from said microprocessor by
cryptographically transforming data communicated between said
microprocessor and said memory; and

(e) a device key accessible by said cryptographic unit and inaccessible by said
MiCroprocessor;

configured such that said cryptographic unit uses the contents of said memory to
transform at least one data value received from said microprocessor, where the result of

said transformation is required to decode said digital content.

2. The device of claim 1 where said memory comprises a nonvolatile memory.
3. The device of claim 1 where said memory comprises a volatile memory.
4. The device of claim 1 where said memory contains a representation of a rights key,

and where said rights key is used in said transformation of said at least one data value.

5. The device of claim 4 where said rights key was received via said external

interface in a form encrypted using said device key.

6. The device of claim 5 where said device regulates access to a pay television

service.

7. The device of claim 5 where said memory comprises a nonvolatile memory.

10

15

20

WO 01/17163 PCT/US00/13427

42
8. The device of claim 5 where said memory comprises a volatile memory.
9. The device of claim 5 where said rights key is stored in said memory in a form

encrypted using said device key.

10. The device of claim 5 where said rights key was decrypted by said cryptographic

unit using said device key before said rights key was stored in said memory.

11. The device of claim 1 where said device key is stored in said memory.

12. The device of claim 1 where said device key is stored in said cryptographic unit.

13. The device of claim 12 where said device key is stored as a combination of blown

fuses on an integrated circuit.

14. The device of claim 1, 5, 6, 11, or 12 where said microprocessor, said memory,

and said cryptographic unit are implemented within a single microchip.

15. The device of claim 1, 5, 6, 11, or 12 where said microprocessor, said memory,

and said cryptographic unit are implemented within an ISO 7816 smartcard.

16. The device of claim 1, 5, 6, 11, or 12 where said microprocessor, said memory,

and said cryptographic unit are contained within a PCMCIA card.

17. A method for generating a cryptographic transformation that is difficult to reverse
engineer, comprising the steps of:

(a) using a random source to obtain unpredictable data;

(b) using a software-implemented cryptographic function generator with said
unpredictable data to produce a machine-readable definition of a
randomized cryptographic transformation;

(c) implementing said randomized cryptographic transformation in an

integrated circuit; and

10

15

20

WO 01/17163 PCT/US00/13427
43

(d) using said integrated circuit to perform said randomized cryptographic

transformation on a digital datum.

18. The method of claim 17 where said integrated circuit is used to protect the
distribution of encoded digital content and where said cryptographic transformation in

said step (d) is used in decoding said digital content.

19. The method of claim 18 where said cryptographic function generator also produces
a machine-readable definition of the inverse of said randomized cryptographic

transformation.

20. The method of claim 19 where said inverse transformation is used by a provider of

said digital content to encode information distributed to said integrated circuit.

21. The method of claim 18 where knowledge of the design of said function generator
without knowledge of said unpredictable data does not enable the reverse engineering of

said cryptographic transformation in said integrated circuit.

22. The method of claim 21 with the additional step of performing a security analysis
to verify that said function generator has a high likelihood of producing a

cryptographically-secure output transformation.

23. The method of claim 18 where the result of said cryptographic transformation is

stored in a protected memory.

24. The method of claim 18 where the result of said cryptographic transformation is

used to determine whether to modify a protected memory.

25. The method of claim 18 where an input to said cryptographic transformation is

read from a protected memory.

WO 01/17163 PCT/US00/13427
44

26. The method of claim 18 where said cryptographic transformation has a Feistel

structure.

27. The method of claim 18 where said cryptographic transformation includes deriving

an input to a shift register.

5 28. The method of claim 18 where said cryptographic transformation is

pseudoasymmetric.

29. The method of claim 18 where said cryptographic transformation is a one-way

hash function.

30. The method of claim 18 where said cryptographic transformation is a permutation.

10 31. The method of claim 18 where said device is an ISO 7816 smartcard.

32. The method of claim 17 where said cryptographic transformation is a keyed block

cipher.

33. The method of claim 17 where said step (d) includes:
(1 transforming a first datum using said randomized cryptographic
15 transformation;
(i) using the result of said transforming to derive a second datum; and

(iii) transforming said second datum using said randomized cryptographic

transformation.
34. A method for storing a new cryptographic key in a tamper-resistant device, where
20 said device contains a device key, comprising the steps of:

(a) receiving a base update key and a smaller device-specific update value
from a party that knows said device key;

b) transforming said base update key using said device key;

10

15

20

25

WO 01/17163 PCT/US00/13427
45

() combining at least the result of said transforming with said device-specific
update value to produce a corrected update value;

(d) deriving a representation of said new cryptographic key by combining at
least said corrected update value and said base update key; and

(e) storing said derived representation in a memory.

35. The method of claim 34 where the steps are performed in a different order.

36. The method of claim 34 where said new cryptographic key replaces an old key,
and where said old key is incorporated into said derivation of said new cryptographic key

in said step (d).

37. The method of said step 34 further comprising a step of disabling said device if

said new cryptographic key is not successfully generated.

38. The method of claim 34 further comprising a step of using said new cryptographic
key to decode digital content.

39. The method of claim 34 where said memory comprises a nonvolatile memory.

40. The method of claim 34 where said step of deriving includes using a

pseudoasymmetric function.

41. A method for a first device to allow a user to purchase and gain access to digital
content without bi-directional communication with the provider of said content,
comprising the steps of:
(a) obtaining a value corresponding to said content to be purchased;
(b) storing a representation of said value in a nonvolatile memory;
(c) using a process shared with a plurality of devices similar to said first
device, cryptographically transforming at least a part of said stored
representation to produce a content decryption key;

(d) decrypting said content using said content decryption key;

10

15

20

25

WO 01/17163 PCT/US00/13427
46

(e) allowing said content provider to audit the contents of said nonvolatile
memory;

® receiving from said content provider a command to make said memory
available for reuse;

(g) using a process that is not shared with said plurality of similar devices,
cryptographically validating said command; and

(h) clearing said nonvolatile memory for reuse,

where at least said steps (b), (c), (g), and (h) are performed in a tamper-resistant device.

42. The method of claim 41 wherein said step (g) of cryptographically validating said

memory clearing command is secured using a device key.

43, The method of claim 41 where said nonvolatile memory is connected to a
cryptographic unit within said tamper-resistant device which uses cryptographic
transformations to secure access to said memory, and where at least said steps (c), (g), and

(h) are performed by said cryptographic unit.

44. The method of claim 42 wherein said step (g) of cryptographically validating said

memory resetting command is secured using a device key.

45. The method of claim 42 where said step (b) only proceeds correctly if said

nonvolatile memory has been cleared.

46. The method of claim 42 where said step (b) stores a different value in said
nonvolatile memory depending on whether said nonvolatile memory is cleared for reuse or
contains a previously stored transformation result, and where said step (d) only proceeds

correctly if said nonvolatile memory was cleared.

47. The method of claim 42 where said tamper-resistant device is implemented in a

single chip.

48. The method of claim 47 in which said chip is an ISO 7816 smartcard.

10

15

20

25

WO 01/17163 PCT/US00/13427

47
49. The method of claim 47 where said digital content is digital music.
50. The method of claim 47 where said digital content is pay television.
51. The method of claim 41 where said tamper-resistant device is implemented as an

ISO 7816 smartcard.

52. The method of claim 41 further comprising a step of said content provider sending

a bill to a user of said device.

53. The method of claim 41 where the audit process of said step (€) is
cryptographically secured using a device key.

54. A method for using a tamper-resistant device containing a device key to protect
access to digital content distributed by a content provider, comprising the steps of:
(a) storing said device key in said tamper-resistant device;
(b) distributing said tamper-resistant device to a user;
(c) said content provider receiving from said user a request for privileges to
access said content;
(d) said tamper-resistant device using a microprocessor to receive a key
derivation message transmitted by said content provider;
(e) said microprocessor transmitting an encrypted rights key from said key
derivation message to a cryptographic unit in said tamper-resistant device;
® said cryptographic unit transforming said encrypted rights key using said
device key to produce a decrypted rights key; and
(g) using said decrypted rights key to decode said digital content.

55. The method of claim 54 where said step (f) includes said cryptographic unit
storing said encrypted rights key in a memory protected by said cryptographic unit.

56. The method of claim 54 where said step (f) includes said cryptographic unit
storing said decrypted rights key in a memory protected by said cryptographic unit.

10

15

WO 01/17163 PCT/US00/13427

57.

58.

59.

60.

61.

62.

63.

48

The method of claim 54 where said content is digital audio.

The method of claim 54 where said content is digital video.

The method of claim 54 where said content is distributed by cable television.

The method of claim 54 where said content is distributed by satellite.

The method of claim 54 where said content is distributed by wireless broadcast.

The method of claim 54 where said content is distributed over a computer network.

The method of claim 54 where said step (g) includes:

1) said cryptographic unit using said decrypted rights key to derive a content
decryption key;

(i) said cryptographic unit transferring said content decryption key to said
MiCroprocessor;

(iii) said microprocessor further transforming said content decryption key;

(iv) said microprocessor transferring said transformed content decryption key to
a playback device; and

) said playback device using said transformed content decryption key to

decode said content.

WO 01/17163 PCT/US00/13427

1/11

FIGURE 1 [BACKGROUND ART]

140 145
s Y
/O Interface '
\ V |
' Microprocessor 150
S Cryptographic
l ! Coprocessor
T
a :
11
~ = d ;
Memory :
i 1 |
5 !
ROM l RAM EEPROM i
| | |
AN AN N

WO 01/17163 PCT/US00/13427

2/11
FIGURE 2
210
200 205 " PLAYBACK DEVICE
Content/KDM REM | Sontent 215 270
- CONTENT - _—ﬂzzo N Y P Ny
i PROVIDER .ﬁ Audit data, etc.) ~ Kefi BULK l
| | |/~ DECODER ||
§ || 267 = |
e | T
il il 5
= L | |
2 225 ™ Rl |
g / 4L gi/.??s
' i . =
| INTERFACE | | 1o o <> 280
| CONTROL \——— INTERFACE . ouTPUT
' PROCESSOR (ICP) | | B
| o35 g0 | DEVICE
7 240 .
o Bus | 'l
Ry | n ; '5
U o oss &, o280 {g‘f/zas
| EEPROM B 8
RO/Ml !RA/M 265 ! CRYPTO “ | 290
—_— ‘ b
2457 2507 protected | | FIREWALL |
memory |~ | 11 USER
-
[
CRYPTOGRAPHIC RIGHTS UNIT |

WO 01/17163 PCT/US00/13427

3/11
FIGURE 3

300

Receive REM (including encrypted
rights key) from content provider |

/

Send address and encrypted :
rights key to CryptoFirewall ;

‘ Validate

i address l

S
| 340

, v yd |

* Read CHIP_KEY from

i protected memory |

. 360
yd

A 4

Transform encrypted
rights key using
Pseudoasymmetric
function F,

| 370
\ 4

 Write F, result to protected
| memory at address |
! |

..

WO 01/17163

PCT/US00/13427

4/11
FIGURE 4

/ \

| Start
!
| 400
v e

Receive REM (including
content identifier)

410

Send address and content
identifier to CryptoFirewall

Verify that address is valid

440

N

|
|
|

Verify that address is available for use

I
I

460

I
|

{ |
1 Transform with F,)

| 470
v o

Write result at address

WO 01/17163
5/11
FIGURE 5
. Start
e S
‘ 500
| v yd
! Receive KDM
| 510
v Z
Send address and CDK generator to
CryptoFirewall
U N
| 520
h ' /]
% Verify that address is valid I
! 530
v Z

Retrieve value from protected memory

| 550
S S
{ Transform with F, :
| 560
y yd

1
Return F,result to ICP |

PCT/US00/13427

570

result to produce CDK

Final processing of F,

| 580
' /

A 4

Return CDK to
playback device

| 590
v /7

Decrypt content I

WO 01/17163

6/11

FIGURE 6

PCT/US00/13427

. Start
!
\ 4

ICP receives audit
initiation message |
|

; Y — 610
| Send address and challenge v

1 value to CryptoFirewall

I

600

i
J

Read data to audit
and CHIP_KEY from
protected memory

640

i Transform with F4

(Performed by
CryptoFirewall)

...

5

67
Apply F, to received ‘V

! / 650

Content provider applies
F," to recover & verify
protected memory vaiue.

value

680

Matches
memory value?

Yes

v yd

685

No——»

f Clear protected memory at
| specified address

660
No-
Yes
670
v yd
Transform resuit
again using F,!
690
ore addresses]
to audit? Yes
|
No

WO 01/17163
7/11
FIGURE 7
4 \
. Start |
N
| 700
v

| Receive REM (including rights

key fixup and chip fixup values)

from content provider

1

1
|
!
|
j

4

710

Send address, rights key fixup, and 3-bit l
chip-specific fixup value to CryptoFirewall

PCT/US00/13427

CryptoFirewall

..

Validate address

73

0

Read CHIP_KEY from
protected memory

.

740

F, (using CHIP_KEY)

Transform rights key fixup with

4

Truncate and combine |
with chip fixup !

750

Combine with rights |

key fixup

yd

770

Load data at address from
protected memory and XOR
with BATCH_KEY

780

Transform with F5 i

|

\ 4

790:g
£

Write result to protected
memory at address

WO 01/17163 PCT/US00/13427

8/11

FIGURE 8

AN AT AT AT AT AT AT AN N AT Y Y SN Y I

‘ ‘ . » ‘ < i 1
0| 1} 2} 3| 4| 5] 6| 7| 8}{120/121/122/123(124(125/126/127, vaoo
' . N ‘ ‘ H | 1: —
o DL PP
Uy U, Uy Uy Ug Ug Uy Uy U Upy Uiy Uy Upy Upge U Uiy | 1810
1 2 3 4 § 6 7 8 & Y120 121 122 7123 124 ~125 ~126 127
VO V1 VZ V3 V4 V5 VG V7 §V120V121 V122V123V124 V125V126v127 '7“815
! I ‘ <
|
| |

L

L |

i | . | | I
R !‘ i !! L o - N
; i [| | i

l\ | l J1 ’\ J - %J l '\ f JLazo
Wo W1 W3 WSO Ws . W62 W63]./ 830

XO X1 X2 X3 X4 X5 XS X7 : x120 x121 X‘IZZ x123 x124 x125 x126 x127 }/ 835
| ’ i |
B |

|

SN NS E NN
Mvivivilvlviviviig
AV VYV
Y.l'l Y1 Y2 Y3 YGO Y61 Y62 YG:! : }/850

z:! 24 ZS ZG Z7 §Z120 Z121 Z1222123 212421252125 Z127 1}/855
L

NN

(|
e
—(_

WO 01/17163 PCT/US00/13427

9/11
FIGURE 9
- Stat
; 900
h 4

i
Receive key address from ICP |

| 910
v Z
Load key at address from protected
memory and store in key register
| 920
v yd
Receive encrypted key
block from ICP

| 930
, v /
| Perform pseudoasymmetric
{ transformation of data block using key
|

|
940 / 960

—_—

Does address |

_,l
point to chip key? Yes l Read second address

|
A 4

Output pseudoasymmetric :

transformation resuit . ~N°
I

No 0
/ % 970

Is transformation
result valid for writing to
second address?

|

|

‘ Yes 980

| | v e
T | | Write transformation
. End < Y . result to protected
N | memory

WO 01/17163 PCT/US00/13427

10/11
FIGURE 10
Operations performed by ICP Operations performed by CryptoFirewall
. Start
~— 1000 - ‘
N / | ‘ 1010
Store key mask in |
‘ 2 -
CryptoFirewall register | Key mask match? No—
| !
! | ! 3
i | Yes 1020
v A
Copy key mask into protected memory |
)
1030 f
Z v

Store encrypted rights key in {
CryptoFirewall register 1

A 4
Pseudoasymmetric transformation with |
key = protected memory XOR batch key f
data = encrypted rights key '

result = store in protected memory |

1050 i
/ v

1040
o

Store encrypted content i
decryption key |
|

in CryptoFirewall register
] 1060

| 3 v

. Pseudoasymmetric transformation with
| key = protected memory XOR batch key
i data = encrypted content decryption key
| result = store in CryptoFirewall register

1070

4

Read content decryption key
from CryptoFirewall register |

/_;_\

{ Done.
N~

WO 01/17163

1100

Key mask

i
i

Key mask
validator

B

i ' 1110
<>

Protected /7
memory —

1115

—)
>

R
L
Batch key

1120

11/11
FIGURE 11

1125

Encrypted
rights key

1130
e

Pseudo-
asymmetric
transform

ﬂ) 1135
Protected CD, :'\
’:9)_\/ v

memory
1140 TAT

Batch key
/
1145

PCT/US00/13427

1150

Encrypted
content

decryption key

1155
Z

Pseudo-
asymmetric
transform

1

Content
decryption
key

160

INTERNATIONAL SEARCH REPORT

PCT/US00/13427

International application No.

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7)
Us CL

H 04 L 9/06, 9/08, 9/10
713/172, 194; 380/29, 281

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 713/165, 174; 380/46, 228; 705/51, 55, 59, 65; 707/9; 257/922

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X,E US 6,069,957 A (RICHARDS) 30 May 2000 (30.05.2000), column 1, lines 25-31, 1-12, 14, 34, 36-39,
--- column 2, lines 46-54, column 35, lines 29-34, column 7, lines 5-11, column 9, lines 12- 54-59, 63
Y.E 31, column 10, lines 19-25, lines 33-53 and lines 59-63, column 11, lines 1-22, column
13, lines 4-25, column 17, lines 31-35, column 20, lines 21-27, figure 8, figure 14, figure | 13, 15, 16, 40, 60-62
28, items 260, 265, 270, 275, 285, and 290.
Y,P US 5,982,899 A (PROBST) 09 November 1999 (09.11.1999), column 3, lines 49-62 and 13
64-66.
Y,P US 6,041,412 A (TIMSON et al.) 21 March 2000 (21.03.2000), column 15, lines 15-29 15, 31
and 49-52.
Y US 5,436,621 A (MACKO et al.) 25 July 1995 (25.07.1995), column 2, lines 29-47, 16
column S, lines 56-66.
X,p US 6,009,177 A (SUDIA) 28 December 1999 (28.12.1999), column 2, line 67, column 3, | 17-26, 28, 30, 32, 33
- line 1 and lines 35-51, column 13, lines 22-67, column 14, lines 55-67, figure 4, items
Y,P 33, 35, 36, 40, 41, 42, and 43. 27, 31, 40
Y.P US 6,049,608 A (ABLOWITZ et al.) 11 April 2000 (11.04.2000), column 3, lines 7-27. 27
Y,P US 5,999,623 A (BOWMAN et al.) 07 December 1999 (07.12.1999), column 1, lines 12- | 60,61
19, column 3, lines 21-27.

[]

& Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: “T" later document published after the international filing date or priority

date and pot in conflict with the application but cited to understand the

“A” document defining the general state of the art which is not coasidered to be principle or theory underlying the invention

of particular relevance

X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be cousidered to involve an inventive step

when the document is taken alone

“E" earlier application or patent published on or after the international filing date

“L™ document which may throw doubts on priority claim(s) or which is cited 1o
establish 1he publication date of another citation or other special reason (as Y
specified)

documemni of particular relevance; the claimed invention cannot be

considered 1o involve an inventive step when the document is

combined with ope or more other such documents, such combination

“Q” document referring to an oral disclosure, use, exhibition or other means being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than the “&"
priority date claimed

document member of the same patent family

Date of the actual completion of the international search Date of mailing of the émemalional search report

14 August 2000 (14.08.2000)

Authorized officer

/am /?»//W(Z%Lf)

Telephone No. (703) 308-0873

Name and mailing address of the ISA/US

Commussioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703)305-3230

Tod R. Swann

Form PCT/ISA/210 (second sheet) (July 1998)

INTE

International applicat

RNATIONAL SEARCH REPORT
PCT/US00/13427

ion No.

C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y.P

US 6,044,155 A (THOMLINSON et al.) 28 March 2000 (28.03.2000), column 4, lines 27-31, column S, | 62

lines 23-29.

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US00/13427

Continuation of B. FIELDS SEARCHED Itemn 3: EAST

search terms: random, pseudorandom, integrated circuit, chip, microchip, protected memory, audit, inspect, erase, reuse

Form PCT/ISA/210 (extra sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

