The invention relates to a plastic injection mould (1) which allows extracting the air from inside it during the injection process, and an extraction method, wherein said mould (1) basically comprises closing means, one or more injection cavities (2) provided with at least one injection nozzle for introducing the hot material in a liquid state and at least one ejector device formed by a housing (3) for an ejector pin (4) responsible for extracting the part already moulded, wherein an air duct (6) connected to a vacuum pump or a suction device (7) intercepts said housings (3) of the ejector pins (4) causing a suction of the air from inside the mould (1).
wo 2012/041950

Published:

— with international search report (Art. 21(3))
PLASTIC INJECTION MOULD WITH INNER AIR EXTRACTION AND
EXTRACTION METHOD FOR EXTRACTING THE AIR CARRIED OUT WITH SAID
MOULD

Object of the Invention

The present invention is applicable to the plastic material part injection moulding industry, and more specifically to the sector of injecting moulds and injection moulding processes.

More specifically, the object of the present invention is a plastic injection mould which allows extracting the air from inside it during the injection process and an extraction method for extracting the air using said mould.

Background of the Invention

A thermoplastic injection mould is formed, among other components, by two shaping plates, one referred to as cavity plate and another referred to as die plate, as well as a set of ejector plates where several ejector pins are housed, which will serve for ejecting the injected part.

An injection mould can have one or several shaping cavities, wherein at the time of injection the duly melted plastic material is introduced under pressure through an injection nozzle or point, until completely filling of each of the cavities.

Each mould incorporates a refrigeration circuit made up of machined boreholes in the shaping plates which serve to cool the injected plastic and set the part.

The ejector pins located in through housings structurally configured in the die plate are activated through the ejector plates, being responsible for extracting the part from the cavity once the plastic has set.

This housing does not have a uniform diameter along its entire length, instead the ejector pins are really tightly fitted, with a very narrow clearance marked by standard regulation, in the portion nearest the cavity, whereas at rest the housing has a greater diameter to prevent unnecessary friction with the ejector pins.

During the injection process the mould is closed and therefore the cavity is full of air which is gradually compressed as the plastic material is injected, reducing its volume and increasing its pressure, which complicates filling it with the plastic material.

This entire process requires, in many cases, an increase in temperature of the plastic mass as well as a greater injection pressure so that the entire mould cavity can be filled, mainly in areas with a difficult configuration, which entails a
longing cooling time before being able to demould the duly set part.

In many cases, due to the temperature and pressure excess applied to the plastic material to fill the cavity, internal stresses are produced in the part itself such that the dimensional stability is lost, negatively affecting the final quality of the product.

To solve these problems some solutions are known which allow the exit of air but at the same time prevent the exit of the injected material.

These solutions include the creation of air removal conduits located in the perimeter of the cavity, usually in the area furthest from the injection point. The air mass also escapes the cavity through the small clearance between the ejector pins and their housings.

The arrangement of a plugging element in the access opening of the ejector conduit, enabling the exit of air, preventing the exit of the injected material, is also known.

This plugging element is in some cases made up of an air permeable filter and in other cases by a cap or closing element which tends to remain in an open position by action of a spring. This closing element allows removing air and closes automatically when the pressure of the injected material overcomes the pushing of the spring, thus preventing the exit of said injected material through the removal conduit, although this solution is not applicable with all materials.

These moulds have several drawbacks in relation to the air removal means, the most noteworthy being that the injected material acts as a plunger pushing the air through the removal conduit, which requires greater injection pressure; and that the injected material cools more readily since it is in contact with the air, and therefore it is necessary to inject said material at a greater temperature with the subsequent energy cost. In order to achieve a greater effectiveness in removing the air it is necessary for the plugging element be located at the end opposite the injection nozzle, the molten material reaching this area with less fluidity. It is necessary to invest more energy and production costs to obtain the part during the process.

Furthermore, these problems also affect the quality of the obtained part since air bubbles are trapped in the moulded parts and clearances are formed in certain configurations. The inadequate extraction of air produces grooves in the outer faces of the injected parts and during the filling of the mould the injected material is subjected to stresses which cause imperfections and deformations in the obtained parts.
Description of the Invention

The injection mould of the present invention solves the problems pointed out above while at the same time constituting an efficient alternative for the complete extraction of air from the moulds.

To that end, the plastic injection mould with inner air extraction of the present invention is structured based on traditional elements of this type of moulds, i.e., comprising closing means, one or more injection cavities provided with at least one injection nozzle for introducing the hot material in a liquid state and at least one ejector device formed by a set of ejector pins which with their movement through their respective housings are responsible for pushing the moulded part out.

To make extracting the air from inside the cavity easier, the mould of the present invention comprises an internal circuit communicated with a vacuum pump or suction element, which will be the responsible for extracting the air from the mould cavity before and during the injection process.

This circuit is made up of a conduit, specifically drilled in the structure of the mould itself, transversely intercepting the housings of the ejector pins creating a communication of the air of the cavity through the space between the ejector pin and its housing, thus causing its suction.

Since the time available for that air extraction during the injection process is limited, so as not to increase the injection time, it is necessary to close any space so that the vacuum pump or suction element works with the greatest efficiency and performance possible. Thus, the mould of the present invention provides for the arrangement of bushing seals placed in each of the ejection elements, duly fixed in the die plate and located in the opposite portion of the shaping area or injection area to close the existing space between the ejector pin and its housing, which space in this portion has a greater clearance than the one found in the area of contact with the cavity.

Since the air which can be suctioned through the ejectors will not be sufficient in most injection methods, the mould of the present invention provides, to speed up the removal of the air from the mould cavity as much as possible, the use of a cut-off valve connected in the ejector circuit and housed in the shaping cavity itself, which is activated by means of a piston. Said piston and valve elements are also controlled by a timer responsible for indicating the time which it must be open or closed depending on the type of injection process to be performed.

Thus, from using the mould described above a method of action in the manufacture of parts by injection could be derived such that the presence of air
inside the mould is prevented, which method would comprise the steps of:
a) closing the mould;
b) activating the air duct connected to a vacuum pump or a suction device transversely intercepting the housings of the ejector pins of the ejector devices producing the suction of the air from the mould
c) injecting the plastic into the mould
d) filling the mould (1); and
f) cooling and ejecting the part
wherein the air duct and the suction device are activated throughout the entire injection of material into the mould.

Description of the Drawings
To complement the description which is being made and for the purpose of aiding to better understand the features of the invention, a set of drawings is attached to the present specification in which the following has been depicted with an illustrative and non-limiting character:

Figure 1 shows respective schematic plan and elevational section views of an injection mould according to the present invention.

Figure 2 shows an elevational view of one of the ejectors used in the mould of the previous figure according to a possible embodiment of the invention.

Figure 3 shows a schematic elevational section view of an injection mould according to a possible embodiment of the present invention and a detail thereof.

 Preferred Embodiment of the Invention
As can be seen in the figures, the injection mould (1) with inner air extraction of the present invention is structured, according to a preferred embodiment of the invention, based on closing means (not depicted), one or more injection cavities (2) provided with at least one injection nozzle (not depicted) for introducing the hot material in a liquid state and at least one ejector device for ejecting the part which is structured based on a housing (3) for an ejector pin (4) which with its movement is responsible for pushing the moulded part out.

According to a preferred embodiment of the invention, the mould (1) comprises an air duct (6) connected to a vacuum pump or a suction device (7) transversely intercepting the housing (3) of the ejector pins (4) causing a suction of the air from inside the mould (1) through the existing space between the ejector pin (4) and said housing (3).

Also according to a preferred embodiment of the invention and as can be seen in the figures, especially in Figures 2 and 3, the ejector devices have a bushing
seal (5) sealing the existing space between the ejector pin (4) and the housing (3) such that said space does not connect with the lower one of greater volume, causing loss of suction effectiveness.

Therefore, for sealing that space between the ejector pin (4) and the wall of the housing (3) said bushing seal (5) is located in the lower portion of the so-called die plate (8).

The space comprised between the housing (3) and the ejector pin (4) must be sufficient for extracting the air from inside but however insufficient for the molten material to be able to escape through it.

To that end, and according to a preferred embodiment of the invention which can be seen in Figure 2, said housing (3) has two different diameters. It has a smaller diameter located in the proximity of the injection cavity (2) such that the molten material cannot escape through it but does allow the passing of the air, and which is governed by tolerances according to the regulation, in the order of 0.002 mm greater than the ejector pin (4). On the other hand, and as can be seen in said Figure 2, below the area with said smaller diameter there is another area with a larger diameter producing a widening for the purpose of reducing the friction between said ejector pin (4) and its housing (3), said widening constituting the space transversely intercepting the air duct (6) and through which the air will be extracted from inside the mould (1).

According to another possible practical embodiment of the invention, the air duct (6) which intersects with the housing (3) containing the ejector pin has a sector with a section for causing an increase in circulation rate of the air therethrough and the suction of the air contained in the chamber or injection cavity due to the Venturi effect.

For those cases in which extracting the air from inside the mould (1) is not sufficient with that performed through the ejector devices or if it is necessary to do so more quickly, and according to a possible preferred embodiment of the invention, the mould (1) could furthermore have an additional air removal conduit, as can be seen in Figure 3, said additional conduit comprising a piston (9) responsible for activating valve means (10) which allow extracting the air also as a result of the intersection with the air duct (6) connected to the suction pump (7).

Said piston (9) and valve (10) elements are furthermore controlled by a timer responsible for indicating the time which this must be open or closed depending on the type of injection process to be performed. The injection process is thus synchronised with the air extraction such that the aforementioned valve (10) closes
before the plastic is injected into the injection cavity (2).

Thus, a method of action in the injection manufacture of parts could be derived from the use of the mould (1) described above such that the presence of air inside the mould (1) is prevented, which method would comprise the steps of:

a) closing the mould (1);

b) activating the air duct (6) connected to a vacuum pump or a suction device (7) transversely intercepting the housings (3) of the ejector pins (4) of the ejector devices producing the suction of the air from the mould (1).

c) injecting the plastic into the mould (1).

d) filling the mould (1); and

e) cooling and ejecting the part

wherein the air duct (6) and the suction device (7) are activated throughout the entire injection of material into the mould (1).

And wherein, according to the possible embodiment of the invention in which the mould (1) has an additional conduit for air extraction, once the mould (1) is closed and simultaneously with the air extraction through the ejector devices but before injecting the plastic into the mould (1), it comprises the steps of:

a1) activating the additional conduit and the valve (10);

a2) extracting the air from inside the mould (1) through the intersection of the air duct (6) with the additional conduit.

a3) closing the valve (10).
CLAIMS

1.- Plastic injection mould (1) with inner air extraction comprising:
 - closing means;
 - one or more injection cavities (2) provided with at least one injection nozzle for introducing the hot material in a liquid state;
 - at least one ejector device formed by a housing (3) for an ejector pin (4) responsible for extracting the already moulded part;
 characterised in that it further comprises an air duct (6) connected to a vacuum pump or a suction device (7) transversely intercepting at least one housing (3) of an ejector pin (4) for causing a suction of the air from inside the mould (1) through the existing space between said ejector pin (4) and said housing (3).

2.- Plastic injection mould (1) with inner air extraction according to any of the preceding claims, characterised in that the ejector devices have a bushing seal (5) sealing the existing space between the ejector pin (4) and the housing (3).

3.- Plastic injection mould (1) with inner air extraction according to claim 2, characterised in that the bushing seal (5) is placed in each of the ejection elements, duly fixed in the die plate.

4.- Plastic injection mould (1) with inner air extraction according to any of the preceding claims, characterised in that it includes an additional air removal conduit which intersects with the air duct (6) connected to the suction means (7).

5.- Plastic injection mould (1) with inner air extraction according to claim 4, characterised in that the additional conduit comprises a piston (9) responsible for activating valve means (10) and in that both are controlled by a timer responsible for indicating the time which said valve (10) must be open or closed depending on the type of injection process to be performed.

6.- Plastic injection mould (1) with inner air extraction according to any of the preceding claims, characterised in that the air duct (6) which intersects with the housing (3) containing the ejector pin has a sector with a reduced section for causing an increase in the circulation rate of the air therethrough and the suction of the air from the chamber due to the Venturi effect.
7. - Extraction method for extracting the air in the injection mould (1) of claims 1 to 6, which comprises:
 a) closing the mould (1);
 b) activating the air duct (6) connected to a vacuum pump or a suction device (7) transversely intercepting the housings (3) of the ejector pins (4) of the ejector devices producing the suction of the air from the mould (1);
 c) injecting the plastic into the mould (1);
 d) filling the mould (1); and
 f) cooling and ejecting the part characterised in that the air duct (6) and the suction device (7) are activated throughout the entire injection of material into the mould (1).

8. - Extraction method for extracting the air in the injection mould (1) according to claim 7, characterised in that once the mould (1) is closed, simultaneously with the air extraction through the ejector devices but before injecting the plastic into the mould (1), it additionally comprises the steps of:
 a1) activating the additional conduit and the valve (10);
 a2) extracting the air from inside the mould (1) through the intersection of the air duct (6) with the additional conduit; and
 a3) closing the valve (10).
FIG. 3
INTERNATIONAL SEARCH REPORT

PCT/EP2011/066967

A. **CLASSIFICATION OF SUBJECT MATTER**

<table>
<thead>
<tr>
<th>INV.</th>
<th>B29C45/34</th>
<th>B29C45/40</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. **FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

- B29C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

- EPO-Internal, WPI Data

C. **DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2004/022885 A1 (SUZUKI TADA0 [JP]) 5 February 2004 (2004-02-05) pages 31-43; figure 1 -----</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * **"A"** document defining the general state of the art which is not considered to be of particular relevance
 * **"E"** earlier document but published on or after the international filing date
 * **"L"** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * **"O"** document referring to an oral disclosure, use, exhibition or other means
 * **"P"** document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"A" document member of the same patent family

Date of the actual completion of the international search: 12 December 2011

Date of mailing of the international search report: 21/12/2011

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL-2280 HV Rijswijk
Tel. (+31-70) 340-3040
Fax: (+31-70) 340-3016

Authorized officer: Bibollet-Ruche, D

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2006093702 AI</td>
<td>04-05-2006</td>
<td>CN 101031404 A</td>
<td>05-09-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1771289 A2</td>
<td>11-04-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2008508122 A</td>
<td>21-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070058464 A</td>
<td>08-06-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006093702 AI</td>
<td>04-05-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2006015208 A2</td>
<td>09-02-2006</td>
</tr>
<tr>
<td>US 2004022885 AI</td>
<td>05-02-2004</td>
<td>CN 1445070 A</td>
<td>01-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003276060 A</td>
<td>30-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 1222929 B</td>
<td>01-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004022885 AI</td>
<td>05-02-2004</td>
</tr>
<tr>
<td>US 2006269651 AI</td>
<td>30-11-2006</td>
<td>JP 2006326974 A</td>
<td>07-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006269651 AI</td>
<td>30-11-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004009586 A</td>
<td>15-01-2004</td>
</tr>
</tbody>
</table>