

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2018382619 B2

(54) Title
DNA polymerases

(51) International Patent Classification(s)
C12Q 1/68 (2018.01) **C12N 9/12** (2006.01)

(21) Application No: **2018382619** (22) Date of Filing: **2018.12.17**

(87) WIPO No: **WO19/115834**

(30) Priority Data

(31) Number
1721053.5 (32) Date
2017.12.15 (33) Country
GB

(43) Publication Date: **2019.06.20**
(44) Accepted Journal Date: **2022.03.31**

(71) Applicant(s)
Universitetet i Tromsø - Norges arktiske universitet

(72) Inventor(s)
LARSEN, Atle Noralf;PIOTROWSKI, Yvonne

(74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
WO 2015/048763 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
20 June 2019 (20.06.2019)

(10) International Publication Number

WO 2019/115834 A1

(51) International Patent Classification:

C12Q 1/68 (2018.01) C12N 9/12 (2006.01)

Yvonne; Forskningsparken 3, Sykehusveien 23, 9019 Tromsø (NO).

(21) International Application Number:

PCT/EP2018/085342

(74) Agent: DEHNS; St Bride's House, 10 Salisbury Square, London Greater London EC4Y 8JD (GB).

(22) International Filing Date:

17 December 2018 (17.12.2018)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

1721053.5 15 December 2017 (15.12.2017) GB

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH,

(71) Applicant: UNIVERSITETET I TROMSØ - NORGE'S ARKTISKE UNIVERSITET [NO/NO]; PO Box 6050, Langnes, N-9037 Tromsø (NO).

(72) Inventors: LARSEN, Atle Noralf; Forskningsparken 3, Sykehusveien 23, 9019 Tromsø (NO). PIOTROWSKI,

(54) Title: DNA POLYMERASES

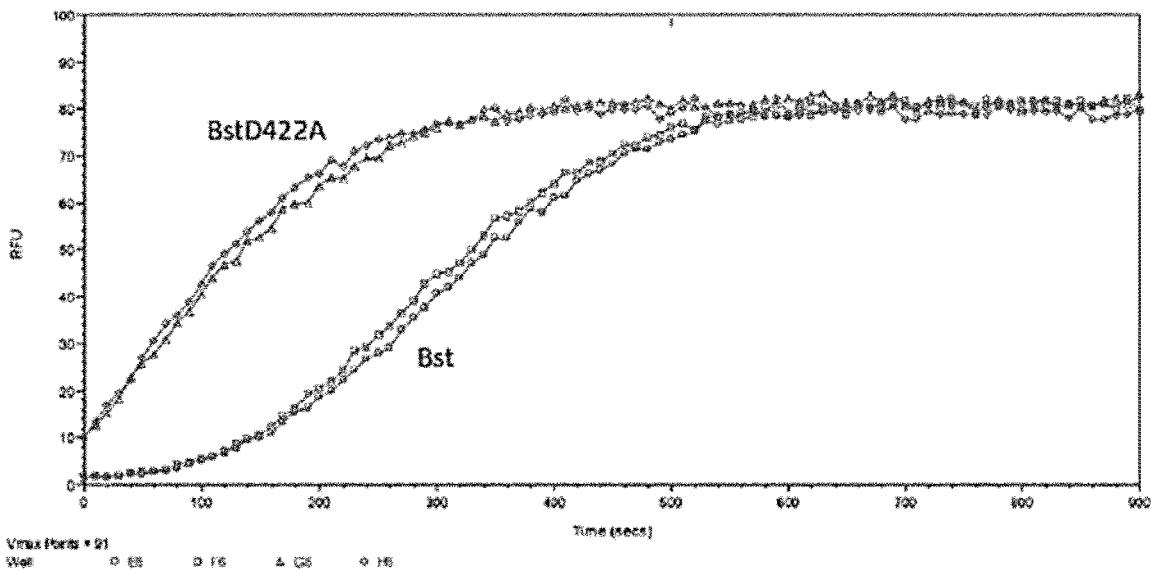


Fig. 6

(57) **Abstract:** The present invention provides a DNA polymerase including the sequence of SEQ ID NO. 1 or a sequence which is at least 70% identical thereto, but wherein the aspartic acid residue at position 18 of SEQ ID NO. 1, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue. It further provides DNA polymerases comprising the amino acid sequences of SEQ ID NO. 2, 11 and 12 and variants thereof. The present invention also provides nucleic acids encoding the DNA polymerases, a method of producing said DNA polymerases, and compositions, expression vectors and host cells or viruses comprising said DNA polymerases. The present invention also provides uses of said DNA polymerases in nucleotide polymerisation, amplification and sequencing reactions.

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *with sequence listing part of description (Rule 5.2(a))*

DNA polymerases

5 The present invention relates to DNA polymerases. In particular, the present invention relates to modified DNA polymerases with enhanced strand displacement activity (SDA).

10 The gold standard of microbial identification still remains culturing and subsequent phenotypic differentiation of the causative agent, a process often taking several days to perform and analyze, and this delay may have major impact on 15 morbidity and mortality of an infectious disease. In addition, many organisms cannot grow on culture media, hence, will be undetected by existing culturing methods.

15 There is a global need to monitor and diagnose critical infectious diseases such as HIV/AIDS, tuberculosis, malaria, cholera etc. The challenge becomes even 20 more critical in potential epidemic situations such as Ebola, avian and swine influenza outbreaks. Despite advances in diagnostic technologies, many patients with suspected infections receive empiric antimicrobial therapy rather than appropriate therapy dictated by the rapid identification of the infectious agent. The 25 result is overuse of our small inventory of effective antimicrobials whose numbers continue to dwindle due to antimicrobial resistance development. There is a clear demand for new and rapid on-site molecular diagnostic tests enabling identification of specific pathogens.

25 The Polymerase Chain Reaction (PCR) in many ways revolutionized the molecular genetics and diagnosis field. The workhorses in PCR technology, are thermostable high fidelity DNA polymerases which, together with cyclic events of heating and cooling to obtain strand separation, primer annealing and elongation, lead to amplification of a target DNA sequence. PCR technology is now widely employed in biomedical and life science research as well as molecular diagnostics.

30 Point-of-care (POC) diagnostics are described as medical tools or devices enabling disease diagnosis in a patient's community outside a hospital setting. The ideal diagnostic test should meet the "ASSURED" criteria: *Affordable, Sensitive, Specific, User-friendly, Rapid* and robust, *Equipment-free* and *Delivered* to those who need it. POC methods are preferably simple and do not require a heat source

- 2 -

or stable power supply as these are typically not available at POC. Thus enzymes and reagents used should work at ambient temperatures.

Although PCR technology has a high potential, it still has strict limitations and requires the use of high precision electrically powered thermal cycling equipment for repeated heating and cooling processes and skilled personnel to run the equipment. Non-specific amplification due to spurious priming in the annealing process is problematic, and PCR is also prone to inhibitory compounds in “crude” samples. In addition, the bulky design of PCR devices make PCR an imperfect solution for incorporation into POC technology platforms and make PCR-based methods difficult to employ as the major technology driver in POC diagnostics.

Lately, an increased focus on non-PCR based methods, in particular Isothermal Amplification (IA) methods, has emerged. In these methods, nucleic acid amplification takes place at constant temperatures and has no need for high precision temperature cycling and control, or enzymes stable at high temperatures. Isothermal amplification methods are reported to have analytical sensitivities and specificities comparable to PCR as well as a higher tolerance to inhibitory compounds, while allowing shorter time to results and easier use. These features make isothermal amplification methods highly desirable for those developing POC molecular diagnostics platforms and aiming to meet “ASSURED” criteria. A number of different methods have in the last decade been published for isothermal amplification of nucleic acids (both RNA and DNA) (Reviewed by Gill, P. and A. Ghaemi (2008) *Nucleosides Nucleotides Nucleic Acids* 27(3): 224-243; Craw, P. and W. Balachandran (2012) *Lab Chip* 12(14): 2469-2486; de Paz, H. D. *et al.* (2014) *Expert Rev Mol Diagn* 14(7): 827-843; Yan, L. *et al.* (2014) *Mol Biosyst* 10(5): 970-1003 and new ones are continuously being developed (Liu, W. *et al.* (2015) *Sci Reports* 5: 12723). In several of the methods, success relies on the inherent strand displacement activity (SDA) of the DNA polymerase used in the reaction setup. The term strand displacement describes the ability of the polymerase to displace downstream DNA encountered during synthesis.

In addition to (POC) diagnostics also other areas of interest benefit from isothermal amplification technology empowered by the DNA polymerase. In this regard, whole genome amplification (multiple displacement amplification) is important especially when extremely limited amount of DNA is present such as in single cell approaches. Also, in next-generation sequencing approaches strand-displacing polymerases are important as exemplified by the Pacific Biosciences

Single Molecule Real Time (SMRT) DNA sequencing technology and an isothermal amplification method for next generation sequencing published in 2013 by Ma *et al.* (Ma, Z. *et al. Proc Natl Acad Sci U S A* 110(35): 14320-14323).

5 The current toolbox of polymerase enzymes which function well at ambient temperature is, however, very limited. Typically, different isothermal methods require reaction temperatures between 30-65°C which are mainly determined by the working range of the polymerases used in the reactions and are prone to inhibition by salt.

10 A cold-adapted polymerase from a *Psychrobacillus* sp. (PB) belonging to the A-family of DNA polymerases has been characterized. This enzyme possesses high polymerase activity at ambient temperatures but still has good stability at elevated temperatures up to 40 °C. Of particular interest, the marine derived enzyme also possesses good salt tolerance and strong strand-displacement activity (SDA) as well as proficient processivity at 25 °C, and is comparable with the state-of-the art commercial enzymes (WO 2017/162765).

15 In many IA methods only a polymerase is required and the effectiveness of the method is heavily dependent on the SDA of that polymerase. Therefore anything which served to increase SDA of the PB or other polymerases used in IA would be highly desirable.

20 Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.

25 Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise”, “comprising”, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”.

The present inventors have surprisingly found that a single point mutation in the finger domain of certain polymerases in the A family, in particular replacement of a single Asp residue, leads to significantly enhanced SDA.

30 In one aspect, the present invention provides a DNA polymerase including the sequence of SEQ ID NO. 1 or a sequence which is at least 90% identical thereto, but wherein the aspartic acid residue at position 18 of SEQ ID NO. 1, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.

In another aspect, the present disclosure provides a DNA polymerase comprising the amino acid sequence of SEQ ID NO. 2, or an amino acid sequence which is at least 70% identical to SEQ ID NO. 2, but wherein the aspartic acid residue at position 422 of SEQ ID NO. 2, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.

5 In another aspect, the present disclosure provides a DNA polymerase comprising the amino acid sequence of SEQ ID NO. 12, or an amino acid sequence which is at least 70% identical to SEQ ID NO. 12, but wherein the aspartic acid residue at position 422 of SEQ ID NO. 12, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.

10 In another aspect, the present disclosure provides a DNA polymerase comprising the amino acid sequence of SEQ ID NO. 10, but wherein the aspartic acid residue at position 18 of SEQ ID NO. 10 has been replaced by alanine.

15 In another aspect, the present disclosure provides a DNA polymerase comprising the amino acid sequence of SEQ ID NO. 11, but wherein the aspartic acid residue at position 422 of SEQ ID NO. 11 has been replaced by alanine.

20 In another aspect, the present disclosure provides a composition comprising a DNA polymerase according to the invention and a buffer.

In another aspect, the present disclosure provides a nucleic acid molecule comprising a nucleotide sequence that encodes a DNA polymerase according to the invention.

25 In another aspect, the present disclosure provides an expression vector containing a nucleic acid molecule according to the invention and the necessary regulatory sequences for the transcription and translation of the protein sequence encoded by said nucleic acid molecule.

30 In another aspect, the present invention provides a host cell or virus comprising one or more expression vectors according to the invention or one or more nucleic acid molecules according to the invention.

35 In another aspect, the present invention provides a method of producing a DNA polymerase according to the invention, wherein the method comprises the steps of: (i) culturing, in a growth medium, a host cell comprising one or more of the expression vectors according to the invention or one or more of the nucleic acid molecules according to the invention under conditions suitable for the expression of

the encoded DNA polymerase; and optionally (ii) isolating or obtaining the DNA polymerase from the host cell or from the growth medium or supernatant derived from said growth medium.

5 In another aspect, the present invention provides use of a DNA polymerase according to the invention for nucleotide polymerization.

In another aspect, the present invention provides use of a DNA polymerase according to the invention in a nucleic acid amplification or sequencing reaction.

10 In another aspect, the present invention provides a method of nucleotide polymerisation using a DNA polymerase according to the invention, said method comprising: (i) providing a reaction mixture comprising a DNA polymerase according to the invention, a template nucleic acid molecule, an oligonucleotide primer which is capable of annealing to a portion of the template nucleic acid molecule and one or more species of nucleotide; and (ii) incubating said reaction mixture under conditions whereby the oligonucleotide primer anneals to the 15 template nucleic acid molecule and said DNA polymerase extends said oligonucleotide primer by polymerising one or more nucleotides.

20 In another aspect, the present disclosure provides a method of amplifying a nucleic acid using a DNA polymerase according to the invention, said method comprising: (i) providing a reaction mixture comprising a DNA polymerase according to the invention, a template nucleic acid molecule, an oligonucleotide primer(s) which is capable of annealing to a portion of the template nucleic acid molecule, and nucleotides; and (ii) incubating said reaction mixture under 25 conditions whereby the oligonucleotide primer(s) anneals to the template nucleic acid molecule and said DNA polymerase extends said oligonucleotide primer(s) by polymerising one or more nucleotides to generate a polynucleotide.

30 In another aspect, the present invention provides a DNA polymerase, said DNA polymerase including the sequence of SEQ ID NO. 1 or a sequence which is at least 70%, preferably at least 75%, 78%, 80%, 82%, 85%, 88%, 90%, 92% or 95%, identical thereto, but wherein the aspartic acid residue at position 18 of SEQ ID NO. 1, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.

35 SEQ ID NO. 1 is a fragment of the amino acid sequence of the PB polymerase I, it spans amino acids 405 to 436 in the truncated (lacking the 5'- 3'-exonuclease domain) wild type PB sequence. This region (405-436) within the finger domain is highly conserved amongst some of the DNA polymerase A

- 3c -

family (also known as pol I family), see Figures 1 and 5. DNA polymerases of the invention would typically be classed as of the DNA polymerase I or A type.

- 4 -

Preferred DNA polymerases of the invention comprise the sequence of SEQ ID NO. 6, 7, 8, 9 or 10 but wherein the aspartic acid residue at position 18 of each sequence has been replaced by a non-negatively charged amino acid residue.

In some embodiments, the DNA polymerase of the invention comprises an amino acid sequence that has single or multiple amino acid alterations (additions, substitutions, insertions or deletions) compared to SEQ ID NO:1. Such sequences preferably may contain up to 8, 7 or 6, e.g. only 1, 2, 3, 4 or 5, preferably 1, 2 or 3, more preferably 1 or 2, altered amino acids in addition to the replacement of the aforementioned Asp residue. Substitutions can be with conservative or non-conservative amino acids. Preferably said alterations are conservative amino acid substitutions.

A preferred polymerase of the invention is a modified PB polymerase, further preferred polymerases are modified polymerases from the species *Geobacillus stearothermophilus* (known as Bst), from *Bacillus subtilis* (known as Bsu), from *Bacillus smithii* (known as Bsm) and *Ureibacillus thermosphaericus* (known as Ubts).

The term “DNA polymerase” refers to an enzyme which catalyses the 5’→3’ synthesis of DNA from individual nucleotides, the reaction being based on primer extension and standard Watson – Crick rules of base pairing to a template strand. Likewise, “DNA polymerase activity” refers to the 5’→3’ synthesis of DNA from individual nucleotides, the reaction being based on primer extension and standard Watson – Crick rules of base pairing to a template strand. Enzymatically active (catalytically active) fragments of naturally occurring or modified polymerases are included within the term “DNA polymerase”. The polymerase may also, but may not, have 3’→5’ exonuclease and/or 5’→3’ exonuclease activity. Preferably the DNA polymerases of the present invention lack 5’→3’ exonuclease activity.

The present inventors have found that replacement of the aforementioned aspartic acid residue significantly increases SDA in several different DNA polymerases in the family known as DNA polymerase A, the enzymes which may benefit from modification in accordance with the present invention are characterised by a high sequence identity with SEQ ID NO. 1 (a particular region of the finger domain of the PB enzyme) and an aspartic acid residue at position 18 or the equivalent position in other enzymes/sequences. An “equivalent aspartic acid residue in other sequences” than SEQ ID NO. 1 (or other sequences) can be

readily identified by using standard sequence alignment techniques such as Clustal X2 (Larkin, M.A. et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23:2947-2948).

Of course, SEQ ID NO. 1 does not itself define a fully functional DNA polymerase. In preferred embodiments the DNA polymerase of the present invention is based on the amino acid sequence of PB DNA polymerase I, preferably which lacks the 5'-3'- exonuclease domain that is present in the wild-type *Psychrobacillus* species DNA polymerase I sequence. In preferred embodiments, the 5'-3'- exonuclease domain is absent from the DNA polymerase enzyme as 5'-3'- exonuclease activity is typically unwanted as it may degrade primers and/or products in an amplification mixture. This truncated wild-type PB sequence is referred to herein as SEQ ID NO. 2.

The invention provides a DNA polymerase comprising or consisting of the amino acid sequence of SEQ ID NO:2 or an amino acid sequence which is at least 15 60% identical to SEQ ID NO:2 but wherein the aspartic acid residue at position 422 of SEQ ID NO. 2, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.

In preferred aspects and embodiments, the DNA polymerase of the invention comprises (or consists of) an amino acid sequence that is at least 70%, or 20 75%, preferably at least 80%, 85%, 90% or 95%, e.g. at least 98% or 99% or 99.5%, identical to SEQ ID NO:2 but wherein the aspartic acid residue at position 422 of SEQ ID NO. 2, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue. It will be understood that position 18 in SEQ ID NO. 1 and 422 in SEQ ID NO. 2 are equivalent, SEQ ID NO. 1 is a fragment from position 405 to 436 of SEQ ID NO. 2.

Figure 5 shows an alignment of PB, Bst and Ubts DNA polymerases. The key Asp residue is at position 422 in each case.

In further preferred embodiments or aspects, the DNA polymerase of the invention comprises (or consists of) an amino acid sequence that is at least 60%, 30 70% or 75%, preferably at least 80%, 85%, 90% or 95%, e.g. at least 98% or 99% or 99.5%, identical to SEQ ID NO. 11 or 12 but wherein the aspartic acid residue at position 422 of SEQ ID NO. 11 or 12, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue. Numbering is based on a sequence alignment according to Figure 5. SEQ

- 6 -

ID NOs. 11 and 12 are the (truncated) variants of the wild type Bst and Ubts polymerase sequences respectively.

Preferably, the DNA polymerase of the invention comprises or consists of the amino acid sequence of SEQ ID NO:2, 11 or 12 but wherein the aspartic acid residue at position 422 of SEQ ID NO. 2, 11 or 12, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue .

In one embodiment, the DNA polymerase comprises (or consists of) the amino acid sequence of SEQ ID NO:4 (incorporating also the 5'→3' exonuclease domain) or a variant or fragment thereof but wherein the aspartic acid residue at position 719 of SEQ ID NO. 4, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue. The types of variants and fragments of SEQ ID NO:2 described herein apply, *mutatis mutandis*, to variants and fragments of SEQ ID NO:4, e.g. variants will have at least 70% preferably at least 80% or 90% sequence identity to SEQ ID.NO:4.

DNA polymerases of the invention include enzymatically active fragments of native polymerases. Enzymatically active fragments are fragments that have DNA polymerase activity. Enzymatically active fragments may be at least 400, at least 450, at least 475, at least 500, at least 525, at least 550, at least 560, at least 570 or at least 575 amino acids in length. Preferred fragments are at least 525, at least 550, at least 560, at least 570 or at least 575 amino acids in length. The fragments are at least 70%, preferably at least 80%, at least 85% or at least 90%, more preferably at least 95% (e.g. at least 98% or 99% or 99.5%), or 100% identical to the corresponding portion of SEQ ID NO:2, 11 or 12 but wherein the aspartic acid residue at position 422 of SEQ ID NO. 2, 11 or 12, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.

DNA polymerase activity may be assessed using a molecular beacon that bears a loop structure and uses FAM as fluorescence donor and Dabcyl as an acceptor (non-fluorescent quencher) within an 8mer stem. This stem bears a 3'- extension that allows binding of a primer and acts as template for the DNA polymerase. The stem will be opened by the DNA polymerase when the extension proceeds. The following separation of the two labels is recorded by restoration of FAM emission. A suitable assay of this type is described in the Examples.

- 7 -

The DNA polymerases of the present invention have good strand displacement activity. This is an important property as in many isothermal amplification methods success relies on the inherent strand displacement activity of the DNA polymerase used in the reaction setup. The term "strand displacement" 5 describes the ability of the polymerase to displace downstream DNA encountered during synthesis.

Suitable assays to assess strand displacement activity of a DNA polymerase are known in the art and a skilled person is readily able to select a suitable assay. In an exemplary strand displacement activity assay, a "cold" primer and a reporter 10 strand that is labelled with a fluorophore (e.g. TAMRA) at its 3' end are annealed to a template strand that has a quencher (e.g. BHQ2) at its 5' end (the fluorophore is thus quenched by the close proximity of the quencher) such that there is a one nucleotide gap between the 3' end of the annealed "cold" primer and the 5' end of the annealed reporter strand; upon strand displacement activity of the DNA 15 polymerase the fluorophore labelled oligonucleotide (reporter strand) is displaced from the template strand and as a consequence the fluorophore and quencher are no longer in close proximity and an increase in fluorescence can be measured.

Strand displacement activity may be assessed in an assay having the steps of (i) providing a template DNA molecule that has a quencher (fluorescence 20 quencher) at its 5' end, (ii) annealing to said template DNA molecule a cold primer (i.e. non-fluorescent oligonucleotide) and a reporter strand (reporter oligonucleotide) that is labelled with a fluorophore at its 3' end wherein there is a one nucleotide gap between the 3' end of the annealed "cold" primer and the 5' end 25 of the annealed reporter strand, whereby the quencher quenches the fluorophore by virtue of their close proximity to each other, (iii) incubating said template-cold primer-reporter strand complex with a DNA polymerase, Mg^{2+} and dNTPs and (iv) measuring the increasing fluorescence of the previously quenched fluorophore, wherein said fluorescence is indicative of strand displacement activity.

Preferred primers, reporter strands and template strands are as described in 30 the Examples.

In a preferred embodiment strand displacement activity (SDA) is as assessed in accordance with the strand displacement activity assay described in the Example section. SDA is preferably measured at about the optimum 35 temperature for that polymerase. For PB and other mesophiles that may be around 25°C-37°C.

The present invention allows the SDA of a wild type DNA polymerase to be enhanced. In the case of PB the SDA is already high compared to most commercially available polymerases but SDA can still be significantly increased (see Fig. 3) by implementing the amino acid modification at position 18/422 5 described herein. For thermostable polymerases included in the invention, e.g. Ubts and Bst, the native SDA is quite low at ambient temperatures (25-37°C). However the SDA is still significantly enhanced at 37°C when the aspartic acid residue is replaced with a non-negatively charged amino acid residue. Different polymerases may be useful in different scenarios, e.g. Bst and Ubts are 10 thermostable (T_m of 66°C and 62°C respectively), and so the ability to enhance SDA for any of these enzymes is very useful (see Figs. 6 and 7).

Thus, in preferred embodiments, the DNA polymerases of the invention have at least 30%, preferably at least 50%, more preferably at least 100% greater SDA than a DNA polymerase with exactly the same sequence but with aspartic acid 15 at position 18 or 422, relative to SEQ ID NOs. 1 and 2 respectively, or at the equivalent position in other sequences. Preferably the % increase observed will at least be seen under the conditions at which each enzyme exhibits its maximum SDA. In other words, for the best that each enzyme can perform, the polymerase of the invention will preferably have at least 30%, more preferably at least 50%, most 20 preferably at least 100% higher SDA than its aspartic acid containing equivalent.

The aspartic acid residue discussed above, the modification of which is key to the benefits provided by the present invention, is replaced by a residue without a negative charge. The replacement will typically involve substitution with another amino acid residue but in some embodiments the aspartic acid residue may have 25 been modified to remove its negative charge. Thus, the residue at position 18/422 of the polymerase of the invention will be either neutral or positively charged. Neutral amino acids include polar amino acids and hydrophobic amino acids. Suitable replacement amino acids include Ser, Thr, Asn, Gln, Ala, Ile, Leu, Tyr, Val, 30 Lys and Arg. Non-standard, i.e. non-genetically coded amino acids, may be incorporated which are neutral or positively charged. Ala is particularly preferred.

The inventors have also found that some of the polymerases of the invention exhibit improved SDA performance at elevated [NaCl] and [KCl] as compared to enzymes which contain the Asp residue discussed above (see tables 2 and 4). Enhanced salt tolerance is thus a further benefit which may be provided by the 35 present invention.

- 9 -

Preferred DNA polymerases of the present invention have useful levels of polymerase activity across a range of salt (NaCl and/or KCl) concentrations. Put another way, preferred DNA polymerases of the present invention exhibit across a broad range of salt concentrations a substantial proportion of the DNA polymerase 5 activity observed at the salt concentration at which maximum polymerase activity is observed. Suitable assays for determining DNA polymerase activity are described elsewhere herein. A preferred assay for determining DNA polymerase activity is as described in the Example section.

In some embodiments, across a concentration range from about 20mM to 10 200mM NaCl or KCl or a mixture thereof, DNA polymerases of the present invention exhibit a substantial proportion (e.g. at least 40%, preferably at least 50%, more preferably at least 60%) of their maximum polymerase activity.

In a further aspect the present invention provides molecules (e.g. proteins, such as fusion proteins) comprising DNA polymerases of the present invention.

15 As used throughout the entire application, the terms "a" and "an" are used in the sense that they mean "at least one", "at least a first", "one or more" or "a plurality" of the referenced components or steps, except in instances wherein an upper limit or exclusion is thereafter specifically stated. The operable limits and parameters of combinations, as with the amounts of any single agent, will be known 20 to those of ordinary skill in the art in light of the present disclosure.

Nucleic acid molecules comprising nucleotide sequences that encode DNA polymerases of the present invention as defined herein or fragments thereof, or 25 nucleic acid molecules substantially homologous thereto, form yet further aspects of the invention. A preferred nucleic acid molecule is a nucleic acid encoding a DNA polymerase I of SEQ ID NO:2, or a sequence substantially homologous thereto (e.g. at least 60%, 70%, 75%, 80%, 85%, 90% or 95% identical thereto), but wherein the aspartic acid residue at position 422 of SEQ ID NO. 2, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.

30 A preferred nucleic acid molecule comprises (or consists of) the nucleotide sequence as set forth in SEQ ID NO: 13, 14 or 15, or is a sequence substantially homologous thereto. Optionally, the final three nucleotides of SEQ ID NO: 13, 14 or 15 may be omitted. Nucleic acid sequences of the invention include sequences having at least 70% or 75%, preferably at least 80%, and even more preferably at 35 least 85%, 90%, 95%, 96%, 97%, 98%, 99% or 99.5%, sequence identity to SEQ

- 10 -

ID NO: 13, 14 or 15. Nucleic acid sequences of the invention thus include single or multiple base alterations (additions, substitutions, insertions or deletions) to the sequence of SEQ ID NO: 13, 14 or 15.

5 A particularly preferred nucleic acid molecule comprises or consists of the nucleotide sequence as set forth in SEQ ID NO: 13, 14 or 15.

The present invention also extends to nucleic acid molecules comprising (or consisting of) nucleotide sequences which are degenerate versions of nucleic acid molecules described herein, e.g. degenerate versions of a nucleic acid molecule comprising (or consisting of) SEQ ID NO: 13, 14 or 15.

10 Nucleic acid molecules of the invention are preferably "isolated" or "purified".

Homology (e.g. sequence identity) may be assessed by any convenient method. However, for determining the degree of homology (e.g. identity) between sequences, computer programs that make multiple alignments of sequences are useful, for instance Clustal W (Thompson, Higgins, Gibson, *Nucleic Acids Res.*, 22:4673-4680, 1994). If desired, the Clustal W algorithm can be used together with BLOSUM 62 scoring matrix (Henikoff and Henikoff, *Proc. Natl. Acad. Sci. USA*, 89:10915-10919, 1992) and a gap opening penalty of 10 and gap extension penalty of 0.1, so that the highest order match is obtained between two sequences wherein at least 50% of the total length of one of the sequences is involved in the alignment. Clustal X is a convenient windows interface for Clustal W (Thompson, J.D. et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. *Nucleic Acids Research*, 25:4876-4882).

25 Other methods that may be used to align sequences are the alignment method of Needleman and Wunsch (Needleman and Wunsch, *J. Mol. Biol.*, 48:443, 1970) as revised by Smith and Waterman (Smith and Waterman, *Adv. Appl. Math.*, 2:482, 1981) so that the highest order match is obtained between the two sequences and the number of identical amino acids is determined between the two sequences. Other methods to calculate the percentage identity between two amino acid sequences are generally art recognized and include, for example, those described by Carillo and Lipton (Carillo and Lipton, *SIAM J. Applied Math.*, 48:1073, 1988) and those described in Computational Molecular Biology, Lesk, e.d. Oxford University Press, New York, 1988, Biocomputing: Informatics and Genomics Projects.

- 11 -

Generally, computer programs will be employed for such calculations.

Programs that compare and align pairs of sequences, like ALIGN (Myers and Miller, *CABIOS*, 4:11-17, 1988), FASTA (Pearson and Lipman, *Proc. Natl. Acad. Sci. USA*, 85:2444-2448, 1988; Pearson, *Methods in Enzymology*, 183:63-98, 1990) and 5 gapped BLAST (Altschul *et al.*, *Nucleic Acids Res.*, 25:3389-3402, 1997), BLASTP, BLASTN, or GCG (Devereux, Haeberli, Smithies, *Nucleic Acids Res.*, 12:387, 1984) are also useful for this purpose. Furthermore, the Dali server at the European Bioinformatics institute offers structure-based alignments of protein sequences (Holm, *Trends in Biochemical Sciences*, 20:478-480, 1995; Holm, *J. 10 Mol. Biol.*, 233:123-38, 1993; Holm, *Nucleic Acid Res.*, 26:316-9, 1998).

By way of providing a reference point, sequences according to the present invention having 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99%, sequence identity etc. may be determined using the ALIGN program with default 15 parameters (for instance available on Internet at the GENESTREAM network server, IGH, Montpellier, France).

A "conservative amino acid substitution", as used herein, is one in which the amino acid residue is replaced with another amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art.

20 DNA polymerases of the present invention comprise genetically encoded amino acids, but may also contain one or more non-genetically encoded amino acids.

When used in connection with a protein or polypeptide molecule such as a 25 DNA polymerase, the term "isolated" or "purified" typically refers to a protein substantially free of cellular material or other proteins from the source from which it is derived. In some embodiments, such isolated or purified proteins are substantially free of culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

In one further aspect the present invention provides an expression vector 30 (preferably a recombinant expression vector) containing a nucleic acid molecule of the invention, or a fragment thereof, and the necessary regulatory sequences for the transcription and translation of the protein sequence encoded by the nucleic acid molecule of the invention.

Possible expression vectors include but are not limited to cosmids or 35 plasmids, so long as the vector is compatible with the host cell used. The

expression vectors are "suitable for transformation of a host cell", which means that the expression vectors contain a nucleic acid molecule of the invention and regulatory sequences selected on the basis of the host cells to be used for expression, which are operatively linked to the nucleic acid molecule. Operatively linked is intended to mean that the nucleic acid is linked to regulatory sequences in a manner that allows expression of the nucleic acid.

Suitable regulatory sequences may be derived from a variety of sources, including bacterial, fungal, viral, mammalian, or insect genes and are well known in the art. Selection of appropriate regulatory sequences is dependent on the host cell chosen as discussed below, and may be readily accomplished by one of ordinary skill in the art. Examples of such regulatory sequences include: a transcriptional promoter and enhancer or RNA polymerase binding sequence, a ribosomal binding sequence, including a translation initiation signal. Additionally, depending on the host cell chosen and the vector employed, other sequences, such as an origin of replication, additional DNA restriction sites, enhancers, and sequences conferring inducibility of transcription may be incorporated into the expression vector.

The recombinant expression vectors of the invention may also contain a selectable marker gene that facilitates the selection of host cells transformed or transfected with a recombinant molecule of the invention.

The recombinant expression vectors may also contain genes that encode a fusion moiety that provides increased expression of the recombinant protein; increased solubility of the recombinant protein and/or aids in the purification of the target recombinant protein by acting as a ligand in affinity purification (for example appropriate "tags" to enable purification and/or identification may be present, e.g., His tags or myc tags).

Recombinant expression vectors can be introduced into host cells to produce a transformed host cell. The terms "transformed with", "transfected with", "transformation" and "transfection" are intended to encompass introduction of nucleic acid (e.g., a vector) into a cell by one of many possible techniques known in the art. Suitable methods for transforming and transfecting host cells can be found in Sambrook *et al.*, 1989 (Sambrook, Fritsch and Maniatis, *Molecular Cloning: A Laboratory Manual*, 2nd Ed., Cold Spring Harbor Press, Cold Spring Harbor, NY, 1989) and other laboratory textbooks.

Suitable host cells include a wide variety of prokaryotic host cells and eukaryotic cells. Preferably, proteins of the invention may be expressed in bacterial host cells, such as *Escherichia coli*.

5 N-terminal or C-terminal fusion proteins comprising DNA polymerases and proteins of the invention conjugated to other molecules, such as proteins (e.g. epitope tags), may be prepared by fusing through recombinant techniques.

10 A yet further aspect provides a host cell or virus comprising one or more expression constructs or expression vectors of the invention. Also provided are host cells or viruses comprising one or more of the nucleic acid molecules of the invention. A host cell or virus capable of expressing a DNA polymerase of the invention forms a yet further aspect. Preferred host cells include Rosetta 2 (DE3) cells (Novagen).

15 DNA polymerases of the invention may be produced recombinantly in a host cell and isolated and purified therefrom. The DNA polymerases of the invention may therefore be considered recombinant enzymes, in particular isolated recombinant enzymes. In certain embodiments the DNA polymerase is produced by recombinant techniques in a host cell that is not, or not from, an organism which is the same as that from which the DNA polymerase was derived.

20 DNA polymerases of the present invention may be generated using recombinant DNA technology. Alternatively, a cell-free expression system can be used for production of the DNA polymerase. Alternatively, DNA polymerases of the present invention may be generated using chemical synthesis so that the DNA polymerase is generated by stepwise elongation, one amino acid at a time. Such chemical synthesis techniques (e.g. solid phase synthesis) are well known in the 25 chemistry of proteins.

30 A further aspect of the invention provides a method of producing a DNA polymerase of the present invention comprising a step of culturing the host cells of the invention. Preferred methods comprise the steps of (i) culturing a host cell comprising one or more of the recombinant expression vectors or one or more of the nucleic acid molecules of the invention under conditions suitable for the expression of the encoded DNA polymerase or protein; and optionally (ii) isolating or obtaining the DNA polymerase or protein from the host cell or from the growth medium/supernatant. Such methods of production may also comprise a step of purification of the DNA polymerase or protein product and/or formulating the DNA

polymerase or product into a composition including at least one additional component, such as an acceptable buffer or carrier.

The DNA polymerase may be separated, or isolated, from the host cells/culture media using any of the purification techniques for protein known in the art and widely described in the literature or any combination thereof. Such techniques may include for example, precipitation, ultrafiltration, dialysis, various chromatographic techniques, e.g. size exclusion chromatography, ion-exchange chromatography, affinity chromatography, electrophoresis, centrifugation etc. As discussed above, the DNA polymerase of the invention may be modified to carry amino acid motifs or other protein or non-protein tags, e.g. polyhistidine tags (e.g. His₆-tag), to assist in isolation, solubilisation and/or purification or identification.

In another aspect, the present invention provides the use of a DNA polymerase of the invention for nucleotide (e.g. dNTP) polymerisation. Accordingly, DNA polymerases of the invention may be used to extend a nucleic acid (DNA) strand by one or more nucleotides.

In another aspect, the present invention provides the use of a DNA polymerase of the invention in a nucleic acid (DNA) amplification or sequencing reaction.

In another aspect, the present invention provides the use of a DNA polymerase of the invention in a molecular beacon assay or in a strand displacement assay, e.g. as described herein.

Preferably, in uses and methods of the present invention, DNA polymerases of the present invention are used at a constant temperature, i.e. without thermal cycling. Accordingly, the use of DNA polymerases of the invention in isothermal reactions is particularly preferred.

The use of DNA polymerases of the invention in isothermal amplification reactions is particularly preferred. Isothermal reactions are performed at a constant temperature. Many isothermal amplification techniques are known in the art and include Loop mediated isothermal amplification (LAMP), rolling circle amplification (RCA), strand displacement amplification (SDA), multiple displacement amplification (MDA) and cross priming amplification (CPA).

In another aspect, the present invention provides a method of nucleotide polymerisation using a DNA polymerase of the present invention. Preferably, said method comprises providing a reaction mixture comprising a DNA polymerase of the present invention, a template nucleic acid molecule, an oligonucleotide primer

which is capable of annealing to a portion of the template nucleic acid molecule and one or more species of nucleotide (e.g. deoxynucleoside triphosphates, dNTPs) and incubating said reaction mixture under conditions whereby the oligonucleotide primer anneals to the template nucleic acid molecule and said DNA polymerase 5 extends said oligonucleotide primer by polymerising one or more nucleotides.

Suitable conditions are well known in the art. Preferably a constant temperature is used and preferred temperatures are set out elsewhere herein. Optionally, the generation of the polynucleotide product is detected (e.g. via gel electrophoresis).

In another aspect, the present invention provides a method of amplifying a 10 nucleic acid (DNA) using a DNA polymerase of the present invention. Typically, said method comprises providing a reaction mixture comprising a DNA polymerase of the present invention, a template nucleic acid molecule, an oligonucleotide primer(s) (e.g. 2 or more primers such as 2, 3, 4, 5 or 6 primers) which is capable of annealing to a portion of the template nucleic acid molecule acid molecule, and 15 nucleotides (e.g. deoxynucleoside triphosphates, dNTPs) and incubating said reaction mixture under conditions whereby the oligonucleotide primer(s) anneals to the template nucleic acid molecule and said DNA polymerase extends said oligonucleotide primer(s) by polymerising one or more nucleotides to generate a polynucleotide. Suitable conditions are well known in the art. Preferred methods of 20 nucleic acid amplification are isothermal amplification methods. Isothermal amplification methods of the invention are performed at a constant temperature and preferred temperatures are set out elsewhere herein. Optionally, the generation of the polynucleotide product is detected (e.g. via gel electrophoresis).

Exemplary isothermal amplification methods include Loop mediated 25 isothermal amplification (LAMP), rolling circle amplification (RCA), strand displacement amplification (SDA), multiple displacement amplification (MDA) and cross priming amplification (CPA).

In some embodiments, particularly those using DNA polymerases based on the PB sequence, the constant temperature used in the methods and uses of the 30 present invention is a low-to-moderate temperature, for example, is chosen from within the range 0°C to about 42°C, preferably is chosen from within the range about 10°C to about 40°C, or about 20°C to about 40°C, or about 25°C to about 40°C, or about 30°C to about 40°C or about 35°C to about 40°C, or about 37°C to about 40°C. In some embodiments, the constant temperature is chosen from within 35 the range about 10°C to about 15°C, or about 10°C to about 20°C. In some

embodiments, the constant temperature is chosen from within the range about 10°C to about 30°C. In some embodiments, the constant temperature is chosen from within the range about 20°C to about 30°C. In some embodiments, the constant temperature is chosen from within the range about 10°C to about 25°C. In some 5 embodiments, the constant temperature is chosen from within the range about 20°C to about 25°C. A constant temperature of about 25°C is preferred. In some embodiments, the constant temperature is 25°C.

With other polymerases of the invention, for example those based on sequences from organisms which are thermophilic, the constant temperature may 10 be moderate to high, e.g. is chosen from within the range 25°C-65°C, preferably 40°C-65°C.

A temperature may be considered constant when no active steps are taken to modify the temperature during the reaction, e.g. no thermal cycling. A 'constant' 15 temperature may still allow temperature fluctuations during the method e.g. of up to about 5°C, typically no more than 3°C or 2°C.

DNA polymerases of the present invention may be used in point-of-care molecular diagnostics platforms.

DNA polymerases of the present invention may be used in whole genome amplification.

20 DNA polymerases of the present invention may be used in next-generation sequencing methods. So-called "next generation" or "second generation" sequencing approaches (in reference to the Sanger dideoxynucleotide method as the "first generation" approach) have become widespread. These newer techniques are characterised by high throughputs, e.g. as a consequence of the use of parallel, 25 e.g. massively parallel sequencing reactions, or through less time-consuming steps. Various high throughput sequencing methods provide single molecule sequencing and employ techniques such as pyrosequencing, reversible terminator sequencing, cleavable probe sequencing by ligation, non-cleavable probe sequencing by ligation, DNA nanoballs, and real-time single molecule sequencing.

30 References herein to DNA polymerases of the invention encompass active fragments unless otherwise clear from the context.

Uses and methods of the present invention are typically performed *in vitro*.

The present invention also provides compositions comprising a DNA polymerase of the invention. Such compositions preferably comprise a buffer.

35 Optionally, compositions of the present invention further comprise one or more of

- 17 -

the necessary reagents to carry out a nucleic acid amplification reaction (e.g. an isothermal amplification reaction), e.g. oligonucleotide primers capable of annealing to a region of the template DNA to be amplified and/or nucleotides (e.g. dNTPs).

Typically compositions will be aqueous and buffered with a standard buffer such as

5 Tris, HEPES, etc.

The invention further includes kits comprising one or more of the DNA polymerases of the invention, or one or more compositions of the invention, or one or more of the nucleic acid molecules of the invention, or one or more expression vectors of the invention, or one or more host cells or viruses of the invention.

10 Preferably said kits are for use in the methods and uses as described herein, e.g., in nucleic acid amplification methods, such as isothermal amplification reactions. Preferably said kits comprise instructions for use of the kit components, for example for nucleic acid amplification.

- 18 -

NUCLEOTIDE AND AMINO ACID SEQUENCES DISCLOSED HEREIN AND
THEIR SEQUENCE IDENTIFIERS (SEQ ID NOs)

5 All nucleotide sequences are recited herein 5' to 3' in line with convention in
this technical field.

SEQ ID NO:1 – amino acid sequence of a region of the finger domain of DNA
polymerase I from a *Psychrobacillus* sp.

10 **SEQ ID NO:1**

MRRAAKAVNFGIVYGISDYGLSQNLDITRKEA

SEQ ID NO:2 – amino acid sequence of truncated DNA polymerase I isolated from
a *Psychrobacillus* sp. (PB)

15

SEQ ID NO:2

TEVAFEIVEIIDSTILDKVMSVHLEMYDGQYHTSELLGIALSDGEKGYFAPADIAFQ
SKDFCSWLENATNKYLADSKATQAVSRKHNVNVHGVEFDLLAAYIVNPAISSED
VAIAIAKEFGYFNLLTNDSVYGKGAKKTAPEIEKIAEHAVRKARAIWDLKEKLEVKLE
20 ENEQYALYKEIELPLASILGTMESDGVLVDKQILVEMGHELNKLRAIEQDIYALAGE
TFNINSPKQLGVILFEKIGLTPIKKTGTGSTAADVLEKLASEHEIIEQILLYRQLGKLN
STYIEGLLKEIHEDDGKIHTRYQQALTSTGRLSSINPNLQNPVRLEEGRKIRKAFVP
SQPGWVMFAADYSQIELRVLAHMSEDENLVEAFNNLDIHTKTAMDVFHVEQEAV
25 TSDMRRAAKAVNFGIVYGISDYGLSQNLDITRKEAATFIENYLNSFPGVKGYMDDIV
QDAKQTGYVTTILNRRRYLPEITSSNFNLRSPAERTAMNTPIQGSAADIKKAMIDM
AERLISENMQTKMLLQVHDELIFEAPPEEIAMLEKIVPEVMENAIKLIVPLKVDYAFG
SSWYDTK

SEQ ID NO:3 – nucleic acid sequence encoding the *Psychrobacillus* species DNA
30 polymerase I sequence of SEQ ID NO:2

SEQ ID NO:3

ACAGAAGTAGCATTGAGATTGTTGAAGAAATTGACTCTACAATATTAGATAAA
GTAATGTCAGTCATTAGAAATGTATGATGGCAATATCATAACAGCGAATTA
35 TTAGGTATTGCTTATCAGATGGAGAAAAGGGTTATTTGCTCCTGCTGATATA
GCTTTCAATCGAAGGATTTGTTCTGGTTAGAAAATGCTACGAATAAAAG
TATTTAGCAGACTCCAAAGCAACACAAGCAGTGAGTAGAAAACATAATGTGAAT
GTACATGGAGTGGAATTGACCTTCTTTAGCAGCGTATATAGTAAATCCTGCT

- 19 -

ATCTCTTCAGAGGATGTTGCTGCTATTGCTAAAGAATTGGATATTTAACTTG
CTGACAAACGATAGTGTATGGAAAGGTGCCAAAAACCGCACCTGAAAT
CGAGAAAATTGCAGAACATGCCGTAAGAAAAGCAAGGGCTATTGGGACTTGA
AAGAAAAGTTAGAAGTAAAACGGAAAGAAAATGAACAATATGCGTTGTATAAG
5 AAATAGAGCTACCGCTTGCATCTACCTTGGTACGATGGAATCAGATGGGTG
CTGGTGGATAAACAAATTCTGTAGAAATGGTCATGAGCTTAATATTAAGTTA
CGAGCGATTGAACAAGACATTATGCGTTAGCTGGTGAACGTTAATATTAAT
TCACCTAAACAATTAGGTGTAATACTATTGAAAAAATTGGTCTTACCCCTATTA
AAAAGACAAAAACGGCTATTCAACTGCAGCAGATGTTGGAAAAACTAGCA
10 AGTGAACATGAAATAATAGAGCAAATTACTATATCGTCAATTAGGTAAACTCA
ATTCCACATATATCGAAGGATTATTAAAAGAGATTCACTGAAGATGATGGAAAGA
TCCATACCCGATATCAACAAAGCCCTAACTCAACTGGCGTTGAGTCGATC
AATCCAAACCTTCAAAATATACCAGTCGTTAGAAGAAGGTAGAAAAATACGT
AAAGCCTTGTTCCCTCACAAACCGGGATGGTAATGTTGCGGCGGATTACTC
15 TCAAATTGAATTGCGTGTCTTGCCTATGTCTGAGGATGAAAACCTGGTAGA
AGCTTTAATAATGATCTGGATATTCACTAAACGGCTATGGATGTATTCCAT
GTGGAGCAGGAAGCAGTAACGTCGATATGCGCCGTGCTGCTAAGGCAGTTA
ACTTGGGATTGTGTATGGTATTAGTGTATTGGTTATCACAAACCTAGATAT
TACTAGAAAAGAAGCGGCGACATTATCGAGAATTATTAATAGCTTCCCAGG
20 TGTAAAAGGATATGGATGATATCGTTCAAGATGCGAAACAAACAGGCTACG
TTACAACAATTTGAATAGACGAAGATATTGCCTGAAATAACAAGTTCTAACCT
TAATCTCCGCAGTTTGCAGAACGTACTGCTATGAATACACCAATTCAAGGGA
GTGCAGCCGATATTAAAAAGCAATGATCGATATGGCGGAAAGATTAATAT
CAGAAAATATGCAGACCAAAATGCTACTACAAGTACATGATGAATTAAATTGG
25 AGGCTCCACCAGAGGAAATTGCAATGCTAGAAAAAATAGTGCAGAGGTGATG
GAAAACGCTATTAAACTGATTGTACCTTGAAAGTGGATTATGCCTTGGTTCA
TCTTGGTATGACACGAAAGTAG

30 SEQ ID NO:4 – amino acid sequence of full-length DNA polymerase I isolated from
a *Psychrobacillus* sp.

SEQ ID NO:4

35 MYLSTEKILLLDGNSLAYRAFFALPLLTNEHGIHTNAVYGFTMMLQKIMDEENPHTMLVA
FDAGKTTFRHSTFDYKGGRQKTPPELSEQFPYIRKLIDAYGIKRYELEMYEADDIIGTL
SKRADEKGQQVVIVSGDKDLTQLATDKTTVYITRGITDIEKYTPEHVQEKYGLTPLQII

- 20 -

DMKGLMGDASDNIPGVPGVGEKTAIKLLKEHGSVEDLYKALDTVSGVKLKEKLIANEEQA
IMSKALATIETAAPIQISIDDSYTGPNMEEVIEVWKEFALKLLEKSDYISEESETTEV
AFEIVEEIDSTILDKVMSVHLEMYDGQYHTSELLGIALSDGEKGYFAPADIAFQSKDFCS
WLENATNKYKYLADSKATQAVSRKHNVNHGVEFDLLAAYIVNPAISSEDVAIAKEFGY
5 FNLLTNDSVYKGAKKTAPEIEKIAEHAVRKARAIWDLKEKLEVKLEENEQYALYKEIEL
PLASILGTMESDGVLVDKQILVEMGHELNKLRAIEQDIYLAGETFNINSPKQLGVILF
EKIGLTPIKKTKTGYSTAADVLEKLASEHEIIEQILLYRQLGKLNSTYIEGLLKEIHEDD
GKIHTRYQQALTSTGRLSSINPNLQNIQVRLEEGRKIRKAFVPSQPGWVMFAADYSQIEL
RVLAHMSEDENLVEAFNNDLDIHTKTAMDVFHVEQEAVTSDMRRAAKAVNFGIVYGISDY
10 GLSQNLDITRKEAATFIENYLNNSFPGVKGYMDDIVQDAKQTGYVTTILNRRRYLPEITSS
NFNLRSFAERTAMNTPIQGSAADIKKAMIDMAERLISENMQTKMLLQVHDELIFEAPPE
EIAMLEKIVPEVMENAIKLIVPLKVDYAFGSSWYDTK

SEQ ID NO:5 – nucleic acid sequence encoding the *Psychrobacillus* sp. DNA
15 polymerase I sequence of SEQ ID NO:4.

SEQ ID NO:5

ATGTATTTGTCAACCGAGAAAATCCTATTATTAGACGGCAATAGTTGGCATAAC
CGAGCTTTTTGCCCTACCTTATTAACAAATGAACATGGAATACATACAAAC
20 GCAGTATATGGCTTACAATGATGCTACAAAAAATTATGGATGAAGAAAATCCT
ACTCATATGCTCGTGGCATTGATGCCGGAAAACGACCTCCGTCACTCTAC
TTTGGGGATTATAAAGGTGGAAGACAAAAACACCACCAAGAACTATCGGAAC
AATTCCCTTATACGCAAGTTAACGATGCTTATGGTATTAAAGCGATACGAAC
TGGAAATGTACGAAGCAGACGATATTACGGTACTTTAAGCAAGCGTGCAGAC
25 GAAAAAGGGCAGCAAGTTGAATTGTCAGGTGATAAAGATTAAACACAAC
GCTACAGATAAAACAACGTGTATATCACAAGAAAAGGCATAACCGATATTGAA
AAATATACACCTGAACATGTACAAGAAAAGTATGGCTTAACCTCATTACAGATT
ATAGACATGAAAGGTTAATGGGAGATGCTCTGATAATATTCCAGGAGTTCT
GGTGTGGAGAAAAACAGCTATTAAAGCTTTAAAAGAACATGGTCGGTAGA
30 GGATTATATAAAGCACTTGATACAGTTAGTGGTGTAAACTAAAGGAAAAACT
CATCGCCAACGAAGAGCAGGAATTATGAGTAAGGCATTAGCTACGATTGAAA
CAGCTGCACCGATAACAGATTCTATAGACGATCTTCATATACTGGCCTAATA
TGGAAAGAAGTAATTGAAGTTGGAAGGAACTAGCTTTAAAACCTCTTCTGAGA
AATCTGACTATATTCTGAGGAATCCGAAACTACAGAAAGTAGCATTGAGATTG
35 TTGAAGAAATTGACTCTACAATATTAGATAAGTAATGTCAGTCCATTAGAAAT
GTATGATGGCAATATCATAAGCGAATTATTAGGTATTGCTTATCAGATGG

- 21 -

AGAAAAGGGTTATTTGCTCCTGCTGATATAGCTTTCAATCGAAGGATTTG
TTCTGGTTAGAAAATGCTACGAATAAAAGTATTAGCAGACTCCAAAGCAAC
ACAAGCAGTGAGTAGAAAACATAATGTGAATGTACATGGAGTGGATTGACCC
TTCTTTAGCAGCGTATATAGTAAATCCTGCTATCTCTTCAGAGGATGTTGCTG
5 CTATTGCTAAAGAATTGGATATTTAACTTGCTGACAAACGATAGTGTATGG
GAAAGGTGCCAAAAACCGCACCTGAAATCGAGAAAATTGCAGAACATGCCG
TAAGAAAAGCAAGGGCTATTGGGACTTGAAAGAAAAGTTAGAAGTAAAAGC
GAAGAAAATGAACAATATGCGTTGTATAAAGAAAATAGAGCTACCGCTTGCATCT
ATCCTTGGTACGATGGAATCAGATGGGTGCTGGTGGATAAACAAATTCTTGT
10 AGAAATGGGTACATGAGCTTAATATTAAGTTACGAGCGATTGAACAAGACATTAA
TGCCTTAGCTGGTAAACGTTAATATTAATTACCTAAACAATTAGGTGTAAT
ACTATTGAAAAAATTGGCTTACCCCTATTAAAAGACAAAACGGGCTATT
AACTGCAGCAGATGTTGGAAAAACTAGCAAGTGAACATGAAATAATAGAGC
AAATTTACTATATCGTCAATTAGGTAAACTCAATTCCACATATATCGAAGGATT
15 ATTAAAAGAGATTACATGAAGATGATGGGAAGATCCATACCCGATATCAACAAG
CCCTAACTTCAACTGGCGTTGAGTCGATCAATCCAAACCTTCAAAATATAC
CAGTCGTTAGAAGAAGGTAGAAAATACGTAAGCCTTGTTCCTTCACAAC
CGGGATGGTAATGTTGCGCGGATTACTCTCAAATTGAATTGCGTGTCTT
GCCCATATGTCAGGGATGAAAACCTGGTAGAAGCTTTAATAATGATCTGGAT
20 ATTCAACTAAAACGGCTATGGATGTATTCCATGTGGAGCAGGAAGCAGTAAC
GTCCGATATGCGCCGTGCTGCTAAGGCAGTTAACTTGGATTGTATGGTA
TTAGTGATTATGGTTATCACAAACCTAGATATTACTAGAAAAGAAGCGCGA
CATTATCGAGAATTATTTAAATAGCTTCCCAGGTGTAAAGGATATGGATG
ATATCGTTCAAGATGCGAAACAAACAGGCTACGTTACAACAATTGAAATAGAC
25 GAAGATATTGCCTGAAATAACAAGTTCTAACTTTAATCTCCGCAGTTGCAG
AACGTACTGCTATGAATACACCAATTCAAGGGAGTGCAGCCGATATTAAAAAA
AAGCAATGATCGATATGGCGAAAGATTAATATCAGAAAATATGCAGACCAAAA
TGCTACTACAAGTACATGATGAATTAATTTTGAGGGCTCCACCAAGAGGAAATTG
CAATGCTAGAAAAAATAGTGCCAGAGGTGATGGAAAACGCTATTAAACTGATT
30 GTACCTTGAAAGTGGATTATGCCTTGGTCATCTGGTATGACACGAAGTAG

SEQ ID NOS: 6-10 are, like SEQ ID NO:1, an amino acid sequence of a region of the finger domain of DNA polymerase I from *Bacillus* species C3_41*, *Ureibacillus thermosphaericus*, *Bacillus subtilis*, *Bacillus smithii* and *Geobacillus stearotherm-*

- 22 -

ophilus respectively (* = Bei *et al.* 2005, Arch Microbiol, 186: 203-209; Genbank accession number DQ309765).

SEQ ID NO:6

5 MRRAAKAVNFGIVYGISDYGLSQNLDITRKEA

SEQ ID NO:7

MRRAAKAVNFGIYGISDYGLSQNLDISRKEA

10 **SEQ ID NO:8**

MRRQAKAVNFGIVYGISDYGLSQNLGITRKEA

SEQ ID NO:9

MRRQAKAVNFGIVYGISDYGLSQNLGITRKEA

15

SEQ ID NO:10

MRRQAKAVNFGIVYGISDYGLAQNLNISRKEA

SEQ ID NO:11 is the amino acid sequence of truncated DNA polymerase I isolated
20 from *Geobacillus stearothermophilus* (Bst).

SEQ ID NO:11

AKMAFTLADRVTTEEMLADKAALVVEVVEENYHDAPIVGIAVVNEHGRFFLRPETALADPQ
FVAWLGDETKKSMFDSKRAAVALKWKGIELCGVSFDLLAAYLLDPAQGVDDVAAAAMK
25 KQYEAVRPDEAVYGKGAKRAVPDEPVLAELHVRKAAAIWELERPFLDELRRNEQDRLLVE
LEQPLSSILAEMEFAGVKVDTKRLEQMGKELAEQLGTVEQRIYELAGQEFNINSPKQLGV
ILFEKLQLPVLKKTGYSTSADVLEKLAPYHEIVENILHYRQLGKLQSTYIEGLLKVVR
PDTKKVHTIFNQALTQTGRLSSTEPNLQNIPIRLEEGRKIRQAFVPSESDWLIFAADYSQ
IELRVLAHIAEDDNLMEAFRRLLDIHTKTAMDIFQVSEDEVTPNMRRQAKAVNFGIVYGI
30 SDYGLAQNLNISRKEAAEFIERYFESFPGVKRYMENIVQEAKQKGYVTLLHRRRYLPDI
TSRNFNVRSAERMAMNTPIQGSAADIKKAMIDLNARLKEERLQAHLLQVHDELILEA
PKEEMERLCRLVPEVMEQAVTLRVPLKVDYHYGSTWYDAK

SEQ ID NO:12 is the amino acid sequence of truncated DNA polymerase I isolated
35 from *Ureibacillus thermosphaericus* (Ubts)

- 23 -

SEQ ID NO:12

AALSFKIVREIAEDLFTDTMAVHVELENEHYHTCNILGFGFTDGSNTFFVPTEVLQKSER
 LKSYFEDETKKKYMSDLKAAQCILKRHGINLRGEFDLLLASYIVNPAISGDDVATLAKE
 FGYTDVRSNEAVYGKGAKWALPSEEVLAEHVCRKAFAIWSCKERVSNKLKENEQFDLYHD
 5 LELPLAVILGKMESEGIKVNISTLETMGQEQLEDKIAKLETEIYELAGETFNINSPKQLGV
 ILFEKLGLPVIKKTKTGYSTAADVLEKLKSEHQIVQLILEYRTLAKLQSTYIEGLIKEVH
 PKDSKVHTRFMQALTSTGRLLSSTDPNLQNIPIRLEGRKIRKAFAVPSHDGWLLFSADYSQ
 IELRVLAHMSKDKNLVEAFNQGMDIHTRTAMEVFHVSQDDVTSNMRAAKAVNFGIIYGI
 SDYGLSQNLDISRKEAGEFIEKYFESFPGVKEYMDNIVQEAKLKGYVTTILNRRRYLPDI
 10 TSKNFNLRSFAERTAMNTPIQGSAADIKKAMLDIDARLNSEGLQAKLLLQVHDELIFEA
 PKEEIEKLEKIVPEVMESAILLDVPLKVDISYGETWYDAK

SEQ ID NO:13 is the codon optimised (for *E.coli* expression) nucleic acid sequence encoding the PB D422A mutant.

15

SEQ ID NO:13

ACCGAAGTTGCATTGAAATTGTGGAAGAAATCGATAGCACCATCCTGGATAAAGTTAT
 GAGCGTTCATCTGGAAATGTATGATGGTCAGTATCATAACCAGCGAACTGCTGGGTATT
 GCACTGAGTGATGGTAAAAAGGTTATTTGCACCGGCAGATATTGCCTTCAGAGCAA
 20 AGATTTTGATGGCTGGAAAATGCCACCAACAAAAAATACCTGGCAGATAGCAAAG
 CAACCCAGGCAGTTAGCCGAAACATAATGTTAATGTCACGGCGTGGATTGATCTG
 CTGCTGGCAGCATATATTGTTAATCCGGCAATTAGCAGCGAAGATGTTGCAGCAATTGC
 AAAAGAATTGGCTATTTAACCTGCTGACCAACGATAAGCGTTATGGTAAAGGTGCAA
 AAAAACCGCACCGGAAATTGAAAAATTGCCAACATGCAGTTCGAAAGCACGTGC
 25 AATTGGGATCTGAAAGAAAAACTGGAAGTGAACACTGGAAGAGAACGAAACAGTATGCC
 CTGTATAAGAAAATTGAAACTGCCGCTGGCAAGCATTCTGGCACCATGGAAAGTGATG
 GTGTTCTGGTTGATAAACAAATCCTGGTTGAAATGGTCAGGAGCTGAACATTAAACTG
 CGTCAATTGAACAGGATATTGAACTGGCAGGCACCTTAACATTAAAGCCC
 GAAACAGCTGGGTGTGATCCTGTTGAAAAATCGGTCTGACCCCGATCAAAAAAAC
 30 AAAACCGGTTAGCACCGCAGCAGATGTTCTGGAAAAACTGGCAAGCGAACATGAAA
 TTATTGAGCAGATTCTGCTGTATCGTCAGCTGGTAAACTGAATAGCACCTATATTGAA
 GGTCTGCTGAAAGAAAATTCCATGAGGATGATGGTAAATCCATACCGTTATCAGCAGGC
 ACTGACCAGCACCGGTCGTCAGCAGCATTAACTCGAATCTGCAGAATATTCCGGTTC
 GTCTGGAAGAAGGTCGTAATTCGTAAGCATTGTTCCGAGCCAGCCTGGTTGGGT
 35 TATGTTGCAGCAGATTAGCCAGATTGAACTGCGTGTCTGGCACATATGAGCGAAG
 ATGAAAATCTGGTTGAAGCCTTAACAACGATCTGGATATTCAACAAAACCGCCATG
 GATGTTTACGTTGAACAAGAAGCAGTTACCAGCGATATGCGTCGTGCAGCAAAG
 CAGTTAATTGGTATTGTATGGCATCAGCGCTTATGGTCTGAGCCAGAATCTGGAT

- 24 -

ATTACCCGTAAAGAAGCAGCCACCTTATCGAAAACACTACCTGAATAGCTTCCGGGTGT
GAAAGGCTATATGGATGATATTGTTAGGATGCAAAACAGACCGGTTATGTTACCA
TTCTGAATCGTCGTCGTTATCTGCCGAAATTACAGCAGCAACTTAATCTGCGTAGC
TTTGCAGAACGTACCGCAATGAATACCCGATTAGGGTAGCGCAGCAGATATTATCAA
5 AAAAGCCATGATTGATATGCCGAACGTCTGATTAGCGAAAATATGCAGACCAAAATGC
TGCTGCAGGTTATGACTGATGAACTGATTTGAAGCACCCTGAAGAAATTGCAATGCTG
GAAAAAAATTGTTCCCGAAGTGATGGAAAACGCCATTAAACTGATTGTTCCGCTGAAAGT
GGATTATGCATTTGGTAGCAGTTGGTACGATACCAAATAA

10 SEQ ID NO:14 – is the codon optimised nucleic acid sequence encoding the Bst
D→A mutant.

SEQ ID NO:14

GCCAAAATGGCATTACCTGGCAGATCGTGTACCGAAGAAATGCTGGCAGATAAAG
15 CAGCACTGGTTGTTGAAGTTGGAAGAAAATTATCATGATGCACCGATTGTTGGTATT
GCCGTTTTAATGAACATGCCGTTCTCGTCCGGAAACCGCACTGGCCGATC
CGCAGTTGTTGCATGGCTGGGTGATGAAACCAAAAAAGAGCATGTTGATAGCAA
CGTGCAGCAGTTGCACTGAAATGGAAAGGTATTGAACTGTGCGGTGTTCTTGT
GCTGCTGGCAGCATCTGCTGGATCCGGCACAGGGTGTGATGATGTTGCA
20 AGCAAAGATGAAACAGTATGAAGCAGTCGTCGGATGAAGCCGTTATGGTAAAGGT
GCAAAACGTGCCGTGCCGGATGAACCGGTGCTGCCAACATCTGGTTGTAAGCA
GCCGCAATTGGGAAATTAGAACGTCCGTTCTGGATGAACTGCGTCGTAATGAACAGG
ATCGTCTGCTGGTTGAACTGGAACAGCCGCTGAGCAGCATTCTGGCAGAAATGGAAATT
TGCCGGTGTAAAGTGGATACCAACGTCTGGAACAAATGGTAAAGAACTGGCAGAA
25 CAGCTGGCACCCTGAACAGCGTATTGAGCTGGCAGGTCAAGAATTACATCA
ATAGCCGAAACAATGGCGTGATTCTGTTGAAAAACTGCAGCTGCCGGTTCTGAA
AAAAACCAAAACCGTTATAGCACCAGCGCAGATGTTCTGGAAAAACTGGCACCGTAT
CATGAAATTGTGGAAACATTCTGCATTATGCCAGCTGGTAAACTGCAGAGCACCTA
TATTGAAGGTCTGCTGAAAGTTGTTCGTCCGATACCAAAAAAGTCACACCATT
30 ACCAGGCACTGACCCAGACCGGTCGCTGAGCAGTACCGAACCGAATCTGCAGAATAT
TCGATTCTGCTGGAAGAAGGTCGTAACCGTCAAGGCTTGTCCGAGCGAAAGC
GATTGGCTGATTTGCAGCAGATTAGCCAGATTGAACTGCGCCTCTGGCACATAT
TGCCGAAGATGATAATCTGATGGAAGCATTGTCGCGATCTGGATATTGATACCAAAA
CAGCCATGGATATTTCTAGGTGAGCGAAGATGAAAGTTACCCCGAATATGCGTCG
35 GGCAAAAGCAGTTAATTTGGTATTGTTGATGGCATTAGCGCATATGGCTGGCAGA
ATCTGAATATTAGCCGTAAGAAGCAGCCGAGTTATCGAACGTTATTTGAAAGTT
CGGGTGTGAAACGCTATATGGAAAATTGTTCAAGAAGCCAAACAGAAAGGCTATGTT
ACCACACTGCTGCATCGTCGTTATCTGCCGGATTACAGCCGTAACCTTAATGT

- 25 -

TCGTAGCTTGAGAACGTATGGCAATGAATAACCCGATTAGGGTAGCGCAGCCGAT
ATTATCAAAAAGCAATGATTGATCTGAACGCACGCCGAAAGAACGCTGCAGG
CACATCTGCTGTTACAGGTTCATGATGAACTGATTCTGGAAGCCCTAAAGAACAGAGATG
GAACGTCTTGTCTGGTCCGGAAGTTATGGAACAGGCAGTTACCCCTGCGTGTTC
5 CGCTGAAAGTGGATTATCATTATGGTAGCACCTGGTATGATGCCAATAA

SEQ ID NO:15 – is the codon optimised nucleic acid sequence encoding the Ubts D→A mutant.

10 **SEQ ID NO:15**

GCAGCACTGAGCTTAAAATCGTCGTGAAATTGCAGAGGACCTGTTACCGATACCAT
GGCAGTTCATGTTGAACTGGAAAACGAACATTATCACACGTGCAACATTCTGGTTTG
GTTTACCGATGGCAGCAACACCTTTGTTCCGACCAGTGCAGAAAAGCGA
ACGTCTGAAAAGCTATTTGAGGATGAAACCAAAAAAAAGTATATGAGCGATCTGAAAG
15 CAGCCCAGTGTATTCTGAAACGTCATGGTATTAATCTGCGTGGCGTTGAATTGATCTG
CTGCTGGCAAGCTATATTGTTAACCGATGTCGTAGCAATGAAGCCGTTATGGTAAAGGTGCA
CAAAAGAATTGGCTATACCGATGTCGTAGCAATGAAGCCGTTATGGTAAAGGTGCA
AAATGGGACTGCCGAGCGAAGAGGTTCTGGCAGAACATGTTGTCGAAAGCATTG
CAATTGGAGCTGCAAAGAACCGTTAGCAATAACTGAAAGAGAACGAAACAGTCGA
20 TCTGTATCATGATCTGAACTGCCGCTGGCGTTATTCTGGTAAAATGGAAAGCGAA
GGCATCAAAGTGAATATCAGCACCCCTGGAAACCATGGTCAAGAACACTGGAAGATAAAA
TTGCCAAACTGGAAACCGAGATCTATGAACTGGCAGGCGAACCTTAACATTAATAGC
CCGAAACAGCTGGGTGTGATCCTGTTGAAAAACTGGGTCTGCCGGTTATCAAAAAAA
CGAAAACCGTTATAGCACCGCAGCAGATGTTCTGGAAAAACTGAAATCAGAACATCA
25 GATTGTGCAGCTGATTCTGGAATATCGTACCCCTGGCCAAACTGCAGAGCACCTATATTG
AAGGTCTGATCAAAGAACGTGCATCCGAAAGATAGCAAAGTGCATACCCGTTTATGCAG
GCACTGACCAGCACCGGTCGCTGAGCAGCACCGATCCGAATCTGCAGAACATTCCGA
TTCGTCTGGAAGAAGGTCGTAATTCGAAAGCCTTGTGCCGAGCCATGATGGTTG
GCTGCTGTTAGCGCAGATTATGCCAGATTGAACTGCGTGTCTGGCACATATGAGC
30 AAAGATAAAAATCTGGTGGAAAGCCTTAACCAAGGCATGGATATTACACCGTACCGC
AATGGAAGTTTTCATGTTAGCCAGGATGATGTGACCAGCAATATCGTCGTGCAGCAA
AAGCAGTTAATTCCGGTATTATCTATGCCATTAGCGCATATGGTCTGAGCCAGAACATCG
GATATTACGTAAGAACGCAGGCGAATTCTGAGAAACTTGTGAAAGTTCCGGG
TGTGAAAGAACATATGGACAACATTGTTCAAGAGGCCAGCTGAAAGGTTATGTTACCA
35 CCATTCTGAATCGTCGTTATCTGCCGGATTACCAAGCAAAATTCAATCTGCGT
AGCTTGCAGAACGTACCGCCATGAATAACCCGATTAGGGTAGCGCAGCCGATATCA
TCAAAAAAGCAATGCTGGATTGATGCCGTCTGAATAGCGAAGGTCTGCAGGCAA
ACTGCTGCTGCAGGTTACGATGAACTGATTGAAAGCACCGAAAGAACAGAGATCGAG

- 26 -

AAGCTGGAAAAAATTGTTCCGGAAGTTATGGAAAGTGCCATTCTGCTGGATGTTCCGCT
GAAAGTTGATATTAGCTATGGTGAACCTGGTACGATGCCAAATAA

5 The invention will now be described by way of a non-limiting Example with
reference to the following figures in which:

Figure 1 gives the sequence of a region within the finger domain of DNA polymerase I from a number of species which may be modified in accordance with the present invention. The key aspartic acid residue is in bold type.

10 **Figure 2** shows an overview of the strand-displacement activity assay setup. F= fluorophore. Q= Quencher.

Figure 3 shows a comparison of the strand-displacement activity at 25°C of PB and the PB D422A mutant as well as for various commercial enzymes including the Klenow fragment (KF).

15 **Figure 4** shows the polymerase activity of wild type and mutant PB polymerase at various NaCl and KCl concentrations (25°C).

20 **Figure 5** is a sequence alignment of the wild type (truncated) amino acid sequences of the DNA polymerases from PB, Bst and Ubts. The large arrow indicates the 422 position where the Asp (D) is mutated to Ala (A). The alignment is produced using Clustal X2 and is visualised using ESPript 3.0 server.

Figure 6 shows the effect of the D422A mutation on strand-displacement activity of *Bacillus stearothermophilus* (large fragment) polymerase I (Bst) at 37°C in presence of 10 mM KCl.

25 **Figure 7** shows the effect of the D422A mutation on strand-displacement activity of *Ureibacillus thermosphaericus* (large fragment) Polymerase I (Ubts) at 37°C in presence of 10 mM KCl.

- 27 -

Examples

Example 1

5 **Cloning of sequences**

PB polymerase I wild type (large fragment) and D422A mutant

10 The gene (SEQ ID NO: 3) encoding the DNA polymerase I large fragment (i.e. omitting the 5'-3' exonuclease domain of the protein) from the *Psychrobacillus sp.* was cloned into the vector pET151/D-TOPO®. The codon-optimised variant also containing the D422A mutation (SEQ ID NO: 13) was cloned into the vector pET-11a. In each case the construct encoded a His₆ tag at the N-terminus of the polymerase followed by the recognition sequence for the TEV protease, thus 15 allowing cleavage of the tag.

Bst polymerase I (large fragment) and Ubts polymerase I (large fragment) and their D422A mutant

20 The codon-optimized genes encoding the polymerase I large fragment from *Geobacillus stearothermophilus* (Bst) and *Ureibacillus thermosphaericus* (Ubts, Genbank accession nr. WP_016837139) were purchased from the Invitrogen GeneArt Gene Synthesis service from Thermo Fisher Scientific. The genes (SEQ ID NOS: 14 and 15) were cloned into the vector pTrc99A encoding an N-terminal His₆-tag by FastCloning (Li *et al.* (2011), BMC Biotechnology, 11:92). The 25 corresponding mutation from Asp to Ala at position 422 (PB polymerase I large fragment) was introduced using the QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies) and confirmed by sequence analysis.

30 **Protein production and purification**

PB polymerase I wild type (large fragment) and D422A mutant

35 Recombinant protein production was performed in Rosetta 2 (DE3) cells (Novagen®). The cells grew in Terrific Broth media and gene expression was

- 28 -

induced at $OD_{600\text{ nm}}$ 1.0 by addition of 0.1 mM IPTG. Protein production was carried out at 15 °C for 6-8 h. For protein purification the pellet of a 1-l cultivation was resuspended in 50 mM HEPES, 500 mM NaCl, 10 mM imidazole, 5 % glycerol, pH 7.5, 0.15 mg/ml lysozyme, 1 protease inhibitor tablet (cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail, Roche) and incubated on ice for 30 min. Cell disruption was performed by French press (1.37 kbar) and subsequently by sonication with the VCX 750 from Sonics® (pulse 1.0/1.0, 5 min, amplitude 25 %). In the first step the soluble part of the His₆-tagged protein present after centrifugation (48384g, 45 min, 4 °C) was purified by immobilized Ni^{2+} -affinity chromatography. After a wash step with 50 mM HEPES, 500 mM NaCl, 50 mM imidazole, 5 % glycerol, pH 7.5 the protein was eluted at an imidazole concentration of 250 mM and further transferred into 50 mM HEPES, 500 mM NaCl, 10 mM $MgCl_2$, 5 % glycerol, pH 7.5 by use of a desalting column.

The second step was cleavage of the tag by TEV protease performed over night at 4 °C in 50 mM Tris pH 8.0, 0.5 mM EDTA and 1 mM DTT. To separate the protein from the His₆-tag and the His₆-tagged TEV protease a second Ni^{2+} -affinity chromatography has been performed in the third step by applying 50 mM HEPES, 500 mM NaCl, 5 % glycerol, pH 7.5. Fourth and final step of the protein purification was size-exclusion chromatography on a HiLoad 16/600 Superdex 200 pg (GE Healthcare) in 50 mM HEPES, 500 mM NaCl, 5 % glycerol, pH 7.5. The final protein solution was concentrated and stored with 50 % glycerol at -20 °C.

Bst polymerase I and Ubts polymerase I (large fragment) and their D422A mutants

Recombinant protein production for Bst and Ubts polymerase I (large fragment) and their D422A mutant was performed in Rosetta 2 (DE3) cells (Novagen®). Cells grew in Luria Bertani media at 37 °C and gene expression was induced at $OD_{600\text{ nm}}$ 0.5 by addition of 0.5 mM IPTG. Protein production was carried out at 37 °C for 4 h. For protein purification the pellet of a 0.5-l cultivation was resuspended in 50 mM Tris pH 8.0, 300 mM NaCl, 1 mM EDTA, 1 mM DTT, 10 mM imidazole, 0.15 mg/ml lysozyme, 1 protease inhibitor tablet (cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail, Roche) and incubated on ice for 30 min. Cell disruption was performed by sonication with the VCX 750 from Sonics® (pulse 1.0/1.0, 15 min,

- 29 -

amplitude 25 %). The soluble part of the His₆-tagged protein present after centrifugation (48384g, 45 min, 4 °C) was purified by immobilized Ni²⁺-affinity chromatography. After a wash step with 50 mM Tris pH 8.0, 300 mM NaCl, 1 mM EDTA, 1 mM DTT, 10 mM imidazole the protein was eluted with gradually increasing the imidazole to 500 mM. Fractions containing the protein were collected and buffer exchange was performed into 20 mM Tris pH 7.1, 100 mM KCl, 2 mM DTT, 0.2 mM EDTA and 0.2 Triton X-100 by desalting. The final protein solution was concentrated and stored with 50 % glycerol at -20 °C.

10 **Activity measurements**

Polymerase activity

15 The polymerase activity assay is based on a molecular beacon assay (modified from Summerer (2008), Methods Mol. Biol.; 429: 225-235). The molecular beacon template consists of a 23mer loop that is connected by a GC-rich 8mer stem region (sequence is indicated in italics) and a 43mer 3' extension. Due to the stem-loop structure the FAM (donor) and Dabcyl (acceptor, non-fluorescent quencher) molecules are in close proximity and thus the FAM fluorescence signal is quenched. Upon primer extension by the DNA polymerase the stem is opened and the increase in distance of the two dyes is measured by the restoration of FAM fluorescence as relative fluorescence units in appropriate time intervals by exciting at 485 nm and recording emission at 518 nm. The measurement was performed in a SpectraMax® M2^e Microplate Reader (Molecular Devices).

20

molecular beacon template

5'-

GGCCCGT^{Dabcyl}AGGAGGAAAGGACATCTTCTAGCAT^{FAM}ACGGGCCGTCAAGTT
CATG GCCAGTCAAGTCGTCAGAAATTCGCACCAC -3' (SEQ ID NO:16)

25

primer

5'- GTGGTGCGAAATTCTGAC -3' (SEQ ID NO:17)

30 The molecular beacon substrate was produced by incubating 20 µl of 10 µM molecular beacon template and 15 µM primer in 10 mM Tris-HCl pH 8.0, 100 mM

- 30 -

NaCl for 5 min at 95 °C. The reaction was then let to cool down at room temperature for 2 h. The substrate solution was stored at -20 °C with a final concentration of 10 µM.

5 Assay set-up for analyzing effect of different [salt] on polymerase activity of PB and PB D422A

Fifty microliter reactions consisted of 200 nM substrate and 200 µM dNTP (equimolar amounts of dATP, dGTP, dCTP and dTTP). The reaction further 10 contained 5 mM MgCl₂ in 50 mM BIS-Tris propane at pH 8.5, 1 mM DTT, 0.2 mg/ml BSA and 2 % glycerol. Final salt concentration in the reaction buffer has been adjusted to 25 mM, 40 mM, 60 mM, 80 mM, 110 mM, 160 mM and 210 mM NaCl or KCl for PB and 20 mM, 40 mM, 60 mM, 80 mM, 100 mM, 150 mM and 200 mM 15 NaCl or KCl for PB D422A. The activity assay was carried out at 25 °C in black 96-well fluorescence assay plates (Corning®). The reaction was initiated by addition of protein solution, i.e. addition of polymerase.

Results are shown in Figure 4.

20 Assay set-up for analyzing specific polymerase activity of PB and PB D422A at 100 mM, 150 mM and 200 mM NaCl

Fifty microliter reactions consisted of 200 nM substrate and 200 µM dNTP (equimolar amounts of dATP, dGTP, dCTP and dTTP). The reaction further 25 contained 5 mM MgCl₂ in 50 mM BIS-Tris propane at pH 8.5, 1 mM DTT, 0.2 mg/ml BSA and 2 % glycerol. Final salt concentration in the reaction buffer has been adjusted to 100 mM, 150 mM and 200 mM NaCl, respectively. The assay was carried out at 25 °C in black 96-well fluorescence assay plates (Corning®). The reaction was initiated by addition of protein solution, i.e. addition of polymerase.

30

Results are shown in Table 3 (at end of Example).

- 31 -

Strand-displacement activity assay

An overview of the assay setup is shown in Figure 2. The assay is based on an increase in fluorescence signal that is measured upon displacement of the
5 quenched reporter strand which is only achievable through strand-displacement activity of the DNA polymerase.

The substrate for the strand-displacement activity assay consists of a “cold” primer
10 of 19 oligonucleotides (SEQ ID NO:18) and a reporter strand consisting of 20 oligonucleotides that is labeled with the TAMRA fluorophore (F) at its 3' end (SEQ ID NO:19). The template strand consists of 40 oligonucleotides and is labeled with the Black Hole Quencher 2 (BHQ2) at its 5' end (SEQ ID NO:20). The primers are annealed to the template strand leaving a one nucleotide gap at position 20 on the template strand. The labels are in close proximity and thus the fluorophore TAMRA
15 is quenched by BHQ2. Upon strand-displacement activity of the DNA polymerase I the TAMRA labeled oligonucleotide is displaced from the template strand. As a consequence the fluorophore and the quencher are no longer in close proximity and an increase in TAMRA fluorescence can be measured as relative fluorescence units in appropriate time intervals (excitation 525 nm, emission 598 nm,
20 SpectraMax® M2e Microplate Reader (Molecular Devices)).

5' - TATCCACCAATACTACCCCT CGATACTTTGTCCACTCAAT [TAMRA] -3'
3' - ATAGGTGGTTATGATGGGATGCTATGAAACAGGTGAGTTA [BHQ2] -5'

25 The substrate for the strand-displacement activity assay was produced by incubating 20 µl of 10 µM “cold” primer, 10 µM reporter strand and 10 µM template strand in 10 mM Tris-HCl pH 8.0, 100 mM NaCl at 95 °C for 5 min. The reaction was then let to cool down at room temperature for 2 h. The substrate solution was stored at -20 °C with a final concentration of 10 µM.

30

Assay set-up for comparison of the specific strand-displacement activity of PB, PB D422A and commercially known polymerases

35 Fifty microliter reactions consisted of 200 nM substrate and 200 µM dNTP (equimolar amounts of dATP, dGTP, dCTP and dTTP). For PB polymerase I the

- 32 -

reaction further contained 5 mM MgCl₂ in 50 mM BIS-TRIS propane at pH 8.5, 100 mM NaCl, 1 mM DTT, 0.2 mg/ml BSA and 2 % glycerol. For the commercially known polymerase Is the respective reaction buffer supplied by New England Biolabs have been used. Final salt concentration in the reaction buffer has been
5 adjusted to 100 mM according to the optimal salt for the respective polymerases.

The activity assay was carried out at 25 °C in black 96-well fluorescence assay plates (Corning®). The reaction was initiated by addition of protein solution (i.e. addition of polymerase).

10 Results are shown in Figure 3.

Assay set-up for specific strand-displacement activity of PB and PB D422A at 100 mM, 150 mM and 200 mM NaCl

15 Fifty microliter reactions consisted of 200 nM substrate and 200 µM dNTP (equimolar amounts of dATP, dGTP, dCTP and dTTP). The reaction further contained 5 mM MgCl₂ in 50 mM BIS-Tris propane at pH 8.5, 1 mM DTT, 0.2 mg/ml BSA and 2 % glycerol. Final salt concentration in the reaction buffer has been
20 adjusted to 100 mM, 150 mM and 200 mM NaCl, respectively. The assay was carried out at 25 °C in black 96-well fluorescence assay plates (Corning®). The reaction was initiated by addition of protein solution, i.e. addition of polymerase.

Results are shown in Table 2 below.

25 Assay set-up for analyzing strand-displacement activity of Bst/BstD422A and Ubts/UbtsD422A

Fifty microliter reactions consisted of 200 nM substrate and 200 µM dNTP (equimolar amounts of dATP, dGTP, dCTP and dTTP). The reaction further
30 contained 20 mM Tris pH 7.9 (at 25 °), 10 mM KCl, 10 mM (NH₄)₂SO₄, 2 mM MgSO₄, 0.1 % Triton X-100.

The assay was carried out at 37 °C in black 96-well fluorescence assay plates (Corning®). The reaction was initiated by addition of protein solution (20 ng for Bst

- 33 -

and BstD422A, 100 ng for Ubts and UbtsD422A), i.e. addition of polymerase. For determination of the specific strand-displacement activity (mRFU/min/µg) at a higher KCl the final concentration has been set to 150 mM KCl. The increase in TAMRA fluorescence was measured as relative fluorescence units in appropriate time intervals by exciting at 525 nm and recording emission at 598 nm. The measurement was performed in a SpectraMax® M2e Microplate Reader (Molecular Devices).

Results based on this strand-displacement activity assay are shown in Figures 6 and 7 and Table 4 below. The mutant enzymes all show enhanced activity.

Tables

15

Table 1. Summary of different enzymatic properties for wtPB and the D422A mutant (at 25°C).

Variant	Strand-displacement activity (100 mM NaCl)	Polymerase activity (100 mM NaCl)	T _m	MgCl ₂	NaCl KCl (> 80 % activity)	pH
PB D422A	310 %	120 %	44.8 °C	4-6 mM	25-200 mM 40-200 mM	8.5
PB pol I wild type	100 %	100 %	44.8 °C	3-8 mM	25-125 mM 25-115 mM	8.5

20

Table 2. Strand-displacement activity of PB D422A mutant compared to wtPB in presence of 100-200 mM NaCl.

Strand-displacement activity			
NaCl	Activity [mRFU/min/µg]		
	wtPB	PBD422A	Ratio (PB D422A/wtPB)
100	9,35E+04	28,8E+04	3,1
150	7,54E+04	20,5E+04	2,7
200	4,65E+04	18,1E+04	3,9

Table 3. DNA polymerase activity of PB D422A mutant compared to wt PB in presence of 100-200 mM NaCl.

Polymerase activity			
NaCl [mM]	Activity [mRFU/min/µg]		
	wtPB	PBD422A	Ratio (PB D422A/wtPB)
100	1,42E+06	1,66E+06	1,2
150	1,02E+06	1,50E+06	1,5
200	0,55E+06	1,37E+06	2,5

5

Table 4. Strand-displacement activity of the D422A mutants of Bst and Ubts compared to wt enzymes in presence of 150 mM KCl.

SDA (mRFU/min/µg)		Ratio BstD422A/Bst	SDA (mRFU/min/µg)		Ratio UbtsD422A/Ubts
Bst (wt)	BstD422A		Ubts (wt)	UbtsD422A	
3,52E+05	6,99E+05	2,0	0,59E+05	2,14E+05	3,6

10

Example 2

Further *Psychrobacillus* sp. (PB) DNA polymerase mutants were also made and tested:

Site-directed mutagenesis

The corresponding mutation from Asp to Ser, Lys, Val, Leu and Asn, respectively, at position 422 was introduced using the QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies).

D422V and D422L (hydrophobic residues of different lengths),

D422S (small hydrophilic),

D422N (larger hydrophilic) and

- 35 -

D422K (positively charged).

The starting point was the plasmid DNA of the D422A mutant. Mutations were confirmed by sequencing analysis.

5

Protein production and protein purification

Recombinant protein production was performed in Rosetta 2 (DE3) cells (Novagen[®]). The cells grew in Terrific Broth media and gene expression was induced at OD_{600 nm} 1.0 by addition of 0.1 mM IPTG. Protein production was carried 10 out at 15 °C for 6-8 h. For protein purification the pellet of a 50-ml cultivation was resuspended in 1 ml 50 mM HEPES, 500 mM NaCl, 10 mM imidazole, 5 % glycerol, pH 7.5, 0.15 mg/ml lysozyme and incubated on ice for 20 min. Cell disruption was performed by sonication with the VCX 750 from Sonics[®] (pulse 1.0/1.0, 1 min, amplitude 20 %).

15

The soluble part of the His₆-tagged protein present after centrifugation (16000g, 30 min, 4 °C) was purified with PureProteomeTM Magnetic Beads (Millipore) and eluted in 50 µl 50 mM HEPES, 500 mM NaCl, 500 mM imidazole, 5 % glycerol, pH 7.5.

20

The strand-displacement assay was performed as described in Example 1.

All these other mutants performed better in assays of strand displacement activity (data not shown) as compared to the wt PB polymerase, but not as well as the PB D422A mutant.

25

CLAIMS

1. A DNA polymerase including the sequence of SEQ ID NO. 1 or a sequence which is at least 90% identical thereto, but wherein the aspartic acid residue at position 18 of SEQ ID NO. 1, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.
5
2. The DNA polymerase according to claim 1, wherein said DNA polymerase includes an amino acid sequence which is at least 95% identical to SEQ ID NO. 1, but wherein the aspartic acid residue at position 18 of SEQ ID NO. 1, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.
10
3. The DNA polymerase according to claim 1, wherein said DNA polymerase comprises the amino acid sequence of SEQ ID NO. 6, 7, 8, or 9 but wherein the aspartic acid residue at position 18 of each sequence has been replaced by a non-negatively charged amino acid residue.
15
4. A DNA polymerase comprising the amino acid sequence of SEQ ID NO. 2, or an amino acid sequence which is at least 70% identical to SEQ ID NO. 2, but wherein the aspartic acid residue at position 422 of SEQ ID NO. 2, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.
20
5. The DNA polymerase according to claim 4, wherein said DNA polymerase comprises the amino acid sequence of SEQ ID NO. 2, or an amino acid sequence which is at least 90% identical to SEQ ID NO. 2, but wherein the aspartic acid residue at position 422 of SEQ ID NO. 2, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.
25
6. The DNA polymerase according to any one of the preceding claims, wherein said DNA polymerase comprises an amino acid sequence which is at least 70% identical to SEQ ID NO. 4, but wherein the aspartic acid residue at position
30

719 of SEQ ID NO. 4, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.

7. A DNA polymerase comprising the amino acid sequence of SEQ ID NO. 12, or an amino acid sequence which is at least 70% identical to SEQ ID NO. 12, but wherein the aspartic acid residue at position 422 of SEQ ID NO. 12, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.
- 10 8. The DNA polymerase according to claim 7, wherein said DNA polymerase comprises an amino acid sequence which is at least 90% identical to SEQ ID NO. 12, but wherein the aspartic acid residue at position 422 of SEQ ID NO. 12, or the equivalent aspartic acid residue in other sequences, has been replaced by a non-negatively charged amino acid residue.
- 15 9. The DNA polymerase according to any one of the preceding claims, wherein said aspartic acid residue has been replaced with an alanine residue.
- 20 10. A DNA polymerase comprising the amino acid sequence of SEQ ID NO. 10, but wherein the aspartic acid residue at position 18 of SEQ ID NO. 10 has been replaced by alanine.
- 25 11. A DNA polymerase comprising the amino acid sequence of SEQ ID NO. 11, but wherein the aspartic acid residue at position 422 of SEQ ID NO. 11 has been replaced by alanine.
- 30 12. The DNA polymerase according to any one of the preceding claims, wherein said DNA polymerase has at least 30% greater strand displacement activity than a DNA polymerase with exactly the same sequence but with aspartic acid at position 18 or 422, relative to SEQ ID NO: 1 or 2 respectively, or at the equivalent position in other sequences.
13. The DNA polymerase according to any one of the preceding claims, wherein across a concentration range from 20mM to 200mM NaCl or KCl or a

mixture thereof, said DNA polymerase exhibits at least 40% of its maximum polymerase activity.

14. A composition comprising a DNA polymerase according to any one of the
5 preceding claims and a buffer.

15. A nucleic acid molecule comprising a nucleotide sequence that encodes a DNA polymerase according to any one of claims 1 to 13.

10 16. The nucleic acid molecule of claim 15, wherein the nucleotide sequence has at least 70% sequence identity to SEQ ID NO: 13, 14 or 15.

15 17. An expression vector containing a nucleic acid molecule according to claim 15 or claim 16 and the necessary regulatory sequences for the transcription and translation of the protein sequence encoded by said nucleic acid molecule.

18. A host cell or virus comprising one or more expression vectors according to claim 17 or one or more nucleic acid molecules according to claim 15 or claim 16.

20 19. A method of producing a DNA polymerase according to any one of claims 1 to 13, wherein the method comprises the steps of:

25 (i) culturing, in a growth medium, a host cell comprising one or more of the expression vectors according to claim 17 or one or more of the nucleic acid molecules according to claim 15 or claim 16 under conditions suitable for the expression of the encoded DNA polymerase; and optionally

(ii) isolating or obtaining the DNA polymerase from the host cell or from the growth medium or supernatant derived from said growth medium.

30 20. Use of a DNA polymerase according to any one of claims 1 to 13 for nucleotide polymerisation.

21. Use of a DNA polymerase according to any one of claims 1 to 13 in a nucleic acid amplification or sequencing reaction.

22. The use of claim 20 or claim 21, wherein said DNA polymerase is used at a constant temperature.

23. The use of claim 21 or claim 22, wherein said reaction is an isothermal
5 nucleic acid amplification reaction.

24. A method of nucleotide polymerisation using a DNA polymerase according to any one of claims 1 to 13, said method comprising:

10 (i) providing a reaction mixture comprising a DNA polymerase according to any one of claims 1 to 13, a template nucleic acid molecule, an oligonucleotide primer which is capable of annealing to a portion of the template nucleic acid molecule and one or more species of nucleotide; and

15 (ii) incubating said reaction mixture under conditions whereby the oligonucleotide primer anneals to the template nucleic acid molecule and said DNA polymerase extends said oligonucleotide primer by polymerising one or more nucleotides.

25. A method of amplifying a nucleic acid using a DNA polymerase according to any one of claims 1 to 13, said method comprising:

20 (i) providing a reaction mixture comprising a DNA polymerase according to any one of claims 1 to 13, a template nucleic acid molecule, an oligonucleotide primer(s) which is capable of annealing to a portion of the template nucleic acid molecule, and nucleotides; and

25 (ii) incubating said reaction mixture under conditions whereby the oligonucleotide primer(s) anneals to the template nucleic acid molecule and said DNA polymerase extends said oligonucleotide primer(s) by polymerising one or more nucleotides to generate a polynucleotide.

30 26. The method of claim 24 or claim 25, wherein said method is performed at a constant temperature.

27. The use of claim 22 or the method of claim 26, wherein said constant temperature is chosen from within the range 0°C to 42°C.

28. The use of claim 27 or the method of claim 27, wherein said constant temperature is chosen from within the range 10°C to 25°C.

PB	MRRAAKAVNFGIVYGIS D YGLSQNLDITRKEA	:	32	SEQ ID NO:1
Bacillus_sp_C3_41	MRRAAKAVNFGIVYGIS D YGLSQNLDITRKEA	:	32	SEQ ID NO:6
Umts	MRRAAKAVNFGI I YGIS D YGLSQNLDISRKEA	:	32	SEQ ID NO:7
BSU	MRRQAKAVNFGIVYGIS D YGLSQNLDITRKEA	:	32	SEQ ID NO:8
Bsm	MRRQAKAVNFGIVYGIS D YGLSQNLDITRKEA	:	32	SEQ ID NO:9
Bst	MRRQAKAVNFGIVYGIS D YGLAQNLNISRKEA	:	32	SEQ ID NO:10

Fig. 1

2/9

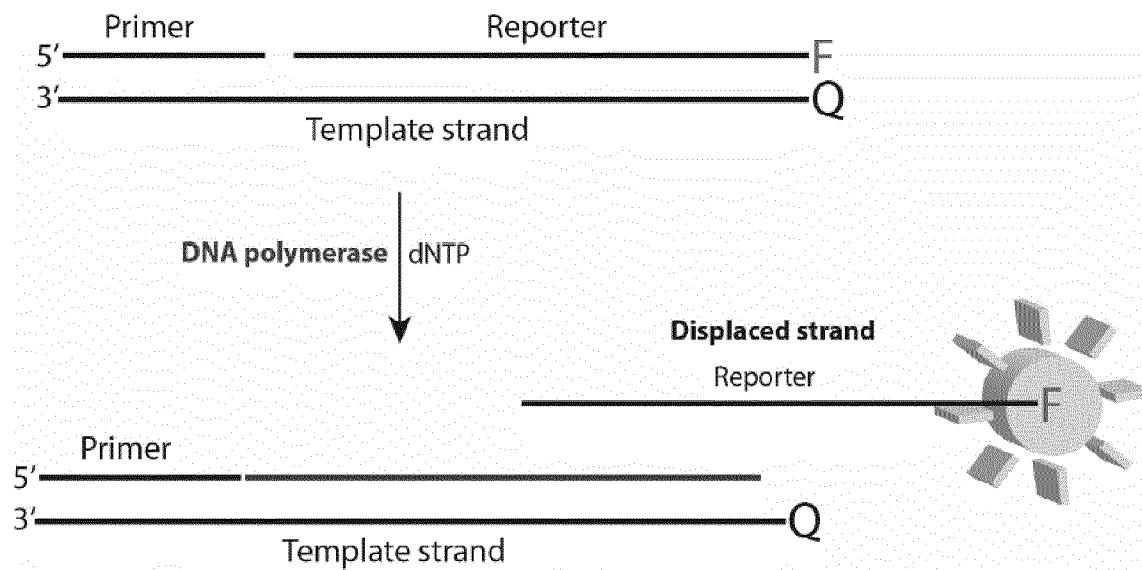


Fig. 2

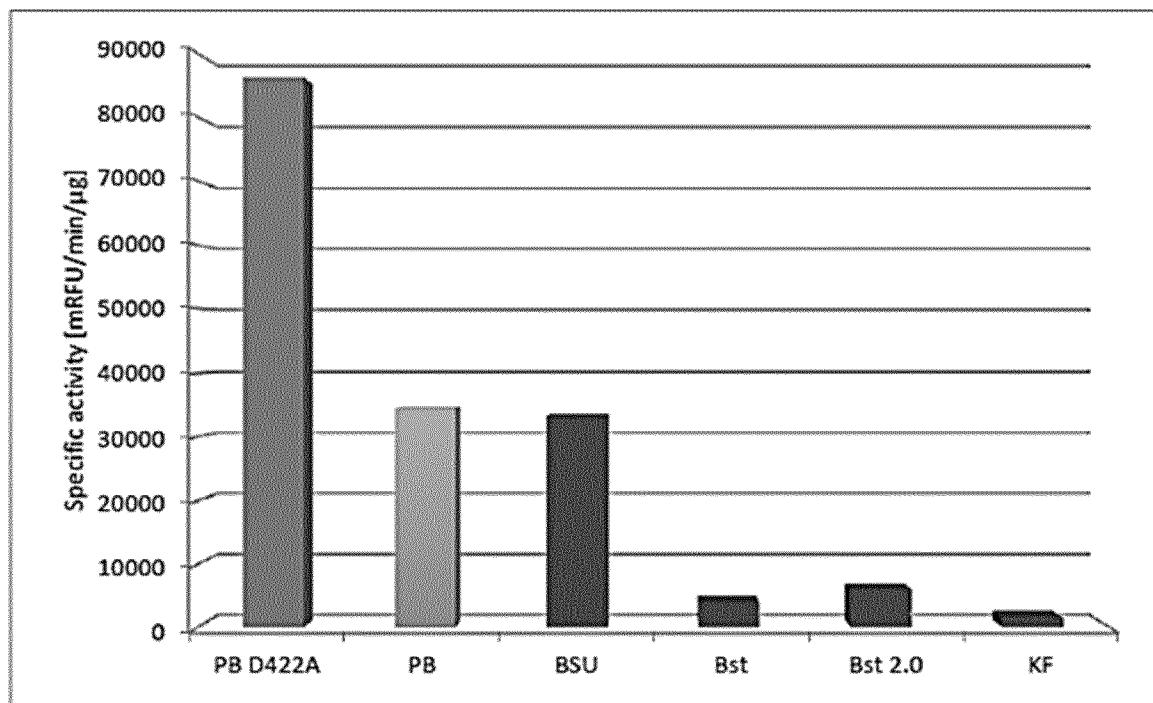


Fig. 3

4/9

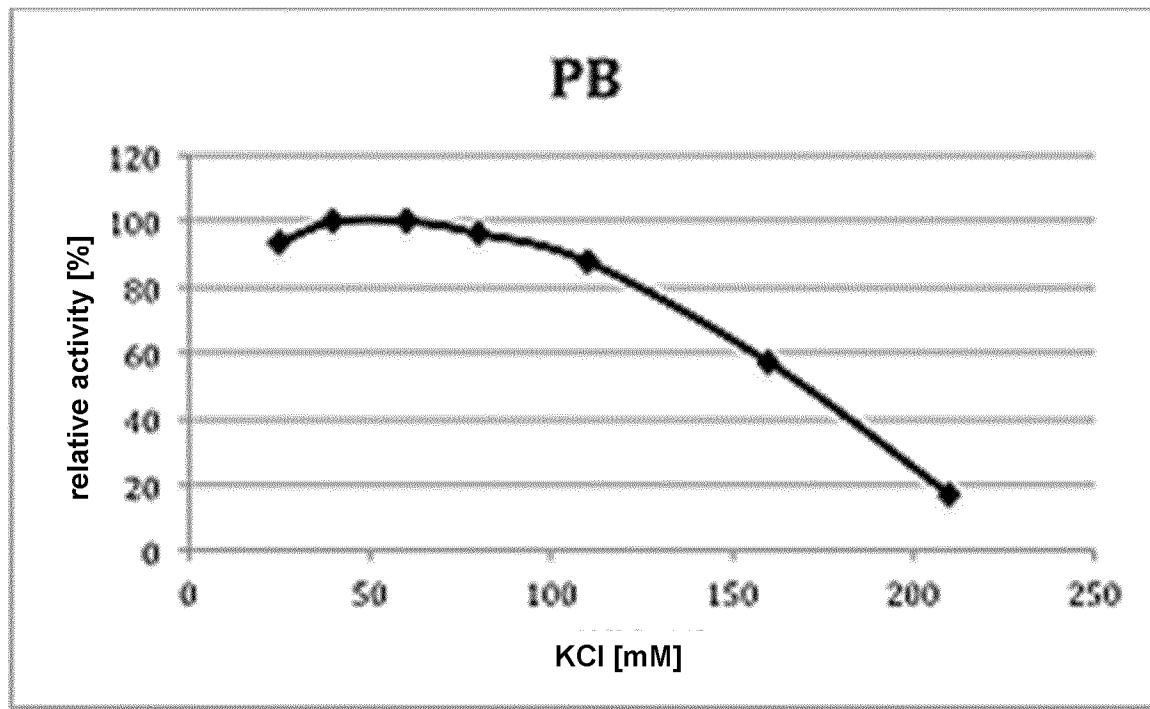
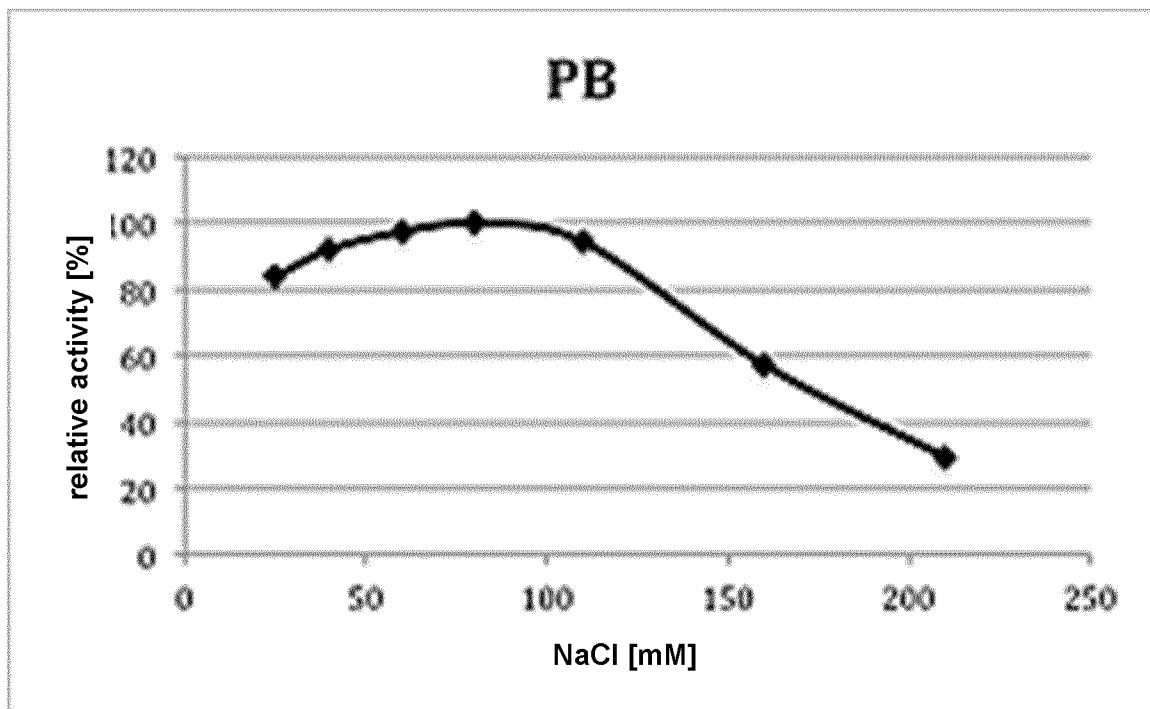



Fig. 4

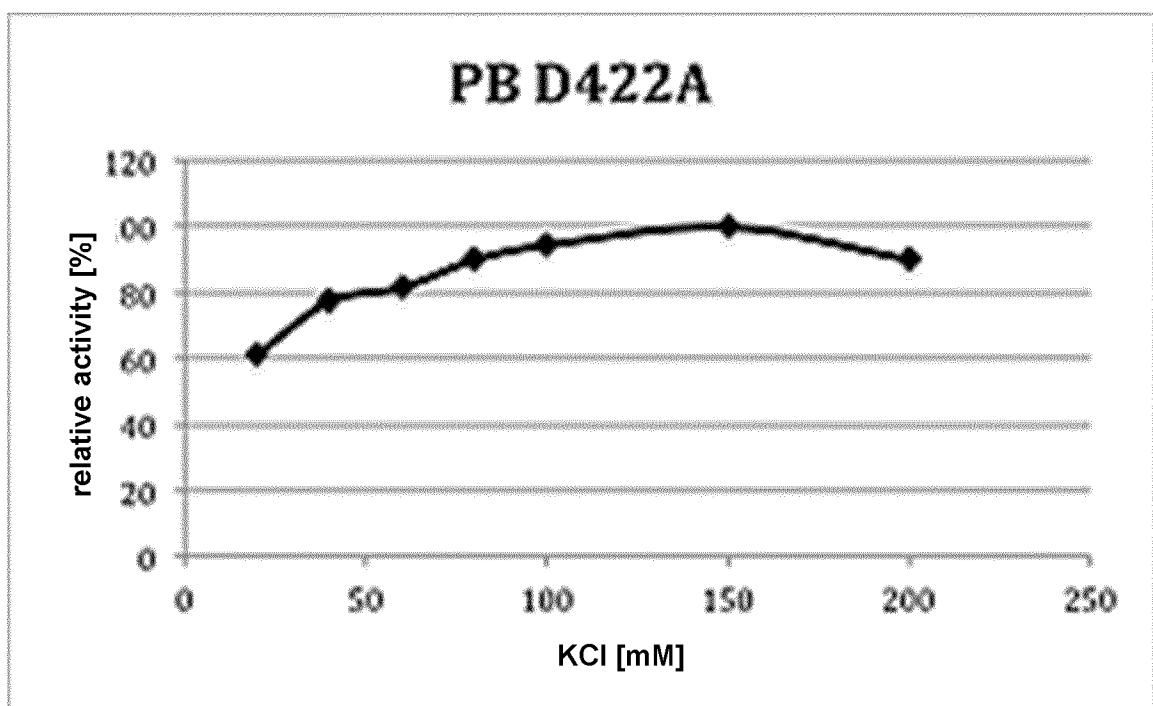
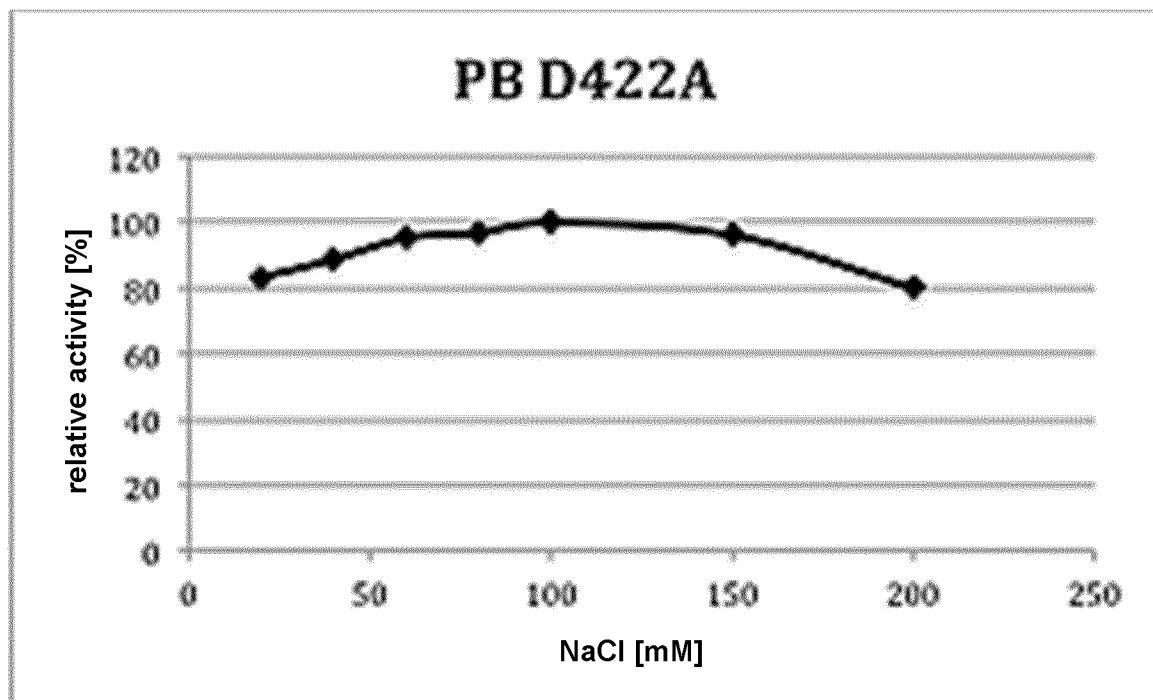



Fig. 4 (continued)

6/9

β_1 η_1 β_2 TT β_3 TT β_4 α_1
 α_2 β_5 α_3 β_6 α_4 η_2 α_5
 α_6 η_3 α_7 α_8
 α_9 β_7 α_{10} α_{11}
 α_{12} η_4 α_{13} α_{14}
 β_8 β_9 β_{10} α_{15} η_5 β_{11} β_{12}
 α_{16} α_{17} α_{18} η_6 α_{19}

Bst **PB** **Umts**

Bst 1 AKMAETLADRVTTEMLADKRAEVVVEVVEENYHDAPIVGCAVVNEHGRFFRPETALADPQ
PB 1 TEVAFPEEVVEEIDSTILDKVMSVHLEMNGOYHTSELLGCAALSDGEKGYFAPADIAFOSKD
Umts 1 AALSEK-VREIAEDLFTDTMAVHVDENEHYHTCNILGFGFTDGNTFFVPTEVLQKSER

Bst 61 FVAMLGDETKKKSMFDISKRAAVALKWKGTIELCGVSFDLLAAYLLPAQGVDDVAAAKM
PB 61 FCSWLENATNKKYIADSKATQAVSRKHNVNHCVEFDLLAAYIVNPAISSRDVAATAKE
Umts 61 LKSYFEDETKKKYMSDLKAAQCLILKRHGINLRLGVEFDLLASYIVNPAISGDDVATLAKE

Bst 121 KQYEAVRPDEAVYKGAKRAVPDDEPVLAEEHLVRKAAAELERPFIDELRRNEODRLLVE
PB 121 FGYFNLITNDSVIYKGAKKTAPEIEKIAEHAVRKARAIWDLKEKLEVKEENEQYALYKE
Umts 121 FGYTDVRSNEAVYKGAKNALPSEEVLAERVCRKAFAIWSCKERVSNKLKENEQFDLYHD

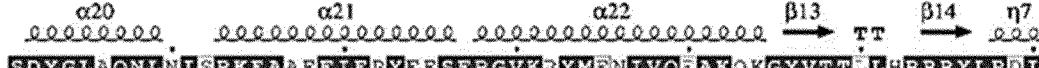
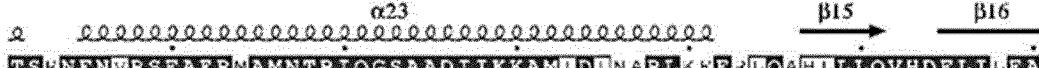
Bst 181 DEQELSSILARMEFAGVKVDTKRLFQMGKELAFQITGTVEQRIYFLAGQEFNINSPKQLGV
PB 181 DEELPLASILGTMEGSDGVLDVKQILVEMGHELNKIKRAIEQDIYALAGETFNINSPKQLGV
Umts 181 DEELPLAVILGKMESEGIKVNISTLETMGQELEDKIAKLETEIYELAGETFNINSPKQLGV

Bst 241 ILFEKLQLPVIKKTKTGYSTSADVLEKLAPEHIEVNTILHYRQLCKLQSTYIEGLIKVVR
PB 241 ILFEKIGLTPVIKKTKTGYSTAADVLEKLAPEHIEQILLYRQLGKLMSTYIEGLLKEIH
Umts 241 ILFEKLGLPVIKKTKTGYSTAADVLEKLRSEHQIVQLEIYRQLAKLQSTYIEGLIKEVH

Bst 301 PDTKKVHTIFNQALTGTGRLLSSTEPNLQNIPIRLEEGRKIRQAFVPSESDWLIFADYSQ
PB 301 EDDGKIHTRYQALTGTGRLLSINPNLQNIPVRLEEGRKIRKAFVPSQPGWVMFAADYSQ
Umts 301 PKDSKVHTFEMQALTGTGRLLSSTDPNLQNIPIRLEEGRKIRKAFVPSHDGWLIFPSADYSQ

Bst 361 IELRVLAHDAEDDNLMEAFRRLDIHTKTAMDIECVSEDEVTPNMRRQAKAVNFGIVYGI
PB 361 IELRVLAHMSDEDENLVEAFNNDLDIHTKTAMDVPEVEQEAFTSDMRRRAAKAVNFGIVYGI
Umts 361 IELRVLAHMSKDKNLVEAFNQCMDIHTRTAMEVENVSQEDVTSNMRRAAKAVNFGIVYGI

Fig. 5



α_{20} α_{21} α_{22} β_{13} TT β_{14} η^7
Bst
Bst 421 SDYGLAQNLNISRKEAAABFIERYFESFPGVKRYMENIVQEAKQKGYVTTLLHRRRYLPDI
PB 421 SDYGLSQNLDITRKEAAACFIEINYLN SFPGVKGYMODIVQDAKQTGYVTTILNRRRYLPEI
Umts 421 SDYGLSQNLDISRKEAGFFIEKYFRSFPGVKPYMDNIVQEAKLKGYVTTILNRRRYLPDI

 α α_{23} β_{15} β_{16}
Bst
Bst 481 TSKNFnVRSFAERTAMNTPIQGSAAIDIKKAMIDLNARLKEERLQAHLLLQVHDELI FEA
PB 481 TSSNFnLRSFAERTAMNTPIQGSAAIDIKKAMIDMAERLISENMQTKMLLQVHDELI FEA
Umts 481 TSKNFnLRSFAERTAMNTPIQGSAAIDIKKAMLDIDARLNSEGLOQAKILLQVHDELI FEA

 η^8 α_{24} β_{17}
Bst
Bst 541 PKEEMERLICRIVPEVMEQAVTLRVPVLKVDYHYGSTWYDAK
PB 541 PPEEIAMLEKIVPEVMENAIKLIIVPVLKVDYAFGSSWYD K
Umts 541 PKEEIEKLEKIVPEVMEQAVLLDVPVLKVDISYGETWYDAK

Fig. 5 (continued)

8/9

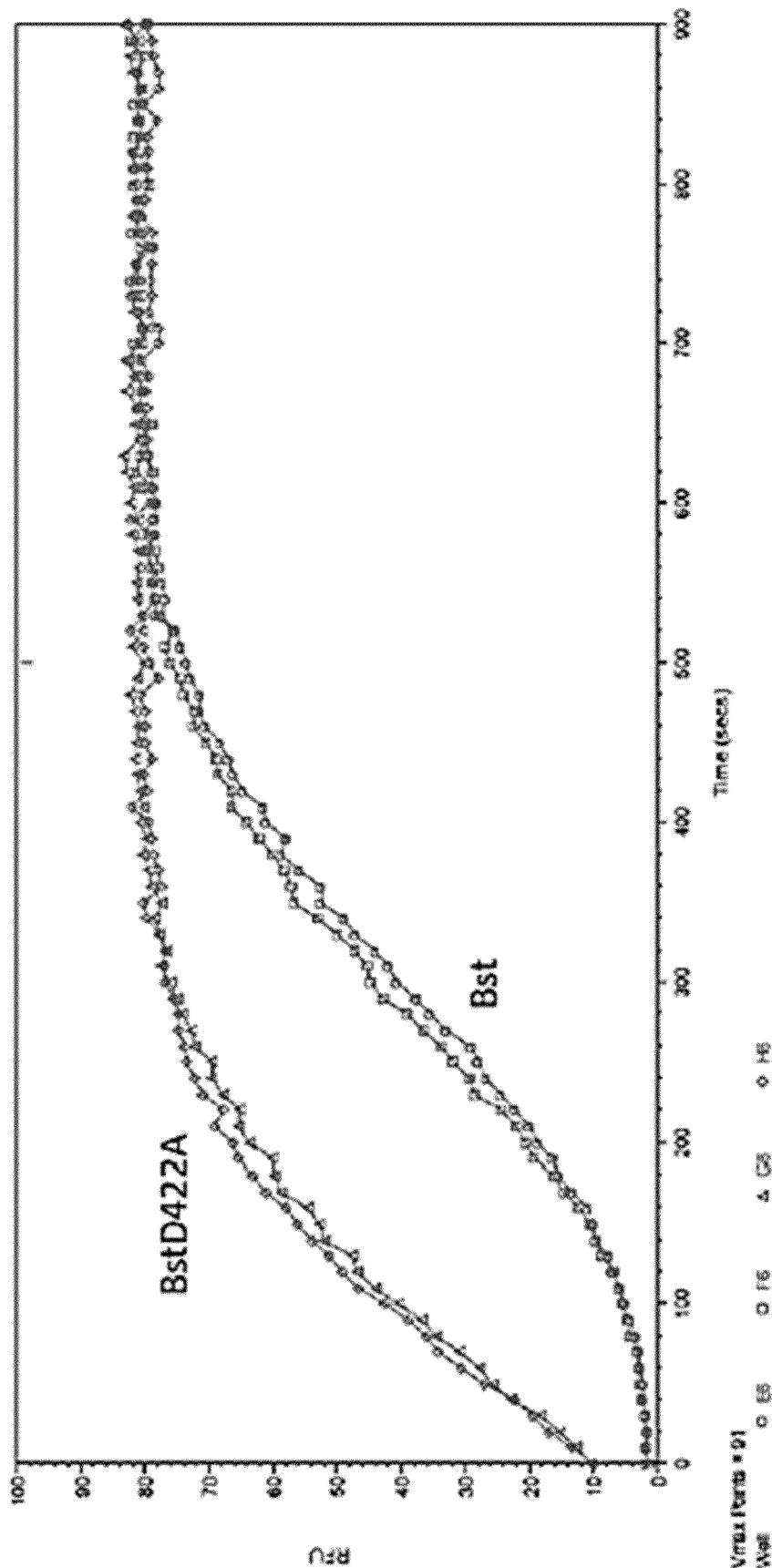


Fig. 6

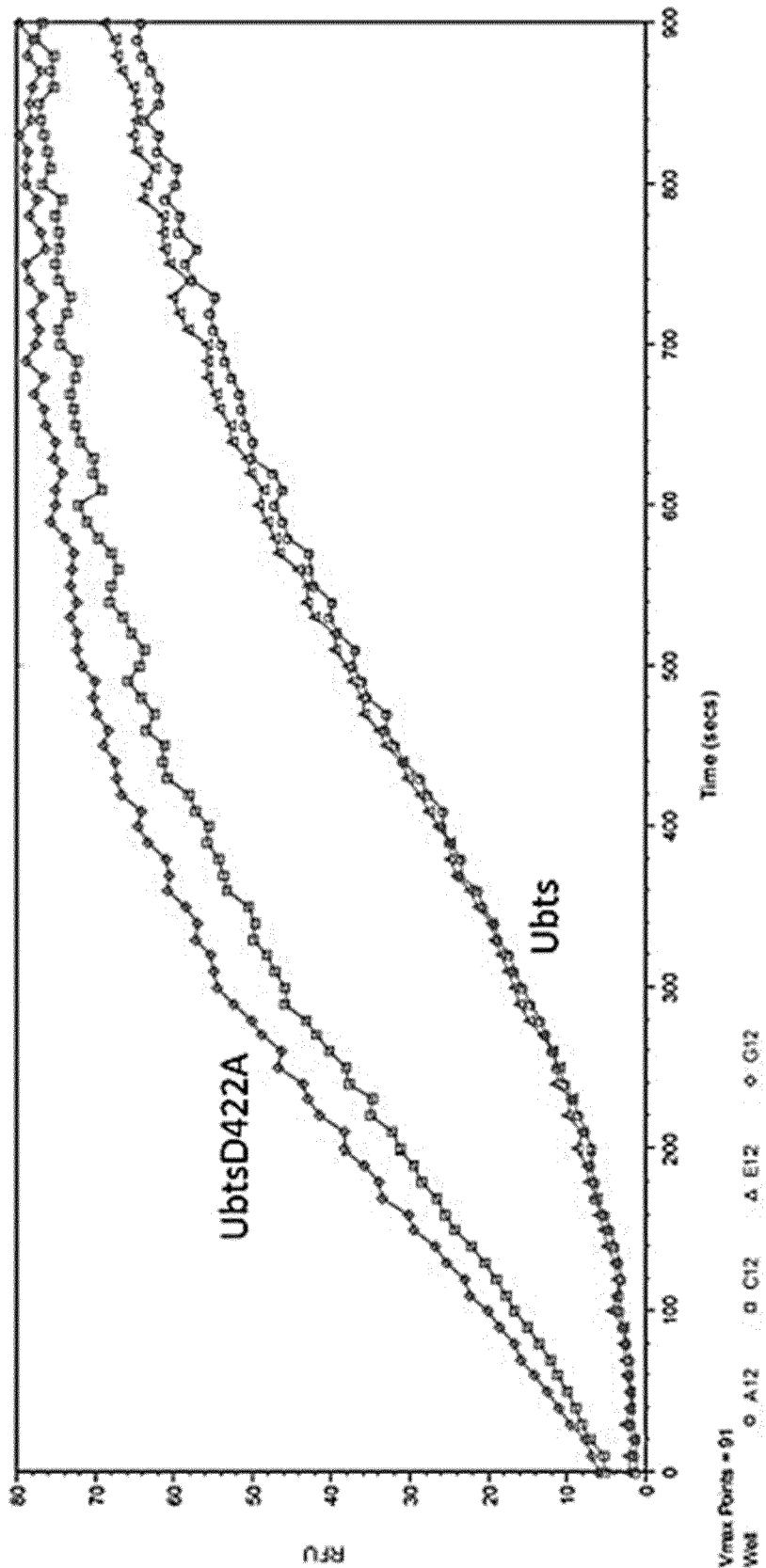


Fig. 7

eolf-seql (25).txt
SEQUENCE LISTING

<110> UNIVERSITETET I TROMSØ - NORGES ARKTISKE UNIVERSITET

<120> DNA Polymerases

<130> 59.67.134638/01

<150> GB1721053.5

<151> 2017-12-15

<160> 20

<170> PatentIn version 3.5

<210> 1

<211> 32

<212> PRT

<213> Psychrobacillus sp.

<400> 1

Met Arg Arg Ala Ala Lys Ala Val Asn Phe Gly Ile Val Tyr Gly Ile
1 5 10 15

Ser Asp Tyr Gly Leu Ser Gln Asn Leu Asp Ile Thr Arg Lys Glu Ala
20 25 30

<210> 2

<211> 580

<212> PRT

<213> Psychrobacillus sp.

<400> 2

Thr Glu Val Ala Phe Glu Ile Val Glu Glu Ile Asp Ser Thr Ile Leu
1 5 10 15

Asp Lys Val Met Ser Val His Leu Glu Met Tyr Asp Gly Gln Tyr His
20 25 30

Thr Ser Glu Leu Leu Gly Ile Ala Leu Ser Asp Gly Glu Lys Gly Tyr
35 40 45

eolf-seql (25).txt

Phe Ala Pro Ala Asp Ile Ala Phe Gln Ser Lys Asp Phe Cys Ser Trp
50 55 60

Leu Glu Asn Ala Thr Asn Lys Lys Tyr Leu Ala Asp Ser Lys Ala Thr
65 70 75 80

Gln Ala Val Ser Arg Lys His Asn Val Asn Val His Gly Val Glu Phe
85 90 95

Asp Leu Leu Leu Ala Ala Tyr Ile Val Asn Pro Ala Ile Ser Ser Glu
100 105 110

Asp Val Ala Ala Ile Ala Lys Glu Phe Gly Tyr Phe Asn Leu Leu Thr
115 120 125

Asn Asp Ser Val Tyr Gly Lys Gly Ala Lys Lys Thr Ala Pro Glu Ile
130 135 140

Glu Lys Ile Ala Glu His Ala Val Arg Lys Ala Arg Ala Ile Trp Asp
145 150 155 160

Leu Lys Glu Lys Leu Glu Val Lys Leu Glu Glu Asn Glu Gln Tyr Ala
165 170 175

Leu Tyr Lys Glu Ile Glu Leu Pro Leu Ala Ser Ile Leu Gly Thr Met
180 185 190

Glu Ser Asp Gly Val Leu Val Asp Lys Gln Ile Leu Val Glu Met Gly
195 200 205

His Glu Leu Asn Ile Lys Leu Arg Ala Ile Glu Gln Asp Ile Tyr Ala
210 215 220

Leu Ala Gly Glu Thr Phe Asn Ile Asn Ser Pro Lys Gln Leu Gly Val
225 230 235 240

eolf-seql (25).txt

Ile Leu Phe Glu Lys Ile Gly Leu Thr Pro Ile Lys Lys Thr Lys Thr
245 250 255

Gly Tyr Ser Thr Ala Ala Asp Val Leu Glu Lys Leu Ala Ser Glu His
260 265 270

Glu Ile Ile Glu Gln Ile Leu Leu Tyr Arg Gln Leu Gly Lys Leu Asn
275 280 285

Ser Thr Tyr Ile Glu Gly Leu Leu Lys Glu Ile His Glu Asp Asp Gly
290 295 300

Lys Ile His Thr Arg Tyr Gln Gln Ala Leu Thr Ser Thr Gly Arg Leu
305 310 315 320

Ser Ser Ile Asn Pro Asn Leu Gln Asn Ile Pro Val Arg Leu Glu Glu
325 330 335

Gly Arg Lys Ile Arg Lys Ala Phe Val Pro Ser Gln Pro Gly Trp Val
340 345 350

Met Phe Ala Ala Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His
355 360 365

Met Ser Glu Asp Glu Asn Leu Val Glu Ala Phe Asn Asn Asp Leu Asp
370 375 380

Ile His Thr Lys Thr Ala Met Asp Val Phe His Val Glu Gln Glu Ala
385 390 395 400

Val Thr Ser Asp Met Arg Arg Ala Ala Lys Ala Val Asn Phe Gly Ile
405 410 415

Val Tyr Gly Ile Ser Asp Tyr Gly Leu Ser Gln Asn Leu Asp Ile Thr
420 425 430

eolf-seql (25).txt

Arg Lys Glu Ala Ala Thr Phe Ile Glu Asn Tyr Leu Asn Ser Phe Pro
435 440 445

Gly Val Lys Gly Tyr Met Asp Asp Ile Val Gln Asp Ala Lys Gln Thr
450 455 460

Gly Tyr Val Thr Thr Ile Leu Asn Arg Arg Arg Tyr Leu Pro Glu Ile
465 470 475 480

Thr Ser Ser Asn Phe Asn Leu Arg Ser Phe Ala Glu Arg Thr Ala Met
485 490 495

Asn Thr Pro Ile Gln Gly Ser Ala Ala Asp Ile Ile Lys Lys Ala Met
500 505 510

Ile Asp Met Ala Glu Arg Leu Ile Ser Glu Asn Met Gln Thr Lys Met
515 520 525

Leu Leu Gln Val His Asp Glu Leu Ile Phe Glu Ala Pro Pro Glu Glu
530 535 540

Ile Ala Met Leu Glu Lys Ile Val Pro Glu Val Met Glu Asn Ala Ile
545 550 555 560

Lys Leu Ile Val Pro Leu Lys Val Asp Tyr Ala Phe Gly Ser Ser Trp
565 570 575

Tyr Asp Thr Lys
580

<210> 3
<211> 1743
<212> DNA
<213> Psychrobacillus sp.

<400> 3
acagaagtag cattcgagat tggtaagaa attgactcta caatattaga taaagtaatg 60

eolf-seql (25).txt

tcagtccatt tagaaatgta tcatggcaat tatcatacaa gcgaattatt aggtattgct	120
ttatcagatg gagaaaaggg ttatggct cctgctgata tagctttca atcgaaggat	180
ttttgttctt ggtagaaaa tgctacgaat aaaaagtatt tagcagactc caaagcaaca	240
caagcagtga gtagaaaaca taatgtgaat gtacatggag tggaaattcga cttctttta	300
gcagcgtata tagtaaatcc tgctatctct tcagaggatg ttgctgctat tgctaaagaa	360
tttggatatt ttaacttgct gacaaacgat agtgtttatg gggaaagggtgc caaaaaaacc	420
gcacctgaaa tcgagaaaat tgcagaacat gccgtaagaa aagcaagggc tatttggac	480
ttgaaagaaa agttagaagt aaaactggaa gaaaatgaac aatatgcgtt gtataaagaa	540
atagagctac cgcttgcac tatccttggt acgatggaat cagatgggt gctggtgat	600
aaacaaattc ttgttagaaat gggcatgag cttaatatta agttacgagc gattgaacaa	660
gacatttatg cgtagctgg tgaaacgttt aatattaatt cacctaaaca attaggtgt	720
atactatttgc aaaaattgg tcttaccctt attaaaaaga caaaaacggg ctattcaact	780
gcagcagatg tttggaaaaa actagcaagt gaacatgaaa taatagagca aattttacta	840
tatcgtaat tagttaact caattccaca tatatcgaag gattattaaa agagattcat	900
gaagatgatg ggaagatcca tacccgatata caacaagccc taactcaac tggcggttg	960
agttcgatca atccaaacct tcaaaatata ccagttcgat tagaagaagg tagaaaaata	1020
cgtaaagcct ttgttccttc acaaccggga tggtaatgt ttgcggcggg ttactctcaa	1080
attgaattgc gtgttcttgc ccatatgtct gaggatgaaa acctggtaga agctttat	1140
aatgatctgg atattcatac taaaacggct atggatgtat tccatgtgga gcaggaagca	1200
gtaacgtccg atatgcggccg tgctgctaag gcagttact ttgggattgt gtatggatt	1260
agtgattatg gtttatcaca aaaccttagat attactagaa aagaagcggc gacatttac	1320
gagaattatt taaatagctt cccaggtgta aaaggatata tggatgatata cgttcaagat	1380
gcgaaacaaa caggctacgt tacaacaatt ttgaatagac gaagatattt gcctgaaata	1440
acaagttcta actttaatct ccgcagttt gcagaacgta ctgctatgaa tacaccaatt	1500

eolf-seql (25).txt

caaggaggatg cagccgatat tattaaaaaa gcaatgatcg atatggcgga aagattaata	1560
tcagaaaata tgcagaccaa aatgctacta caagtacatg atgaattaaat ttttgggct	1620
ccaccagagg aaattgcaat gctagaaaaa atagtgccag aggtgatgga aaacgctatt	1680
aaactgattg taccttgaa agtggattat gcctttggtt catcttggta tgacacgaag	1740
tag	1743

<210> 4
<211> 877
<212> PRT
<213> *Psychrobacillus* sp.

<400> 4

Met Tyr Leu Ser Thr Glu Lys Ile Leu Leu Leu Asp Gly Asn Ser Leu
1 5 10 15

Ala Tyr Arg Ala Phe Phe Ala Leu Pro Leu Leu Thr Asn Glu His Gly
20 25 30

Ile His Thr Asn Ala Val Tyr Gly Phe Thr Met Met Leu Gln Lys Ile
35 40 45

Met Asp Glu Glu Asn Pro Thr His Met Leu Val Ala Phe Asp Ala Gly
50 55 60

Lys Thr Thr Phe Arg His Ser Thr Phe Gly Asp Tyr Lys Gly Gly Arg
65 70 75 80

Gln Lys Thr Pro Pro Glu Leu Ser Glu Gln Phe Pro Tyr Ile Arg Lys
85 90 95

Leu Ile Asp Ala Tyr Gly Ile Lys Arg Tyr Glu Leu Glu Met Tyr Glu
100 105 110

Ala Asp Asp Ile Ile Gly Thr Leu Ser Lys Arg Ala Asp Glu Lys Gly

eolf-seql (25).txt

115

120

125

Gln Gln Val Val Ile Val Ser Gly Asp Lys Asp Leu Thr Gln Leu Ala
130 135 140

Thr Asp Lys Thr Thr Val Tyr Ile Thr Arg Lys Gly Ile Thr Asp Ile
145 150 155 160

Glu Lys Tyr Thr Pro Glu His Val Gln Glu Lys Tyr Gly Leu Thr Pro
165 170 175

Leu Gln Ile Ile Asp Met Lys Gly Leu Met Gly Asp Ala Ser Asp Asn
180 185 190

Ile Pro Gly Val Pro Gly Val Gly Glu Lys Thr Ala Ile Lys Leu Leu
195 200 205

Lys Glu His Gly Ser Val Glu Asp Leu Tyr Lys Ala Leu Asp Thr Val
210 215 220

Ser Gly Val Lys Leu Lys Glu Lys Leu Ile Ala Asn Glu Glu Gln Ala
225 230 235 240

Ile Met Ser Lys Ala Leu Ala Thr Ile Glu Thr Ala Ala Pro Ile Gln
245 250 255

Ile Ser Ile Asp Asp Leu Ser Tyr Thr Gly Pro Asn Met Glu Glu Val
260 265 270

Ile Glu Val Trp Lys Glu Leu Ala Phe Lys Thr Leu Leu Glu Lys Ser
275 280 285

Asp Tyr Ile Ser Glu Glu Ser Glu Thr Thr Glu Val Ala Phe Glu Ile
290 295 300

Val Glu Glu Ile Asp Ser Thr Ile Leu Asp Lys Val Met Ser Val His

eolf-seq1 (25).txt

305	310	315	320
Leu Glu Met Tyr Asp Gly Gln Tyr His Thr Ser Glu Leu Leu Gly Ile			
325	330	335	
Ala Leu Ser Asp Gly Glu Lys Gly Tyr Phe Ala Pro Ala Asp Ile Ala			
340	345	350	
Phe Gln Ser Lys Asp Phe Cys Ser Trp Leu Glu Asn Ala Thr Asn Lys			
355	360	365	
Lys Tyr Leu Ala Asp Ser Lys Ala Thr Gln Ala Val Ser Arg Lys His			
370	375	380	
Asn Val Asn Val His Gly Val Glu Phe Asp Leu Leu Leu Ala Ala Tyr			
385	390	395	400
Ile Val Asn Pro Ala Ile Ser Ser Glu Asp Val Ala Ala Ile Ala Lys			
405	410	415	
Glu Phe Gly Tyr Phe Asn Leu Leu Thr Asn Asp Ser Val Tyr Gly Lys			
420	425	430	
Gly Ala Lys Lys Thr Ala Pro Glu Ile Glu Lys Ile Ala Glu His Ala			
435	440	445	
Val Arg Lys Ala Arg Ala Ile Trp Asp Leu Lys Glu Lys Leu Glu Val			
450	455	460	
Lys Leu Glu Glu Asn Glu Gln Tyr Ala Leu Tyr Lys Glu Ile Glu Leu			
465	470	475	480
Pro Leu Ala Ser Ile Leu Gly Thr Met Glu Ser Asp Gly Val Leu Val			
485	490	495	
Asp Lys Gln Ile Leu Val Glu Met Gly His Glu Leu Asn Ile Lys Leu			

eolf-seql (25).txt

500 505 510

Arg Ala Ile Glu Gln Asp Ile Tyr Ala Leu Ala Gly Glu Thr Phe Asn
515 520 525

Ile Asn Ser Pro Lys Gln Leu Gly Val Ile Leu Phe Glu Lys Ile Gly
530 535 540

Leu Thr Pro Ile Lys Lys Thr Lys Thr Gly Tyr Ser Thr Ala Ala Asp
545 550 555 560

Val Leu Glu Lys Leu Ala Ser Glu His Glu Ile Ile Glu Gln Ile Leu
565 570 575

Leu Tyr Arg Gln Leu Gly Lys Leu Asn Ser Thr Tyr Ile Glu Gly Leu
580 585 590

Leu Lys Glu Ile His Glu Asp Asp Gly Lys Ile His Thr Arg Tyr Gln
595 600 605

Gln Ala Leu Thr Ser Thr Gly Arg Leu Ser Ser Ile Asn Pro Asn Leu
610 615 620

Gln Asn Ile Pro Val Arg Leu Glu Glu Gly Arg Lys Ile Arg Lys Ala
625 630 635 640

Phe Val Pro Ser Gln Pro Gly Trp Val Met Phe Ala Ala Asp Tyr Ser
645 650 655

Gln Ile Glu Leu Arg Val Leu Ala His Met Ser Glu Asp Glu Asn Leu
660 665 670

Val Glu Ala Phe Asn Asn Asp Leu Asp Ile His Thr Lys Thr Ala Met
675 680 685

Asp Val Phe His Val Glu Gln Glu Ala Val Thr Ser Asp Met Arg Arg

eolf-seql (25).txt

690 695 700
Ala Ala Lys Ala Val Asn Phe Gly Ile Val Tyr Gly Ile Ser Asp Tyr
705 710 715 720

Gly Leu Ser Gln Asn Leu Asp Ile Thr Arg Lys Glu Ala Ala Thr Phe
725 730 735

Ile Glu Asn Tyr Leu Asn Ser Phe Pro Gly Val Lys Gly Tyr Met Asp
740 745 750

Asp Ile Val Gln Asp Ala Lys Gln Thr Gly Tyr Val Thr Thr Ile Leu
755 760 765

Asn Arg Arg Arg Tyr Leu Pro Glu Ile Thr Ser Ser Asn Phe Asn Leu
770 775 780

Arg Ser Phe Ala Glu Arg Thr Ala Met Asn Thr Pro Ile Gln Gly Ser
785 790 795 800

Ala Ala Asp Ile Ile Lys Lys Ala Met Ile Asp Met Ala Glu Arg Leu
805 810 815

Ile Ser Glu Asn Met Gln Thr Lys Met Leu Leu Gln Val His Asp Glu
820 825 830

Leu Ile Phe Glu Ala Pro Pro Glu Glu Ile Ala Met Leu Glu Lys Ile
835 840 845

Val Pro Glu Val Met Glu Asn Ala Ile Lys Leu Ile Val Pro Leu Lys
850 855 860

Val Asp Tyr Ala Phe Gly Ser Ser Trp Tyr Asp Thr Lys
865 870 875

eolf-seql (25).txt

<211> 2634

<212> DNA

<213> Psychrobacillus sp.

<400> 5

atgtatttgt	caaccgagaa	aatcctatta	ttagacggca	atagttggc	ataccgagct	60
ttttttgcc	taccttatt	aacaaatgaa	catggaatac	atacaaacgc	agtatatggc	120
tttacaatga	tgctacaaaa	aattatggat	gaagaaaatc	ctactcatat	gctcgtggca	180
tttgcgtccg	ggaaaacgac	cttccgtcac	tctactttg	gggattataa	aggtggaaga	240
caaaaaacac	caccagaact	atcggAACaa	ttcccttata	tacgcaagtt	aatcgatgct	300
tatggtatta	agcgatacga	actggaaatg	tacgaaggcag	acgatattat	cggtaacttta	360
agcaagcgtg	cagacgaaaa	agggcagcaa	gttgtattg	tctcaggtga	taaagattta	420
acacaactag	ctacagataa	aacaactgtg	tatatcacaa	gaaaaggcat	aaccgatatt	480
aaaaaaatata	cacctgaaca	tgtacaagaa	aagtatggct	taactccatt	acagattata	540
gacatgaaag	gtttaatggg	agatgcttct	gataatattc	caggagttcc	tgggtcgga	600
aaaaaaacag	ctattaagct	tttaaaagaa	catggttcgg	tagaggattt	atataaagca	660
cttgatacag	ttagtggtgt	taaactaaag	gaaaaactca	tcgccaacga	agagcaggca	720
attatgagta	aggcattagc	tacgattgaa	acagctgcac	cgatacagat	ttctatagac	780
gatcttcat	atactggtcc	taatatggaa	gaagtaattg	aagtttgaa	ggaactagct	840
tttaaaactc	ttcttgagaa	atctgactat	atttctgagg	aatccaaac	tacagaagta	900
gcattcgaga	ttgttgaga	aattgactct	acaatattag	ataaagtaat	gtcagtccat	960
ttagaaaatgt	atgatggca	atatcataca	agcgaattat	taggtattgc	tttatcagat	1020
ggagaaaaagg	gttattttgc	tcctgctgat	atagctttc	aatcgaaggaa	tttttggct	1080
tggttagaaa	atgctacgaa	taaaaagtat	ttagcagact	ccaaagcaac	acaaggcgtg	1140
agtagaaaaac	ataatgtgaa	tgtacatgga	gtggaaattcg	accttcttt	agcagcgtat	1200
atagtaaatc	ctgctatctc	ttcagaggat	gttgctgcta	ttgctaaaga	atttggatat	1260
tttaacttgc	tgacaaacga	tagtgtttat	gggaaaggtg	ccaaaaaaac	cgcacctgaa	1320

eolf-seql (25).txt

atcgagaaaa ttgcagaaca tgccgtaga aaagcaaggg ctatggga cttgaaagaa	1380
aagttagaag taaaactgga agaaaatgaa caatatgcgt tgtataaaga aatagagcta	1440
ccgcttgcata ctatccttgg tacgatggaa tcagatgggg tgctggtgaa taaacaatt	1500
ctttagaaaa tgggtcatga gcttaatatt aagttacgag cgattgaaca agacattt	1560
gcgttagctg gtgaaacgtt taatattaat tcacctaaac aatttaggtgt aatactattt	1620
aaaaaaattt gtcttacccc tattaaaaag aaaaaaacgg gctattcaac tgcagcagat	1680
gttttggaaa aactagcaag tgaacatgaa ataatagagc aaattttact atatcgtaa	1740
tttagtaaac tcaattccac atatatcgaa ggattattaa aagagattca tgaagatgat	1800
ggaaagatcc atacccgata tcaacaagcc ctaactcaa ctggcggtt gagttcgatc	1860
aatccaaacc ttcaaaatat accagttcgt ttagaagaag gtagaaaaat acgtaaagcc	1920
tttggtcctt cacaaccggg atggtaatg tttgcggcgg attactctca aattgaattt	1980
cgtgttctt cccatatgtc tgaggatgaa aacctggtag aagctttaa taatgatctg	2040
gatattcata ctaaaacggc tatggatgta ttccatgtgg agcaggaagc agtaacgtcc	2100
gatatgcgcc gtgctgctaa ggcagttaac tttgggattt tttatggat tagtatttt	2160
ggtttatcac aaaacctaga tattactaga aaagaagcgg cgacatttt cgagaattt	2220
ttaaatagct tcccaggtgt aaaaggatatt atggatgata tcgttcaaga tgcgaaacaa	2280
acaggctacg ttacaacaat tttgaataga cgaagatatt tgcctgaaat aacaagttct	2340
aactttaatc tccgcagttt tgcagaacgt actgctatga atacaccaat tcaagggagt	2400
gcagccgata ttattaaaaa agcaatgatc gatatggcgg aaagattaat atcagaaaaat	2460
atgcagacca aaatgctact acaagtacat gatgaattaa ttttgaggc tccaccagag	2520
gaaattgcaa tgctagaaaa aatagtgcac gaggtgatgg aaaacgctat taaactgatt	2580
gtaccttga aagtggattt tgccttggc tcattttttt atgacacgaa gtag	2634

<210> 6
<211> 32

eolf-seql (25).txt

<212> PRT
<213> *Bacillus* species C3_41

<400> 6

Met Arg Arg Ala Ala Lys Ala Val Asn Phe Gly Ile Val Tyr Gly Ile
1 5 10 15

Ser Asp Tyr Gly Leu Ser Gln Asn Leu Asp Ile Thr Arg Lys Glu Ala
20 25 30

<210> 7
<211> 32
<212> PRT
<213> *Ureibacillus thermosphaericus*

<400> 7

Met Arg Arg Ala Ala Lys Ala Val Asn Phe Gly Ile Ile Tyr Gly Ile
1 5 10 15

Ser Asp Tyr Gly Leu Ser Gln Asn Leu Asp Ile Ser Arg Lys Glu Ala
20 25 30

<210> 8
<211> 32
<212> PRT
<213> *Bacillus subtilis*

<400> 8

Met Arg Arg Gln Ala Lys Ala Val Asn Phe Gly Ile Val Tyr Gly Ile
1 5 10 15

Ser Asp Tyr Gly Leu Ser Gln Asn Leu Gly Ile Thr Arg Lys Glu Ala
20 25 30

<210> 9
<211> 32
<212> PRT
<213> *Bacillus smithii*

eolf-seql (25).txt

<400> 9

Met Arg Arg Gln Ala Lys Ala Val Asn Phe Gly Ile Val Tyr Gly Ile
1 5 10 15

Ser Asp Tyr Gly Leu Ser Gln Asn Leu Gly Ile Thr Arg Lys Glu Ala
20 25 30

<210> 10

<211> 32

<212> PRT

<213> Geobacillus stearothermophilus

<400> 10

Met Arg Arg Gln Ala Lys Ala Val Asn Phe Gly Ile Val Tyr Gly Ile
1 5 10 15

Ser Asp Tyr Gly Leu Ala Gln Asn Leu Asn Ile Ser Arg Lys Glu Ala
20 25 30

<210> 11

<211> 580

<212> PRT

<213> Geobacillus stearothermophilus

<400> 11

Ala Lys Met Ala Phe Thr Leu Ala Asp Arg Val Thr Glu Glu Met Leu
1 5 10 15

Ala Asp Lys Ala Ala Leu Val Val Glu Val Val Glu Glu Asn Tyr His
20 25 30

Asp Ala Pro Ile Val Gly Ile Ala Val Val Asn Glu His Gly Arg Phe
35 40 45

Phe Leu Arg Pro Glu Thr Ala Leu Ala Asp Pro Gln Phe Val Ala Trp
50 55 60

eof-seql (25).txt

Leu Gly Asp Glu Thr Lys Lys Lys Ser Met Phe Asp Ser Lys Arg Ala
65 70 75 80

Ala Val Ala Leu Lys Trp Lys Gly Ile Glu Leu Cys Gly Val Ser Phe
85 90 95

Asp Leu Leu Leu Ala Ala Tyr Leu Leu Asp Pro Ala Gln Gly Val Asp
100 105 110

Asp Val Ala Ala Ala Lys Met Lys Gln Tyr Glu Ala Val Arg Pro
115 120 125

Asp Glu Ala Val Tyr Gly Lys Gly Ala Lys Arg Ala Val Pro Asp Glu
130 135 140

Pro Val Leu Ala Glu His Leu Val Arg Lys Ala Ala Ala Ile Trp Glu
145 150 155 160

Leu Glu Arg Pro Phe Leu Asp Glu Leu Arg Arg Asn Glu Gln Asp Arg
165 170 175

Leu Leu Val Glu Leu Glu Gln Pro Leu Ser Ser Ile Leu Ala Glu Met
180 185 190

Glu Phe Ala Gly Val Lys Val Asp Thr Lys Arg Leu Glu Gln Met Gly
195 200 205

Lys Glu Leu Ala Glu Gln Leu Gly Thr Val Glu Gln Arg Ile Tyr Glu
210 215 220

Leu Ala Gly Gln Glu Phe Asn Ile Asn Ser Pro Lys Gln Leu Gly Val
225 230 235 240

Ile Leu Phe Glu Lys Leu Gln Leu Pro Val Leu Lys Lys Thr Lys Thr
245 250 255

eof-seql (25).txt

Gly Tyr Ser Thr Ser Ala Asp Val Leu Glu Lys Leu Ala Pro Tyr His
260 265 270

Glu Ile Val Glu Asn Ile Leu His Tyr Arg Gln Leu Gly Lys Leu Gln
275 280 285

Ser Thr Tyr Ile Glu Gly Leu Leu Lys Val Val Arg Pro Asp Thr Lys
290 295 300

Lys Val His Thr Ile Phe Asn Gln Ala Leu Thr Gln Thr Gly Arg Leu
305 310 315 320

Ser Ser Thr Glu Pro Asn Leu Gln Asn Ile Pro Ile Arg Leu Glu Glu
325 330 335

Gly Arg Lys Ile Arg Gln Ala Phe Val Pro Ser Glu Ser Asp Trp Leu
340 345 350

Ile Phe Ala Ala Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His
355 360 365

Ile Ala Glu Asp Asp Asn Leu Met Glu Ala Phe Arg Arg Asp Leu Asp
370 375 380

Ile His Thr Lys Thr Ala Met Asp Ile Phe Gln Val Ser Glu Asp Glu
385 390 395 400

Val Thr Pro Asn Met Arg Arg Gln Ala Lys Ala Val Asn Phe Gly Ile
405 410 415

Val Tyr Gly Ile Ser Asp Tyr Gly Leu Ala Gln Asn Leu Asn Ile Ser
420 425 430

Arg Lys Glu Ala Ala Glu Phe Ile Glu Arg Tyr Phe Glu Ser Phe Pro
435 440 445

eof-seql (25).txt

Gly Val Lys Arg Tyr Met Glu Asn Ile Val Gln Glu Ala Lys Gln Lys
450 455 460

Gly Tyr Val Thr Thr Leu Leu His Arg Arg Arg Tyr Leu Pro Asp Ile
465 470 475 480

Thr Ser Arg Asn Phe Asn Val Arg Ser Phe Ala Glu Arg Met Ala Met
485 490 495

Asn Thr Pro Ile Gln Gly Ser Ala Ala Asp Ile Ile Lys Lys Ala Met
500 505 510

Ile Asp Leu Asn Ala Arg Leu Lys Glu Glu Arg Leu Gln Ala His Leu
515 520 525

Leu Leu Gln Val His Asp Glu Leu Ile Leu Glu Ala Pro Lys Glu Glu
530 535 540

Met Glu Arg Leu Cys Arg Leu Val Pro Glu Val Met Glu Gln Ala Val
545 550 555 560

Thr Leu Arg Val Pro Leu Lys Val Asp Tyr His Tyr Gly Ser Thr Trp
565 570 575

Tyr Asp Ala Lys
580

<210> 12
<211> 580
<212> PRT
<213> Ureibacillus thermosphaericus

<400> 12

Ala Ala Leu Ser Phe Lys Ile Val Arg Glu Ile Ala Glu Asp Leu Phe
1 5 10 15

Thr Asp Thr Met Ala Val His Val Glu Leu Glu Asn Glu His Tyr His

eolf-seql (25).txt

20

25

30

Thr Cys Asn Ile Leu Gly Phe Gly Phe Thr Asp Gly Ser Asn Thr Phe
35 40 45

Phe Val Pro Thr Glu Val Leu Gln Lys Ser Glu Arg Leu Lys Ser Tyr
50 55 60

Phe Glu Asp Glu Thr Lys Lys Tyr Met Ser Asp Leu Lys Ala Ala
65 70 75 80

Gln Cys Ile Leu Lys Arg His Gly Ile Asn Leu Arg Gly Val Glu Phe
85 90 95

Asp Leu Leu Leu Ala Ser Tyr Ile Val Asn Pro Ala Ile Ser Gly Asp
100 105 110

Asp Val Ala Thr Leu Ala Lys Glu Phe Gly Tyr Thr Asp Val Arg Ser
115 120 125

Asn Glu Ala Val Tyr Gly Lys Gly Ala Lys Trp Ala Leu Pro Ser Glu
130 135 140

Glu Val Leu Ala Glu His Val Cys Arg Lys Ala Phe Ala Ile Trp Ser
145 150 155 160

Cys Lys Glu Arg Val Ser Asn Lys Leu Lys Glu Asn Glu Gln Phe Asp
165 170 175

Leu Tyr His Asp Leu Glu Leu Pro Leu Ala Val Ile Leu Gly Lys Met
180 185 190

Glu Ser Glu Gly Ile Lys Val Asn Ile Ser Thr Leu Glu Thr Met Gly
195 200 205

Gln Glu Leu Glu Asp Lys Ile Ala Lys Leu Glu Thr Glu Ile Tyr Glu

eolf-seql (25).txt

210	215	220
Leu Ala Gly Glu Thr Phe Asn Ile Asn Ser Pro Lys Gln Leu Gly Val		
225	230	235
240		
Ile Leu Phe Glu Lys Leu Gly Leu Pro Val Ile Lys Lys Thr Lys Thr		
245	250	255
Gly Tyr Ser Thr Ala Ala Asp Val Leu Glu Lys Leu Lys Ser Glu His		
260	265	270
Gln Ile Val Gln Leu Ile Leu Glu Tyr Arg Thr Leu Ala Lys Leu Gln		
275	280	285
Ser Thr Tyr Ile Glu Gly Leu Ile Lys Glu Val His Pro Lys Asp Ser		
290	295	300
Lys Val His Thr Arg Phe Met Gln Ala Leu Thr Ser Thr Gly Arg Leu		
305	310	315
320		
Ser Ser Thr Asp Pro Asn Leu Gln Asn Ile Pro Ile Arg Leu Glu Glu		
325	330	335
Gly Arg Lys Ile Arg Lys Ala Phe Val Pro Ser His Asp Gly Trp Leu		
340	345	350
Leu Phe Ser Ala Asp Tyr Ser Gln Ile Glu Leu Arg Val Leu Ala His		
355	360	365
Met Ser Lys Asp Lys Asn Leu Val Glu Ala Phe Asn Gln Gly Met Asp		
370	375	380
Ile His Thr Arg Thr Ala Met Glu Val Phe His Val Ser Gln Asp Asp		
385	390	395
400		
Val Thr Ser Asn Met Arg Arg Ala Ala Lys Ala Val Asn Phe Gly Ile		

eolf-seql (25).txt

405 410 415

Ile Tyr Gly Ile Ser Asp Tyr Gly Leu Ser Gln Asn Leu Asp Ile Ser
420 425 430

Arg Lys Glu Ala Gly Glu Phe Ile Glu Lys Tyr Phe Glu Ser Phe Pro
435 440 445

Gly Val Lys Glu Tyr Met Asp Asn Ile Val Gln Glu Ala Lys Leu Lys
450 455 460

Gly Tyr Val Thr Thr Ile Leu Asn Arg Arg Arg Tyr Leu Pro Asp Ile
465 470 475 480

Thr Ser Lys Asn Phe Asn Leu Arg Ser Phe Ala Glu Arg Thr Ala Met
485 490 495

Asn Thr Pro Ile Gln Gly Ser Ala Ala Asp Ile Ile Lys Lys Ala Met
500 505 510

Leu Asp Ile Asp Ala Arg Leu Asn Ser Glu Gly Leu Gln Ala Lys Leu
515 520 525

Leu Leu Gln Val His Asp Glu Leu Ile Phe Glu Ala Pro Lys Glu Glu
530 535 540

Ile Glu Lys Leu Glu Lys Ile Val Pro Glu Val Met Glu Ser Ala Ile
545 550 555 560

Leu Leu Asp Val Pro Leu Lys Val Asp Ile Ser Tyr Gly Glu Thr Trp
565 570 575

Tyr Asp Ala Lys
580

eolf-seql (25).txt

<211> 1743
<212> DNA
<213> Artificial Sequence

<220>
<223> Artificial Sequence

<400> 13
accgaagttg catttcaaata tgtgaaagaa atcgatagca ccatcctgga taaagttatg 60
agcgttcatc tggaaatgtt tggatggtcag tatcataccca gcgaactgct gggatttgca 120
ctgagtgatg gtgaaaaagg ttatttgca ccggcagata ttgcctttca gagcaaagat 180
tttttagtggctt ggctggaaaa tgccaccaac aaaaaatacc tggcagatag caaagcaacc 240
caggcagttttaa gcccgtaaaca taatgttaat gttcacggcg tggatattga tctgctgctg 300
gcagcatata ttgttaatcc ggcaatttgc agcgaagatg ttgcagcaat tgcaaaagaa 360
ttcggctatt ttaacctgct gaccaacgat agcgaaaaatg gtaaagggtgc aaaaaaaacc 420
gcaccggaaa ttgaaaaat tgccgaacat gcagttcgta aagcacgtgc aatttggat 480
ctgaaagaaa aactggaaatg gaaactggaa gagaacgaac agtatgccct gtataaagaa 540
attgaactgc cgctggcaag cattctggc accatggaaa gtgatgggtgt tctgggtgat 600
aaacaaatcc tggttgaaat gggtcacgag ctgaacatttta aactgcgtgc aattgaacag 660
gatattttagt cactggcagg cgaaaccttt aacattaata gcccggaaaca gctgggtgtg 720
atcctgttttggggaaaatcgg tctgaccccg atcaaaaaaaa ccaaaaccgg ttatagcacc 780
gcagcagatg ttctggaaaaaactggcaagc gaacatgaaa ttattgagca gattctgctg 840
tatcgatcagc tgggtaaactt gaatagcacc tatattgaag gtctgctgaa agaaatccat 900
gaggatgatg gtaaaatcca tacccgttat cagcaggcac tgaccagcac cggtcgtctg 960
agcagcattttaa atccgaatct gcagaatatt ccgggttcgtc tggaaagg tcgtaaaatt 1020
cgtaaagcat ttgttccgag ccagcctgggt tgggttatgt ttgcagcaga ttatagccag 1080
attgaactgc gtgttctggc acatatgagc gaagatgaaa atctgggttga agccttaac 1140
aacgatctgg atattcatac caaaaccggcc atggatgttt ttcacgttga acaagaagca 1200

eolf-seql (25).txt

gttaccagcg atatgcgtcg tgcagcaaaa gcagtttaatt ttggattttgt gtatggcatc	1260
agcgcttatg gtctgagcca gaatctggat attaccgt aagaagcagc cacctttatc	1320
gaaaactacc tgaatagctt tccgggtgtg aaaggctata tggatgatat tgttcaggat	1380
gaaaaacaga ccggttatgt taccaccatt ctgaatcgtc gtcgttatct gccggaaatt	1440
accagcagca actttaatct gcgttagctt gcagaacgt a cgcaatgaa taccccgatt	1500
cagggtagcg cagcagatat tatcaaaaaa gccatgattt atatggccga acgtctgatt	1560
agcgaaaata tgcagaccaa aatgctgctg caggttcatg atgaactgat ttttgaagca	1620
ccgcctgaag aaattgcaat gctggaaaaa attgttccgg aagtgtatgaa aaacgccatt	1680
aaactgattt ttccgctgaa agtggattat gcattttgtt gcagttggta cgataccaaa	1740
taa	1743

<210> 14
 <211> 1743
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Artificial Sequence

<400> 14
 gccaaaatgg catttaccct ggcagatcgt gttaccgaag aaatgctggc agataaagca 60
 gcactggttt ttgaagttgtt ggaagaaaat tatcatgatg caccgattttt tggatttgc 120
 gttgttaatg aacatggccg ttttttctg cgtccggaaa ccgcactggc cgatccgcag 180
 tttgttgcattt ggctgggtga tgaaacccaaa aaaaagagca tttttgatag caaacgtgca 240
 gcagttgcac tgaaatggaa aggtattgaa ctgtcggtt tttcatttga tctgctgctg 300
 gcagcatatc tgctggatcc ggcacagggt gttgatgatg ttgcagcagc agcaaagatg 360
 aaacagtatg aagcagttcg tccggatgaa gccgtttatg gtaaagggtgc aaaacgtgcc 420
 gtgccggatg aaccgggtgct ggccgaacat ctggttcgta aagcagccgc aatttggaa 480
 tttagaacgtc cgtttctgaa tgaactgcgt cgtaatgaac aggatcgtct gctgggtgaa 540

eolf-seql (25).txt

ctggAACAGC CGCTGAGCAG CATTCTGGCA GAAATGGAAT TTGCCGGTGT TAAAGTGGAT	600
ACCAAAACGTC TGGAACAAAT GGGTAAAGAA CTGGCAGAAC AGCTGGGCAC CGTTAACAG	660
CGTATTTATG AGCTGGCAGG TCAAGAATT AACATCAATA GCCCGAAACA ACTGGGCGTG	720
ATTCTGTTG AAAAACTGCA GCTGCCGGTT CTGAAAAAAA CCAAAACCGG TTATAGCACC	780
AGCGCAGATG TTCTGGAAAA ACTGGCACCG TATCATGAAA TTGTGGAAAA CATTCTGCA	840
TATGCCAGC TGGTAAACT GCAGAGCACC TATATTGAAG GTCTGCTGAA AGTTGTCGT	900
CCCGATAACCA AAAAAGTGCAC CACCATTAA ACCAGGCAC TGACCCAGAC CGGTCGTCTG	960
AGCAGTACCG AACCGAATCT GCAGAAATT CCGATTGTC TGGAGAAGG TCGTAAATT	1020
CGTCAGGCCT TTGTTCCGAG CGAAAGCGAT TGGCTGATT TTGAGCAGA TTATAGCCAG	1080
ATTGAACTGC CGTTCTGGC ACATATTGCC GAAGATGATA ATCTGATGGA AGCATTGCT	1140
CGCGATCTGG ATATTCTAC CAAAACAGCC ATGGATATT TTCAGGTGAG CGAAGATGAA	1200
GTТАCCCCGA ATATGCGTGT CAGGCAAAA GCAGTTAATT TTGGTATTGT GTATGGCATT	1260
AGCGCATATG GTCTGGCACA GAATCTGAAT ATTGCGTA AAGAAGCAGC CGAGTTATC	1320
GAACGTTATT TTGAAAGTT TCCGGGTGT AAACGCTATA TGGAAAATAT TGTTCAAGAA	1380
GCCAAACAGA AAGGCTATGT TACCACACTG CTGCACTGTC GTCGTTATCT GCCGGATATT	1440
ACCAGCCGTA ACTTTAATGT TCCTAGCTTT GCAGAACGTA TGGCAATGAA TACCCGATT	1500
CAGGGTAGCG CAGCCGATAT TATCAAAAAA GCAATGATTG ATCTGAACGC ACGCCCTGAAA	1560
GAAGAACGTC TGCAAGGACCA TCTGCTGTAA CAGGTTCATG ATGAACTGAT TCTGGAAAGCC	1620
CCTAAAGAAG AGATGGAACG TCTTGTCTGT CTGGTTCCGG AAGTTATGGA ACAGGGAGTT	1680
ACCCTGCGTG TTCCGCTGAA AGTGGATTAT CATTATGGTA GCACCTGGTA TGTATGCCAAA	1740
TA	1743

<210> 15
<211> 1743
<212> DNA
<213> Artificial Sequence

eolf-seql (25).txt

<220>
<223> Artificial Sequence

<400> 15
gcagcactga gctttaaaat cgttcgtgaa attgcagagg acctgtttac cgataccatg 60
gcagttcatg ttgaactgga aaacgaacat tatcacacgt gcaacattct tggtttggt 120
tttaccgatg gcagcaacac ctttttgtt ccgaccgaag tgctgcagaa aagcgaacgt 180
ctgaaaagct attttgagga taaaacccaaa aaaaagtata tgagcgatct gaaaggagcc 240
cagtgtattc taaaacgtca tggattaaat ctgcgtggcg ttgaatttga tctgctgctg 300
gcaagctata ttgttaatcc ggcaattagc ggtgatgatg ttgcaaccct ggcaaaagaa 360
tttggctata ccgatgttcg tagcaatgaa gccgtttatg gtaaagggtgc aaaatggca 420
ctgcccggcg aagaggttct ggcagaacat gtttgcgtta aagcatttgc aatttggagc 480
tgcaaaagaac gcgttagcaa taaaactgaaa gagaacgaac agttcgatct gtatcatgat 540
ctggaactgc cgctggccgt tattctgggt aaaatggaaa gcgaaggcat caaagtgaat 600
atcagcaccc tggaaaccat gggtaagaa ctggaagata aaattgccaa actggaaacc 660
gagatctatg aactggcagg cgaaaccttt aacattaata gcccgaaaca gctgggtgtg 720
atcctgtttg aaaaactggg tctgcccgtt atcaaaaaaaa cgaaaaccgg ttatagcacc 780
gcagcagatg ttctggaaaa actgaaatca gaacatcaga ttgtgcagct gattctggaa 840
tatcgtaacc tggccaaact gcagagcacc tatattgaag gtctgatcaa agaagtgcac 900
ccgaaagata gcaaagtgca tacccgtttt atgcaggcac tgaccagcac cggtcgtctg 960
agcagcaccg atccgaatct gcagaatatt ccgattcgtc tggagaagg tcgtaaaatt 1020
cgcaaagcct ttgtgccgag ccatgatggc tggctgctgt ttagcgcaga ttatagccag 1080
attgaactgc gtgttctggc acatatgagc aaagataaaa atctggtgga agccttaac 1140
caaggcatgg atattcatac ccgtaccgca atggaagttt ttcatgttag ccaggatgat 1200
gtgaccagca atatgcgtcg tgcagcaaaa gcagtttaatt tcggattat ctatggcatt 1260
agcgcataatg gtctgagcca gaatctggat atttcacgta aagaaggcagg cgaattcattc 1320

eolf-seql (25).txt

gagaaatact ttgaaagttt tccgggtgtg aaagaatata tggacaacat tggcaagag	1380
gccaaagctga aaggttatgt taccaccatt ctgaatcgac gtcgttatct gccggatatt	1440
accagcaaaa atttcaatct gcgttagcttt gcagaacgta ccgccatgaa taccccgatt	1500
cagggtagcg cagccgatata catcaaaaaa gcaatgctgg atattgatgc ccgtctgaat	1560
agcgaaggtc tgcaggcaaa actgctgctg caggttcacg atgaactgat ttttgaagca	1620
ccgaaagaag agatcgagaa gctggaaaaa attgttccgg aagttatgga aagtgccatt	1680
ctgctggatg ttccgctgaa agttgatatt agctatggtg aaacctggta cgatgccaaa	1740
taa	1743

<210> 16
 <211> 82
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Artificial Sequence

<220>
 <221> misc_feature
 <222> (7)..(7)
 <223> labelled with the fluorophore Dabcyl

<220>
 <221> misc_feature
 <222> (32)..(32)
 <223> labelled with the fluorophore FAM

<400> 16
 ggcccgtagg aggaaaggac atcttctagc atacggccg tcaagttcat ggccagtcaa 60
 gtcgtcagaa atttcgcacc ac 82

<210> 17
 <211> 19
 <212> DNA
 <213> Artificial Sequence

<220>

eolf-seql (25).txt

<223> Artificial Sequence

<400> 17

gtggtgcgaa atttctgac

19

<210> 18

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial Sequence

<400> 18

tatccaccaa tactaccct

19

<210> 19

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial Sequence

<220>

<221> misc_feature

<222> (20)..(20)

<223> labelled at 3' end with TAMRA fluorophore

<400> 19

cgatactttg tccactcaat

20

<210> 20

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Artificial Sequence

<220>

<221> misc_feature

<222> (1)..(1)

eolf-seql (25).txt

<223> labelled at 5' end with Black Hole Quencher 2

<400> 20

attgagtgga caaagtatcg taggtagta ttgggtggata

40