wo 2013/158566 A1 ||| N0 0T OO R A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/158566 A1

(51

eay)

(22)

(25)
(26)
(30)

1

24 October 2013 (24.10.2013) WIPO I PCT
International Patent Classification: (72)
HO04N 7/26 (2006.01)
International Application Number:
PCT/US2013/036646

International Filing Date: (74)

15 April 2013 (15.04.2013)
Filing Language: English
Publication Language: English (81)
Priority Data:
61/625,039 16 April 2012 (16.04.2012) US
61/667,382 2 July 2012 (02.07.2012) US
13/834,006 15 March 2013 (15.03.2013) US

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: SOLE ROJALS, Joel; 5775 Morehouse Drive,
San Diego, California 92121-1714 (US). JOSHI, Rajan
Laxman; 5775 Morehouse Drive, San Diego, California
92121-1714 (US). KARCZEWICZ, Marta; 5775 More-
house Drive, San Diego, California 92121-1714 (US).

Agent: NAYATE, Ambar P.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
(US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

[Continued on next page]

(54) Title: COEFFICIENT GROUPS AND COEFFICIENT CODING FOR COEFFICIENT SCANS

(57) Abstract: Techniques are described for a video coder (e.g., video
encoder or video decoder) that is configured to select a context pattern
from a plurality of context patterns that are the same for a plurality of
scan types. Techniques are also described for a video coder that is con-

1602

RECEIVE SIGNIFICANCE
SYNTAX ELEMENTS

l 1604

SELECT CONTEXT PATTERN
THAT IS STORED AS ONE-
DIMENSIONAL PATTERN

I 1606

ASSIGN CONTEXTS TO

SIGNIFICANCE SYNTAX
ELEMENTS BASED ON
SELECTED CONTEXT

/-1608

4

CABAC DECODE THE
SIGNIFICANCE SYNTAX
ELEMENTS

END FIG. 16

figured to select a context pattern that identifies contexts for two or
more scan types.

WO 2013/158566 A1 |IIIWAT 00T AV 0 TN O A RO

84)

TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, Declarations under Rule 4.17:

M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

with international search report (Art. 21(3))

WO 2013/158566 PCT/US2013/036646

COEFFICIENT GROUPS AND COEFFICIENT CODING FOR COEFFICIENT
SCANS

RELATED APPLICATIONS
[0001] This application claims the benefit of:
U.S. Provisional Application No. 61/625,039, filed April 16, 2012, and
U.S. Provisional Application No. 61/667,382, filed July 2, 2012, the entire

content each of which is incorporated by reference herein.

TECHNICAL FIELD
[0002] This disclosure relates to video coding and more particularly to techniques for

coding syntax elements in video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques
defined according to video coding standards. Digital video devices may transmit,
receive, encode, decode, and/or store digital video information more efficiently by
implementing such video compression techniques. Video coding standards include
ITU-T H.261, ISO/TEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual,
ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC
MPEG-4 AVC), including its Scalable Video Coding (SVC) and Multiview Video
Coding (MVC) extensions. In addition, High-Efficiency Video Coding (HEVC) is a
video coding standard being developed by the Joint Collaboration Team on Video
Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Motion
Picture Experts Group (MPEG).

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video

sequences. For block-based video coding, a video slice (i.e., a video frame or a portion

WO 2013/158566 PCT/US2013/036646

of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded ()
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring
blocks in the same picture or temporal prediction with respect to reference samples in
other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY

[0006] In general, this disclosure describes techniques for encoding and decoding data
representing significance of transform coefficients, such as significant coefficient flags
and coefficient group flags, in transform coefficient coding. Various techniques for
determining a context to be used for CABAC (Context Adaptive Binary Arithmetic
Coding) coding syntax elements associated with transform coefficients are described.
[0007] For example, in some techniques, a video encoder and a video decoder select a
context pattern from a same plurality of context patterns for a scan type of a horizontal
scan, a vertical scan, and a diagonal scan. In other words, regardless of whether a sub-
block is scanned vertically, horizontally, or diagonally, the video encoder and video
decoder may select the context pattern from the same context patterns for all three scan

types. The video encoder and the video decoder utilize the contexts within the selected

WO 2013/158566 PCT/US2013/036646

the context pattern to CABAC encode or CABAC decode, respectively, significance
syntax elements of a transform block.

[0008] As another example, in some techniques, a video encoder and a video decoder
may sclect a context pattern. In some examples, the video encoder and video decoder
utilize the selected context pattern for two or more scan types of the sub-block. For
example, if the sub-block is scanned horizontally, the video encoder and video decoder
utilize the selected context pattern, and if the sub-block is scanned vertically, the video
encoder and the video decoder utilize the selected context pattern.

[0009] In one example, the disclosure describes a method for decoding video data. The
method comprising receiving, in a bitstream, significance syntax elements for transform
coefficients of a current sub-block of a block, selecting a context pattern from a plurality
of two-dimensional context patterns for a plurality of scan types for the significance
syntax elements of the transform coefficients of the current sub-block, wherein the
plurality of two-dimensional context patterns is the same for each of the plurality of
scan types, and wherein each of the context patterns is associated with a condition of
whether one or more neighboring sub-blocks include any non-zero transform
coefficients, assigning contexts to each of the significance syntax elements of the
transform coefficients based on the selected context pattern, and context adaptive binary
arithmetic coding (CABAC) decoding the significance syntax elements of the transform
coefficients of the current sub-block based on the assigned contexts.

[0010] In another example, the disclosure describes a device for decoding video data,
the device comprising a video decoder configured to receive, in a bitstream, significance
syntax elements for transform coefficients of a current sub-block of a block, select a
context pattern from a plurality of two-dimensional context patterns for a plurality of
scan types for the significance syntax elements of the transform coefficients of the
current sub-block, wherein the plurality of two-dimensional context patterns is the same
for each of the plurality of scan types, and wherein each of the context patterns is
associated with a condition of whether one or more neighboring sub-blocks include any
non-zero transform coefficients, assign contexts to each of the significance syntax
elements of the transform coefficients based on the selected context pattern, and context
adaptive binary arithmetic coding (CABAC) decode the significance syntax elements of
the transform coefficients of the current sub-block based on the assigned contexts.
[0011] In another example, the disclosure describes a computer-readable storage

medium having instructions stored thereon that when executed cause one or more

WO 2013/158566 PCT/US2013/036646

processors of a device for decoding video data to receive, in a bitstream, significance
syntax elements for transform coefficients of a current sub-block of a block, select a
context pattern from a plurality of two-dimensional context patterns for a plurality of
scan types for the significance syntax elements of the transform coefficients of the
current sub-block, wherein the plurality of two-dimensional context patterns is the same
for each of the plurality of scan types, and wherein each of the context patterns is
associated with a condition of whether one or more neighboring sub-blocks include any
non-zero transform coefficients, assign contexts to each of the significance syntax
elements of the transform coefficients based on the selected context pattern, and context
adaptive binary arithmetic coding (CABAC) decode the significance syntax elements of
the transform coefficients of the current sub-block based on the assigned contexts.
[0012] In another example, the disclosure describes a method for encoding video data.
The method comprising generating significance syntax elements for transform
coefficients of a current sub-block of a block, selecting a context pattern from a plurality
of two-dimensional context patterns for a plurality of scan types for the significance
syntax elements of the transform coefficients of the current sub-block, wherein the
plurality of two-dimensional context patterns is the same for each of the plurality of
scan types, and wherein each of the context patterns is associated with a condition of
whether one or more neighboring sub-blocks include any non-zero transform
coefficients, assigning contexts to each of the significance syntax elements of the
transform coefficients based on the selected context pattern, context adaptive binary
arithmetic coding (CABAC) encoding the significance syntax elements of the transform
coefficients of the current sub-block based on the assigned contexts, and outputting the
encoded significance syntax elements.

[0013] In another example, the disclosure describes a device for encoding video data,
the device comprising a video encoder configured to generate significance syntax
elements for transform coefficients of a current sub-block of a block, select a context
pattern from a plurality of two-dimensional context patterns for a plurality of scan types
for the significance syntax elements of the transform coefficients of the current sub-
block, wherein the plurality of two-dimensional context patterns is the same for each of
the plurality of scan types, and wherein each of the context patterns is associated with a
condition of whether one or more sub-blocks include any non-zero transform
coefficients, assign contexts to each of the significance syntax elements of the transform

coefficients based on the selected context pattern, context adaptive binary arithmetic

WO 2013/158566 PCT/US2013/036646

coding (CABAC) encode the significance syntax elements of the transform coefficients
of the current sub-block based on the assigned contexts, and output the encoded
significance syntax elements.

[0014] In another example, the disclosure describes a device for encoding video data,
the device comprising means for generating significance syntax elements for transform
coefficients of a current sub-block of a block, means for selecting a context pattern from
a plurality of two-dimensional context patterns for a plurality of scan types for the
significance syntax elements of the transform coefficients of the current sub-block,
wherein the plurality of two-dimensional context patterns is the same for each of the
plurality of scan types, and wherein each of the context patterns is associated with a
condition of whether one or more neighboring sub-block include any non-zero
transform coefficients, means for assigning contexts to each of the significance syntax
elements of the transform coefficients based on the selected context pattern, means for
context adaptive binary arithmetic coding (CABAC) encoding the significance syntax
elements of the transform coefficients of the current sub-block based on the assigned
contexts, and means for outputting the encoded significance syntax elements.

[0015] In another example, the disclosure describes a method for decoding video data.
The method comprising receiving, in a bitstream, significance syntax elements of
transform coefficients for a current sub-block of a block, selecting a context pattern,
wherein the context pattern identifies contexts for two or more scan types of the current
sub-block, assigning contexts to the significance syntax elements of the transform
coefficients for the current sub-block based on the selected context pattern, and context
adaptive binary arithmetic coding (CABAC) decoding the significance syntax elements
of the transform coefficients of the current sub-block based on the assigned contexts.
[0016] In another example, the disclosure describes a device for decoding video data,
the device comprising a video decoder configured to receive, in a bitstream, significance
syntax elements of transform coefficients for a current sub-block of a block, select a
context pattern, wherein the context pattern identifies contexts for two or more scan
types of the current sub-block, assign contexts to the significance syntax elements of the
transform coefficients for the current sub-block based on the selected context pattern,
and context adaptive binary arithmetic coding (CABAC) decode the significance syntax
elements of the transform coefficients of the current sub-block based on the assigned

contexts.

WO 2013/158566 PCT/US2013/036646

[0017] In another example, the disclosure describes a computer-readable storage
medium having instructions stored thereon that when executed cause one or more
processors of a device for decoding video data to receive, in a bitstream, significance
syntax elements of transform coefficients for a current sub-block of a block, select a
context pattern, wherein the context pattern identifies contexts for two or more scan
types of the current sub-block, assign contexts to the significance syntax elements of the
transform coefficients for the current sub-block based on the selected context pattern,
and context adaptive binary arithmetic coding (CABAC) decode the significance syntax
elements of the transform coefficients of the current sub-block based on the assigned
contexts.

[0018] In another example, the disclosure describes a method for encoding video data.
The method comprising generating significance syntax elements of transform
coefficients for a current sub-block of a block, selecting a context pattern, wherein the
context pattern identifies contexts for two or more scan types of the current sub-block,
assigning contexts to the significance syntax elements of the transform coefficients for
the current sub-block based on the selected context pattern, context adaptive binary
arithmetic coding (CABAC) encoding the significance syntax elements of the transform
coefficients of the current sub-block based on the assigned contexts, and outputting the
encoded significance syntax elements.

[0019] In another example, the disclosure describes a device for encoding video data,
the device comprising a video encoder configured to generate significance syntax
elements of transform coefficients for a current sub-block of a block, select a context
pattern, wherein the context pattern identifies contexts for two or more scan types of the
current sub-block, assign contexts to the significance syntax elements of the transform
coefficients for the current sub-block based on the selected context pattern, context
adaptive binary arithmetic coding (CABAC) encode the significance syntax elements of
the transform coefficients of the current sub-block based on the assigned contexts, and
output the encoded significance syntax elements.

[0020] In another example, the disclosure describes a device for encoding video data,
the device comprising means for generating significance syntax elements of transform
coefficients for a current sub-block of a block, means for selecting a context pattern,
wherein the context pattern identifies contexts for two or more scan types of the current
sub-block, means for assigning contexts to the significance syntax elements of the

transform coefficients for the current sub-block based on the selected context pattern,

WO 2013/158566 PCT/US2013/036646

means for context adaptive binary arithmetic coding (CABAC) encoding the
significance syntax elements of the transform coefficients of the current sub-block based
on the assigned contexts, and means for outputting the encoded significance syntax
elements.

[0021] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0022] FIG. 1 is a conceptual diagram that illustrates an example of coefficient groups
and scans for a video block.

[0023] FIGS. 2A-2B are conceptual diagrams that illustrate examples of coefficient
groups and scans for a video block.

[0024] FIGS. 3A-3B are conceptual diagrams that illustrate examples of coefficient
groups and scans for a video block.

[0025] FIG. 4 is a conceptual diagram that illustrates a relation between transform
coefficients in a video block and a significance map associated with the video block.
[0026] FIGS. 5A-5D are conceptual diagrams that illustrate an example of patterns for
context assignment for coefficients in a sub-block.

[0027] FIG. 6 is a block diagram illustrating an example video encoding and decoding
system that may utilize the inter-prediction techniques described in this disclosure.
[0028] FIG. 7 is a block diagram illustrating an example video encoder that may
implement the inter-prediction techniques described in this disclosure.

[0029] FIG. 8 is a block diagram illustrating an example of an entropy encoder that may
implement techniques for entropy encoding predictive syntax elements in accordance
with this disclosure.

[0030] FIGS. 9A-9D are conceptual diagrams that illustrate examples of patterns for
context assignment for coefficients in a sub-block.

[0031] FIG. 10 is a conceptual diagram that illustrates an example of a pattern for
context assignment for coefficients in a sub-block.

[0032] FIG. 11 is a flowchart illustrating encoding predictive syntax elements according

to the techniques of this disclosure.

WO 2013/158566 PCT/US2013/036646

[0033] FIG. 12 is a flowchart illustrating encoding predictive syntax elements according
to the techniques of this disclosure.

[0034] FIG. 13 is a block diagram illustrating an example video decoder that may
implement the inter-prediction techniques described in this disclosure.

[0035] FIG. 14 is a block diagram illustrating an example of an entropy decoder that
may implement techniques for decoding predictive syntax elements in accordance with
this disclosure.

[0036] FIG. 15 is a flowchart illustrating decoding predictive syntax elements according
to the techniques of this disclosure.

[0037] FIG. 16 is a flowchart illustrating decoding predictive syntax elements according

to the techniques of this disclosure.

DETAILED DESCRIPTION
[0038] A video coder designed according to some examples, such as that proposed in
the working draft 7 (WD7) of the High Efficiency Video Coding (HEVC) standard,
referred to as HEVC WD?7 herein and available from http://phenix.it-
sudparis.cu/jct/doc_end user/documents/9 Geneva/wgl1/JCTVC-11003-v5.zip, may
require a different data access for non-square coefficient groups than a 4x4 sub-block
coefficient group. This may impose additional hardware and software complexity
during implementation of the video coder. The additional hardware and software
complexity may be reduced if the non-square coefficient groups are removed and 4x4
sub-block coefficients are scanned according to one of a diagonal, vertical, or horizontal
scan type. However, this modification may reduce coding efficiency when the context
derivations defined according to HEVC WD?7 are used for assigning contexts to syntax
elements that indicate whether a sub-block includes significant coefficients. Thus, this
disclosure describes technique for assigning contexts for syntax elements that indicate
whether a sub-block includes significant coefficients which may provide for improved
coding efficiency.
[0039] For instance, in some of these other techniques (i.c., those not necessarily in
accordance with the techniques described in this disclosure), context patterns are used
for a subset of the possible sizes for transform units (TUs or transform blocks) for
coding of syntax elements that indicate the significance of transform coefficients of the
transform units (referred to as significance syntax elements). Also, these other

techniques used the context patterns for limited scan types. Accordingly, computational

WO 2013/158566 PCT/US2013/036646

resources are wasted by having to determine the size of the TU so that a determination
can be made about whether context patterns can be used.

[0040] In the techniques described in this disclosure, the same context patterns are used
for a plurality of scan types (e.g., a horizontal scan, a vertical scan, and a diagonal scan)
for a variety of different sized TUs. For instance, a video encoder or a video decoder
may seclect a context pattern from the same plurality of context patterns for a 4x4 sub-
block of an 8x8 TU regardless of the scan type for the 4x4 sub-block (e.g., regardless of
whether the 4x4 sub-block is horizontally scanned, vertically scanned, or diagonally
scanned). As described in more detail, each of the plurality of context patterns is
associated with a condition of whether one or more neighboring sub-blocks include any
significant transform coefficients (e.g., any non-zero transform coefficients). As also
described in more detail, this disclosure describes characteristics of the plurality of
context patterns from which the video encoder or video decoder selects the context
pattern. In this way, computational efficiencies may be realized since the video encoder
and the video decoder can use the same context patterns for determining contexts for
significance syntax elements for a plurality of scan types (e.g., a horizontal scan,
vertical scan, and diagonal scan) for the significance syntax elements of the sub-block,
including a 4x4 sub-block of an 8x8 block (i.e., 8x8 TU).

[0041] In the above examples, the context patterns may be two-dimensional context
patterns. However, aspects of this disclosure are not so limited. In some examples, the
video encoder and the video decoder select a context pattern (e.g., one that is stored as a
one-dimensional context pattern). For example, some context patterns may be defined
as two-dimensional context patterns. It may be possible to pre-compute a one-
dimensional context pattern from the two-dimensional context pattern. Pre-computing
may speed up the encoding and decoding process. For example, the transform
coefficients may be converted from a two-dimensional block into a one-dimensional
block. With the pre-computed one-dimensional patterns, encoding and decoding
efficiencies may be realized if a one-dimensional pattern is used for encoding or
decoding the significance syntax elements because the transform coefficients are
converted to a one-dimensional block, as compared to using the two-dimensional
context pattern on a one-dimensional block. It should be understood that pre-computing
the one-dimensional context pattern from the two-dimensional context pattern is not
required in every example, and should not be considered as a limited way of

determining the one-dimensional context pattern.

WO 2013/158566 PCT/US2013/036646
10

[0042] There may be various ways in which the one-dimensional context pattern may
be computed. As one example, a two-dimensional context pattern is diagonally
scanned, horizontally scanned, and vertically scanned to produce three one-dimensional
context patterns (e.g., one for each scan type). In the techniques described in this
disclosure, the two-dimensional context patterns may comprise characteristics that
reduce the total number of one-dimensional context patterns that are produced.

[0043] For example, if there are four two dimensional context patterns that are each
scanned horizontally, vertically, and diagonally to produce one-dimensional context
patterns, then there would a total of 12 one-dimensional context patterns. In some
examples, the four two dimensional context patterns may include contexts that are
arranged in such a way that two different scans result in the same one dimensional
context pattern.

[0044] For instance, one of the two-dimensional context patterns may include contexts
that if scanned horizontally or vertically result in the same one-dimensional context
pattern. As another example, one of the two-dimensional context patterns may include
contexts that when scanned horizontally results in a one-dimensional context pattern
that is the same one-dimensional vector that would result if another of the two-
dimensional context patterns were scanned vertically. As another example, one of the
two-dimensional context patterns may include contexts that when scanned horizontally,
vertically, and diagonally result in the same one-dimensional context pattern.

[0045] In this way, there may be overlap in the resulting one-dimensional context
patterns that result from the different scanning of the context patterns, which reduces the
total number of one-dimensional context patterns that need to be stored. This allows
one context pattern to be used for two or more scan types of the sub-block.

[0046] For instance, as described above, one of the two-dimensional context patterns
includes contexts that when scanned horizontally, vertically, and diagonally result in the
same one-dimensional context pattern. Accordingly, for this context pattern only one
one-dimensional context pattern is stored because the one-dimensional context pattern is
the same for all three types of context pattern scans.

[0047] As another example, one of the two-dimensional context patterns includes
contexts that when scanned horizontally or vertically result in the same one-dimensional
context pattern. In this case, the one-dimensional context pattern for the diagonal scan
is stored, and the one-dimensional context pattern for either the horizontal scan or the

vertical scan is stored, but not both, because the one-dimensional context pattern that

WO 2013/158566 PCT/US2013/036646
11

results from the horizontal and vertical scan is the same. In these examples, these one-
dimensional context patterns computed from the two-dimensional context patterns may
be pre-computed and stored, which may speed up the encoding and decoding processes.
[0048] Moreover, in some examples, the one-dimensional context pattern need not
necessarily be computed from a two-dimensional context pattern. Rather, the one-
dimensional context pattern may be preselected and stored, as a one-dimensional
context pattern. Even in these examples, the one-dimensional context pattern may
identify contexts for two or more scan types of the current sub-block.

[0049] Digital video devices implement video compression techniques to encode and
decode digital video information more efficiently. Video compression techniques may
be defined according to a video coding standard, such as the HEVC standard currently
under development by the JCT-VC. The HEVC standardization efforts are based on a
model of a video coding device referred to as the HEVC Test Model (HM). The HM
presumes improvements in the capabilities of video coding devices with respect to video
coding devices available during the development of previous video coding standards,
e.g., ITU-T H.264/AVC. For example, whereas H.264 provides nine intra-prediction
encoding modes, HEVC provides as many as thirty-five intra-prediction encoding
modes. Further, as part of the HEVC standardization efforts, the JCT-VC has defined
test conditions that may be used to evaluate how individual modifications to drafts of
the HEVC standard may impact overall coding performance. One criteria used to
evaluate coding performance is the so-called BD-rate.

[0050] A recent working Draft (WD) of HEVC, referred to as “HEVC Working Draft
7” or “WD7,” is described in document JCTVC-11003_d4, Bross et al., “High efficiency
video coding (HEVC) text specification draft 7,” Joint Collaborative Team on Video
Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 9th Meeting:
Geneva, Switzerland, Apr.-May, 2012. Further, another recent working draft of HEVC,
Working Draft 9 (WD?9), is described in document JCTVC-K1003 v7, Bross et al.,
“High Efficiency Video Coding (HEVC) Text Specification Draft 9,” Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC
JTC1/SC29/WG11, 11th Meeting: Shanghai, CN, October, 2012. The latest version of
WD9 is found from http://phenix.int-

evry.fr/jct/doc_end user/documents/12 Geneva/wgl1/JCTVC-L1003-v29.zip.

[0051] Although techniques of this disclosure are described with respect to the ITU-T
H.264 standard and the upcoming HEVC standard, the techniques of this disclosure are

WO 2013/158566 PCT/US2013/036646
12

generally applicable to any video coding standard. Coding according to some of the
presently proposed aspects of the developing HEVC standard will be described in this
application for purposes of illustration. However, the techniques described in this
disclosure may also be useful for and applied to other video coding processes, such as
those defined according to ITU-T H.264 or other standard or proprietary video coding
processes.

[0052] A video sequence typically includes a series of video frames, also referred to as
pictures. A group of pictures (GOP) generally comprises a series of one or more of the
video frames. A GOP may include syntax data in a header of the GOP, a header of one
or more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each frame may include a plurality of slices. Each slice of a picture may include
slice syntax data that describes a coding mode for the respective slice. Each slice may
include a plurality of video blocks or coding units. The video blocks may have fixed or
varying sizes, and may differ in size according to a specified coding standard.

[0053] Video blocks may be encoded by applying spatial (intra-frame) prediction and/or
temporal (inter-frame) prediction techniques to reduce or remove redundancy inherent
in video sequences. A spatial prediction may be referred to as an “intra mode” (I-mode),
and a temporal prediction may be referred to as an “inter mode” (P-mode or B-mode).
Prediction techniques generate a predictive block of video data, which may also be
referred to as a block of reference samples. A block of original video data to be coded
is compared to the predictive block. The difference between the original block of video
data and the predictive block may be referred to as residual data. Residual data is
typically an array of the difference between pixel values of a predictive block and the
original block of video data.

[0054] A transform, e.g., a discrete cosine transform (DCT) or conceptually similar
transform, an integer transform, a wavelet transform, or another type of transform, may
be applied to the residual data during the coding process to generate a corresponding set
of transform coefficients. Thus, the original block of video can be reconstructed by
performing an inverse transform on the transform coefficients and adding the residual
data to the predictive block. Transform coefficients may also be quantized.
Quantization generally refers to a process in which transform coefficients are quantized
to possibly reduce the amount of data used to represent the coefficients, providing
further compression. That is, the values of the transform coefficients may be

represented as a bit string according to a defined bit-depth. For example, an #-bit value

WO 2013/158566 PCT/US2013/036646
13

may be rounded down to an m-bit value during quantization, where m is less than #. In
some cases, quantization may result in the representation of low value transform
coefficients as zero. Quantized transform coefficients may be referred to as transform
coefficient levels.

[0055] Following quantization, the quantized transform coefficients may be entropy
encoded according to an entropy coding methodology, such as, for example, content
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), or probability interval partitioning entropy coding (PIPE). Syntax elements,
such as a syntax element defining a prediction mode, may also be entropy coded. To
perform CAVLC, a video encoder may select a variable length code for a symbol to be
transmitted. Codewords in VLC may be constructed such that relatively shorter codes
correspond to more probable symbols, while longer codes correspond to less probable
symbols. To perform CABAC, a video encoder may assign a context within a context
model to a symbol to be transmitted.

[0056] For some entropy encoding techniques a predefined scan order may be used to
scan the quantized transform coefficients to produce a serialized vector of quantized
transform coefficients that can be entropy encoded. Thus, according to predictive video
coding residual values comprising pixel difference values may be transformed into
transform coefficients, quantized, and scanned to produce serialized transform
coefficients for entropy coding.

[0057] For video coding, as one example, a video frame may be partitioned into one or
more slices, where a slice includes consecutive integer number of coding units. A
coding unit (CU) generally refers to a rectangular image region that serves as a basic
unit to which various coding tools are applied for video compression. In general, the
techniques of this disclosure relate to transforming, quantizing, scanning, and entropy
coding data of a CU. A CU is typically square, and may be considered to be similar to a
so-called “macroblock” described in other video coding standards such as, for example,
ITU-T H.264. A CU may be considered an array of video sample values. Video sample
values may also be referred to as picture elements, pixels, or pels. A CU usually has a
luminance component, denoted as Y, and two chroma components, denoted as U and V.
The two chroma components may also be respectively denoted as Cy, and C;
components. The size of a CU may be defined according to a number of horizontal and
vertical samples. Thus, a CU may be described as an NxN or NxM CU. In this
disclosure, “NxN” and “N by N’ may be used interchangeably to refer to the pixel

WO 2013/158566 PCT/US2013/036646
14

dimensions of a video block in terms of vertical and horizontal dimensions, ¢.g., 16x16
pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a vertical
direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an NxN
block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0058] To achieve better coding efficiency, a CU may have variable sizes depending on
video content. According to HEVC, syntax data within a bitstream may define a largest
coding unit (LCU), which is a largest CU for a frame or picture in terms of the number
of samples. Typically, an LCU includes 64x64 luma samples, but the size of an LCU
may vary depending on coding application. LCUs may also be referred to as “coding
tree units.” CUSs of other dimensions may be generated by recursively partitioning an
LCU into sub-CUs. The partitioning of LCUs into sub-CUs may be performed using a
quadtree structure known as "residual quad tree" (RQT). Thus, LCUs may also be
referred to as treeblocks. According to quadtree partitioning, a root node of the
quadtree, such as an LCU, may be split into four smaller nodes, and each child node
may in turn be further split into another four smaller nodes. Syntax data for a bitstream
may define a maximum number of times an LCU may be split, referred to as CU depth.
Accordingly, a bitstream may also define a smallest coding unit (SCU). Typically, an
SCU includes 8x8 luma samples. Thus, in one example, four 32x32 CUs may be
generated by partitioning a 64x64 LCU into four sub-CUs and each of the 32x32 CUs
may be further partitioned into sixteen 8x8 CUs.

[0059] A CU may include one or more associated prediction units (PUs) and/or
transform units (TUs). In general, a PU includes data that is used to generate a
predictive block of video data for a CU. PUs may also be referred to as “prediction
partitions.” Syntax data associated with a CU may describe the partitioning of a CU
into one or more PUs. A PU can be square or non-square in shape. The type data
included in a PU may differ depending on whether a CU is skip or direct mode encoded,
intra-prediction mode encoded, or inter-prediction mode encoded. For example, when
the CU is to be intra-mode encoded, a PU may include data describing an intra-
prediction mode and when the CU is to be inter-mode encoded, a PU may include data

defining a motion vector for the PU. The data defining the motion vector for a PU may

WO 2013/158566 PCT/US2013/036646
15

describe, for example, a horizontal component of the motion vector, a vertical
component of the motion vector, a resolution for the motion vector (e.g., one-quarter
pixel precision or one-cighth pixel precision), a reference picture to which the motion
vector points, and/or a reference picture list for the motion vector. Following the
prediction using the PUs of a CU, a video coder may calculate residual data a CU.
[0060] The HM supports prediction in various PU sizes. Assuming that the size of a
particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of 2Nx2N or
NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or NxN.
The HM also supports asymmetric partitioning for inter-prediction in PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU
is not partitioned, while the other direction is partitioned into 25% and 75%. The
portion of the CU corresponding to the 25% partition is indicated by an “n” followed by
an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers
to a 2Nx2N CU that is partitioned horizontally with a 2Nx0.5N PU on top and a
2Nx1.5N PU on bottom.

[0061] As described above, a transform may be applied to residual data to transform the
residual data from a pixel domain to a transform domain. The HEVC standard allows
for transformations according to TUs, which may be different for different CUs. The
TUs are typically sized based on the size of PUs within a given CU, although this may
not always be the case. The size of a TU may be the same as the size of a CU or a CU
may be partitioned into a plurality of TUs. TUs are typically the same size or smaller
than the PUs. In HEVC, syntax data associated with a CU may describe partitioning of
the CU into one or more TUs according to a quadtree.

[0062] In general, a TU is used for in the process of transforming residual data into
transform coefficients. A TU can be square or non-square in shape. For example, a
block of 8x8 residual values may be transformed into a set of 8x8 transform
coefficients. This set of transform coefficients may be more generally referred to as a
transform block. For example, one transform may be performed on the residual values
associated with the 16x16 array of samples or a transform may be performed on each of
four 8x8 arrays of samples. Larger TUs generally provide more compression with more
perceivable “blockiness” in a reconstructed image, whereas smaller TUs generally
provide less compression with less perceivable “blockiness.” The selection of TU sizes
may be based on a rate-distortion optimization analysis. Available TU sizes may

include 32x32, 16x16, and 8x8 TUs. It should be noted that this disclosure typically

WO 2013/158566 PCT/US2013/036646
16

uses the term “video block™ to refer to a coding node of a CU. In some specific cases,
this disclosure may also use the term “video block™ to refer to a treeblock, i.e., LCU, or
a CU, which includes a coding node and PUs and TUs.

[0063] Conceptually, a transform block or TU may be a two-dimensional (2D) matrix
of transform coefficients. As described above, a video coder may perform a
quantization operation on a transform block. A predefined scan order may be used to
scan the quantized transform coefficients to produce a serialized vector of quantized
transform coefficients. The serialized vector of quantized transform coefficient may
then be entropy encoded to provide further compression.

[0064] In some examples, for 16x16 and 32x32 TUs, a 4x4 sub-block scan is used to
produce a serialized vector of quantized transform coefficients. For example, the sub-
blocks are scanned in the reverse direction using a top-right to bottom-left scan. Within
a sub-block the transform coefficients are also scanned in the reverse direction a using a
bottom-right to top-left scan. This type of scan may be referred to as diagonal 4x4 sub-
block scan. In some examples, 8x8 TUs may also use the diagonal 4x4 sub-block scan
as one possible scan. FIG. 1 is a conceptual diagram that illustrates an example of
coefficient groups and scans for a video block. FIG. 1 illustrates an 8x8 video block
divided into four 4x4 sub-blocks where a diagonal scan is performed on each of the sub-
blocks. A sub-block may also be referred to as a coefficient group. In FIG. 1, each
coefficient group is identified and separated using thicker interior lines. As illustrated
in FIG. 1, there are four coefficient groups and each coefficient group includes 16
coefficients. The scans within the sub-blocks in FIG. 1 are shown using the directional
arrows.

[0065] In addition to the diagonal 4x4 sub-block scan, mode dependent coefficient
scans allow for non-square horizontal and vertical scans for some §x8 intra prediction
modes. For non-square horizontal and vertical scans of an 8x8 TU, the coefficient
groups are defined as 8%2 rectangles for the non-square horizontal scan (i.c., 16
consecutive coefficients in the scan order). In a similar manner, coefficient groups are
defined as 2x8 rectangles for the non-square vertical scan. FIGS. 2A-2B illustrate non-
square coefficient groups with horizontal and vertical scans of an 8x8 TU, respectively.
In FIGS. 2A-2B, each coefficient group is identified and separated using thicker interior
lines. As illustrated in FIGS. 2A-2B, there are four coefficient groups and each
coefficient group includes 16 coefficients. In FIG. 2A, the sub-blocks are scanned using

a right-to-left scan. As illustrated in FIG. 2B, the sub-blocks are scanned using a

WO 2013/158566 PCT/US2013/036646
17

bottom-to-top scan. The scans within the sub-blocks in FIGS. 2A-2B are shown using
the directional arrows. It should be noted that a video coder designed according to
HEVC WD7 may require a different data access for the non-square coefficient groups
than the regular 4x4 sub-block coefficient groups. This may impose additional
hardware and software complexity during implementation of the video coder.

[0066] Thus, in addition to the diagonal 4x4 sub-block scan and the non-square
horizontal and vertical scans, horizontal and vertical sub-block scans have been also
been proposed for 4x4 sub-blocks of an 8x8 TU as an alternative to the non-square
horizontal and vertical scans. Examples of sub-block horizontal and vertical scans are
described in: (1) Rosewarne, C., Maeda, M. “Non-CE11: Harmonisation of 8x8 TU
residual scan” JCT-VC Contribution JCTVC-HO0145; (2) Yu, Y., Panusopone, K., Lou,
J., Wang, L. “Adaptive Scan for Large Blocks for HEVC; JCT-VC Contribution
JCTVC-F569; and (3) U.S. Patent Application No. 13/551,458, filed July 17, 2012, each
of which is hereby incorporated by reference. Two example horizontal and vertical 4x4
sub-blocks scans which may be used for an 8x8 TU are illustrated in FIGS. 3A-3B. In
FIGS. 3A-3B, cach coefficient group is identified and separated using thicker interior
lines. Similar to the groups illustrated in FIG. 1, in FIGS. 3A-3B, there are four 4x4
coefficient groups which are scanned in the reverse direction using a top-right to
bottom-left scan. The scans within the sub-blocks are illustrated using directional
arrows.

[0067] It should be noted that while using the horizontal 4x4 sub-block scan and the
vertical 4x4 sub-block scan as alternatives to the non-square horizontal and vertical
scans, according to proposal JCTVC-H0145, using the set of the diagonal 4x4 sub-
block, the horizontal 4x4 sub-block scan, and the vertical 4x4 sub-block scan as
possible scans of an 8x8 TU resulted in a performance BD-rate loss of 0.3% for the intra
configuration when compared to using a set of the diagonal 4x4 sub-block, the
horizontal 8x2 rectangular scan, and the vertical 2x8 rectangular scan as possible scans
for 8x8 TU. That is, substituting the scans illustrated in FIGS. 2A-2B with the scans
illustrated in FIGS. 3A-3B decreased coding performance by 0.3% in some test cases.
[0068] In examples of video coding, each sub-block is coded using five coding passes,
namely, (1) a significance pass, (2) a greater than one pass, (3) a greater than two pass,
(4) a sign pass, and (5) a coefficient level remaining pass. Significance coding refers to
generating syntax elements to indicate whether any of the coefficients within a sub-

block have a value of one or greater. That is, a coefficient with a value of one or greater

WO 2013/158566 PCT/US2013/036646
18

is considered significant. The coding of significance includes two parts. For the first
part of significance coding, a syntax element is coded or inferred for each coefficient
group (i.c., a 4x4 sub-block) that indicates whether there are any non-zero coefficients
in the sub-block. One example of such a syntax element is referred to as a coefficient
group flag (CGF). In HEVC WD7, the CGF may be represented by syntax element
significant_coeff group flag. In HEVC WD9, the syntax element name of the
coefficient group flag has been changed from significant_coeff group flag to
coded_sub block flag (which may also be referred to as CSBF since the coefficient
groups are 4x4 sub-blocks). This disclosure refers to a coefficient group flag as a CGF,
which may correspond to either of the significant_coeff group flag or

coded_sub block flag syntax elements.

[0069] For the second part of significant coding, if CGF is 1 (i.e., there are non-zero
coefficients in the sub-block), then syntax elements are generated for each transform
coefficient in the coefficient group indicating whether the transform coefficient is
significant or not (i.c., a value of one or greater). Examples of such syntax clements are
referred to as significance syntax elements, examples of which are significant
coefficient flags. In HEVC WD7 and WD9, significant coefficient flags are represented
by the syntax element significant_coefficient flag.

[0070] In other words, for coding of significance of coefficients, two types of syntax
clements are coded. A first syntax element (e.g., CGF) is coded for each coding group
(i.e., a sub-block) that indicates whether there any non-zero coefficients in the coding
group. If the first syntax element indicates that there is at least one non-zero coefficient
in the coding group, then a second syntax element (e.g., significance syntax element or
significant_coefficient flag) is coded for each coefficient in the coding group that
indicates whether a coefficient is zero or a non-zero coefficient.

[0071] A greater than one pass generates syntax elements to indicate whether the
absolute value of a significant coefficient is larger than one. In one example, a syntax
clement referred to as coeff_abs level greater1 flag (abbreviated “gr1Flag”)
provides an indication as to whether a significant coefficient has an absolute value
greater than one. In a similar manner, the greater than two pass generates syntax
elements to indicate whether the absolute value of a greater than one coefficient is larger
than two. In one example, a syntax element referred to as

coeff abs level greater2 flag (abbreviated “gr2Flag”) provides an indication as to

whether a greater than one coefficient has an absolute value greater than two.

WO 2013/158566 PCT/US2013/036646
19

[0072] A sign pass generates syntax elements to indicate the sign information for
significant coefficients. In one example, a syntax element referred to as coeff sign_flag
(abbreviated “signFlag”) may indicate the sign information for a significant
coefficient. For example, a value of 0 for the signFlag may indicate a positive sign,
while a value of 1 may indicate a negative sign. A coefficient level remaining pass
generates syntax elements that indicate the remaining absolute value of a transform
coefficient level (e.g., the remainder value). In one example, a syntax element referred
to as coeff _abs level remain (abbreviated “levelRem”) may provide this indication.
The levelRem syntax element may not be signaled unless the gr2Flag is present for any
given coefficient, as one example, although such a limitation is not always required. In
one example, a coefficient with a value of /evel may be coded as (abs(level)-x), where
the value of x depends on the presence of gr1Flag and gr2Flag. For example, x may be
equal to 3 if a gr2Flag is present. In some examples, the value of /evel may be coded as
(abs(level) — 3) for any coefficient for which there is a remainder. It should be noted
that the five pass approach is just one example technique that may be used for coding
transform coefficient and the techniques described herein may be equally applicable to
other techniques.

[0073] Further, in addition to the syntax elements described above, a position of a last
significant coefficient within a TU may be signaled in the bitstream. The position of the
last significant coefficient in the TU depends on a scan order associated with the TU.
The scan order for purposes of identifying a last significant coefficient may be any of
the scan orders described above or another predetermined scan order. In HEVC WD?7,
the position of the last significant coefficient within a block is indicated by specifying
an x-coordinate value and a y-coordinate value. The x-coordinate value may be
indicated using the last_significant_coeff x_ prefix and
last_significant_coeff x suffix syntax elements. The y-coordinate value may be
indicated using the last_significant_coeff y prefix and
last_significant_coeff y suffix syntax elements.

[0074] In this manner, the syntax elements described above can be used to signal a so-
called significance map of transform coefficients where a significance map illustrated
the position of significant coefficients with a TU. FIG. 4 is a conceptual diagram that
illustrates a relation between transform coefficients in a transform block and a
significance map associated with the transform map. As illustrated in FIG. 4, the

significance map includes a “1” to indicate each instance of a significant coefficient

WO 2013/158566 PCT/US2013/036646
20

value, i.¢., a value greater than zero, in the transform block. Also, in this example, the
value of the CFG is “1” to indicate that there is at least one non-zero coefficient in the
coding group (i.e., the sub-block).

[0075] For example, the sub-block on the left, in FIG. 4, illustrates example transform
coefficients (e.g., quantized transform coefficients). As illustrated, there is at least one
non-zero coefficient in the sub-block, hence the CFG is 1. Also, the significance map
on the right, in FIG. 4, includes the significance syntax element (e.g., the significant
coefficient flag) for each transform coefficient in the sub-block. For example, the
significant coefficient flag value 1 for all corresponding transform coefficients indicates
that the value of these transform coefficients is not zero (i.c., a non-zero transform
coefficient), and value 0 for all corresponding transform coefficients indicates that the
value of these transform coefficients is zero.

[0076] In HEVC, syntax elements related to quantized transform coefficients, such as
the significant_coeff group_flag and significant_coefficient flag described above and
other syntax elements may be entropy coded using CABAC (Context Adaptive Binary
Arithmetic Coding). To apply CABAC coding to a syntax element, binarization may be
applied to a syntax element to form a series of one or more bits, which are referred to as
“bins.” In addition, a coding context may be associated with a bin of the syntax
element. The coding context may identify probabilities of coding bins having particular
values. For instance, a coding context may indicate a 0.7 probability of coding a 0-
valued bin (representing an example of a “most probable symbol,” in this instance) and
a 0.3 probability of coding a 1-valued bin. After identifying the coding context, a bin
may be arithmetically coded based on the context. In some cases, contexts associated
with a particular syntax element or bins thereof may be dependent on other syntax
elements or coding parameters.

[0077] For example, the CGF context derivation depends on the scan order of the
corresponding coefficient group. For example, for a coefficient group scanned
according to the diagonal 4x4 sub-block scan (e.g., in the cases of 16x16 and 32x32
TUs and some 8x8 TUs), the CGF context (i.e., the context of syntax element
significant_coeff group flag) depends on the CGF of the sub-block to the right of
(CGFR) and below (CGFp) the coefficient group. For the non-square horizontal and
vertical scans illustrated in FIG. 2A-2B (e.g., in that case of an 8x8 TU), the CGF
context of the coefficient group depends only on the CGF of the previously coded

coefficient group. For the horizontal scan, the previous coded coefficient group refers

WO 2013/158566 PCT/US2013/036646
21

to the coded coefficient group below the coefficient group. For the vertical scan, the
previous coefficient group refers to the coefficient group to the right of the coefficient
group.

[0078] It should be noted that in HEVC WD7, because the context derivation of a CGF
is different for the diagonal 4x4 sub-block scan (i.e., depends on CGFr and CGFg) and
the non-square horizontal and vertical scans (i.e., depends only on previous CGF), a
different logic path is required for the CGF context derivation for the 4x4 diagonal sub-
block coefficient group and the CGF context derivation for the non-square horizontal
and vertical scans, which may also impose hardware and software complexity.

[0079] In HEVC WD7, the contexts assigned to the significant_coefficient_flag syntax
element are dependent on (1) the position of the transform coefficient within the 4x4
sub-block, (2) the CGFs of the sub-block to the right (CGFg) and below (CGFp) the
current sub-block, and (3) whether the sub-block contains the DC coefficient.
Kumakura, T., Fukushima, S. “Non-CE3: Simplified context derivation for significant
map” JCT-VC Contribution JCTVC-10296, which is hereby incorporated by reference
in its entirety, provides one example where coefficients within a 4x4 sub-block are
assigned contexts depending on the values of CGFr and CGFjg and the position of a
coefficient within a sub-block.

[0080] FIGS. 5A-5D illustrate four different patterns for context assignments of
significant coefficient flags of a 4x4 sub-block depending on CGFr and CGFp. It
should be noted that in FIGS. 5A-5D, although the context numbering starts with 0, this
is for illustration purposes and does not reflect the actual context numbers used in
HEVC WD7, but only relative context numbering. As illustrated in FIGS. 5A-5D, each
context pattern includes 16 context values, where each context value corresponds to the
coefficient located in the respective position. Further, as illustrated in FIGS. 5A-5D, a
context pattern is determined based on values of CGFr and CGFg. In this manner, the
patterns in FIGS. 5A-5D illustrate an example where contexts are assigned to significant
coefficient flags based on the position of the transform coefficient within the 4x4 sub-
block and the values of CGFr and CGFg. It should be noted that context assignments
illustrated in FIGS. 5A-5D are not optimal for horizontal or vertical sub-block scans
illustrated in FIGS. 3A-3B based on the probable location of significant coefficients
within a vector generated using the scans.

[0081] Further, in one example, the values of contexts within a context pattern may be

modified based on whether the corresponding sub-block includes the DC coefficient.

WO 2013/158566 PCT/US2013/036646
22

The DC coefficient may be the first coefficient of the transform and may generally
indicate the average amount energy in the entire block, as one example. For luma
transform coefficients, if a 4x4 sub-block does not contain a DC coefficient, a context
offset may be applied. In some examples, a context offset of 3 is applied. As an
example, if a 4x4 sub-block does not contain DC coefficient, and a context assignment
derived from a context pattern is 2, the actual context used may be 5. In other words,
the context derivation process may be exactly the same in both cases (i.c., a pattern is
selected from a set of patterns based on the values of CGFr and CGFp), but different
sets of contexts are used for DC and non-DC sub-blocks. That is, DC and non-DC
blocks do not share the same contexts.

[0082] This disclosure uses the term “DC sub-block” to refer to a sub-block of a block
(e.g., a TU) that includes a DC coefficient of the block. For example, assuming the DC
coefficient of a TU is an upper-left-most coefficient, an upper-left-most sub-block of the
TU including the DC coefficient may be referred to as a DC sub-block. Further, in one
example, for chroma transform coefficients, the context offset determination based on
whether the 4x4 sub-block contains the DC coefficient is not applied. That is, the
contexts are shared for DC sub-blocks and non-DC sub-blocks for chroma transform
coefficients. Thus, in some cases only three contexts are used for transform coefficients
associates with the chroma components. Further, in some cases, a DC coefficient may
always use a separate context, which is shared for all TU sizes. Further, in HEVC WD7,
significance map context derivation for an 8x8 TU uses a scaled 8x8 table for the
context assignment and, as such, the significance map coding for an 8x8 TU is not
unified with the significance map context derivation for 16x16 and 32x32 TUs.

[0083] This disclosure describes several techniques for coding the syntax elements
associated with transform coefficients included in a transform block, such as the coding
group flag syntax element (i.c., significant_coeff group_flag or
coded_sub_block_flag) and the significant coefficient syntax elements (i.c.,
significant_coefficient flag). In particular, this disclosure describes techniques where
the scanning orders in FIGS. 3A-3B may be used as an alternative to non-square
coefficient groups illustrated in FIGS. 2A-2B. Further, this disclosure describes context
derivation techniques for the syntax elements associated with transform coefficients
wherein the techniques are based on the characteristics of the sub-block scans illustrated

in FIGS. 3A-3B. In one example, the context derivation techniques may mitigate the

WO 2013/158566 PCT/US2013/036646
23

BD-rate performance loss, as described above, when the scans illustrated in FIGS. 3A-
3B are used instead of the scans illustrated in FIGS. 2A-2B.

[0084] FIG. 6 is a block diagram illustrating an example video encoding and decoding
system 10 that may be configured to assign contexts utilizing the techniques described
in this disclosure. As shown in FIG. 6, system 10 includes a source device 12 that
generates encoded video data to be decoded at a later time by a destination device 14.
Source device 12 and destination device 14 may comprise any of a wide range of
devices, including desktop computers, notebook (i.e., laptop) computers, tablet
computers, set-top boxes, telephone handsets such as so-called “smart” phones, so-
called “smart” pads, televisions, cameras, display devices, digital media players, video
gaming consoles, video streaming device, or the like. In some cases, source device 12
and destination device 14 may be equipped for wireless communication. However, the
techniques of this disclosure are not necessarily limited to wireless applications or
environments. The techniques may be applied to video coding in support of any of a
variety of multimedia applications, such as over-the-air television broadcasts, cable
television transmissions, satellite television transmissions, streaming video
transmissions, ¢.g., via the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data storage medium, or other
applications. In some examples, system 10 may be configured to support one-way or
two-way video transmission to support applications such as video streaming, video
playback, video broadcasting, and/or video telephony.

[0085] In the example of FIG. 6, source device 12 includes a video source 18, video
encoder 20, and an output interface 22. In some cases, output interface 22 may include
a modulator/demodulator (modem) and/or a transmitter. In source device 12, video
source 18 may include a source such as a video capture device, ¢.g., a video camera, a
video archive containing previously captured video, a video feed interface to receive
video from a video content provider, and/or a computer graphics system for generating
computer graphics data as the source video, or a combination of such sources. As one
example, if video source 18 is a video camera, source device 12 and destination device
14 may form so-called camera phones or video phones. However, the techniques
described in this disclosure may be applicable to video coding in general, and may be
applied to wireless and/or wired applications. The captured, pre-captured, or computer-
generated video may be encoded by video encoder 12. The encoded video data may be

transmitted directly to destination device 14 via output interface 22 of source device 20

WO 2013/158566 PCT/US2013/036646
24

via link 16. The encoded video data may also (or alternatively) be stored onto storage
device 32 for later access by destination device 14 or other devices, for decoding and/or
playback.

[0086] Link 16 may comprise any type of medium or device capable of transporting the
encoded video data from source device 12 to destination device 14. In one example,
link 16 may comprise a communication medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in real-time. The encoded video
data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local arca
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14.

[0087] Storage device 32 may include any of a variety of distributed or locally accessed
data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs, flash
memory, volatile or non-volatile memory, or any other suitable digital storage media for
storing encoded video data. In a further example, storage device 32 may correspond to
a file server or another intermediate storage device that may hold the encoded video
generated by source device 12. Destination device 14 may access stored video data
from storage device 32 via streaming or download. A file server may be any type of
server capable of storing encoded video data and transmitting the encoded video data to
the destination device 14. Example file servers include a web server (e.g., for a
website), an FTP server, network attached storage (NAS) devices, or a local disk drive.
Destination device 14 may access the encoded video data through any standard data
connection, including an Internet connection. This may include a wireless channel (e.g.,
a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server.

[0088] In the example of FIG. 6, destination device 14 includes an input interface 28, a
video decoder 30, and a display device 34. In some cases, input interface 28 may

include a receiver and/or a modem. Input interface 28 of destination device 14 receives

WO 2013/158566 PCT/US2013/036646
25

the encoded video data over link 16 or from storage device 32. The encoded video data
communicated over link 16, or provided on storage device 32, may include a variety of
syntax elements generated by video encoder 20 for use by a video decoder, such as
video decoder 30, in decoding the video data. Such syntax elements may be included
with the encoded video data transmitted on a communication medium, stored on a
storage medium, or stored a file server.

[0089] Display device 34 may be integrated with, or external to, destination device 14.
In some examples, destination device 14 may include an integrated display device and
may also be configured to interface with an external display device. In other examples,
destination device 14 may be a display device. Display device 34 displays the decoded
video data to a user, and may comprise any of a variety of display devices such as a
liquid crystal display (LCD), a plasma display, an organic light emitting diode (OLED)
display, or another type of display device.

[0090] Video encoder 20 and video decoder 30 may operate according to a video
compression standard, such as the HEVC standard presently under development, as
described above, and may generally conform to the HEVC Test Model (HM).
Alternatively, video encoder 20 and video decoder 30 may operate according to other
proprictary or industry standards, such as the ITU-T H.264 standard or extensions of
such standards. The techniques of this disclosure, however, are not limited to any
particular coding standard. Further, video encoder 20 and video decoder 30 may
operate according to a video compression standard that is modified to incorporate the
techniques described herein.

[0091] Although not shown in FIG. 6, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include
appropriate MUX-DEMUX units, or other hardware and software, to handle encoding
of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0092] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store

instructions for the software in a suitable, non-transitory computer-readable medium and

WO 2013/158566 PCT/US2013/036646
26

execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0093] FIG. 7 is a block diagram illustrating an example video encoder 20 that may
implement the techniques described in this disclosure. In the example of FIG. 8, video
encoder 20 includes a mode select unit 35, prediction processing unit 41, reference
picture memory 64, summer 50, transform processing unit 52, quantization processing
unit 54, and entropy encoding unit 56. Prediction processing unit 41 includes motion
estimation unit 42, motion compensation unit 44, and intra prediction module 46. For
video block reconstruction, video encoder 20 also includes inverse quantization
processing unit 58, inverse transform module 60, and summer 62. A deblocking filter
(not shown in FIG. 7) may also be included to filter block boundaries to remove
blockiness artifacts from reconstructed video. If desired, the deblocking filter would
typically filter the output of summer 62. Additional loop filters (in loop or post loop)
may also be used in addition to the deblocking filter. It should be noted that prediction
processing unit 41 and transform processing unit 52 should not be confused with PUs
and TUs as described above.

[0094] As shown in FIG. 7, video encoder 20 receives video data, and mode select unit
35 partitions the data into video blocks. This partitioning may also include partitioning
into slices, tiles, or other larger units, as well as video block partitioning, e.g., according
to a quadtree structure of LCUs and CUs. Video encoder 20 generally illustrates the
components that encode video blocks within a video slice to be encoded. A slice may
be divided into multiple video blocks (and possibly into sets of video blocks referred to
as tiles). Prediction processing unit 41 may select one of a plurality of possible coding
modes, such as one of a plurality of intra coding modes or one of a plurality of inter
coding modes, for the current video block based on error results (e.g., coding rate and
the level of distortion). Prediction processing unit 41 may provide the resulting intra- or
inter-coded block to summer 50 to generate residual block data and to summer 62 to
reconstruct the encoded block for use as a reference picture.

[0095] Intra prediction unit 46 within prediction processing unit 41 may perform intra-
predictive coding of the current video block relative to one or more neighboring blocks
in the same frame or slice as the current block to be coded to provide spatial

compression. Motion estimation unit 42 and motion compensation unit 44 within

WO 2013/158566 PCT/US2013/036646
27

prediction processing unit 41 perform inter-predictive coding of the current video block
relative to one or more predictive blocks in one or more reference pictures to provide
temporal compression.

[0096] Motion estimation unit 42 may be configured to determine the inter-prediction
mode for a video slice according to a predetermined pattern for a video sequence. The
predetermined pattern may designate video slices in the sequence as P slices or B slices.
Motion estimation unit 42 and motion compensation unit 44 may be highly integrated,
but are illustrated separately for conceptual purposes. Motion estimation, performed by
motion estimation unit 42, is the process of generating motion vectors, which estimate
motion for video blocks. A motion vector, for example, may indicate the displacement
of a PU of a video block within a current video frame or picture relative to a predictive
block within a reference picture.

[0097] A predictive block is a block that is found to closely match the PU of the video
block to be coded in terms of pixel difference, which may be determined by sum of
absolute difference (SAD), sum of square difference (SSD), or other difference metrics.
In some examples, video encoder 20 may calculate values for sub-integer pixel positions
of reference pictures stored in reference picture memory 64. For example, video
encoder 20 may interpolate values of one-quarter pixel positions, one-eighth pixel
positions, or other fractional pixel positions of the reference picture. Therefore, motion
estimation unit 42 may perform a motion search relative to the full pixel positions and
fractional pixel positions and output a motion vector with fractional pixel precision.
[0098] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in reference picture memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0099] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation, possibly performing interpolations to sub-pixel precision. Upon
receiving the motion vector for the PU of the current video block, motion compensation
unit 44 may locate the predictive block to which the motion vector points in one of the

reference picture lists. Video encoder 20 forms a residual video block by subtracting

WO 2013/158566 PCT/US2013/036646
28

pixel values of the predictive block from the pixel values of the current video block
being coded, forming pixel difference values. The pixel difference values form residual
data for the block, and may include both luma and chroma difference components.
Summer 50 represents the component or components that perform this subtraction
operation. Motion compensation unit 44 may also generate syntax elements associated
with the video blocks and the video slice for use by video decoder 30 in decoding the
video blocks of the video slice.

[0100] Intra-prediction unit 46 may intra-predict a current block, as an alternative to the
inter-prediction performed by motion estimation unit 42 and motion compensation unit
44, as described above. In particular, intra-prediction unit 46 may determine an intra-
prediction mode to use to encode a current block. In some examples, intra-prediction
unit 46 may encode a current block using various intra-prediction modes, ¢.g., during
separate encoding passes, and intra-prediction unit 46 (or mode select unit 35, in some
examples) may select an appropriate intra-prediction mode to use from the tested
modes. For example, intra-prediction unit 46 may calculate rate-distortion values using
a rate-distortion analysis for the various tested intra-prediction modes, and select the
intra-prediction mode having the best rate-distortion characteristics among the tested
modes. Rate-distortion analysis generally determines an amount of distortion (or error)
between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bit rate (that is, a number of bits) used to
produce the encoded block. Intra-prediction unit 46 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block.

[0101] In any case, after selecting an intra-prediction mode for a block, intra-prediction
unit 46 may provide information indicative of the selected intra-prediction mode for the
block to entropy encoding unit 56. Entropy encoding unit 56 may encode the
information indicating the selected intra-prediction mode in accordance with the entropy
techniques described herein. Video encoder 20 may include in the transmitted bitstream
configuration data, which may include a plurality of intra-prediction mode index tables
and a plurality of modified intra-prediction mode index tables (also referred to as
codeword mapping tables), definitions of encoding contexts for various blocks, and
indications of a most probable intra-prediction mode, an intra-prediction mode index

table, and a modified intra-prediction mode index table to use for each of the contexts.

WO 2013/158566 PCT/US2013/036646
29

[0102] After prediction processing unit 41 generates the predictive block for the current
video block via either inter-prediction or intra-prediction, video encoder 20 forms a
residual video block by subtracting the predictive block from the current video block.
The residual video data in the residual block may be included in one or more TUs and
applied to transform processing unit 52. Transform processing unit 52 may transform
the residual video data into residual transform coefficients using a transform, such as a
discrete cosine transform (DCT) or a conceptually similar transform. Transform
processing unit 52 may convert the residual video data from a pixel domain to a
transform domain, such as a frequency domain. In some cases, transform processing
unit 52 may apply a 2-dimensional (2-D) transform (in both the horizontal and vertical
direction) to the residual data in the TUs. In some examples, transform processing unit
52 may instead apply a horizontal 1-D transform, a vertical 1-D transform, or no
transform to the residual data in each of the TUs.

[0103] Transform processing unit 52 may send the resulting transform coefficients to
quantization processing unit 54. Quantization processing unit 54 quantizes the
transform coefficients to further reduce the bit rate. The quantization process may
reduce the bit depth associated with some or all of the coefficients. The degree of
quantization may be modified by adjusting a quantization parameter. In some
examples, quantization processing unit 54 may then perform a scan of the matrix
including the quantized transform coefficients. Alternatively, entropy encoding unit 56
may perform the scan.

[0104] As described above, the scan performed on a transform block may be based on
the size of the transform block. Quantization processing unit 54 and/or entropy
encoding unit 56 may scan 8x8, 16x16, and 32x32 transform blocks using any
combination of the sub-block scans described above with respect to FIG. 1, FIGS. 2A-
2B, and FIGS. 3A-3B. In one example, 32x32 transform blocks and 16x16 transform
blocks may be scanned using the 4x4 diagonal sub-block scan described above with
respect to FIG. 1 and 8x8 transform blocks may be scanned using the 4x4 sub-block
scans described above with respect to FIG. 1 and FIGS. 3A-3B. When more one than
one scan is available for a transform block, entropy encoding unit 56 may select a scan
based on a coding parameter associated with the transform block, such as a prediction
mode associated with a prediction unit corresponding to the transform block. Further
details with respect to entropy encoding unit 56 are described below with respect to

FIG. 8.

WO 2013/158566 PCT/US2013/036646
30

[0105] Inverse quantization processing unit 58 and inverse transform processing unit 60
apply inverse quantization and inverse transformation, respectively, to reconstruct the
residual block in the pixel domain for later use as a reference block of a reference
picture. Motion compensation unit 44 may calculate a reference block by adding the
residual block to a predictive block of one of the reference pictures within one of the
reference picture lists. Motion compensation unit 44 may also apply one or more
interpolation filters to the reconstructed residual block to calculate sub-integer pixel
values for use in motion estimation. Summer 62 adds the reconstructed residual block
to the motion compensated prediction block produced by motion compensation unit 44
to produce a reference block for storage in reference picture memory 64. The reference
block may be used by motion estimation unit 42 and motion compensation unit 44 as a
reference block to inter-predict a block in a subsequent video frame or picture.

[0106] Following quantization, entropy encoding unit 56 entropy encodes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy encoding methodology or
technique. Following the entropy encoding by entropy encoding unit 56, the encoded
bitstream may be transmitted to video decoder 30, or archived for later transmission or
retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode the
motion vectors and the other syntax elements for the current video slice being coded.
Entropy encoding unit 56 may entropy encode syntax elements such as the
significant_coeff group_flag, significant_coefficient_flag, coeff abs level remain,
coeff abs level greaterl flag, coeff abs level greater2 flag, and coeff sign flag,
syntax elements described above using CABAC.

[0107] FIG. 8 is a block diagram that illustrates an example entropy encoding unit 56
that may implement the techniques described in this disclosure. The entropy encoding
unit 56 illustrated in FIG. 8 may be a CABAC encoder. The example entropy encoding
unit 56 may include a binarization unit 502, an arithmetic encoding unit 510, which
includes a bypass encoding engine 504 and a regular encoding engine 508, and a context
modeling unit 506.

[0108] Entropy encoding unit 56 may receive one or more syntax elements, such as the
cither of the significant_coeff group_flag or coded_sub_block_flag syntax elements

described above and the significant_coefficient _flag, coeff abs level greaterl flag,

WO 2013/158566 PCT/US2013/036646
31

coeff abs level greater2 flag, coeff sign flag, and the coeff abs level remain
syntax elements. Binarization unit 502 receives a syntax element and produces a bin
string (i.e., binary string). Binarization unit 502 may use, for example, any one or
combination of the following techniques to produce a bin string: fixed length coding,
unary coding, truncated unary coding, truncated Rice coding, Golomb coding,
exponential Golomb coding, and Golomb-Rice coding. Further, in some cases,
binarization unit 502 may receive a syntax element as a binary string and simply pass-
through the bin values. In one example, binarization unit 502 receives syntax element
significant_coeff group flag and produces a bin string.

[0109] Arithmetic encoding unit 510 is configured to receive a bin string from
binarization unit 502 and perform arithmetic encoding on the bin string. As shown in
FIG. 8, arithmetic encoding unit 510 may receive bin values from a bypass path or the
regular coding path. Bin values that follow the bypass path may be bins values
identified as bypass coded and bin values that follow the regular encoding path may be
identified as CABAC-coded. Consistent with the CABAC process described above, in
the case where arithmetic encoding unit 510 receives bin values from a bypass path,
bypass encoding engine 504 may perform arithmetic encoding on bin values without
utilizing an adaptive context assigned to a bin value. In one example, bypass encoding
engine 504 may assume equal probabilities for possible values of a bin.

[0110] In the case where arithmetic encoding unit 510 receives bin values through the
regular path, context modeling unit 506 may provide a context variable (e.g., a context
state), such that regular encoding engine 508 may perform arithmetic encoding based on
the context assignments provided by context modeling unit 506. The context
assignments may be defined according to a video coding standard, such as the upcoming
HEVC standard. Further, in one example context modeling unit 506 and/or entropy
encoding unit 56 may be configured to assign contexts to bins of the
significant_coeff group flag and the significant_coefficient flag syntax elements
based on techniques described herein. The techniques may be incorporated into HEVC
or another video coding standard. The context models may be stored in memory.
Context modeling unit 506 may include a series of indexed tables and/or utilize
mapping functions to determine a context and a context variable for a particular bin.
After encoding a bin value, regular encoding engine 508 may update a context based on

the actual bin values.

WO 2013/158566 PCT/US2013/036646
32

[0111] As described above, the context assignments illustrated in FIGS. SA-5D are not
optimal for horizontal or vertical 4x4 sub-block scans illustrated in FIGS. 3A-3B. For
example, the patterns illustrated in FIG. 5A and FIG. 5D have context assignment
regions divided along a diagonal line. These regions do not correspond with the
expected location of significant coefficients when a horizontal or vertical 4x4 sub-block
scan is applied. Also, the first row of a horizontal 4x4 sub-block scan has a much
higher probability of being significant than the second row. In a similar manner, the
first column of a vertical 4x4 sub-block scan has a much high probability of being
significant than a second column. Therefore, the context patterns illustrated in FIGS.
5A-5D may be modified to provide more optimal content assignments for significant
coefficient flags that have been scanned according to a horizontal 4x4 sub-block scan or
a vertical 4x4 sub-block scan. Thus, in addition to performing arithmetic encoding
based on the context assignments defined according to HEVC WD7, regular encoding
engine 508 may be configured to perform arithmetic encoding based on contexts
derived according to the techniques disclosed herein.

[0112] FIGS. 9A-9D illustrate context patterns that are based on expected positions of
significant coefficients with respect to a horizontal 4x4 sub-block scan or a vertical 4x4
sub-block scan. It should be noted that in FIGS. 9A-9D, as with the context patterns
illustrated in FIGS. 5A-5D, although the context numbering starts with 0, this is for
illustration purposes and does not reflect the actual context numbers, but only relative
context numbering. FIGS. 9A-9D illustrate four different patterns that may be used for
context assignments of significant coefficient flags of a 4x4 sub-block depending on
CGFr and CGFg, where CGFr refers to the context group flag for the right coding
group (i.e., right sub-block), and CGFp refers to the context group flag for the below
coding group (i.c., below sub-block). Again, the context group flag syntax element
indicates whether any of the transform coefficients of a coding group are non-zero.
[0113] In accordance with the techniques described in this disclosure, video encoder 20
selects a context pattern for encoding significance syntax elements, and video decoder
30 selects a context pattern for decoding significance syntax elements. FIGS. 9A-9D
illustrate examples of a plurality of two-dimensional context pattern from which video
encoder 20 and video decoder 30 may select a context pattern for encoding and
decoding. In some examples, video encoder 20 and video decoder 30 may select a
context pattern from the same context patterns (e.g., those illustrated in FIGS. 9A-9D)

for a plurality of scan types. For example, for a horizontal scan, video encoder 20 and

WO 2013/158566 PCT/US2013/036646
33

video decoder 30 may select from the same context patterns. For a vertical scan, video
encoder 20 and video decoder 30 may select from the same context patterns as those for
the horizontal scan. For a diagonal scan, video encoder 20 and video decoder 30 may
select from the same context patterns as those for the horizontal scan and the vertical
scan.

[0114] In general the context patterns illustrated in FIGS. 9A-9D can be said to have
less diagonal assignment behavior and more row/column-wise assignment behavior
when compared to the respective patterns illustrated in FIGS. 5A-5D. Entropy encoding
unit 56 may be configured to assign contexts to the significant coefficient _flag syntax
elements based on the context patterns illustrated in FIGS. 9A-9D.

[0115] As illustrated in FIGS. 9A-9D, each context pattern includes 16 context values,
where each context value corresponds to the coefficient located in the respective
position. It should be noted that the context pattern in FIG. 9D (i.e., for CGFg=1,
CGFgr=1) is uniform for all the positions (i.c., context = 2). FIG. 9D can be contrasted
with FIG. 5D, where the context pattern is not uniform. Further, the context patterns for
CGFg=0, CGFr=1, illustrated in FIG. 9B, and CGFg=1, CGFr= 0, illustrated in FIG.
9C, give more importance to the first row and column, respectively, than the context
patterns illustrated in FIG 5B and FIG. 5C. Also, the context pattern for CGFz=0,
CGFr=0, illustrated in FIG. 9A, is more square-shaped and gives more importance to
the top-left coefficient in comparison to the context pattern illustrated in FIG. 5A.
[0116] In one example, entropy encoding unit 56 may be configured to assign contexts
to the significant_coefficient flag syntax elements based on the context patterns
illustrated in FIGS. 9A-9D for the horizontal and vertical 4x4 sub-block scans and
assign contexts to the significant_coefficient flag syntax clements based on the context
patterns illustrated in FIGS. 5A-5D for the diagonal 4x4 sub-block scan. In another
example, in order to limit the total number of context patterns, entropy encoding unit 56
may be configured to assign contexts to the significant_coefficient_flag syntax
clements based on the context patterns illustrated in FIGS. 9A-9D for the all of the
diagonal, horizontal, and vertical 4x4 sub-block scans.

[0117] Further, combinations of the context patterns illustrated in FIGS. SA-5D and
9A-9D may be used to assign contexts for the significant_coefficient flag syntax
elements. For example, horizontal 4x4 sub-block scans may use the context patterns
illustrated in FIG. 5A, FIG. 9B, FIG. 5C, and 9D for respective values of CGFy and

CBFr. In this example, the horizontal 4x4 sub-block scan does not use a pattern with

WO 2013/158566 PCT/US2013/036646
34

vertical characteristics (i.¢., the pattern illustrated in FIG. 9C). This may improve
coding, because the statistics of a horizontal scan usually do not match the distribution
illustrated in FIG. 9C. In another example, for the horizontal 4x4 sub-block scan
instead of using the pattern illustrated in FIG. 9C for the case where the case (CGFp=1,
CBFr=0), the pattern illustrated in FIG. 9D may be used for both the case (CGFp=1,
CBFr=0) and the case (CGFg=1, CBFr=1). In this example, there is pattern sharing for
different CGF configurations for a give scan. Such pattern sharing may also be applied
to the other scan types.

[0118] As described above, in one example, quantization processing unit 54 and/or
entropy encoding unit 56 may scan 32x32 transform blocks and 16x16 transform blocks
using the 4x4 diagonal sub-block scan described above with respect to FIG. 1 and 8x8
transform blocks may be scanned using the 4x4 sub-block scans described above with
respect to FIG. 1 and FIGS. 3A and 3B. In one example, entropy encoding unit 56 may
be configured to assign contexts to the significant_coefficient flag syntax elements for
32x32 and 16x16 transform blocks based on the context patterns used for assigning
context to the significant_coefficient flag syntax clements based on the context
patterns used for the 8x8 transform blocks.

[0119] In one example, entropy encoding unit 56 may use the context patterns
illustrated in FIGS. 9A-9D to derive contexts for cach of the 32x32, 16x16, and 8x8
transforms blocks. In another example, entropy encoding unit 56 may use the a set of
context patterns, such as those illustrated in FIGS. 5A-5B, to derive contexts for 32x32,
16x16, and 8x8 transforms blocks when the 4x4 diagonal sub-block scan is applied and
use a different set of context patterns, such as those illustrated in FIGS. 9A-9D, to
derive the contexts for an 8x8 transform block when either of the 4x4 horizontal or
vertical sub-block scan is applied. In this example, the derivation of contexts may be
shared for TUs of varying sizes and may depend on the scan type.

[0120] Further, in a matter similar to the case on deriving and assigning contexts to DC
and non-DC sub-blocks, although context derivation may be shared for each of 32x32,
16x16, and 8x8 transforms blocks, the actual contexts may defer for each size transform
block. For example, each of the actual contexts used for 32x32, 16x16, and 8x8
transform blocks may be based on the context patterns illustrated in FIGS. 5A-5B, but
an offset may be applied to the each of the context patterns based on the size of the TU.
In this example, each of the 32x32, 16x16, and 8x8 transform blocks would share a

context derivation, but not actual contexts. In another example, the context derivation

WO 2013/158566 PCT/US2013/036646
35

may be the same for all sub-blocks regardless of TUs size or scan type (e.g., the patterns
illustrated in FIGS. 9A-9D may be used for all cases), but there may be three sets of
actual contexts, one set of contexts for the large TUs (16x16 and 32x32), one set of
contexts for the 8x8 TU with diagonal scan, and one set of contexts for the 8x8 TU
when using the horizontal or vertical scan. The sets may be defines by applying
different offsets to a set of context patterns. Thus, context modeling unit 506 and/or
entropy encoding unit 56 may be configured to assign contexts to the
significant_coefficient_flag using a unified context derivation for all scanning orders.
[0121] As described above, a different set of contexts may be assigned to the
significant_coefficient flag for the DC sub-block than for non-DC sub-blocks. That is,
offsets may be applied to context patterns when determining the actual contexts. The
reason for this is that the statistics for the DC sub-block are typically much different
than the statistics for non-DC sub-blocks when a 4x4 diagonal sub-block scan is used.
However, when sub-blocks are scanned using a 4x4 horizontal or vertical sub-block
scan, the statistics for the DC sub-block and a non-DC sub-block may be similar. For
example, for an 8x8 TU that uses a horizontal sub-block scan, the sub-block to the right
of the DC sub-block may have statistics that are more similar to the DC sub-block than
to the other non-DC sub-blocks. Similarly, for the vertical scan, the sub-block below
the DC sub-block may have statistics that are more similar to the DC sub-block than to
the other non-DC sub-blocks.

[0122] In order to compensate for the fact that one of the non-DC sub-blocks may have
statistics that are similar to the DC sub-block, context modeling unit 506 and/or entropy
encoding unit 56 may be configured to use a first set of contexts for the DC sub-block
and an adjacent non-DC sub-block, and a second set of contexts may be used to assign
contexts for the other non-DC sub-blocks. For example, when a horizontal 4x4 sub-
block scan is used for an 8x8 TU, context modeling unit 506 and/or entropy encoding
unit 56 may be configured to use a first set of contexts to assign contexts to the first row
of sub-blocks and a second set of contexts to assign contexts to the second row of the
sub-blocks. For example, context modeling unit 506 and/or entropy encoding unit 56
may be configured to use the context patterns illustrated in FIGS. SA-5D and the
context patterns illustrated in FIGS. 9A-9D for the second row. Further, offsets may
still be applied for the non-DC sub-blocks, such that the DC sub-block may still have a
unique context set. In a similar manner, for a vertical sub-block scan type context

patterns may be assigned on a column basis. Further, this concept can be extended to

WO 2013/158566 PCT/US2013/036646
36

larger TU with more than two columns or rows. The technique of deriving and
assigning context based on the row or column of sub-block may be applied for TUs of
all sizes. Thus, context modeling unit 506 and/or entropy encoding unit 56 may be
configured to assign contexts to the significant_coefficient flag based on a sub-block
scan type and the location of a sub-block within a transform block.

[0123] As described above, FIGS. 9A-9D illustrate example context patterns that video
encoder 20 selects for determining the contexts for encoding significance syntax
elements of transform coefficients of a sub-block of a transform block. In some
examples, for a plurality of scan types of a sub-block (i.e., if the sub-block is to be
scanned horizontally, vertically, or diagonally), video encoder 20 may select the context
pattern from one of the context patterns illustrated in FIGS. 9A-9D. In other words, the
context patterns from which video encoder 20 may select a context pattern may be the
same for a plurality of scan types (e.g., a horizontal scan, a vertical scan, and a diagonal
scan).

[0124] Furthermore, as illustrated in FIGS. 9A-9D, each of the context patterns is
associated with a condition of whether one or more neighboring sub-blocks include any
non-zero transform coefficients. For example, the one or more neighboring sub-blocks
include a first neighboring sub-block and a second neighboring sub-block. In some
examples, each of the context patterns is associated with a condition of whether the first
neighboring sub-block (e.g., a below sub-block that is below the current sub-block)
includes any non-zero transform coefficients and whether the second neighboring sub-
block (e.g., a right sub-block that is right of the current sub-block) includes any non-
zero transform coefficients. As described above, the CGFg indicates whether a below
sub-block includes any non-zero transform coefficients and the CGFr indicates whether
a right sub-block includes any non-zero transform coefficients.

[0125] Video encoder 20 may select one of the context patterns illustrated in FIGS. 9A-
9D based on various factors, as described below. In any event, video encoder 20 may
assign contexts to each of the significance syntax elements of the transform coefficients
based on the selected context pattern.

[0126] For example, if video encoder 20 selected the context pattern associated with the
condition that the first neighboring sub-block does not include any non-zero transform
coefficients and the second neighboring sub-block includes at least one non-zero
transform coefficient (i.e., CGFp equals 0 and CGFy equals 1), then video encoder 20

may assign a context to a first row of the significance syntax elements of the transform

WO 2013/158566 PCT/US2013/036646
37

coefficients for the current sub-block that is different than contexts for other rows of the
significance elements of the transform coefficients for the current sub-block. For
instance, if CGFg equals 0 and CGFr equals 1, FIG 9B illustrates that the first row of
transform block is assigned the context of 2 (or 5 assuming an offset of 3) for encoding
significance syntax elements of the first row of the sub-block, which is different than the
context for any other row of the sub-block.

[0127] Video decoder 30 may function in a substantially similar way. For example, if
video decoder 30 selects the context pattern illustrated in FIG. 9B (e.g., the condition
that CGFp equals 0 and CGFg equals 1), then video decoder 30 assigns contexts to the
significance syntax elements of a sub-block of a transform block, accordingly. For
instance, similar to video encoder 20, video decoder 30 assigns a context to a first row
of the significance syntax elements of the transform coefficients for the current sub-
block that is different than contexts for other rows of the significance syntax elements of
the transform coefficients for the current sub-block.

[0128] As another example, if video encoder 20 selected the context pattern associated
with the condition that the first neighboring sub-block includes at least one non-zero
transform coefficient and the second neighboring sub-block does not include any non-
zero transform coefficients (i.e., CGFg equals 1 and CGFr equals 0), then video encoder
20 may assign a context to a first column of the significance syntax elements of the
transform coefficients for the current sub-block that is different than contexts for other
columns of the significance syntax elements of the transform coefficients for the current
sub-block. For instance, if CGFg equals 1 and CGFr equals 0, FIG 9C illustrates that
the first column of transform block is assigned the context of 2 (or 5 assuming an offset
of 3) for encoding significance syntax elements of the first column of the sub-block,
which is different than the context for any other column of the sub-block.

[0129] Video decoder 30 may function in a substantially similar way. For example, if
video decoder 30 selects the context pattern illustrated in FIG. 9C (e.g., the condition
that CGFp equals 1 and CGFg equals 0), then video decoder 30 assigns contexts to the
significance syntax elements of a sub-block of a transform block, accordingly. For
instance, similar to video encoder 20, video decoder 30 assigns a context to a first
column of the significance syntax elements of the transform coefficients for the current
sub-block that is different than contexts for other columns of the significance elements

of the transform coefficients for the current sub-block.

WO 2013/158566 PCT/US2013/036646
38

[0130] As another example, if video encoder 20 selected the context pattern associated
with the condition that the first neighboring sub-block includes at least one non-zero
transform coefficient and the second neighboring sub-block includes at least one non-
zero transform coefficient (i.e., CGFp equals 1 and CGFy equals 1), then video encoder
20 may assign a same context to the significance syntax elements of the transform
coefficients for the current sub-block. For instance, if CGFp equals 1 and CGFr equals
1, FIG 9D illustrates that all the contexts are the same for the significance syntax
element (i.e., 2).

[0131] Video decoder 30 may function in a substantially similar way. For example, if
video decoder 30 selects the context pattern illustrated in FIG. 9D (e.g., the condition
that CGFp equals 1 and CGFg equals 1), then video decoder 30 assigns contexts to the
significance syntax elements of a sub-block of a transform block, accordingly. For
instance, similar to video encoder 20, video decoder 30 assigns a same context to the
significance elements of the transform coefficients for the current sub-block.

[0132] If CGFp equals 0 and CGFR equals 0, video encoder 20 may select the context
pattern illustrated in FIG. 9A, and assign contexts to the significance syntax elements of
a sub-block of a transform block, accordingly. Video decoder 30 may function in a
substantially similar manner if CGFg equals 0 and CGFg equals 0.

[0133] Furthermore, the context patterns illustrated in FIGS. 9A-9D may include
characteristics in addition to those described above. For example, one of the
characteristics of the context pattern (e.g., when CGFg equals 0 and CGFg equals 0) is
that the context pattern includes contexts that if scanned horizontally or vertically result
in a same one-dimensional vector.

[0134] For instance, if the context pattern illustrated in FIG. 9A is scanned horizontally
from the bottom-right to the top-left, the resulting one-dimensional vector is: [0 00 0 0
1110111011 2]. Ifthe context pattern illustrated in FIG. 9A is scanned vertically
from the bottom-right to the top-left, the resulting one-dimensional vector is: [0 00 0 0
1110111011 2]. As can be seen, these two one-dimensional vectors are the same.
[0135] As another example of the characteristics of the context patterns, two of the
context patterns are transposes of one another such that a horizontal scan of one of the
context patterns and a vertical scan of another one of the context patterns results in the
same one-dimensional vector. For example, a horizontal scan of the context pattern
illustrated in FIG. 9B from bottom-right to top-left results in the one-dimensional

vector: [0000000011112222]. A vertical scan of the context pattern illustrated

WO 2013/158566 PCT/US2013/036646
39

in FIG. 9C from bottom-right to top-left results in the one-dimensional vector: [0 0 0 0 0
00011112222]. Ascan be seen, these two one-dimensional vectors are the same.
[0136] As another example of the characteristics of the context patterns, one of the
context patterns includes contexts that if scanned horizontally, vertically, and diagonally
result in the same one-dimensional vector. For example, a horizontal scan, a vertical
scan, or a diagonal scan of the contexts of the context pattern illustrated in FIG. 9D
result in the same one-dimensional vector: [2222222222222222].

[0137] As described above, video encoder 20 selects one of the context patterns
illustrated in FIGS. 9A-9D based on various factors. As one example, video encoder 20
selects the context pattern based on the CGF of the below and right sub-blocks.
However, there may be additional factors as well. For instance, video encoder 20 may
select the context pattern based on a scan type. If the scan type is a horizontal scan of
the sub-block, then video encoder 20 may select the context pattern illustrated in FIG.
9B. If the scan type is a vertical scan of the sub-block, then video encoder 20 may
select the context pattern illustrated in FIG. 9C. Video decoder 30 may function in
similar manner.

[0138] In some examples, as described above, video encoder 20 may exclude context
patterns from the content patterns that video encoder 20 evaluates to determine which
context pattern to select. For instance, if the scan type of the sub-block is horizontal,
then video encoder 20 may determine that the context pattern illustrated in FIG. 9C
cannot be selected as the context pattern even if the CGFj is equal to 1 and the CGFy is
equal 0. In this case, video encoder 20 may select the context pattern illustrated in FIG.
9D. For example, if the scan type of the sub-block is horizontal, then video encoder 20
may exclude the context pattern illustrated in FIG. 9C. From the remaining context
patterns, video encoder 20 may select the context pattern illustrated in FIG. 9D. In this
case, there may be context pattern sharing for different values of CGFp and CGFr. For
example, for the horizontal scan, video encoder 20 may select the context pattern
illustrated in FIG. 9D if CGFy equals 0 and CGFr equals 1 or if CGFp equals 1 and
CGFrg equals 1.

[0139] For a scan type of a vertical scan, video encoder 20 may function in a similar
way, except video encoder 20 may exclude the context pattern illustrated in FIG. 9B
even if CGFp equals 0 and CGFR equals 1. In this example, video encoder 20 selects
the context pattern from the remaining plurality of context patterns. Video decoder 30

functions in a similar way.

WO 2013/158566 PCT/US2013/036646
40

[0140] For example, video encoder 20 and video decoder 30 determine the scan type of
the current sub-block, and determine at least one context pattern from the plurality of
context patterns that cannot be selected as the context pattern based on the determined
scan type of the current sub-block. Video encoder 20 and video decoder 30 select the
context pattern based on the plurality of context patterns excluding the determined at
least one context pattern. In some examples, video encoder 20 and video decoder 30
select the context pattern based on the plurality of context patterns excluding the
determined at least one context pattern regardless of whether the below neighboring
sub-block includes any non-zero transform coefficients and whether the right
neighboring sub-block includes any non-zero transform coefficients.
[0141] In FIGS. 5A-5D and FIGS. 9A-9D, context patterns are illustrated and defined
as 2-D blocks. However, in some practical implementations, a video encoder, such as
video encoder 20, might represent a 2-D block as a 1-D vector according to the selected
sub-block scan type and store the 1-D vector in order to speed up the context assignment
process. In this situation, even if the same 2-D context pattern is used to assign contexts
for sub-blocks that used different sub-block scan types, different 1-D vectors may be
obtained based on the selected sub-block scan type. For example, 1-D vector of the
context pattern illustrated in FIG. 9C scanned according to a horizontal scan would have
the following 1-D vector representation:

Scan Pattern=1[2 100210021002100]
whereas the context pattern illustrated in FIG. 9C scanned according to a vertical scan
would have the following 1-D vector representation:

Scan_Pattern=[2222111100000000]
[0142] In this case, if a video encoder, such as video encoder 20, stores context patterns
as 1-D vectors (i.c., one-dimensional context patterns), there may be several vectors for
cach context pattern. One way to overcome the storage of several different 1-D vectors
for each context pattern is by defining the context patterns directly as 1-D vectors (i.c.,
one-dimensional context patterns) and using the same vector for two or more sub-block
scan types. For example, context patterns with a constant value (i.e., all 2’s) provide the
same scan 1-D regardless of scan type. In this example, a 1-D vector may specify a
same context (e.g., 2) or all of the significance syntax elements. The 1-D vector may be
represented as follows:

Scan Pattern=[2222222222222222]

WO 2013/158566 PCT/US2013/036646
41

[0143] In another example, the one-dimensional context pattern defines a first context
for a first significance syntax element in a scan order, defines a second context for a
second and a third significance syntax element in the scan order, and defines a third
context for remaining significance syntax elements in the scan order. For instance, a 1-
D vector may specify a context of 2 for the first significant coefficient flag, specify a
context of 1 for the second and third assignments, and specify a context of 0 for
remaining assignments and may be represented as follows:

Scan Pattern=[2 110000000000000]
[0144] Another possible context pattern is Scan Pattern=[100000000000000
0]. In this example, the context pattern defines a first context (e.g., 1) for a first
significance syntax element in a scan order, and defines a second context (e.g., 0) for
remaining significance syntax elements in the scan order. FIG. 10 is a conceptual
diagram that illustrates an example of a pattern for context assignment for coefficients
in a sub-block. The resulting scan pattern for the context pattern illustrated in FIG. 10,
is the same for the diagonal, horizontal and vertical 4x4 sub-block scans as defined
above. Context modeling unit 506 and/or entropy encoding unit 56 may be configured
to store context patterns as 1-D vectors (i.c., one-dimensional context patterns). In one
example, the same stored scan pattern may be used to assign contexts to the
significant_coefficient_flag for a plurality of sub-block scan types, such as, the
diagonal, horizontal and vertical 4x4 sub-block scans.
[0145] In some examples, the one-dimensional context patterns may be pre-computed
from two-dimensional context patterns such as those illustrated in FIGS. 9A-9D. For
example, the context patterns illustrated in FIGS. 9A-9D may be horizontally,
vertically, and diagonally scanned to produce the one-dimensional context patterns.
Accordingly, in this example, there may be up to 12 one-dimensional context patterns.
However, the characteristics of the context patterns illustrated in FIGS. 9A-9D may be
such that less than 12 one-dimensional context patterns are pre-computed and stored.
[0146] For example, as described above, the horizontal scan and vertical scan of the
context pattern illustrated in FIG. 9A results in the same one-dimensional vector.
Accordingly, the horizontal, vertical, and diagonal scan of the context pattern illustrated
in FIG. 9A results in two unique one-dimensional context patterns, instead of three.
[0147] Also, for the context patterns illustrated in FIGS. 9B and 9C, for one of them
there may be three unique one-dimensional context patterns (i.e., one for each scan

type). However, for the other, there may be only two unique one-dimensional context

WO 2013/158566 PCT/US2013/036646
42

patterns. This is because the horizontal scan of the context pattern illustrated in FIG. 9B
and the vertical scan of the context pattern illustrated in FIG. 9C results in the same one-
dimensional context pattern. Accordingly, there are a total of five unique one-
dimensional context patterns between the context patterns illustrated in FIGS. 9B and
9C. In other words, the one of the plurality of one-dimensional context patterns is pre-
computed from the context pattern illustrated in FIG. 9B (e.g., a first two-dimensional
context pattern). The first two-dimensional context pattern includes contexts that if
scanned horizontally result in a same one-dimensional context pattern when a second
two-dimensional context pattern is scanned vertically. One example of the second two-
dimensional context pattern, when the first two-dimensional pattern is illustrated in FIG.
9B, is the two-dimensional context pattern illustrated in FIG. 9C.

[0148] For the context pattern illustrated in FIG. 9D, there is only one unique one-
dimensional context pattern (i.c., the diagonal, horizontal, and vertical scans all results
in the same one-dimensional context pattern). For example, when the context pattern
illustrated in FIG. 9D is used to pre-compute a one-dimensional pattern, the resulting
one-dimensional pattern (whether scanned vertically, horizontally, or diagonally) results
in a context pattern that defines a same context (e.g., 2) for all of the significance syntax
clements of transform coefficients of a sub-block. Therefore, the characteristics of the
context patterns illustrated in FIGS. 9A-9D result in a total of eight one-dimensional
context patterns (i.e., two from FIG. 9A, five from FIGS. 9B and 9C, and one from FIG.
9D), which is less than the 12 one-dimensional context patterns that would have been
needed to be stored if the context patterns did not comprise the characteristics of the
context patterns illustrated in FIGS. 9A-9D.

[0149] As described above, in addition to assigning contexts to the
significant_coefficient_flag syntax elements in one example context modeling unit 506
and/or entropy encoding unit 56 may be configured to assign contexts to the
significant_coeff group flag. As describe above, in HEVC WD?7 the context
derivation of significant coeff group flag depends on the scan order (i.e., whether a
diagonal 4x4, a non-square horizontal, or vertical scan is applied). In the case, where
the non-square scans are replaced with the scans illustrated in FIGS. 3A-3B, the context
derivation of significant_coeff group_ flag may be modified from the context
derivation described in HEVC WD7. In one example, context modeling unit 506 and/or
entropy encoding unit 56 may be configured to assign contexts to the

significant_coeff group_flag using the same context derivation for all of the sub-

WO 2013/158566 PCT/US2013/036646
43

blocks regardless of the scan type and the size of the TUs associated with the sub-block.
However, in one example, the actual context assigned to the
significant_coeff group_ flag may differ based on whether a sub-block is scanned
using the diagonal, horizontal and vertical 4x4 sub-block scans. In one example, a first
set of contexts may be used for assigning context to significant_coeff group_flag
when the 4x4 diagonal scan is applied and second set of contexts may be used for
assigning contexts to significant_coeff group flag when the horizontal or vertical 4x4
sub-block scans are applied. In one example, the second set of contexts may be derived
by adding an offset may to the first context set.

[0150] Thus, there are several techniques that context modeling unit 506 and/or entropy
encoding unit 56 used to assign contexts to the significant_coeff group flag and
significant_coefficient _flag syntax clements. Entropy encoding unit 56 may be
configured to assign contexts to the significant_coeff group_flag and
significant_coefficient flag syntax elements using any combination of the techniques
described above.

[0151] FIG. 11 is a flowchart illustrating an example of encoding video data according
to the techniques of this disclosure. Although the process in FIG. 11 is described below
as generally being performed by video encoder 20, the process may be performed by
any combination of video encoder 20, entropy encoding unit 56, and/or context
modeling unit 506.

[0152] As illustrated in FIG. 11, video encoder 20 generates significance syntax
elements for transform coefficients of a current sub-block of a block (1102). The
significance syntax element (e.g., significance coefficient flag) of a transform
coefficient indicates whether the value of the transform coefficient is zero (i.e., a zero
transform coefficient) or non-zero (i.c., a non-zero transform coefficient). In some
examples, the sub-block is a 4x4 sub-block, and the block is an 8x8 transform block.
[0153] Video encoder 20 selects a context pattern from a same plurality of two-
dimensional context patterns for a plurality of scan types (e.g., a horizontal scan, a
vertical scan, and a diagonal scan) for the significance syntax elements of the transform
coefficients of the current sub-block (1104). Examples of the context patterns include
the context patterns illustrated in FIGS. 9A-9D. In the techniques described in this
disclosure, video encoder 20 may select from the same plurality of two-dimensional
context patterns if the sub-block is scanned horizontally, vertically, or diagonally. In

other words, the scan type is horizontal or vertical, video encoder 20 selects from

WO 2013/158566 PCT/US2013/036646
44

among the same plurality of two-dimensional context patterns that video encoder 20
selects from if the scan type is diagonal.

[0154] Also, as described above, each of the context patterns is associated with a
condition of whether one or more neighboring sub-blocks include any non-zero
transform coefficients. For example, the one or more neighboring sub-blocks include a
first neighboring sub-block and a second neighboring sub-block, and each of the context
patterns may be associated with a condition of whether the first neighboring sub-block
includes any non-zero transform coefficients and whether the second neighboring sub-
block includes any non-zero transform coefficients (i.c., each context is associated with
a condition of whether the value of CGFp and CGFg is 1 or 0).

[0155] Video encoder 20 assigns contexts to each of the significance syntax elements of
the transform coefficient based on the selected context pattern (1106). For example, as
described above, if video encoder 20 selects the context pattern associated with the
condition that CGFg equals 0 and CGFg equals 1 (i.e., the below sub-block does not
include any non-zero transform coefficients and the right block includes at least one
non-zero transform coefficient), then video encoder 20 assigns a context (e.g., context 2
or 5 with offset of 3) to a first row of the significance syntax elements of the sub-block
that is different than the context for the other rows.

[0156] If video encoder 20 selects the context pattern associated with the condition that
CGFj5 equals 1 and CGFg equals 0 (i.e., the below sub-block includes at least one non-
zero transform coefficient and the right block does not include any non-zero transform
coefficients), then video encoder 20 assigns a context (e.g., context 2 or 5 with offset of
3) to a column of the significance syntax elements of the sub-block that is different than
the context for the other columns. If video encoder 20 selects the context pattern
associated with the condition that CGFg equals 1 and CGFg equals 1 (i.e., the below
sub-block includes at least non-zero transform coefficient and the right block includes at
least one non-zero transform coefficient), then video encoder 20 assigns a same context
(e.g., context 2 or 5 with offset of 3) to the significance syntax elements of the current
sub-block.

[0157] Video encoder 20 CABAC encodes the significance syntax elements based on
the assigned contexts (1108). Video encoder 20 outputs the encoded significance syntax
elements as part of the encoded bitstream (1110).

[0158] FIG. 12 is a flowchart illustrating an example of encoding video data according

to the techniques of this disclosure. Although the process in FIG. 12 is described below

WO 2013/158566 PCT/US2013/036646
45

as generally being performed by video encoder 20, the process may be performed by
any combination of video encoder 20, entropy encoding unit 56, and/or context
modeling unit 506.

[0159] As illustrated in FIG. 12, video encoder 20 generates significance syntax
elements for transform coefficients of a current sub-block of a block (1202). The
significance syntax element (e.g., significance coefficient flag) of a transform
coefficient indicates whether the value of the transform coefficient is zero (i.e., a zero
transform coefficient) or non-zero (i.c., a non-zero transform coefficient). In some
examples, the sub-block is a 4x4 sub-block, and the block is an 8x8 transform block.
[0160] Video encoder 20 selects a context pattern (e.g., one that is stored as a one-
dimensional context pattern) (1204). In some examples, the context pattern identifies
contexts for two or more scan types of the current sub-block. For instance, the selected
context pattern is for a scan type of a horizontal scan, a vertical scan, and a diagonal
scan.

[0161] As one example, the selected context pattern defines a first context for a first
significance syntax element in a scan order, defines a second context for a second and a
third significance syntax element in the scan order, and defines a third context for
remaining significance syntax elements in the scan order. As another example, the
selected context pattern defines a first context for a first significance syntax element in a
scan order, and defines a second context for remaining significance syntax elements in
the scan order. As another example, the selected context pattern defines a same context
for all of the significance syntax elements.

[0162] In some examples, the selected context pattern is selected from a plurality of
context patterns that are stored as one-dimensional context patterns. For example, the
plurality of context patterns are pre-computed and stored from the two-dimensional
context patterns illustrated in FIGS. 9A-9D. As one example, one of the plurality of
contexts patterns is pre-computed from a two-dimensional context pattern that includes
contexts that if scanned horizontally or vertically results in a same one-dimensional
context pattern. One example of such a two-dimensional context pattern is the context
pattern illustrated in FIG. 9A. As another example, one of the plurality of contexts
patterns is pre-computed from a two-dimensional context pattern that includes contexts
that if scanned horizontally, vertically, or diagonally all result in the same one-
dimensional context pattern. One example of such a two-dimensional context pattern is

the context pattern illustrated in FIG. 9D.

WO 2013/158566 PCT/US2013/036646
46

[0163] As another example, one of the plurality of context patterns is pre-computed
from a first two-dimensional context pattern that includes contexts that if scanned
horizontally result in a same one-dimensional context pattern as when a second two-
dimensional context pattern is scanned vertically. One example of the first two-
dimensional context pattern is the context pattern illustrated in FIG. 9B. One example
of the second two-dimensional context patter is the context pattern illustrated in FIG.
9C.

[0164] Video encoder 20 assigns contexts to significance syntax elements based on the
selected context (1206). Video encoder 20 CABAC encodes the significance syntax
clements based on the assigned contexts (1208). Video encoder 20 outputs the encoded
significance syntax elements as part of the encoded bitstream (1210).

[0165] FIG. 13 is a block diagram illustrating an example video decoder 30 that may
implement the techniques described in this disclosure. In the example of FIG. 13, video
decoder 30 includes an entropy decoding unit 80, prediction processing unit 81, inverse
quantization processing unit 86, inverse transform processing unit 88, summer 90, and
reference picture memory 92. Prediction processing unit 81 includes motion
compensation unit 82 and intra prediction module 84. Video decoder 30 may, in some
examples, perform a decoding pass generally reciprocal to the encoding pass described
with respect to video encoder 20 from FIG. 7.

[0166] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 80 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors, and other
syntax elements. Entropy decoding unit 80 forwards the motion vectors and other
syntax elements to prediction module 81. Video decoder 30 may receive the syntax
clements at the video slice level and/or the video block level.

[0167] FIG. 14 is a block diagram that illustrates an example entropy decoding unit 70
that may implement the techniques described in this disclosure. Entropy decoding unit
70 receives an entropy encoded bitstream and decodes syntax elements from the
bitstream. Syntax elements may include the syntax elements

significant_coeff group_flag, significant_coefficient_flag, coeff abs level remain,
coeff abs level greaterl flag, coeff abs level greater2 flag, and coeff sign flag,
syntax elements described above. The example entropy decoding unit 70 in FIG. 14

includes an arithmetic decoding unit 702, which may include a bypass decoding engine

WO 2013/158566 PCT/US2013/036646
47

704 and a regular decoding engine 706. The example entropy decoding unit 70 also
includes context modeling unit 708 and inverse binarization unit 710. The example
entropy decoding unit 70 may perform the reciprocal functions of the example entropy
encoding unit 56 described with respect to FIG. 8. In this manner, entropy decoding
unit 70 may perform entropy decoding based on the techniques described herein.

[0168] Arithmetic decoding unit 702 receives an encoded bit stream. As shown in FIG.
14, arithmetic decoding unit 702 may process encoded bin values according to a bypass
path or the regular coding path. An indication whether an encoded bin value should be
processed according to a bypass path or a regular pass may be signaled in the bitstream
with higher level syntax. Consistent with the CABAC process described above, in the
case where arithmetic decoding unit 702 receives bin values from a bypass path, bypass
decoding engine 704 may perform arithmetic encoding on bin values without utilizing a
context assigned to a bin value. In one example, bypass decoding engine 704 may
assume equal probabilities for possible values of a bin.

[0169] In the case where arithmetic decoding unit 702 receives bin values through the
regular path, context modeling unit 708 may provide a context variable, such that
regular decoding engine 706 may perform arithmetic encoding based on the context
assignments provided by context modeling unit 708. The context assignments may be
defined according to a video coding standard, such as HEVC. The context models may
be stored in memory. Context modeling unit 708 may include a series of indexed tables
and/or utilize mapping functions to determine a context and a context variable portion of
an encoded bitstream. Further, in one example context modeling unit 506 and/or
entropy encoding unit 56 may be configured to assign contexts to bins of the
significant_coeff group flag and the significant_coefficient_flag syntax elements
based on techniques described herein. After decoding a bin value, regular coding
engine 706, may update a context based on the decoded bin values. Further, inverse
binarization unit 710 may perform an inverse binarization on a bin value and use a bin
matching function to determine if a bin value is valid. The inverse binarization unit 710
may also update the context modeling unit based on the matching determination. Thus,
the inverse binarization unit 710 outputs syntax elements according to a context
adaptive decoding technique.

[0170] When the video slice is coded as an intra-coded (1) slice, intra prediction module
84 of prediction module 81 may generate prediction data for a video block of the current

video slice based on a signaled intra prediction mode and data from previously decoded

WO 2013/158566 PCT/US2013/036646
48

blocks of the current frame or picture. When the video frame is coded as an inter-coded
(i.e., B or P) slice, motion compensation unit 82 of prediction module 81 produces
predictive blocks for a video block of the current video slice based on the motion
vectors and other syntax elements received from entropy decoding unit 80. The
predictive blocks may be produced from one of the reference pictures within one of the
reference picture lists. Video decoder 30 may construct the reference frame lists, List 0
and List 1, using default construction techniques based on reference pictures stored in
reference picture memory 92.

[0171] Motion compensation unit 82 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current
video block being decoded. For example, motion compensation unit 82 uses some of
the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice or P slice), construction information for one or more of the reference
picture lists for the slice, motion vectors for each inter-encoded video block of the slice,
inter-prediction status for each inter-coded video block of the slice, and other
information to decode the video blocks in the current video slice.

[0172] Motion compensation unit 82 may also perform interpolation based on
interpolation filters. Motion compensation unit 82 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 82
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0173] Inverse quantization processing unit 86 inverse quantizes, i.¢., de-quantizes, the
quantized transform coefficients provided in the bitstream and decoded by entropy
decoding unit 80. The inverse quantization process may include use of a quantization
parameter calculated by video encoder 20 for each video block in the video slice to
determine a degree of quantization and, likewise, a degree of inverse quantization that
should be applied. Inverse transform processing unit 88 applies an inverse transform,
e.g., an inverse DCT, an inverse integer transform, or a conceptually similar inverse
transform process, to the transform coefficients in order to produce residual blocks in

the pixel domain.

WO 2013/158566 PCT/US2013/036646
49

[0174] In some cases, inverse transform processing unit 88 may apply a 2-dimensional
(2-D) inverse transform (in both the horizontal and vertical direction) to the coefficients.
According to the techniques of this disclosure, inverse transform processing unit 88 may
instead apply a horizontal 1-D inverse transform, a vertical 1-D inverse transform, or no
transform to the residual data in each of the TUs. The type of transform applied to the
residual data at video encoder 20 may be signaled to video decoder 30 to apply an
appropriate type of inverse transform to the transform coefficients.

[0175] After motion compensation unit 82 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
processing unit 88 with the corresponding predictive blocks generated by motion
compensation unit 82. Summer 90 represents the component or components that
perform this summation operation. If desired, a deblocking filter may also be applied to
filter the decoded blocks in order to remove blockiness artifacts. Other loop filters
(either in the coding loop or after the coding loop) may also be used to smooth pixel
transitions, or otherwise improve the video quality. The decoded video blocks in a
given frame or picture are then stored in reference picture memory 92, which stores
reference pictures used for subsequent motion compensation. Reference picture
memory 92 also stores decoded video for later presentation on a display device, such as
display device 34 of FIG. 6.

[0176] FIG. 15 is a flowchart illustrating an example of decoding video data according
to the techniques of this disclosure. Although the process in FIG. 15 is described below
as generally being performed by video decoder 30, the process may be performed by
any combination of video decoder 30, entropy decoding unit 56, and/or context
modeling unit 708.

[0177] As illustrated in FIG. 15, video decoder 30 receives, in an entropy encoded
bitstream, significance syntax elements of transform coefficients for a current sub-block
of a block (1502). The sub-block may be a 4x4 sub-block, and the block may be an 8x8
transform block. Similar to video encoder 20 (e.g., block 1104 of FIG. 11), video
decoder 30 selects a context pattern from a same plurality of context patterns of two-
dimensional context patterns for a plurality of scan types (e.g., a horizontal scan, a
vertical scan, and a diagonal scan) for the significance syntax elements of the transform
coefficients of the current sub-block (1504). In this example, each of the context

patterns is associated with a condition of whether one or more neighboring blocks (e.g.,

WO 2013/158566 PCT/US2013/036646
50

a first neighboring sub-block and a second neighboring block) include any non-zero
transform coefficients.

[0178] Video decoder 30, in a manner similar to that described above with respect to
video encoder 20 (e.g., block 1106 of FIG. 11), assigns contexts to each of the
significance syntax elements of the transform coefficients based on the selected context
pattern (1506). For example, if the context pattern associated with the condition that
CGF5 equals 0 and CGFR equals 1 is selected, then video decoder 30 assigns a context
to a first row that is different than the contexts for the other rows. If the context pattern
associated with the condition that CGFg equals 1 and CGFr equals 0 is selected, then
video decoder 30 assigns a context to a first column that is different than the contexts
for the other columns. If the context pattern associated with the condition that CGFp
equals 1 and CGFg equals 1 is selected, then video decoder 30 assigns a same context to
the significance syntax elements. Video decoder 30 CABAC decodes the significance
syntax elements based on the assigned contexts (1508).

[0179] FIG. 16 is a flowchart illustrating an example of decoding video data according
to the techniques of this disclosure. Although the process in FIG. 16 is described below
as generally being performed by video decoder 30, the process may be performed by
any combination of video decoder 30, entropy decoding unit 70, and/or context
modeling unit 708.

[0180] As illustrated in FIG. 16, video decoder 30 receives, in an entropy encoded
bitstream, significance syntax elements of transform coefficients for a current sub-block
of a block (1602). The sub-block may be a 4x4 sub-block, and the block may be an 8x8
transform block. Similar to video encoder 20 (e.g., block 1204 of FIG. 12), video
decoder 30 selects a context pattern (e.g. one that is stored as a one-dimensional context
pattern) (1604). The context pattern may be for two or more scan types (e.g., the
horizontal, diagonal, and vertical scan types).

[0181] As one example, as described above, the selected context pattern defines a first
context for a first significance syntax element in a scan order, defines a second context
for a second and a third significance syntax element in the scan order, and defines a
third context for remaining significance syntax elements in the scan order. As another
example, as described above, the selected context pattern defines a first context for a
first significance syntax element in a scan order, and defines a second context for

remaining significance syntax elements in the scan order. As another example, the

WO 2013/158566 PCT/US2013/036646
51

selected context pattern defines a same context for all of the significance syntax
elements.

[0182] In some examples, the selected context pattern is selected from a plurality of
context patterns that are stored as one-dimensional context patterns. For example, the
plurality of context patterns are pre-computed and stored from the two-dimensional
context patterns illustrated in FIGS. 9A-9D. As one example, one of the plurality of
contexts patterns is pre-computed from a two-dimensional context pattern that includes
contexts that if scanned horizontally or vertically results in a same one-dimensional
context pattern. One example of such a two-dimensional context pattern is the context
pattern illustrated in FIG. 9A. As another example, one of the plurality of contexts
patterns is pre-computed from a two-dimensional context pattern that includes contexts
that if scanned horizontally, vertically, or diagonally all result in the same one-
dimensional context pattern. One example of such a two-dimensional context patter is
the context pattern illustrated in FIG. 9D.

[0183] As another example, one of the plurality of context patterns is pre-computed
from a first two-dimensional context pattern that includes contexts that if scanned
horizontally result in a same one-dimensional context pattern as when a second two-
dimensional context pattern is scanned vertically. One example of the first two-
dimensional context pattern is the context pattern illustrated in FIG. 9B. One example
of the second two-dimensional context patter is the context pattern illustrated in FIG.
9C.

[0184] Video decoder 30 assigns contexts to significance syntax elements based on the
selected context (1606). Video decoder 20 CABAC decodes the significance syntax
clements based on the assigned contexts (1608).

[0185] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, ¢.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage

media which is non-transitory or (2) a communication medium such as a signal or

WO 2013/158566 PCT/US2013/036646
52

carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0186] By way of example, and not limitation, such computer-readable storage media
can comprisc RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0187] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0188] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of

ICs (e.g., a chip set). Various components, modules, or units are described in this

WO 2013/158566 PCT/US2013/036646
53

disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0189] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2013/158566 PCT/US2013/036646
54

WHAT IS CLAIMED IS:

1. A method for decoding video data, the method comprising;:

receiving, in a bitstream, significance syntax elements of transform coefficients
for a current sub-block of a block;

selecting a context pattern, wherein the context pattern identifies contexts for
two or more scan types of the current sub-block;

assigning contexts to the significance syntax elements of the transform
coefficients for the current sub-block based on the selected context pattern; and

context adaptive binary arithmetic coding (CABAC) decoding the significance
syntax elements of the transform coefficients of the current sub-block based on the

assigned contexts.

2. The method of claim 1, wherein selecting the context pattern comprises selecting
the context pattern for a scan type of a horizontal scan, a vertical scan, and a diagonal

scan.

3. The method of claim 1, wherein selecting the context pattern comprises selecting
the context pattern that defines a first context for a first significance syntax element in a
scan order, defines a second context for a second and a third significance syntax element
in the scan order, and defines a third context for remaining significance syntax elements

in the scan order.

4. The method of claim 1, wherein selecting the context pattern comprises selecting
the context pattern that defines a first context for a first significance syntax element in a
scan order, and defines a second context for remaining significance syntax elements in

the scan order.

5. The method of claim 1, wherein selecting the context pattern comprises selecting
the context pattern that defines a same context for all of the significance syntax

elements.

6. The method of claim 1, wherein the current sub-block comprises a 4x4 sub-

block, and the block comprises an 8x8 block.

WO 2013/158566 PCT/US2013/036646
55

7. The method of claim 1, wherein selecting the context pattern comprises selecting
the context pattern from a plurality of context patterns that are each stored as one-

dimensional context patterns.

8. The method of claim 7, wherein one of the plurality of context patterns is pre-
computed from a two-dimensional context pattern, and wherein the two-dimensional
context pattern comprises contexts that if scanned horizontally or vertically result in a

same one-dimensional context pattern.

9. The method of claim 7, wherein one of the plurality of context patterns is pre-
computed from a two-dimensional context pattern, and wherein the two-dimensional
context pattern comprises contexts that if scanned diagonally, horizontally, and

vertically result in a same one-dimensional context pattern.

10. The method of claim 7, wherein one of the plurality of context patterns is pre-
computed from a first two-dimensional context pattern, and wherein the first two-
dimensional context pattern comprises contexts that if scanned horizontally result in a
same one-dimensional context pattern as when a second two-dimensional context

pattern is scanned vertically.

11. A device for decoding video data, the device comprising a video decoder
configured to:

receive, in a bitstream, significance syntax elements of transform coefficients for
a current sub-block of a block;

select a context pattern, wherein the context pattern identifies contexts for two or
more scan types of the current sub-block;

assign contexts to the significance syntax elements of the transform coefficients
for the current sub-block based on the selected context pattern; and

context adaptive binary arithmetic coding (CABAC) decode the significance
syntax elements of the transform coefficients of the current sub-block based on the

assigned contexts.

WO 2013/158566 PCT/US2013/036646
56

12. The device of claim 11, wherein, to select the context pattern, the video decoder
is configured to select the context pattern for a scan type of a horizontal scan, a vertical

scan, and a diagonal scan.

13. The device of claim 11, wherein, to select the context pattern, the video decoder
is configured to select the context pattern that defines a first context for a first
significance syntax element in a scan order, defines a second context for a second and a
third significance syntax element in the scan order, and defines a third context for

remaining significance syntax elements in the scan order.

14. The device of claim 11, wherein, to select the context pattern, the video decoder
is configured to select the context pattern that defines a first context for a first
significance syntax element in a scan order, and defines a second context for remaining

significance syntax elements in the scan order.

15. The device of claim 11, wherein, to select the context pattern, the video decoder
is configured to select the context pattern that defines a same context for all of the

significance syntax elements.

16. The device of claim 11, wherein the current sub-block comprises a 4x4 sub-

block, and the block comprises an 8x8 block.

17. The device of claim 11, wherein, to select the context pattern, the video decoder
is configured to select the context pattern from a plurality of context patterns that are

cach stored as one-dimensional context patterns.

18. The device of claim 17, wherein one of the plurality of context patterns is pre-
computed from a two-dimensional context pattern, and wherein the two-dimensional
context pattern comprises contexts that if scanned horizontally or vertically result in a

same one-dimensional context pattern.

19. The device of claim 17, wherein one of the plurality of context patterns is pre-

computed from a two-dimensional context pattern, and wherein the two-dimensional

WO 2013/158566 PCT/US2013/036646
57

context pattern comprises contexts that if scanned diagonally, horizontally, and

vertically result in a same one-dimensional context pattern.

20. The device of claim 17, wherein one of the plurality of context patterns is pre-
computed from a first two-dimensional context pattern, and wherein the first two-
dimensional context pattern comprises contexts that if scanned horizontally result in a
same one-dimensional context pattern as when a second two-dimensional context

pattern is scanned vertically.

21. The device of claim 11, wherein the device comprises one of:
an integrated circuit;
a MiCroprocessor;

a wireless communication device that includes the video decoder.

22. A computer-readable storage medium having instructions stored thercon that
when executed cause one or more processors of a device for decoding video data to:

receive, in a bitstream, significance syntax elements of transform coefficients for
a current sub-block of a block;

select a context pattern, wherein the context pattern identifies contexts for two or
more scan types of the current sub-block;

assign contexts to the significance syntax elements of the transform coefficients
for the current sub-block based on the selected context pattern; and

context adaptive binary arithmetic coding (CABAC) decode the significance
syntax elements of the transform coefficients of the current sub-block based on the

assigned contexts.

23. The computer-readable storage medium of claim 22, wherein the instructions
that cause the one or more processors to select the context pattern comprise instructions
that cause the one or more processors to select the context pattern that defines a first
context for a first significance syntax element in a scan order, defines a second context
for a second and a third significance syntax element in the scan order, and defines a

third context for remaining significance syntax elements in the scan order.

WO 2013/158566 PCT/US2013/036646
58

24. The computer-readable storage medium of claim 22, wherein the instructions
that cause the one or more processors to select the context pattern comprise instructions
that cause the one or more processors to select the context pattern that defines a first
context for a first significance syntax element in a scan order, and defines a second

context for remaining significance syntax elements in the scan order.

25. The computer-readable storage medium of claim 22, wherein the instructions
that cause the one or more processors to select the context pattern comprise instructions
that cause the one or more processors to select the context pattern that defines a same

context for all of the significance syntax elements.

26. A method for encoding video data, the method comprising:

generating significance syntax elements of transform coefficients for a current
sub-block of a block;

selecting a context pattern, wherein the context pattern identifies contexts for
two or more scan types of the current sub-block;

assigning contexts to the significance syntax elements of the transform
coefficients for the current sub-block based on the selected context pattern;

context adaptive binary arithmetic coding (CABAC) encoding the significance
syntax elements of the transform coefficients of the current sub-block based on the
assigned contexts; and

outputting the encoded significance syntax elements.

27. The method of claim 26, wherein selecting the context pattern comprises
selecting the context pattern for a scan type of a horizontal scan, a vertical scan, and a

diagonal scan.

28. The method of claim 26, wherein selecting the context pattern comprises
selecting the context pattern that defines a first context for a first significance syntax
element in a scan order, defines a second context for a second and a third significance
syntax element in the scan order, and defines a third context for remaining significance

syntax elements in the scan order.

WO 2013/158566 PCT/US2013/036646
59

29. The method of claim 26, wherein selecting the context pattern comprises
selecting the context pattern that defines a first context for a first significance syntax
element in a scan order, and defines a second context for remaining significance syntax

elements in the scan order.

30. The method of claim 26, wherein selecting the context pattern comprises
selecting the context pattern that defines a same context for all of the significance

syntax elements.

31. The method of claim 26, wherein the current sub-block comprises a 4x4 sub-

block, and the block comprises an 8x8 block.

32. The method of claim 26, wherein selecting the context pattern comprises
selecting the context pattern from a plurality of context patterns that are each stored as

one-dimensional context patterns.

33. The method of claim 32, wherein one of the plurality of context patterns is pre-
computed from a two-dimensional context pattern, and wherein the two-dimensional
context pattern comprises contexts that if scanned horizontally or vertically result in a

same one-dimensional context pattern.

34. The method of claim 32, wherein one of the plurality of context patterns is pre-
computed from a two-dimensional context pattern, and wherein the two-dimensional
context pattern comprises contexts that if scanned diagonally, horizontally, and

vertically result in a same one-dimensional context pattern.

35. The method of claim 32, wherein one of the plurality of context patterns is pre-
computed from a first two-dimensional context pattern, and wherein the first two-
dimensional context pattern comprises contexts that if scanned horizontally result in a
same one-dimensional context pattern as when a second two-dimensional context

pattern is scanned vertically.

WO 2013/158566 PCT/US2013/036646
60

36. A device for encoding video data, the device comprising a video encoder
configured to:

generate significance syntax elements of transform coefficients for a current sub-
block of a block;

select a context pattern, wherein the context pattern identifies contexts for two or
more scan types of the current sub-block;

assign contexts to the significance syntax elements of the transform coefficients
for the current sub-block based on the selected context pattern;

context adaptive binary arithmetic coding (CABAC) encode the significance
syntax elements of the transform coefficients of the current sub-block based on the
assigned contexts; and

output the encoded significance syntax elements.

37. The device of claim 36, wherein, to select the context pattern, the video encoder
is configured to select the context pattern for a scan type of a horizontal scan, a vertical

scan, and a diagonal scan.

38. The device of claim 36, wherein, to select the context pattern, the video encoder
is configured to select the context pattern that defines a first context for a first
significance syntax element in a scan order, defines a second context for a second and a
third significance syntax element in the scan order, and defines a third context for

remaining significance syntax elements in the scan order.

39, The device of claim 36, wherein, to select the context pattern, the video encoder
is configured to select the context pattern that defines a first context for a first
significance syntax element in a scan order, and defines a second context for remaining

significance syntax elements in the scan order.

40. The device of claim 36, wherein, to select the context pattern, the video encoder
is configured to select the context pattern that defines a same context for all of the

significance syntax elements.

41. The device of claim 36, wherein the current sub-block comprises a 4x4 sub-

block, and the block comprises an 8x8 block.

WO 2013/158566 PCT/US2013/036646
61

42. The device of claim 36, wherein, to select the context pattern, the video encoder
is configured to select the context pattern from a plurality of context patterns that are

cach stored as one-dimensional context patterns.

43. The device of claim 42, wherein one of the plurality of context patterns is pre-
computed from a two-dimensional context pattern, and wherein the two-dimensional
context pattern comprises contexts that if scanned horizontally or vertically result in a

same one-dimensional context pattern.

44. The device of claim 42, wherein one of the plurality of context patterns is pre-
computed from a two-dimensional context pattern, and wherein the two-dimensional
context pattern comprises contexts that if scanned diagonally, horizontally, and

vertically result in a same one-dimensional context pattern.

45. The device of claim 42, wherein one of the plurality of context patterns is pre-
computed from a first two-dimensional context pattern, and wherein the first two-
dimensional context pattern comprises contexts that if scanned horizontally result in a
same one-dimensional context pattern as when a second two-dimensional context

pattern is scanned vertically.

46. A device for encoding video data, the device comprising;:

means for generating significance syntax elements of transform coefficients for a
current sub-block of a block;

means for selecting a context pattern, wherein the context pattern identifies
contexts for two or more scan types of the current sub-block;

means for assigning contexts to the significance syntax elements of the
transform coefficients for the current sub-block based on the selected context pattern;

means for context adaptive binary arithmetic coding (CABAC) encoding the
significance syntax elements of the transform coefficients of the current sub-block based
on the assigned contexts; and

means for outputting the encoded significance syntax elements.

47. The device of claim 46, wherein the means for selecting the context pattern

comprises means for selecting the context pattern that defines a first context for a first

WO 2013/158566 PCT/US2013/036646

significance syntax elementina =~~~ |~ second context for a second and a
third significance syntax element in the scan order, and defines a third context for

remaining significance syntax elements in the scan order.

48. The device of claim 46, wherein the means for selecting the context pattern
comprises means for selecting the context pattern that defines a first context for a first
significance syntax element in a scan order, and defines a second context for remaining

significance syntax elements in the scan order.

49. The device of claim 46, wherein the means for selecting the context pattern
comprises means for selecting the context pattern that defines a same context for all of

the significance syntax elements.

WO 2013/158566 PCT/US2013/036646

1/16

GROUP GROUP

GROUP GROUP
SUB-BLOCK DIAGONAL

FIG. 1

WO 2013/158566

FIG. 2B

PCT/US2013/036646

2/16
< e
S e “
T:f:T7112!!155;;5-T7777f-
P S g
<—"e?6up—
% e
) S s SRoUF | —
O O s i I

HORIZONTAL

FIG. 2A
GROUP | GROUP | GROUP | GROUP
AiataLataLaLaLl

VERTICAL

WO 2013/158566 PCT/US2013/036646

3/16
GROUP GROUP
........ <
<+ <
<1 S S —
8 i e P
< <
o s I B
< <
N i N N
GROUP GROUP
FIG. 3A

GROUP | GROUP

WO 2013/158566

5 3 1 0
2 2 1 1
1 1 0 0
0 0 0 0

4/16

—

TRANSFORM COEFFICIENTS

FIG. 4

PCT/US2013/036646

SIGNIFICANCE MAP

WO 2013/158566

5/16

CGFg=0,CBFr =0

PCT/US2013/036646

CGFg=0,CBFr =1

WO 2013/158566

SOURCE DEVICE
12

VIDEO SOURCE
18

l

VIDEO
ENCODER
20

l

OUTPUT
INTERFACE
22

6/16

— e— e— — —

l

| STORAGE |
| DEVICE L—

| 32

— —— — |

PCT/US2013/036646

Yy

FIG. 6

DESTINATION DEVICE
14

DISPLAY DEVICE
34

T

VIDEO
DECODER
30

T

INPUT INTERFACE
28

PCT/US2013/036646

WO 2013/158566

7/16

A L 9Old
0¢
¥3AOON3 03AIA
5c = 29
9¢ 85 09 SY20719 03AIA =
1INN LINN LINN a3LoNYLSNODIY 9
oNIdooNg [€X™] ©NISSI00ud —| ONISSIO0Nd + AYOW3N
dOMLNT NOILVZILNVNO IWHO4ASNVYL |syo01g 55 FANLOId
7\ ISUIANI ISUIANI -aIs3y LINA 43y
NOS3d NOILOIa3¥d
VHLNI
(22
1INN
NOILVSNIdINO?D
NOILOW
b4 2
§ ¢ 1INN
SININITI XVYLNAS NOLLVINILS3T <
e« NOILOW (73
%3 1INN
1INN ©NISSIO0¥d 10313S
NOILDIa3yd =lalo])
— — 0S
S1N3I214430D 14 4] _
WHO4SNVYL 1INN — 1INN
vnais3y ONISSID0¥d ONISSID0¥d + $40078 03AIA
d3ZIINVNO NOILVZILNVND WHOISNVAL | S¥00Td

vivd
O3daiA

PCT/US2013/036646
8/16

WO 2013/158566

A
Wv3dislig

9G |

-_——_————————]—_—_—_——— = —— = 1INN _

_ 018 | ONIQOON3 AdOMINT |

_ LINN 9NIQOION3 | |

_ Jle|nbay ssedAg OILIAWHLINY _ "

_ > 2°® | _

_ 1 _ _

_ 805 085 _ _

poeceen -] IANION3 IANION3 _ _

; ONIQOON3 ONIQOON3 _

m | yvINo3Y SsvdAg _ _

; _ _

56z = —--l1-—-"—"—"—-—"—-"—-"—-"—-"—"——|—-"—— — |

i379VINVA LX3LNOD _

: ‘ANIVA NI ssedAg — _

H 7/

m _ 1INN -
m % " JNTVA Nid NOILVYZIMVYNIS _ SLINIJWN3I13 XVLNAS

...... * Lunnonnaaon [senBoy _

IX31NOD |

|

WO 2013/158566

9/16

CGFg=0,CBFr =0

PCT/US2013/036646

CGFg=0,CBFr =1

WO 2013/158566 PCT/US2013/036646
10/16

CGFg =X, CBFr=X

WO 2013/158566 PCT/US2013/036646
11/16

—1102

GENERATE SIGNIFICANCE
SYNTAX ELEMENTS

i 1104

SELECT A CONTEXT PATTERN
FROM PLURALITY OF CONTEXT
PATTERNS

I 1106

ASSIGN CONTEXTS TO EACH
SIGNIFICANCE SYNTAX
ELEMENT

l 1108

CABAC ENCODE THE
SIGNIFICANCE SYNTAX
ELEMENTS

:

1110
OUTPUT ENCODED /
SIGNIFICANCE SYNTAX
ELEMENTS

FIG. 11

WO 2013/158566 PCT/US2013/036646
12/16

—1202
GENERATE SIGNIFICANCE
SYNTAX ELEMENTS
i 1204

SELECT CONTEXT PATTERN
THAT IS STORED AS ONE-
DIMENSIONAL PATTERN

I 1206

ASSIGN CONTEXTS TO

SIGNIFICANCE SYNTAX
ELEMENTS BASED ON
SELECTED CONTEXT

l 1208

CABAC ENCODE THE
SIGNIFICANCE SYNTAX
ELEMENTS

I 1210

OUTPUT ENCODED
SIGNIFICANCE SYNTAX
ELEMENTS

FIG. 12

PCT/US2013/036646
13/16

WO 2013/158566

I —_— T T T /= — — 1
_ _ 38 98 _
_ 6 1INN 1INN _
- _ AHON3N |4 ONISSIO0Nd [«— HSHNISSIO0¥Ud _
2 m_m._um_hmo_n_ oio07g | WHOASNVAL NOILVZILNVND | |
_ 06 vnaisay | ISYIANI 3ISHIANI _
_ A I
_ |
_ |
_ 78 _
_ 1INN _
_ NOILOIa3¥d ‘44309 _
_ VHLNI "ZILNVYNO I
_ |
_ 8 08 _
_ 1INN ’ 1INA _
_ —{ | NOILVSN3dINO9D ONIdO93d A|_|_>_<m~_ oLl
_ NOLLOW SLINIWITI XVLNAS dOMINT “ oS30
| 18 _ a3aooN3
_ 1INN ONISIO0¥d _
" NOILOIa3¥d 0t |

d33d0933d O3dIA _

WO 2013/158566 PCT/US2013/036646
14/16

6
e
|
| CONTEXT
| Regular MODELING UNIT
| 708 4oy

BITSTREAM | x, = 5

! :
| '
| Bypass ¢ & CONTEXT b ;
I ELEMENT : '
=== —+—— |
X s : s
| ' E
i | | BYPASS DECODING REGULAR |
!l ENGINE —»| DECODINGENGINE | |
N 704 106 |
| S i
| : EEE— 2 |
I Bypass Regular | '
| ARITHMETIC |
| | DECODING UNIT BIN VALUE | i

702 ,
) R 4 i
|
' INVERSE §
' BINARIZATION | 5
' UNIT
: 710
| ENTROPY DECODING
, UNIT
| 70

SYNTAX ELEMENTS
\/

FIG. 14

WO 2013/158566

15/16

PCT/US2013/036646

—1502

RECEIVE SIGNIFICANCE
SYNTAX ELEMENTS

!

1504

SELECT A CONTEXT PATTERN
FROM PLURALITY OF CONTEXT
PATTERNS

l

1506

ASSIGN CONTEXTS TO EACH
SIGNIFICANCE SYNTAX
ELEMENT

l

/1508

CABAC DECODE THE
SIGNIFICANCE SYNTAX
ELEMENTS

FIG. 15

WO 2013/158566

16/16

PCT/US2013/036646

—1602

RECEIVE SIGNIFICANCE
SYNTAX ELEMENTS

!

1604

SELECT CONTEXT PATTERN
THAT IS STORED AS ONE-
DIMENSIONAL PATTERN

l

1606

ASSIGN CONTEXTS TO

SIGNIFICANCE SYNTAX
ELEMENTS BASED ON
SELECTED CONTEXT

l

/1608

CABAC DECODE THE
SIGNIFICANCE SYNTAX
ELEMENTS

FIG. 16

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/036646

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4N7/26
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HOAN

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X,P KUMAKURA T ET AL: "Non-CE3: Simplified
context derivation for significance map",
9. JCT-VC MEETING; 100. MPEG MEETING;
27-4-2012 - 7-5-2012; GENEVA; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
ISO/1EC JTC1/SC29/WG11 AND ITU-T SG.16);
URL:

HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,

1-49

no. JCTVC-I10296,

cited in the application

pages 1-8; figure 5

X US 2012/082233 Al (SZE VIVIENNE
AL) 5 April 2012 (2012-04-05)
paragraphs [0022] - [0033]
claim 4

17 April 2012 (2012-04-17), XP030112059,

[US] ET 1-49

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

26 June 2013

Date of mailing of the international search report

08/07/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Di Cagno, Gianluca

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/036646

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A MARPE D ET AL: "Context-based adaptive
binary arithmetic coding in the H.264/AVC
video compression standard",

TEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
FOR VIDEO TECHNOLOGY, IEEE SERVICE CENTER,
PISCATAWAY, NJ, US,

vol. 13, no. 7, 1 July 2003 (2003-07-01),
pages 620-636, XP011099255,

ISSN: 1051-8215, DOI:
10.1109/TCSVT.2003.815173

pages 620-636

1-49

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/036646
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2012082233 Al 05-04-2012 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - claims
	Page 64 - claims
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - wo-search-report
	Page 82 - wo-search-report
	Page 83 - wo-search-report

