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(57)【特許請求の範囲】
【請求項１】
　対角化不可能であって離散時間線形システムを表現している所定の次元の正方行列をジ
ョルダン標準形の行列に変形する行列変形部と、
　前記ジョルダン標準形の行列を含む前記離散時間線形システムから、少なくとも１回微
分可能で、階段形状をした単調増加関数を用いることによって、定数係数連立非同次微分
方程式を算出し、構成されるべきニューラルネットワークのニューロンの間の結線により
伝送される前記ニューロンの状態量に与えられる重み係数および前記ニューロンの各々に
加えられる加え値を算出する重み係数算出部と、
　前記定数係数連立非同次微分方程式から前記所定の次元の数に等しい個数の前記ニュー
ロンと前記ニューロンの間の結線とによって前記ニューラルネットワークのトポロジーを
形成するトポロジー形成部と、
　前記重み係数を前記ニューラルネットワークの前記トポロジーの前記結線に対して付与
し、前記加え値を前記ニューロンの各々に対して付与し、前記ニューラルネットワークを
構成する重み設定部と、
　前記ニューラルネットワークを動作させ、前記離散時間線形システムの出力のフィッテ
ィング曲線を得るニューラルネットワーク回路動作部と、
を含むデジタル－アナログ・フィッティング装置。
【請求項２】
　前記重み係数算出部は、前記重み係数を、前記ジョルダン標準形のジョルダン細胞と前
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記ジョルダン細胞の対角成分を用いて表現することを特徴とする請求項１に記載のデジタ
ル－アナログ・フィッティング装置。
【請求項３】
　前記重み係数算出部は、前記加え値を、前記単調増加関数と、前記ジョルダン標準形の
ジョルダン細胞の対角成分を用いて表現することを特徴とする請求項１または２に記載の
デジタル－アナログ・フィッティング装置。
【請求項４】
　前記重み係数算出部は、前記単調増加関数を、
【数４４】

を用いて構成する請求項１乃至３のいずれか一項に記載のフィッティング装置。
【請求項５】
　前記重み係数算出部は、前記単調増加関数を、ｘ＝ａ１でＤ（ａ１）＝０、ｘ＝ａ２で
Ｄ（ａ２）＝１となるような関数Ｄ（ｘ）：

【数４５】

を用いて構成する請求項１乃至３のいずれか一項に記載のデジタル－アナログ・フィッテ
ィング装置。
【請求項６】
　コンピュータによって処理されるデジタル－アナログ・フィッティング方法であって、
　対角化不可能であって離散時間線形システムを表現している所定の次元の正方行列をジ
ョルダン標準形の行列に変形することと、
　前記ジョルダン標準形の行列を含む前記離散時間線形システムから、少なくとも１回微
分可能で、階段形状をした単調増加関数を用いることによって、定数係数連立非同次微分
方程式を算出し、構成されるべきニューラルネットワークのニューロンの間の結線により
伝送される前記ニューロンの状態量に与えられる重み係数および前記ニューロンの各々に
加えられる加え値を算出することと、
　前記定数係数連立非同次微分方程式から前記所定の次元の数に等しい個数の前記ニュー
ロンと前記ニューロンの間の結線とによって前記ニューラルネットワークのトポロジーを
形成することと、
　前記重み係数を前記ニューラルネットワークの前記トポロジーの前記結線に対して付与
し、前記加え値を前記ニューロンの各々に対して付与し、前記ニューラルネットワークを
構成することと、
　前記ニューラルネットワークを動作させ、前記離散時間線形システムの出力のフィッテ
ィング曲線を得ることと、
を含むデジタル－アナログ・フィッティング方法。
【請求項７】
　対角化不可能であって離散時間線形システムを表現している所定の次元の正方行列をジ
ョルダン標準形の行列に変形させ、
　前記ジョルダン標準形の行列を含む前記離散時間線形システムから、少なくとも１回微
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分可能で、階段形状をした単調増加関数を用いることによって、定数係数連立非同次微分
方程式を算出し、構成されるべきニューラルネットワークのニューロンの間の結線により
伝送される前記ニューロンの状態量に与えられる重み係数および前記ニューロンの各々に
加えられる加え値を算出させ、
　前記定数係数連立非同次微分方程式から前記所定の次元の数に等しい個数の前記ニュー
ロンと前記ニューロンの間の結線とによって前記ニューラルネットワークのトポロジーを
形成させ、
　前記重み係数を前記ニューラルネットワークの前記トポロジーの前記結線に対して付与
し、前記加え値を前記ニューロンの各々に対して付与し、前記ニューラルネットワークを
構成することと、
　前記ニューラルネットワークを動作させ、前記離散時間線形システムの出力のフィッテ
ィング曲線を得る、
処理をコンピュータに実行させることを特徴とするプログラム。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、デジタル－アナログ・フィッティング装置、デジタル－アナログ・フィッテ
ィング方法、及びプログラムに関するものである。
【背景技術】
【０００２】
　リカレントニューラルネットワーク（Ｒｅｃｕｒｒｅｎｔ　Ｎｅｕｒａｌ　Ｎｅｔｗｏ
ｒｋ、以下ＲＮＮと省略することがある）はロボットの動作用として開発されたニューラ
ルネットワークである。このＲＮＮは、ロボットの動作のみならず、歩数計や音声解析な
どの他の物理モデルに対しても有効である。
【０００３】
　ＲＮＮはニューロンと結線とから構成される。ここで、ニューロンを整数でインデック
スするとして、ｊ番目のニューロンの出力をｙｊとする。さらに、ｊ番目のニューロンか
らｉ番目のニューロンへの結線上に定義される重み係数をＣij、各ニューロンに定義され
る遅れパラメータをεi 、ニューロンｙi に入力される加え値をｈi がとする。すると、
ｉ番目のニューロンの出力は、ｔを時間として、

【数１】

となる。上式のｙi をニューロンそのものと同一視する場合もある。なお、加え値ｈiは
、このＲＮＮ回路のニューロン以外で求められた値である。加え値ｈiが恒等的に０であ
る場合もある。また、上の［数１］は、連続時間ｔに対する定数係数の非同次連立微分方
程式である。
【０００４】
　一方、離散時間の線形システムが知られている。線形システムは、Ａをｎ×ｎの正方行
列、離散時間ｉのときｎ次元ベクトルｙ（ｉ）を入力すると、下の［数2］のようなｙ（
ｉ＋１）、

【数２】

が出力されるシステムである。そしてこのｙ（ｉ＋１）は、時刻（ｉ＋１）における入力
ベクトルとなる。［数２］の正方行列Ａは、一般に対角化可能と仮定される場合において
、離散時間の線形システムの出力をＲＮＮ回路で解析する方法が知られている。その方法
では、離散時間の線形システムの出力である離散点にフィッティングする連続曲線を求め
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、求められた連続曲線であるフィッティング曲線についてＲＮＮ回路で解析を行う。この
場合、［数２］で表されるような線形システムの出力の離散点の全てを通るフィッティン
グ曲線をリカレントニューラルネットワーク回路を用いて求める。そのためには、線形シ
ステムを表す［数２］から得られる定数係数の非同次連立微分方程式を用いて、ニューラ
ルネットワーク回路が設計される。
【０００５】
　このような目的に使用されるニューラルネットワーク設計方法として次のような方法が
知られている。その方法では、まず、設計対象のＲＮＮ回路を、固有振動を出力する複数
の振動系ＲＮＮ回路と、当該複数の振動系ＲＮＮ回路の出力の和を求める加算回路とを含
むように構成する。そして、当該複数の振動系ＲＮＮ回路に離散時間の線形システムの出
力である離散値データを入力したときの加算回路からの出力を、離散値データに対しての
フィッティング曲線の出力とする。
【先行技術文献】
【特許文献】
【０００６】
【特許文献１】国際公開第２００６／１０６７１３号
【特許文献２】特開２０１０－１９３３１０号公報
【特許文献３】国際公開第２０１０／０７３４１２号
【特許文献４】国際公開第２００９／０７８０７１号
【特許文献５】特開２００９－６３７６１号公報
【非特許文献】
【０００７】
【非特許文献１】永嶋史朗、「双線形時間遅れニューラルネットワークによるロボットソ
フトウェアシステム」、日本ロボット学会誌、２００６年９月、第２４巻、第６号、ｐ．
５３－６４
【発明の概要】
【発明が解決しようとする課題】
【０００８】
　リカレントニューラルネットワーク（ＲＮＮ）回路を用いて離散時間の線形システムの
出力を解析する方法において、離散時間の線形システムを表す行列Ａが対角化可能でない
ような離散時間の線形システムの出力をＲＮＮ回路で解析する方法が知られていないとい
う問題がある。
【０００９】
　また、ＲＮＮ回路を用いて時刻ｉ＝０、１…、ｋに対するｎ次元ベクトルｙ（ｉ）の各
成分のフィッティング曲線を求めるには、少なくともｋ＋１個ものニューロンが必要とな
る。従って、サンプル数ｋが大きくなるにつれて、必要となるニューロン数が増加してし
まうという問題がある。
【００１０】
　上述した問題に鑑み、本発明は、離散時間の線形システムを表す行列Ａが対角化可能で
ないような離散時間の線形システムの出力を解析することができ、離散時間の線形システ
ムの出力であるサンプル数が多くなっても必要となるニューロンの個数の増加を抑制する
ことができるデジタル－アナログ・フィッティング装置、デジタル－アナログ・フィッテ
ィング方法、及びプログラムに関するものである。を提供することを目的とする。
【課題を解決するための手段】
【００１１】
　デジタル－アナログ・フィッティング装置は、行列変形部と、重み係数算出部と、トポ
ロジー形成部と、重み設定部と、ニューラルネットワーク回路動作部を含む。行列変形部
は、対角化不可能であって離散時間線形システムを表現している所定の次元の正方行列を
ジョルダン標準形の行列に変形する。重み係数算出部は、前記ジョルダン標準形の行列を
含む前記離散時間線形システムから、少なくとも１回微分可能で、階段形状をした単調増
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加関数を用いることによって、定数係数連立非同次微分方程式を算出し、構成されるべき
ニューラルネットワークのニューロンの間の結線により伝送される前記ニューロンの状態
量に与えられる重み係数および前記ニューロンの各々に加えられる加え値を算出する。ト
ポロジー形成部は、前記定数係数連立非同次微分方程式から前記所定の次元の数に等しい
個数の前記ニューロンと前記ニューロンの間の結線とによって前記ニューラルネットワー
クのトポロジーを形成する。重み設定部は、前記重み係数を前記ニューラルネットワーク
の前記トポロジーの前記結線に対して付与し、前記加え値を前記ニューロンの各々に対し
て付与し、前記ニューラルネットワークを構成する。ニューラルネットワーク回路動作部
は、前記ニューラルネットワークを動作させ、前記離散時間線形システムの出力のフィッ
ティング曲線を得る。
【発明の効果】
【００１２】
　本明細書で後述する本発明は、デジタル－アナログ・フィッティング装置、フィッティ
ング方法、及びプログラムに関するものである。本明細書で後述する本発明によれば、離
散時間の線形システムを表す行列が対角化可能でないような離散時間の線形システムの出
力をニューラルネットワーク回路で解析でき、離散時間の線形システムの出力であるサン
プル数が多くなってもＲＮＮ回路に必要となるニューロンの個数の増加を抑制することが
できるので、ニューラルネットワーク回路の実行の際の計算量が削減されるという効果を
奏する。
【図面の簡単な説明】
【００１３】
【図１】ＲＮＮ回路の一例と、このＲＮＮ回路におけるニューロンと入出力の結線との関
係式を説明する図である。
【図２】図１の関係式の拡張を説明する図である。
【図３】離散時間の線形システムを説明する図である。
【図４】離散時間の線形システムの出力例を図解したグラフである。
【図５】定数係数の連立同次微分方程式によって処理が表されるＲＮＮ回路の一例である
。
【図６】離散時間線形システムの出力のフィッティング曲線を求めるデジタル－アナログ
・フィッティング装置の機能ブロック図の例を示す図である。
【図７】曲線ｇ１（ｔ）の例を示す図である。
【図８】曲線ｇ２（ｔ）の例を示す図である。
【図９】関数ａ（ｘ）のグラフを示す図である。
【図１０】関数Ｄ（ｘ）のグラフを示す図である。
【図１１】ｎ＝３とするときのＲＮＮ回路の例を示す図である。
【図１２】ｎ＝３とするときのＲＮＮ回路の別の例を示す図である。
【図１３】デジタル－アナログ・フィッティング装置のハードウェア構成例を表した図で
ある。
【図１４】フィッティング曲線算出処理の流れの例を示すフローチャートである。
【発明を実施するための形態】
【００１４】
　図面を参照して、まず、（ＲＮＮ：Ｒｅｃｕｒｒｅｎｔ　Ｎｅｕｒａｌ　Ｎｅｔｗｏｒ
ｋ、以下単にニューラルネットワークとも呼ぶ）回路を用いて離散時間の線形システムの
出力をＲＮＮ回路で解析する方法の概要について説明する。
【００１５】
＜線形システムとニューラルネットワーク＞
　図１は、リカレントニューラルネットワーク（ＲＮＮ）回路の一例と、このＲＮＮ回路
におけるニューロンと入出力の結線との関係式を説明する図である。
【００１６】
　ＲＮＮはニューロンと結線とからなるネットワークである。ここで、ｊ番目のニューロ
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ンの出力をｙｊ、ｊ番目のニューロンからｉ番目のニューロンへの結線上に定義される重
み係数をＣijとする。すると、ｉ番目のニューロンへの入力は、
【数３】

となる。各ニューロンには、遅れパラメータεi が定義されており、ｉ番目のニューロン
の出力は、ｔを時間として、

【数４】

となる。上式のｙi をニューロンそのものと同一視する場合もある。上の［数4］の関係
式を図示すると図１のようになる。
【００１７】
　図２は、図１の関係式の拡張を説明する図である。図２に示されている例では、加え値
ｇi がニューロンｙi に入力される。この場合のｉ番目のニューロンの入出力は、

【数５】

となる。なお、ｇi は、このＲＮＮ回路のニューロン以外で求められた値である。
【００１８】
　図３は離散時間の線形システムを説明する図である。図３において、Ａはｎ×ｎの正方
行列を表す。時間ｉのときｎ次元ベクトルｙ（ｉ）を入力すると、
【数６】

で表されるようなｙ（ｉ＋１）が出力される。ｙ（ｉ＋１）はまた時刻（ｉ＋１）におけ
る入力ベクトルとなる。
【００１９】
　行列Ａはたとえば、ｍを整数として
【数７】

のような行列であり得る。このとき、ｙ（ｉ）は、ｙ１（ｉ）とｙ２（ｉ）を成分として
持つ２次元ベクトルであり、ｙ（ｉ＋１）＝Ａｙ（ｉ）は、



(7) JP 6217205 B2 2017.10.25

10

20

30

40

【数８】

と表される。［数８］においてｍ＝４としたときに得られる離散時間の線形システムの出
力は、図４のようになる。図４に示されているように、整数ｉで指定される時刻がｉ＝０
、１、２、…、と変化するとき、２次元ベクトルｙ（ｉ）は、半径１の円の円周上を、１
つの離散時間あたり、π／４だけ反時計回りに回転する。整数ｉで指定される時刻ｉ＝０
、１、２、…、を、Ｔ０、Ｔ１、Ｔ２、と表すこともある。したがって［数７］の行列Ａ
によって表現される線形システムは回転を出力するシステムである。
【００２０】
　制御や信号処理などで使われる離散時間の線形システムの出力をＲＮＮ回路で解析する
ためには、まず、離散点にフィッティングする曲線を求める。たとえば、図3の例では、
出力はｙ（０）、ｙ（１）、ｙ（２）、…、と離散的な点の集まりとなる。次に時刻Ｔ０

、Ｔ１、Ｔ２、…、において、これらの離散点ｙ（０）、ｙ（１）、ｙ（２）、…、を通
る連続曲線であるフィッティング曲線を求める。このときたとえば、ＲＮＮ回路を初期値
、外力の値などの所定の条件の下で動作させ、フィッティング曲線を求めても良い。そし
て、求められたフィッティング曲線についてＲＮＮ回路で解析を行えば良い。
【００２１】
　前述のように［数７］の行列Ａは対角化が可能である。すなわち、ある正方行列Ｘ（と
その逆行列Ｘ－１）と、固有値λ１、λ２、…、が存在し、行列Ａは、
【数９】

のように対角化される。線形システムの関係式［数６］に［数９］を用いると、
【数１０】

のようになる。［数１０］はｎ次元ベクトルｙ（ｉ＋１）と初期値ｙ（０）との関係を表
す。
【００２２】
　ここで、時間を表す離散的な数ｉを連続的な時間変数ｔに置き換えると
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【数１１】

のようになる。また［数１1］を用いると
【数１２】

となる。［数１２］で、「（ｌｏｇλ）λｔ又は０」とあるが、固有値λが０でないとき
は、（ｌｏｇλ）λｔ、固有値λが０のとき０をとるという意味である。
【００２３】
　［数１２］は定数係数の連立同次微分方程式であり、その解である［数１1］のｙ（ｔ
）は連続曲線である。しかもｔ＝ｉ＋１を代入すれば、［数１０］の関係式と［数１1］
の関係式は等しく、［数１1］は［数１０］の拡張となっている。すなわち、連続曲線ｙ
（ｔ）はｙ（ｉ＋１）のフィッティング曲線となっていることがわかる。また［数１２］
の定数係数の連立同次微分方程式は、ＲＮＮ回路によって実現が可能である。
【００２４】
　たとえば、行列Ａとして［数７］に示されているＡを用いると、［数１２］は、
【数１３】

となる。
【００２５】
　図５は、定数係数の連立同次微分方程式［数１３］によって処理が表されるＲＮＮ回路
の一例である。このＲＮＮ回路１１は２個のニューロンからなり、サンプル数が大きくな
ってもＲＮＮ回路のニューロンは増加しない。［数１３］では、ニューロンの個数は行列
Ａの次数と等しい。
【００２６】
　以下、図面を参照しながら、離散時間の線形システムを表す行列Ａが対角化可能でない
ような離散時間の線形システムの出力を解析することができ、離散時間の線形システムの
出力であるサンプル数が多くなっても必要となるニューロンの個数の増加を抑制すること
ができるリカレントニューラルネットワーク回路、ならびにそのようなリカレントニュー
ラルネットワーク回路の設計方法、及びリカレントニューラルネットワーク回路の設計プ
ログラムについて説明する。またその一環として、離散時間線形システムの出力のフィッ
ティング曲線を求めるＲＮＮ回路の設計装置、方法およびプログラムが提供される。
【００２７】
＜デジタル－アナログ・フィッティング装置とリカレントニューラルネットワーク回路＞
　以下ではまず、離散時間の線形システムを表す行列Ａが対角化可能でないような離散時
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間の線形システムの出力を解析することができ、離散時間の線形システムの出力であるサ
ンプル数が多くなっても必要となるニューロンの個数の増加を抑制することができるリカ
レントニューラルネットワーク回路を含むデジタル－アナログ・フィッティング装置につ
いて説明する。
【００２８】
　本実施例のデジタル－アナログ・フィッティング装置では、対角化が可能ではない線形
システムを扱う。行列Ａが対角化可能でない場合は、ジョルダンの標準形に変形すること
が出来る。また、離散時間の線形システムの出力であるサンプル数が多くなってもＲＮＮ
回路に必要となるニューロンの個数の増加を抑制することができるので、ニューラルネッ
トワーク回路の実行の際の計算量を削減することができる。
【００２９】
　本例では、線形システムの出力のフィッティング曲線を与える連立同次微分方程式を導
き、その連立同次微分方程式を実現するＲＮＮ回路を設計する。そして、ＲＮＮ回路を所
定の条件の下で動作させ、フィッティング曲線を求める。
【００３０】
　まず図6について説明する。図6は、離散時間線形システムの出力のフィッティング曲線
を求めるデジタル－アナログ・フィッティング装置（以下、フィッティング装置とも呼ぶ
）１００の機能ブロック図の例を示す図である。
【００３１】
　図6に示されているように、フィッティング装置１００は、入力受付部１０２、行列変
形部１０４、重み係数算出部１０６、トポロジー形成部１０８、重み設定部１１０、ＲＮ
Ｎ回路動作部（ニューラルネットワーク回路動作部）１１２、及び出力部１１４を含む。
【００３２】
　入力受付部１０２は、外部から線形システムを表す行列Ａ、および初期値ベクトルｙ（
０）の入力を受ける。本例では、行列Ａは、対角化可能であるとは限らない。
【００３３】
　行列変形部１０４は、入力受付部１０２に入力された、対角化可能とは限らないｎ次元
正方行列Ａをジョルダン標準形に変形する。つまり、行列変形部１０４は、対角化不可能
であって離散時間線形システムを表現している所定の次元の正方行列をジョルダン標準形
の行列に変形する。
【００３４】
　Ａのジョルダン標準形は、Ａの最小多項式の次数と固有空間の次元に依存し、最も簡単
な場合は、行列Ａが、λ≠０として、
【数１４】

のようなジョルダン細胞になっている場合であり、まずこの場合について説明する。
【００３５】
　なお、そうでない場合は、行列変形部１０４は、行列Ａの最小多項式の次数と固有空間
の次元に依存して、Ｐをある正則行列とし、
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【数１５】

のようにジョルダン標準形に変形する。ここでジョルダン細胞λｉは、
【数１６】

のように、対角成分γｉを持つ。
【００３６】
　重み係数算出部１０６は、［数１４］の関係を繰り返し用いることによって、

【数１７】

を得る。ここで、ｉ、ｊを整数として、(ｉ、ｊ)Ｔ（Ｔはベクトル、行列の転置を表す）
は、i個からｊ個を選択する組合せ数を意味する。また、ｉ＜ｊのとき(ｉ、ｊ)Ｔは０と
する。
【００３７】
　次に、重み係数算出部１０６は、リカレントニューラルネットワーク（ＲＮＮ）回路の
ｊ番目のニューロンからｉ番目のニューロンへの結線上に定義される重み係数をｂijを求
める。また、重み係数算出部１０６は、各ニューロンに外力が加えられる場合は、その外
力を算出する。
【００３８】
　そのためにまず重み係数算出部１０６は、上記の少なくとも１回微分可能な階段状の単
調増加関数を用意する。この関数は、
（Ｃ１）引数が整数値付近で、傾きが０である連続曲線、
という条件を満たす。
【００３９】
　この条件を満たす関数を構成するために、ε＞０を小さな値をもつ正の数、ｉを整数、
ｔを時間を表すパラメータとして、
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【数１８】

を満たすｇi（ｔ）を作成すればよい。
【００４０】
　たとえばｉ＝１のとき単調増加関数ｇ１（ｔ）は、ｔ＝１付近でｇ１（１）＝(１、１)
Ｔ、ｔ＝２付近でｇ１（２）＝(２、１)Ｔ等の整数値を取り、ｔが整数値付近でグラフが
水平になるような関数である。
【００４１】
　また、たとえばｉ＝２のとき単調増加関数ｇ２（ｔ）は、ｔ＝１付近でｇ２（１）＝０
、ｔ＝２付近でｇ２（２）＝(２、２)Ｔ等の整数値を取り、ｔが整数値付近でグラフが水
平になるような関数である。
【００４２】
　［数１８］のような仮定はフィッティング曲線がきちんと線型システムの出力値を通過
するために必要であり、各点での微分可能性の仮定はフィッティング曲線がＲＮＮ回路の
出力として得られるために必要である。
【００４３】
　図７は曲線ｇ１（ｔ）の例を示す図である。また、図８は曲線ｇ２（ｔ）の例を示す図
である。このような階段の形状をした関数を作成するためには、例えば、次のような関数
を用いても良い。
【００４４】
　一例は、ｘ＝０においてａ（０）＝０であり、ｘ＝∞でａ（∞）＝１となるような関数
ａ（ｘ）：

【数１９】

である。図９は、関数ａ（ｘ）のグラフを示す図である。この関数ａ（ｘ）は無限回微分
可能である。次にａ（ｘ）を使って
　ｘ＝ａ１でＤ（ａ１）＝０、ｘ＝ａ２でＤ（ａ２）＝ｂとなるような関数Ｄ（ｘ）：

【数２０】

を求める。図１０は、関数Ｄ（ｘ）のグラフを示す図である。この関数Ｄ（ｘ）は無限回
微分可能である。よって、この関数Ｄ（ｘ）を用いて単調増加関数ｇｉ（ｔ）を構成した
場合には、単調増加関数ｇｉ（ｔ）は無限回微分可能となる。もちろん、［数１８］を満
たす単調増加関数ｇｉ（ｔ）の構成に用いることができる関数は上の例に限らない。
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【００４５】
　これらの単調増加関数ｇｉ（ｔ）（ｉ＝１、２、３、…、ｎ）を用いて［数１７］に現
われる整数ｉをパラメータとする行列：
【数２１】

を、

【数２２】

のように連続変数ｔをパラメータとする行列に書き換える。ここで、［数２２］の行列Λ
（ｔ）は、単調増加関数ｇｉ（ｔ）（ｉ＝１、２、３、…、ｎ）の性質を反映して、少な
くとも１階微分可能である。
【００４６】
　このとき、［数２２］の行列Λ（ｔ）は、パラメータｔが整数値ｉのとき、

【数２３】

を満足する。上記行列Λ（ｔ）を用いると、整数ｉをパラメータとする式：



(13) JP 6217205 B2 2017.10.25

10

20

30

40

【数２４】

を連続変数ｔをパラメータとする式；
【数２５】

に拡張することができる。
【００４７】
　［数２５］ように定義された関数ｙ１（ｔ）、…、ｙｎ（ｔ）が、［数１４］のフィッ
ティング曲線になる。
【００４８】
　次に重み係数算出部１０６は、関数ｙ１（ｔ）、…、ｙｎ（ｔ）を出力するＲＮＮ回路
を作成するための重み係数ｂｉｊを算出する。そのために、［数２5］を微分方程式に書
き換える。つまり、重み係数算出部１０６は、ジョルダン標準形の行列を含む前記離散時
間線形システムから、少なくとも１回微分可能で、階段形状をした単調増加関数を用いる
ことによって、定数係数連立非同次微分方程式を算出し、構成されるべきニューラルネッ
トワークのニューロンの間の結線により伝送される前記ニューロンの状態量に与えられる
重み係数およびニューロンの各々に加えられる加え値を算出する。
【００４９】
　ここで下記［数２６］のような行列Ｇ（ｔ）：

【数２６】

を導入する。また、
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で定義される関数ｈ１（ｔ）、…、ｈｎ（ｔ）を導入する。
【００５０】
　すると、［数２５］の微分は、
【数２８】

となる。［数２８］は定数係数の連立微分方程式であり、図１、２に表したＲＮＮ回路と
関係式との関係を用いることで、この連立微分方程式をＲＮＮ回路によって実現すること
ができる。
【００５１】
　よって、重み係数算出部１０６は、重み係数ｂｉｊを、
【数２９】

と決定する。
【００５２】
　また、重み係数算出部１０６は、各ニューロンに加えられる外力はｈｉであることを決
定する。
【００５３】
　次に、行列Ａが対角化可能でなく、ジョルダン細胞になっていない場合について説明す
る。
【００５４】
　この場合、重み係数算出部１０６は、［数１５］、［数１６］のジョルダン標準形から
出発する。ジョルダン細胞λｉは対角成分γｉを持つ。
【００５５】
　このとき、［数１４］は、
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【数３０】

となる。この関係式を繰り返し用いて、
【数３１】

を得る。ここで行列Λｉ（ｔ）は、［数２2］の行列Λ（ｔ）に添え字を増やしただけの
、ストレートフォワードな拡張である。
【００５６】
　ここで重み係数算出部１０６は、上述と同様、離散的なパラメータである整数ｉから連
続変数のパラメータｔに［数３１］の関係式を拡張する。すると、重み係数算出部１０６
は、

【数３２】

を得る。ここで行列Λｉ（ｔ）は、［数２2］の行列Λ（ｔ）に添え字を増やしただけの
、ストレートフォワードな拡張であるので、［数３２］の右辺に現われる正方行列は、非
対角成分を含むことに注意する。次に、［数３２］を微分方程式に書き換える。まず、［
数３２］の両辺をパラメータｔで微分する。すると、
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【数３３】

となる。ここで、関数ｈ１（ｔ）、…、ｈｎ（ｔ）は、
【数３４】
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によって定義される。［数３３］は定数係数の連立微分方程式であり、図１、２に表した
ＲＮＮ回路と関係式との関係を用いることで、この連立微分方程式をＲＮＮ回路によって
実現することができる。
【００５７】
　重み係数算出部１０６は、［数３３］から、重み係数ｂｉｊを、
【数３５】

によって定義する。
【００５８】
　トポロジー形成部１０８は、重み係数算出部１０６で算出された定数係数の連立同次微
分方程式、たとえば［数２８］、［数３３］からＲＮＮ回路のトポロジーを決定する。つ
まり、トポロジー形成部１０８は、定数係数連立非同次微分方程式から所定の次元の数に
等しい個数のニューロンと前記ニューロンの間の結線とによってニューラルネットワーク
のトポロジーを形成する。
【００５９】
　トポロジー形成部１０８は、行列Ａの次数に応じたＲＮＮ回路を形成する。例えば、行
列Ａが２次の正方行列である場合には、トポロジー形成部１０８は、２個のニューロンを
組み合わせてＲＮＮ回路を形成する。また、例えば、行列Ａが３次の正方行列である場合
には、トポロジー形成部１０８は、３個のニューロンを組み合わせてＲＮＮ回路を形成す
る。
【００６０】
　重み設定部１１０は、リカレントニューラルネットワーク（ＲＮＮ）回路のｊ番目のニ
ューロンからｉ番目のニューロンへの結線上に定義される重み係数をｂijと、各ニューロ
ンに外力が加えられる場合は、その外力をＲＮＮ回路に設定する。つまり、重み設定部１
１０は、重み係数をニューラルネットワークの前記トポロジーの前記結線に対して付与し
、加え値をニューロンの各々に対して付与し、ニューラルネットワークを構成する。
【００６１】
　図１１は、ｎ＝３とするときのＲＮＮ回路１２を示す図である。図１１のＲＮＮ回路の
出力は［数２5］を満たし、［数１４］のフィッティング曲線になる。
【００６２】
　図１２は、ｎ＝３とするときのＲＮＮ回路１３を示す図である。図１２のＲＮＮ回路の
出力は［数３２］を満たし、［数３０］のフィッティング曲線になる。
【００６３】
　連立非同次微分方程式に対応するＲＮＮ回路は次のような規則によって設計され得る。
すなわち、
（Ｒ１）トポロジー形成部１０８は、行列Ａの次数に等しい数のニューロンを用意し、そ
の状態がｙｉ（ｔ）を与えるニューロンをｉ番目のニューロンとする、
（Ｒ２）トポロジー形成部１０８は、整数ｉとｊが等しくなく、行列Ｂの要素ｂｉｊが非
零である場合、ｉ番目のニューロンとｊ番目のニューロンを結線で接続する、
（Ｒ３）トポロジー形成部１０８は、ｉ番目のニューロンとｉ番目のニューロンをループ
状の結線で接続する、
（Ｒ４）重み設定部１１０は、整数ｉとｊが等しくないとき、ｉ番目のニューロンとｊ番
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目のニューロンを接続する結線上に、重み係数ｂｉｊを付与する、
（Ｒ５）重み設定部１１０は、各ニューロンが積分器として機能するときの倍数は、（ｄ
ｙi／ｄｔ）の係数である「１」を与える、
（Ｒ６）重み設定部１１０は、ｉ番目のニューロンとｉ番目のニューロンを接続するルー
プ状の結線上に、重み係数（ｂｉｉ＋１）を付与する、
（Ｒ７）重み設定部１１０は、ｉ番目のニューロンに加え値ｈｉが追加されるようにする
、
という規則である。
【００６４】
　上記規則（Ｒ５）は、次のような理由から得られる。図２に示されているニューロンの
入出力結線に対応する微分方程式：
【数３６】

と、［数３３］の出力ｙiに対する方程式：
【数３７】

を比較すると、［数３７］の左辺の第２項（＋ｙｉ）が存在することに気が付く。この項
を消すためには、右辺に（＋ｙｉ）を追加すればよい。これは、図２では、ループ状の結
線の接続を追加することに相当する。このように、図１１、１２のｉ番目のニューロンに
接続されるループ状の結線に対する重み係数は（ｂｉｉ＋１）となっている。
【００６５】
　また、［数３６］の１階微分の項の係数εｉは、ｉ番目のニューロンが積分器として機
能するときの倍数に相当する。今の場合、εｉ＝１であるので、図１１、１２のｉ番目の
ニューロンは１倍の積分器として機能する。
【００６６】
　このように、対角化不可能であって離散時間線形システムを表現している所定の次元の
正方行列の要素を用いて導出される定数係数連立非同次微分方程式によって動作が表され
るニューラルネットワーク回路であって、所定の次元の数に等しい個数のニューロンと、
ニューロンの間の結線とを含み、対角化不可能であって離散時間線形システムを表現して
いる所定の次元の正方行列の要素を用いて導出される定数係数連立非同次微分方程式から
、所定の次元の数に等しい個数のニューロンの間の結線により伝送されるニューロンの状
態量に与えられる重み係数ｂｉｊおよび前記ニューロンの各々に加えられる加え値ｈｉが
算出されるニューラルネットワーク回路が提供される。
【００６７】
　ＲＮＮ回路動作部１１２は、構成されたＲＮＮ回路に初期値を与え、時系列データｙ１

（ｔ）、ｙ２（ｔ）、ｙ３（ｔ）、…、を得る。ＲＮＮ回路動作部１１２は、ニューラル
ネットワーク回路動作部とも呼ばれることがある。このように、ＲＮＮ回路動作部（ニュ
ーラルネットワーク回路動作部）１１２は、ニューラルネットワークを動作させ、離散時
間線形システムの出力のフィッティング曲線を得る。
【００６８】
　出力部１１４は、ＲＮＮ回路動作部１１２で得た時系列データｙ１（ｔ）、ｙ２（ｔ）
、ｙ３（ｔ）、…、を出力する。
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【００６９】
　このような構成によって、離散時間の線形システムを表す行列Ａが対角化可能でないよ
うな離散時間の線形システムの出力をＲＮＮ回路で解析でき、離散時間の線形システムの
出力であるサンプル数が多くなってもＲＮＮ回路に必要となるニューロンの個数の増加を
抑制することができる。また、それによって、計算量の削減が実現できる。
【００７０】
　また、上記の装置によって構成されるリカレントニューラルネットワーク回路は、離散
時間の線形システムを表す行列Ａが対角化可能でないような離散時間の線形システムの出
力を解析することができ、離散時間の線形システムの出力であるサンプル数が多くなって
もＲＮＮ回路に必要となるニューロンの個数の増加を抑制することができる。
【００７１】
　図6において、フィッティング装置１００は、汎用のコンピュータ２００として構成さ
れ得る。このコンピュータ２００に、入力データ１として、離散時間線形システムを表し
ている行列Ａと、この離散時間線形システムへの入力ベクトルの初期値ｙ（０）とを入力
してコンピュータ２００内のメモリに記憶させる。ここで、コンピュータ２００に対して
所定の実行指示を与えると、コンピュータ２００のＣｅｎｔｒａｌ　Ｐｒｏｃｅｓｓｉｎ
ｇ　Ｕｎｉｔ（ＣＰＵ、中央演算装置）は、この離散時間線形システムの出力のフィッテ
ィング曲線を算出するための制御処理を実行する。ＣＰＵ２０２は、この制御処理の実行
結果として得られる、離散時間線形システムの出力のフィッティング曲線を表しているデ
ータを、メモリに記憶させる。このメモリに記憶されたデータは、その後、出力データ２
としてコンピュータ２００から出力される。
【００７２】
　図１３は、デジタル－アナログ・フィッティング装置のハードウェア構成例を表した図
である。
【００７３】
　このコンピュータ２００は、Ｃｅｎｔｒａｌ　Ｐｒｏｃｅｓｓｉｎｇ　Ｕｎｉｔ（ＣＰ
Ｕ）２０２、Ｒｅａｄ　Ｏｎｌｙ　Ｍｅｍｏｒｙ（ＲＯＭ）２０４、及びＲａｎｄｏｍ　
Ａｃｃｅｓｓ　Ｍｅｍｏｒｙ（ＲＡＭ）２０６、ハードディスク装置２０８、入力装置２
１０、表示装置２１２、インタフェース装置２１４、及び記録媒体駆動装置２１６を備え
ている。なお、これらの構成要素はバスライン２１８を介して接続されており、ＣＰＵ２
０２の管理の下で各種のデータを相互に授受することができる。
【００７４】
　ＣＰＵ２０２は、このコンピュータ２００全体の動作を制御する演算処理装置であり、
コンピュータ２００の制御処理部として機能する。
【００７５】
　ＲＯＭ２０４は、所定の基本制御プログラムが予め記録されている読み出し専用半導体
メモリである。ＣＰＵ２０２は、この基本制御プログラムをコンピュータ２００の起動時
に読み出して実行することにより、このコンピュータ２００の各構成要素の動作制御が可
能になる。
【００７６】
　ＲＡＭ２０６は、ＣＰＵ２００が各種の制御プログラムを実行する際に、必要に応じて
作業用記憶領域として使用する、随時書き込み読み出し可能な半導体メモリである。
【００７７】
　ハードディスク装置２０８は、ＣＰＵ２０２によって実行される各種の制御プログラム
や各種のデータを記憶しておく記憶装置である。ＣＰＵ２０２は、ハードディスク装２６
に記憶されている所定の制御プログラムを読み出して実行することにより、後述する各種
の制御処理を行えるようになる。
【００７８】
　入力装置２１０は、例えばマウス装置やキーボード装置であり、情報処理装置のユーザ
により操作されると、その操作内容に対応付けられている各種情報の入力を取得し、取得
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した入力情報をＣＰＵ２０２に送付する。
【００７９】
　表示装置２１２は例えば液晶ディスプレイであり、ＣＰＵ２０２から送付される表示デ
ータに応じて各種のテキストや画像を表示する。
【００８０】
　インタフェース装置２１４は、このコンピュータ２００に接続される各種機器との間で
の各種情報の授受の管理を行う。
【００８１】
　記録媒体駆動装置２１６は、可搬型記録媒体２２０に記録されている各種の制御プログ
ラムやデータの読み出しを行う装置である。ＣＰＵ２０２は、可搬型記録媒体２２０に記
録されている所定の制御プログラムを、記録媒体駆動装置２１６を介して読み出して実行
することによって、後述する各種の制御処理を行うようにすることもできる。なお、可搬
型記録媒体２２０としては、例えばＵＳＢ（Ｕｎｉｖｅｒｓａｌ　Ｓｅｒｉａｌ　Ｂｕｓ
）規格のコネクタが備えられているフラッシュメモリ、ＣＤ－ＲＯＭ（Ｃｏｍｐａｃｔ　
Ｄｉｓｃ　Ｒｅａｄ　Ｏｎｌｙ　Ｍｅｍｏｒｙ）、ＤＶＤ－ＲＯＭ（Ｄｉｇｉｔａｌ　Ｖ
ｅｒｓａｔｉｌｅ　Ｄｉｓｃ　Ｒｅａｄ　Ｏｎｌｙ　Ｍｅｍｏｒｙ）などがある。
【００８２】
　離散時間線形システムの出力のフィッティング曲線の算出をこのようなコンピュータ２
００に行わせるには、例えば、後述する制御処理をＣＰＵ２０２に行わせるための制御プ
ログラムを作成する。作成された制御プログラムはハードディスク装置２０８若しくは可
搬型記録媒体２２０に予め格納しておく。そして、ＣＰＵ２０２に所定の指示を与えてこ
の制御プログラムを読み出させて実行させる。こうすることで、離散時間線形システムの
出力のフィッティング曲線の算出をコンピュータ２００が行えるようになる。
【００８３】
＜フィッティング曲線の算出処理＞
　図１４を参照しながら、実施例のデジタル－アナログ・フィッティング装置１００にお
けるフィッティング曲線の算出処理について説明する。
【００８４】
　また、フィッティング装置１００が図１３に示されているような汎用コンピュータ２０
０である場合には、下記の説明は、そのような処理を行う制御プログラムを定義する。す
なわち、以下では、下記に説明する処理を汎用コンピュータに行わせる制御プログラムの
説明でもある。
【００８５】
　図１４は、フィッティング曲線算出処理の流れの例を示すフローチャートである。
　図１４の処理が開始されると、まず、Ｓ１０１で入力受付部１０２は、非対角化可能で
はない行列Ａと、この線形システムの初期状態を表している初期値（ｙ１（０）、…、ｙ

ｎ（０））と、図７、８に示されている曲線ｇｉ（ｔ）に関する情報との入力を取得する
。行列Ａは、ｎを２以上の整数として、ｎ次元正方行列でｎ次元正方行列である。また、
行列Ａは離散時間線形システムを定義する。線形システムの初期値、および曲線ｇｉ（ｔ
）に関する情報は入力データ１と参照される。
【００８６】
　次に、Ｓ１０２で行列変形部１０４は、非対角化可能ではない行列Ａをジョルダン標準
形に変形する。行列Ａをジョルダン標準形に変形する手法は様々なものが知られており、
そのいずれの手法を採用してもよい。
【００８７】
　また、本ステップで算出された固有値λ1、…、λnは、固有値の対数値ｌｏｇλ1、…
、ｌｏｇλnを得るために用いられる。なお、本実施形態では、行列Ａの固有値はゼロで
ないと仮定されているが、行列Ａの固有値に値がゼロが含まれている場合に行列変形部１
０４は、その固有値についての対数値の算出結果をゼロとする処理を行ってもよい。
【００８８】
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　次に、Ｓ１０３で重み係数算出部１０６は、Ｓ１０２において得られた行列Ａの固有値
の対数値ｌｏｇγ1、…、ｌｏｇγnおよび曲線ｇｉ（ｔ）を用いて、各ニューロンの状態
量に与える重み係数ｂｉｊを算出する。重み係数ｂｉｊは、たとえば、上の［数３２］に
従って算出され得る。さらに重み係数算出部１０６は本ステップにおいて、行列Ａの固有
値λ1、…、λnと、曲線ｇｉ(ｔ)（の微分）を用いて、加え値ｈｉを算出する。加え値ｈ

ｉは、上の［数３４］に従って算出され得る。
【００８９】
　次に、Ｓ１０４でトポロジー形成部１０８は、定数係数の連立非同次微分方程式によっ
て処理が表されるＲＮＮ回路のトポロジーを形成する処理を行う。「トポロジー」とは、
行列Ａの次数に応じたニューロンの数と、それらのニューロン間の結線の仕方を意味して
もよい。たとえば、行列Ａがｎ次元正方行列であれば、ニューロンの数はｎ個であり得る
。たとえば、［数３１］を出力する定数係数の連立非同次微分方程式において、出力ｙｉ

（ｔ）に対応するニューロンをｉ番目のニューロンとする。また、Ｓ１０３の処理で算出
された重み係数ｂｉｊが非零であれば、ｉ番目のニューロンとｊ番目のニューロン間には
結線が存在し得る。ここで、重み係数ｂｉｉのように、同一のニューロンを参照するよう
な重み係数も許容される。この場合、ｉ番目のニューロンから出てｉ番目のニューロンに
入るような結線が存在する。このように、ニューロンとニューロン間の結線によってＲＮ
Ｎ回路のトポロジーが形成される。このように、上記規則（Ｒ１）～（Ｒ３）に従ってＲ
ＮＮ回路のトポロジーを形成する。
【００９０】
　次に、Ｓ１０５で重み設定部１１０は、Ｓ１０４の処理により形成されたトポロジーを
有する回路に、上記規則（Ｒ４）～（Ｒ５）に従って、各ニューロンが積分器として機能
するときの倍数、ｉ番目のニューロンとｊ番目のニューロンを結ぶ結線に付与される重み
係数、ｉ番目のニューロンに印加される加え値を与え、ＲＮＮ回路を形成する。例えば、
［数３３］の微分方程式に対するＲＮＮ回路として図１２に示されているＲＮＮ回路４０
が形成される。
【００９１】
　以上、Ｓ１０１からＳ１０５までの処理によって、離散時間線形システムの出力のフィ
ッティング曲線を出力することができるＲＮＮ回路の設計が完了する。
【００９２】
　次に、Ｓ１０６でＲＮＮ回路動作部１１２は、Ｓ１０１からＳ１０５までの処理によっ
て設計されたＲＮＮ回路に、Ｓ１０１において取得した線形システムの初期状態を表して
いる初期値（ｙ１（０）、…、ｙｎ（０））を与えて、ＲＮＮ回路を動作させる処理を行
う。このようにしてＲＮＮ回路を動作させることにより、行列Ａによって表されている離
散時間線形システムの出力についてのフィッティング曲線が、ＲＮＮ回路の出力として得
られる。
【００９３】
　次に、Ｓ１０７で出力部１１４は、動作させたＲＮＮ回路からの出力を、フィッティン
グ曲線の算出結果として出力する処理を行い、その後はこのフィッティング曲線算出処理
が終了する。
【００９４】
　このような処理によって、離散時間の線形システムを表す行列Ａが対角化可能でないよ
うな離散時間の線形システムの出力をＲＮＮ回路で解析でき、離散時間の線形システムの
出力であるサンプル数が多くなってもＲＮＮ回路に必要となるニューロンの個数の増加を
抑制することができる。また、それによって、計算量の削減が実現できる。
【００９５】
　また、上記の処理によって、離散時間の線形システムを表す行列Ａが対角化可能でない
ような離散時間の線形システムの出力を解析することができ、離散時間の線形システムの
出力であるサンプル数が多くなってもＲＮＮ回路に必要となるニューロンの個数の増加を
抑制することができるリカレントニューラルネットワーク回路の設計方法およびプログラ
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ムを提供することができる。
【００９６】
　以上の実施形態に関し、さらに以下の付記を開示する。
（付記１）
　対角化不可能であって離散時間線形システムを表現している所定の次元の正方行列をジ
ョルダン標準形の行列に変形する行列変形部と、
　前記ジョルダン標準形の行列を含む前記離散時間線形システムから、少なくとも１回微
分可能で、階段形状をした単調増加関数を用いることによって、定数係数連立非同次微分
方程式を算出し、構成されるべきニューラルネットワークのニューロンの間の結線により
伝送される前記ニューロンの状態量に与えられる重み係数および前記ニューロンの各々に
加えられる加え値を算出する重み係数算出部と、
　前記定数係数連立非同次微分方程式から前記所定の次元の数に等しい個数の前記ニュー
ロンと前記ニューロンの間の結線とによって前記ニューラルネットワークのトポロジーを
形成するトポロジー形成部と、
　前記重み係数を前記ニューラルネットワークの前記トポロジーの前記結線に対して付与
し、前記加え値を前記ニューロンの各々に対して付与し、前記ニューラルネットワークを
構成する重み設定部と、
　前記ニューラルネットワークを動作させ、前記離散時間線形システムの出力のフィッテ
ィング曲線を得るニューラルネットワーク回路動作部と、
を含むデジタル－アナログ・フィッティング装置。
（付記２）
　前記重み係数算出部は、前記重み係数を、前記ジョルダン標準形のジョルダン細胞と前
記ジョルダン細胞の対角成分を用いて表現することを特徴とする付記１に記載のデジタル
－アナログ・フィッティング装置。
（付記３）
　前記重み係数算出部は、前記加え値を、前記単調増加関数と、前記ジョルダン細胞の前
記対角成分を用いて表現することを特徴とする付記１または２に記載のデジタル－アナロ
グ・フィッティング装置。
（付記４）
　前記重み係数算出部は、前記単調増加関数を、
【数３８】

を用いて構成する付記１乃至３のいずれか一項に記載のフィッティング装置。
（付記５）
　前記重み係数算出部は、前記単調増加関数を、ｘ＝ａ１でＤ（ａ１）＝０、ｘ＝ａ２で
Ｄ（ａ２）＝１となるような関数Ｄ（ｘ）：

【数３９】

を用いて構成する付記１乃至３のいずれか一項に記載のデジタル－アナログ・フィッティ
ング装置。
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（付記６）
　コンピュータ（２００）によって処理されるデジタル－アナログ・フィッティング方法
であって、
　対角化不可能であって離散時間線形システムを表現している所定の次元の正方行列をジ
ョルダンン標準形の行列に変形することと、
　前記ジョルダン標準形の行列を含む前記離散時間線形システムから、少なくとも１回微
分可能で、階段形状をした単調増加関数を用いることによって、定数係数連立非同次微分
方程式を算出し、構成されるべきニューラルネットワークのニューロンの間の結線により
伝送される前記ニューロンの状態量に与えられる重み係数および前記ニューロンの各々に
加えられる加え値を算出することと、
　前記定数係数連立非同次微分方程式から前記所定の次元の数に等しい個数の前記ニュー
ロンと前記ニューロンの間の結線とによって前記ニューラルネットワークのトポロジーを
形成することと、
　前記重み係数を前記ニューラルネットワークの前記トポロジーの前記結線に対して付与
し、前記加え値を前記ニューロンの各々に対して付与し、前記ニューラルネットワークを
構成することと、
　前記ニューラルネットワークを動作させ、前記離散時間線形システムの出力のフィッテ
ィング曲線を得ることと、
を含むデジタル－アナログ・フィッティング方法。
（付記７）
　前記重み係数を算出することは、前記重み係数を、前記ジョルダン標準形のジョルダン
細胞と前記ジョルダン細胞の対角成分を用いて表現することを含むこと特徴とする付記６
に記載のデジタル－アナログ・フィッティング方法。
（付記８）
　前記加え値を算出することは、前記加え値を、前記単調増加関数と、前記ジョルダン細
胞の前記対角成分を用いて表現することを含むことを特徴とする付記１または２に記載の
デジタル－アナログ・フィッティング方法。
（付記９）
　前記重み係数および前記加え値を算出することは、前記単調増加関数を、
【数４０】

を用いて構成することを含む付記６乃至８のいずれか一項に記載のデジタル－アナログ・
フィッティング方法。
（付記１０）
　前記重み係数および前記加え値を算出することは、前記単調増加関数を、ｘ＝ａ１でＤ
（ａ１）＝０、ｘ＝ａ２でＤ（ａ２）＝１となるような関数Ｄ（ｘ）：

【数４１】

を用いて構成することを含む付記６乃至８のいずれか一項に記載のデジタル－アナログ・
フィッティング方法。
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（付記１１）
　対角化不可能であって離散時間線形システムを表現している所定の次元の正方行列をジ
ョルダンン標準形の行列に変形させ、
　前記ジョルダン標準形の行列を含む前記離散時間線形システムから、少なくとも１回微
分可能で、階段形状をした単調増加関数を用いることによって、定数係数連立非同次微分
方程式を算出し、構成されるべきニューラルネットワークのニューロンの間の結線により
伝送される前記ニューロンの状態量に与えられる重み係数および前記ニューロンの各々に
加えられる加え値を算出させ、
　前記定数係数連立非同次微分方程式から前記所定の次元の数に等しい個数の前記ニュー
ロンと前記ニューロンの間の結線とによって前記ニューラルネットワークのトポロジーを
形成させ、
　前記重み係数を前記ニューラルネットワークの前記トポロジーの前記結線に対して付与
し、前記加え値を前記ニューロンの各々に対して付与し、前記ニューラルネットワークを
構成することと、
　前記ニューラルネットワークを動作させ、前記離散時間線形システムの出力のフィッテ
ィング曲線を得る、
処理をコンピュータに実行させることを特徴とするプログラム。
（付記１２）
　前記重み係数を算出させることは、前記重み係数を、前記ジョルダン標準形のジョルダ
ン細胞と前記ジョルダン細胞の対角成分を用いて表現させる処理をコンピュータに実行さ
せることを含むこと特徴とする付記１１に記載のプログラム。
（付記１３）
　前記加え値を算出させることは、前記加え値を、前記単調増加関数と、前記ジョルダン
細胞の前記対角成分を用いて表現させる処理をコンピュータに実行させることを含むこと
特徴とする付記１１または１２に記載のプログラム。
（付記１４）
　前記重み係数および前記加え値を算出させることは、前記単調増加関数を、
【数４２】

を用いて構成させる処理をコンピュータに実行させることを含む特徴とする付記１１乃至
１３のいずれか一項に記載のプログラム。
（付記１５）
　前記重み係数および前記加え値を算出することは、前記単調増加関数を、ｘ＝ａ１でＤ
（ａ１）＝０、ｘ＝ａ２でＤ（ａ２）＝１となるような関数Ｄ（ｘ）：

【数４３】

を用いて構成させる処理をコンピュータに実行させることを含む特徴とする付記１１乃至
１３のいずれか一項に記載のプログラム。
【符号の説明】
【００９７】
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　　１００　デジタル－アナログ・フィッティング装置
　　１０２　入力受付部
　　１０４　行列変形部
　　１０６　重み係数算出部
　　１０８　トポロジー形成部
　　１１０　重み設定部
　　１１２　ＲＮＮ回路動作部
　　１１４　出力部
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