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METHOD AND SYSTEM FOR COMPRESSIVE COLOR IMAGE
SAMPLING AND RECONSTRUCTION

RELATED APPLICATIONS

[0001] This application 1s based on and claims the benefit of priority of U.S. Provisional
Application No. 61/262,923, filed November 20, 2009, which 1s hereby incorporated by

reference 1n its entirety.

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] Embodiments of the present invention relate to systems and methods for

compressive sampling in 1maging.

Background Information

Conventional Sampling
[0003] Digital signal analysis requires conversion of analog signals into the discrete

domain as a first step. This 1s governed by sampling theory which conventionally dictates that
analog signals must be sampled at or above the Nyquist rate, which can be defined as twice the
highest frequency component of the analog signal. For high bandwidth signals correspondingly

high sampling rates can place a heavy load on the acquisition system.

Conventional Color Imaging
[0004] Images herein can be considered analog signals whose amplitude may represent

some optical property such as intensity, color and polarization which may vary spatially but not
significantly temporally during the relevant measurement period. In color imaging, Light
intensity typically 1s detected by photosensitive sensor elements. Conventional image sensors
are typically composed of a two dimensional regular tiling of these individual sensor elements.
Color 1maging systems need to sample the image in at least three basic colors to synthesize a
color image. We use the term “basic colors” to refer to primary colors, secondary colors or any
suitably selected set of colors that form the color space in which the imaging system represents
the 1mage. Color sensing may be achieved by a variety of means such as, for example, (a)
splitting the 1mage into three identical copies, separately filtering each into the basic colors, and

sensing each of them using separate image sensors, or (b) using a rotating filter disk to transmit
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images filtered 1n each of the basic colors in turn onto the same 1mage sensor.

[0005] However, the most popular design for capturing color images 1s to use a single
sensor overlaid with a color filter array (“CFA”). This includes the straightforward design
wherein the value of each output pixel 1s determined by three sensing elements, one for each
basic color, usually arranged in horizontal or vertical stripes.

[0006] Other CFA designs, including the popular one described in Bayer, U.S. Patent
3,971,065 entitled COLOR IMAGING ARRAY, use filters of different colors arranged mostly
in regular, repeating patterns. All of these systems rely on a process called demosaicing, aka
demosaicking, to reconstruct the three basic colors at each pixel location. Conventional
demosaicing algorithms typically involve the use of, for example, interpolation techniques such
as bilinear, demodulation and filtering and edge adaptive algorithms. Conventional demosaicing
algorithms work well only if the high frequencies, corresponding to the fine detail, of images 1n
the basic colors are correlated or have low high frequency energy content in at least one
direction. In the absence of these high frequency characteristics, reconstructed images exhibit
artifacts. Random CFAs have also been studied in Condat, “Random patterns for color filter
arrays with good spectral properties” (Research Report of the IBB, Helmholtz Zentrum
Munchen, no. 08-25, Sept. 2008, Munich, Germany), but the reconstruction therein also relies
on conventional demosaicing. As such the reconstructed images exhibit demosaicing artifacts

except they are rendered visually less objectionable by randomization.

Signal Compression
[0007] Image compression 1s typically applied after digital image acquisition to enable

reduction of the system data load during transmission and storage. Image compression 1s based
on the observation that natural images and many synthetic ones are approximately sparse in
some basis. This includes the Fourier related bases, for example, the discrete cosine transform
(“DCT”), employed by JPEG and wavelets which rely on empirically observed hierarchical self

similarity of natural images and underlies the JPEG2000 compression method.

Generalized Sensing
[0008] If the signal to be sampled is sparse in some basis, sampling at the Nyquist rate 1s

an 1nefficient use of resources. Various attempts have been made to leverage this sparsity to
reduce the sampling rate. Some techniques use restrictive signal models integrating prior
knowledge of the expected structure of the signal to reduce the number of parameters required to
be estimated. Adaptive multi-scale sensing uses prior knowledge of the expected multi-scale

structure of the signal. This technique, while quite effective in reducing the number of
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measurements needed, suffers from the requirement of making serial measurements, a

characteristic undesirable in 1maging fast moving subjects.

Compressive Sensing
[0009] A new reduced rate sampling scheme called “compressive sensing” has been

developed recently. The goal of compressive sensing reconstruction techniques is the solution of
ill-posed inverse problems through the regularization scheme known as “sparsity promotion.”
Ill-posed 1nverse problems here are concerned with reconstructing an original signal from a
sampled data set of a transtform of that signal, where the transform is non-invertible. Sparsity
promotion uses prior statistical knowledge of the original signal’s sparsity in some basis to
search preferentially for solutions of 1ll-posed inverse problems that are also approximately
sparse 1n that basis. See Candes et al.,, “Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information” (IEEE Trans. on Information
Theory, 52(2) pp. 489 - 509, February 2006), hereby incorporated by reference in its entirety.
They showed that a reduced number of non-adaptive samples of an original signal in a sample
basis that 1s incoherent with the basis in which the original signal 1s sparse 1s sufficient to
recover the signal with little or no information loss. Incoherence here i1s a measure of
dissimilarity between the two bases; more precisely, it 1s the largest magnitude of the inner
product between any pair of basis vectors from the two respective bases. See Candes and
Romberg, Sparsity and incoherence in compressive sampling. (Inverse Problems, 23(3) pp. 969-
985, 2007). They derived an inverse relationship between the incoherence between the bases and
the number of samples required to accurately reconstruct the original signal with high
probability. Compressive sensing techniques thus reconstruct the original signal from an under-
determined system of equations through a joint maximization of logical tenability and physical
probability.

[0010] It was 1nitially thought that Lo norm minimization requiring a computationally
prohibitive combinatorial search would be required. Remarkably, it was later shown though that
a much more computationally tractable linear programming approach would also work. This
approach minimizes the L; norm of the reconstruction in the sparse basis constrained by the
known observations.

[0011] Several formulations for solving the inverse problem in compressive sensing have
been proposed including “basis pursuit” and constrained and unconstrained convex quadratic
programs. See Figueiredo et al., “Gradient projection for sparse reconstruction: Application to

compressed sensing and other inverse problems” (IEEE Journal on selected topics in Signal
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Processing, 2007), hereby incorporated by reference 1n its entirety.

[0012] One formulation consists of an unconstrained convex optimization problem

y - Ax], +[x],

min
X

where X 1s the solution 1n the sparse basis, rasterized into a single dimensioned vector, y 1s the
observed image, also rasterized and A is the transformation matrix representing the change in
basis from the sparse to the spatial domain. x, being the sparse representation, has fewer
elements than y. The first term penalizes deviation from the observed data whereas the second
term 1s an L; norm that has been shown to penalize less sparse solutions. T controls the relative
weilghts of the two penalty terms.

[0013] Constrained convex optimization problem formulations also exist which
minimize just the first or second term while constraining the other below a threshold.

[0014] Orthogonal matching pursuit (“OMP”) and 1ts many variations such as
Simultaneous Orthogonal Matching Pursuit, Staged Matching Pursuit, Expander Matching
Pursuit, Sparse Matching Pursuit and Sequential Sparse Matching Pursuit form a popular class
of algorithms that obtain an approximate solution quickly. Total variation (“TV”) minimization
has been shown to produce improved reconstructions. See Candes et al., “Practical signal
recovery from random projections” (IEEE Trans. Signal Processing, 2005), hereby incorporated
by reference 1n its entirety. Yet another class of reconstruction algorithm 1s motivated by de-
noising methods and includes iterated thresholding in a transform domain. Subsequent
developments continue to further improve reconstruction quality and reduce the computational
burden.

[0015] Compressive sensing 1s information scalable, 1.e., even if too few samples exist to
do an exact reconstruction, various levels of information can be extracted depending on the

number of measurements.

[0016] As used herein “compressive sensing” (also known as “compressed sensing™)
means reconstructing a signal using prior statistical knowledge of the original signal’s
approximate sparsity 1in some basis to search preferentially for solutions of an 1ll-posed inverse
problem, based on samples of a transform of the original signal, that are also approximately
sparse 1n that basis.

[0017] Numerous sparsity promoting solvers are available. A few salient ones are listed

below:

Equation (1)
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[0018] GPSR: This solves a bound-constrained quadratic programming formulation
using gradient projection algorithms. It 1s described 1n Figueiredo, Nowak, Wright, “Gradient
projection for sparse reconstruction: Application to compressed sensing and other inverse
problems” (IEEE Journal on selected topics in Signal Processing, 2007), hereby incorporated by

reference 1n its entirety, and is currently available at http://www.Ix.it.pt/~mtt/GPSR/.

[0019] 11-Magic: This solves a “linear programming” or second-order “cone

programming”’ formulation. It 1s currently available at http://www.acm.caltech.edu/llmagic/ or

may be obtained by request from the author Emmanuel Candes, Stanford University Department
of Mathematics, 450 Serra Mall, Bldg. 380.
[0020] Sparsify: This contains a number of algorithms including several variants of
OMP. It i1s currently available at http://www.personal.soton.ac.uk/th1mO8/sparsity/sparsiiy. himl.
[0021] 11_ls: This solves the convex quadratic programming formulation of equation (1)

using interior-point methods. It 1s currently available at http://www.stanford.edu/~bovd/il_1s/.

Compressive Imaging
[0022] Unfortunately, application of compressive sensing to imaging has suffered from

drawbacks. Implementation of arbitrary sampling bases to achieve incoherence with any
particular sparse basis would require each measurement to be a linear combination of all pixel
values. Since acquiring all pixel values and then computing their linear combinations would
defeat the purpose of compressive sensing, techniques have been developed that implement the
projection mnto an arbitrary basis in either the optical domain before being sensed by the
photosites or in the analog electrical domain before being digitized.

[0023] In one such technique, projection onto a different basis 1s done using a digital
mirror device (“DMD”) and multiple samples are acquired serially. See Duarte et al., “Single-
pixel 1imaging via compressive sampling.” (IEEE Signal Processing Magazine, 25(2), pp. 83 -
91, March 2008). Serial measurement 1s a characteristic undesirable 1n real-time 1maging.
Besides the additional cost of a DMD 1s justifiable only if the savings 1n sensor cost 1is
significant. This 1s sometimes the case for detectors measuring beyond the edge of the visible
spectrum but typically not for the visible spectrum itself.

[0024] Other techniques of implementing the projection into an arbitrary basis in the
optical domain include replicating the image multiple times using micro-optomechanical devices
or birefringent structures and filtering each replica differently before measurement. See Brady,

U.S. Patent 7.532.772, entitled CODING FOR COMPRESSIVE IMAGING. While these

techniques do not require serial measurement, the optical processing adds significantly to the



10

15

20

25

30

CA 02781534 2012-05-22
WO 2011/063311 PCT/US2010/057541

cost. Moreover, they do not capture color images.

[0025] Another technique discussed 1n Jacques, L., Vandergheynst, P., Bibet, A.,
Majidzadeh, V., Schmid, A., and Leblebici, Y., “CMOS compressed imaging by Random
Convolution”, IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), April 19-24, 2009, does random convolutions of the image in the sampling step itself
by interconnecting the outputs of various sensor elements electrically, effectively sampling 1n a
basis different from the spatial basis. This affects a non-diagonal transformation in the spatial
basis. Besides the cost of specialized hardware to do convolutions in hardware, this scheme
suffers from the disadvantage of having to make serial measurements.

[0026] Accordingly, there 1s a need for a method and system for using compressive

sensing 1n 1mage processing 1n a computationally feasible, practical and economical way.

BRIEF SUMMARY OF THE INVENTION

[0027] The present invention provides a method for processing an image. In the method,
a sample set of data generated by transtorming and sampling an optical property of an original
image 1n a spatial basis, wherein the transformation effected is substantially diagonal in the
spatial basis 1s received. A compressive sensing reconstruction technique i1s applied to the
sample set of data to produce a set of inferred original image data.

[0028] In addition, an 1image sensor having a plurality of photosensitive sensor elements
may be provided, along with an optical transtorm having a plurality of transformation elements
responsive to the optical property, wherein the transformation effected by the optical transtorm
1s substantially diagonal in the spatial basis. In this case, the 1image 1s projected onto the optical
transform, and the optical responses of the transformation elements are sensed at the image
sensor to the original image to produce the sample set of data.

[0029] The present invention also provides a system for processing an image. The
system comprises a data processing apparatus adapted to receive a sample set of data generated
by transforming and sampling an optical property of an original image 1n a spatial basis,
wherein the transformation effected 1s substantially diagonal in the spatial basis. It then applies a
compressive sensing reconstruction technique to the sample set of data to produce a set of
inferred original 1mage data.

[0030] The system may further comprise an i1mage sensor having a plurality of
photosensitive sensor elements; an optical transformation device having a plurality of
transformation elements responsive to the optical property wherein the transtormation effected

by the optical transtorm 1s substantially diagonal in the spatial basis; and an optical 1maging
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device adapted to project the 1image onto the optical transtormation device, the image sensor
being disposed with respect to the optical transform so as to receive the optical responses of the
transformation elements to the 1mage at the photosensitive elements corresponding thereto to
produce the sample set of data.

[0031] One preferred embodiment of the present invention combines a color filter array
with colors arranged randomly or pseudo-randomly with an i1mage reconstruction technique
based on compressive sensing that achieves the same limiting image resolution 1n each color as a
monochrome 1mage sensor using the same number of sensor elements.

[0032] It 1s to be understood that this summary i1s provided as a means of generally
determining what follows 1n the drawings and detailed description, and 1s not intended to limit
the scope of the invention. Objects, features and advantages of the invention will be readily
understood upon consideration of the following detailed description taken in conjunction with

the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] FIG. 1 1s a flowchart showing a method for sampling and reconstructing a color
image using compressive sampling in accordance with a preferred embodiment of the present
invention.

[0034] FIG. 2 1s a schematic diagram of a color imaging system 1n accordance with a
preferred embodiment of the present invention.

[0035] FIG. 3 1s a diagram of a color filter array in accordance with the preferred
embodiment of the present invention.

[0036] FIG. 4 shows the results of a simulation of color image sampling and
recontruction using compressive sampling in accordance with the preferred embodiment of the
present invention as carried out in Matlab.

[0037] FIG. 5 lists a portion of Matlab code for producing a random color filter array

suitable for use in a preferred embodiment of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0038] To overcome the limitations of prior art compressive imaging methods and
systems, the present invention uses the spatial basis directly as the sampling basis. This direct
spatial sampling 1s distinct from the previously mentioned existing techniques of image

sampling because, among other things, it samples the image after applying a transformation,
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such as color filtering, that 1s substantially diagonal in the spatial basis, 1.e., the transformed
value at each location depends on the original image at that location only, not at locations
substantially removed from it to achieve incoherence between the measurement and sparse
bases. This works well since the spatial basis 1s already highly incoherent with the Fourler
related bases 1in which natural signals are approximately sparse. This choice also does not suffer
from the previously mentioned drawback of having to make multiple measurements serially as
all measurements are obtained simultaneously, each measurement being simply the output of an
individual sensor element. Note that optical elements that affect transformations that are non-
diagonal 1n the spatial basis such as optical low pass filters are allowed 1n the pipeline, but the
original i1mage- the 1mage we aim to reconstruct using compressed sensing techniques - 1S
defined herein as the image produced after such filters have been applied. Moreover such
elements are not used for the purpose of incoherence enhancement.

[0039] In the case of a monochrome 1mage sensor, the naive design of choosing a sensor
array with fewer sensor elements arranged 1n a regular pattern does not offer the advantages ot
compressive sensing: the maximum spatial frequencies of such image sensors 1s limited by their
reduced Nyquist frequencies. Frequencies beyond the Nyquist limit cannot be inferred since the
random projections of these {frequencies 1n the spatial measurement basis cannot be
distinguished from those of their aliases. In contrast, a regular monochrome image sensor with a
few randomly or pseudo-randomly chosen sensor elements turned off can still provide enough
information to reconstruct the image at full resolution with little or no loss of quality. While this
does not lead to a reduction 1n sensor area, 1t does reduce the read-out rate. This forms an
embodiment of the present invention.

[0040] The preferred embodiment of the present invention uses the sparse sensor
elements 1n the monochrome 1mage sensor described above to pack three basic colors 1nto an
image sensor with the same number of sensor elements as a monochrome image sensor and still
obtain the same limiting resolution 1n each color as the monochrome sensor. Approximately
equal numbers of filter elements in each of the basic colors, arranged randomly are used to
multiplex the basic colors.

[0041] Another embodiment uses panchromatic filter elements wherein each element 1is
transmissive to varying degrees in all basic colors. Here, the color compositions, not just their
distribution are randomly chosen. However, such CFAs are harder to manufacture than CFAs 1n
basic colors.

[0042] Another embodiment uses filters of basic colors but with different transmittivity,

or augments the CFA with a few non-basic colors or clear filters. This 1s done to improve
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sensitivity or the dynamic range of the resulting sensor.

[0043] A flowchart showing a preferred method of compressive imaging 1s shown 1n
FIG. 1. In step 110, a CFA is provided with colors arranged randomly or pseudo-randomly. (As
used herein the term “randomly”™ 1s to be construed as including psuedo randomly as well as
raondomly. In step 120, the incident image is filtered through this CFA. In step 130, the filtered
image 1s detected by an 1image sensor in a single measurement period. In step 140, the full
resolution 1mage 1s reconstructed from the image sensor output and the CFA pattern using
compressive sensing sparse signal reconstruction techniques.

[0044] A schematic diagram of an 1maging system in accordance with the preferred
embodiment of the present invention 1s shown in FIG. 2. Image 210 1s focused by lens 220
onto an optical transformation device, specifically CFA 230 (As used herein, the term “optical
transformation device” means a device, such as a fixed color filter or a spatial light modulator
that transtorms an optical 1mage from one state to another based on one or more optical
properties of the image.). The filtered 1image is detected by image sensor 24(). The resulting
plurality of sensed filtered image intensity values 1s sent to processor 230, which implements
the algorithm of FIG. 1, where full resolution image reconstruction is performed.

[0045] An exemplary CFA 310 in accordance with a preferred embodiment of the
present invention 1s shown in FIG. 3. In this example red, green and blue (collectively “RGB™)
filters 1n approximately equal numbers are distributed 1in a randomized pattern.

[0046] A Matlab simulation was performed wherein a CFA with approximately equal
numbers of red, green and blue filters arranged in a randomized pattern was generated. Matlab
Code for generation of such a CFA 1s shown in FIG 5. The original color image was filtered
through this CFA, a certain amount of white noise was added to the filtered 1mage and
reconstruction was pertormed on the resultant image sensor output. The 2D discrete cosine
transform (“DCT”) basis was used as the sparse basis. The GPSR solver was used to perform
signal reconstruction. The GPSR solver solves the formulation of Equation (1), shown above, by
converting it into an equivalent bound-constrained quadratic programming formulation and then
using gradient projection algorithms to solve i1t, as will be understood by a person having
ordinary skill in the art . The simulation resulted 1n a color image with the same resolution in
each color as a conventional monochrome sensor produces with the same number of sensor
elements was obtained albeit with a little loss of 1image quality. The Matlab code for pertorming
this stmulation 1s listed at the end of this Detailed Description of the Invention.

[0047] F1G.4 shows the results of this simulation. Image 410 is the original color image.
Image 420 is the original image after being filtered by an exemplary randomized RGB filter.
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Image 430 1s the reconstructed full resolution color image. The color 1images are provided here
in greyscale.

[0048] FIG.5 lists Matlab code used in the simulation of a simple embodiment of the
present invention. The Matlab code for generating the CFA should be sufficient for anyone of
ordinary skill in the art to reproduce these results using the GPSR solver. Matlab 1s a product of
The Math Works, Inc., Natick, Massachussetts, U.S.A.

[0049] The present compressive sensing 1maging design enables integration of
compression 1n the image acquisition layer. This reduces the data transfer requirements off of
the focal plane - which 1s the interface between the optical field and digitized data - and enables
image sensor designs with reduced photosite count. This also enables lower power, lower
bandwidth 1image sensor designs.

[0050] As previously described, the present invention uses the spatial basis as the
measurement basis, exploiting its incoherence with natural 1images’ sparse bases to effectively
achieve compressive sensing. This enables the reduction 1in samples required to reconstruct the
image 1n each color, which, in turn, allows sampling in the three colors to be multiplexed
together. This system can be augmented with various modifications to the reconstruction
technique to improve 1mage quality.

[0051] Correlations between the 1mages 1n the three basic colors can be leveraged to
express the 1mage 1n a joint basis in which natural 1images are more sparse than synthetic ones.
See Nagesh et al., “Compressive 1imaging of color images” (IEEE Int. Conf. on Acoustics,
Speech and Signal Processing (ICASSP), Taipei, Taiwan, April 2009), hereby incorporated by
reference 1n 1ts entirety. The joint basis refactors the image in the basic colors 1n the sparse basis
into a part that 1s common to all colors and color specific parts.

[0052] As mentioned previously, TV minimization produces better results than just L,
minimization. TV 1s a gradient based smoothing functional. See Candes et al, “Practical signal
recovery from random projections” (IEEE Trans. Signal Processing, 2005), hereby incorporated
by reference 1n its entirety (IBR). Total Variation minimization i1s implemented in the NESTA

solver described in S. Becker, J. Bobin, and E. J. Candes, “NESTA: a fast and accurate first-

order method for sparse recovery,” In Press, SIAM J. on Imaging Sciences, hereby incorporated

by reference in its entirety, currently available at hittp://www.acm.caltech.edu/~nesta/ or by

request from the authors.
[0053] A conventionally demosaiced image can be used as the starting point for the
solvers. This demosaicing for randomized CFA patterns can be performed using different

methods including ones described 1in Condat, “Random patterns for color filter arrays with good
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spectral properties” (Research Report of the IBB, Helmholtz Zentrum Munchen, no. 08-25, Sept.
2008, Munich, Germany), IBR, hereby incorporated by reference in its entirety and in Lukac et
al., “Universal demosaicing for imaging pipelines with a RGB color filter array” (Pattern
Recognition, vol. 38, pp. 2208-2212, 2005) IBR, hereby incorporated by reference 1n its entirety.
Using these as a starting point for image reconstruction can speed up the reconstruction process
and, 1n some 1mplementations, possibly improve the quality of the reconstruction itself. The
demosaiced 1image can also be used as a preview of the image prior to reconstruction of the full
resolution 1image.

[0054] Other CFA patterns can be used. These patterns can be based in different color
spaces, 1.€., use different sets of basic colors instead of the primary colors red, green and blue.

[0055] CFA patterns with unequal numbers of the basic colors can be used. For example
twice as many green sites may be employed as red or blue as 1s done 1n the Bayer CFA. Such
asymmetries can be useful in reducing noise.

[0056] CFA patterns with certain restrictions on the distribution of the colors such as
those discussed i1n Condat, “Random patterns for color filter arrays with good spectral
properties” (Research Report of the IBB, Helmholtz Zentrum Munchen, no. 08-25, Sept. 2008,
Munich, Germany), IBR, hereby incorporated by reference in its entirety, may be used. Such
restrictions can help avoid excessive clumping of filter elements of identical color while still
maintaining the random character of the CFA pattern.

[0057] Other wavelet, fractal or curvelet bases or combinations thereof can be used as
the sparse basis. When choosing a sparse basis, the advantage of choosing a basis in which
natural 1mages are more sparse has to be balanced against the possible disadvantage of that
basis’ low 1ncoherence with the spatial measurement basis. Experimentation with the
Daubechies wavelets as the sparse basis instead of the 2D DCT basis resulted in visually similar
reconstruction.

[0058] Sensor readings suffer from Poissonian photon-shot noise and (Gaussian noise
from thermal and electrical sources. Reconstruction algorithms that include a log likelihood
penalty term for these distributions can extract the original noise-free signal more accurately.
SPIRAL (described in Zachary T. Harmany, Roummel F. Marcia, and Rebecca M. Willett, “This
is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms -- Theory and Practice”
(Submitted to IEEE Transactions on Image Processing) and currently available from

hitp://people.ee . duke.edu/~zth/sottware/ or by request from the authors, hereby incorporated by

refernce 1n its entirety) 1s one such solver that can use penalty terms based on the negative log

likelihood of Poissonian distributons in addition to sparsity promoting L; and Total Variation

11



10

15

20

25

30

335

40

45

CA 02781534 2012-05-22
WO 2011/063311 PCT/US2010/057541

terms.

[0059] Another constraint which 1s statistically linked to natural 1images 1s the likelihood
of large wavelet coefficients to be at coarser scales. This may be leveraged in the reconstruction
process 1f wavelets are chosen as the sparse basis. Similarly the increased likelihood of large
amplitudes to be at lower frequencies 1n the Fourier transtorm of natural and most synthetic
images can also be leveraged in the reconstruction process.

[0060] Image reconstruction at reduced limiting resolutions of luminance or
chrominance or both or of one or more basic colors may result in better image quality.

[0061] The present invention may be used not just for still imaging but for video as well.
Besides a trivial extension to multiple frames, algorithms that perform joint reconstruction of
multiple frames leveraging their correlation may also be used.

[0062] Instead of just color images in the visual spectrum, the present invention may also
be used 1n other situations where multi-spectral image sensor systems are limited by geometric
constraints. The present invention allows multi-spectral sampling to be folded into smaller
sensors requiring smaller apertures without increased acquisition times.

[0063] The present invention provides greater immunity to image quality against dead or
malfunctioning sensor elements. This can be used to improve sensor yields: Image sensors with
a few dead sensor elements need not be discarded, just characterized.

[0064] The present invention may be used in 1mage scanners.

[0065] The present invention may be used in acquiring multi-spectral images in different
number of dimensions including 1D and 3D.

[0066] The following is Matlab code used to produce the simulated results shown in

Figure 4.

f = double(imread('pic.ti1f'));
% Simulate Low Pass filtering by an 1deal OLPF

r=0.7;
for k=1: 3
B(:,:,k) = 1dctZ2(Lpf(dct2(£(:,:,k)), r));
end
r = B;
[m n ¢c] = size(f);
scrsz = get (0, '"ScreenSize');
Ffigure (1)
set (1, 'Position', [0 scrsz(4)*0.05 scrsz(3)/1 0.3*scrsz(4)])

subplot (1,3, 1)
lmagesc (uints8 (£) )
axls off

axls equal

title('Original 1mage', 'FontName', 'Times', 'FontSize', 14)
CFA = zeros(3*m, n);
rnd = randn(m, n);
for 1=1: m
for J=1: n
1f rnd (1, ) < —=0.4307
CFA(1, J) = 1;

12



CA 02781534 2012-05-22

WO 2011/063311 PCT/US2010/057541
else 1f rnd(1, 7)) < 0.4307
CFA(m+1, ) = 1;
else
CFA(m+m+1, ) = 1;
end
end
end
end

% define the function handles that compute

% the filtering and the conjugate filtering.
R = @(x) CFA.*x;

RT = @(x) CFA.*X;

% define the function handles that compute the transformation
% of the 1mage to the sparse domain (WT) and 1ts transpose (W)
W = @(x)FilteredIDct (x) ;
WT = @(x)FilteredDct (x) ;

%Define the function handles that compute
5 The products by A = RW and A' =W'R'
A= @(x) R(W(X));
AT = @(x) WT(RT (X)) ;

tallf = [£(:,:,1); £(:,:,2); £(:,:,3)1;
% generate nolsy filltered observations
sigma = 4*sqgrt(2);

y = R(tallf) + sigma*randn(size(tallf));

f noisy = £ + sigma*abs(randn(size(f)));
[MAE, MSE, PSNR]=Metrics(f, £ noilsy);
fprintf ('MAE=%f, MSE=%f, PSNR=%f\n', MAE, MSE, PSNR);

tau = .3; % regularization parameter
tolA = 1.e—6;

[theta, theta debias,ob] QP BB mono,times QP BB mono, ...
debias start,mses QP BB mono]=
GPSR_BB(vy,A, Cau, ...
"AT', AT, ...
'Debias', 1, ...
'Initialization', AT(vy), ...
"True x'",WT (tallt), ...
"Monotone', 1, ...
"ToleranceA', tolA);

filteredPic = uint8(zeros(size(f))) ;
for k=1l:c
filteredPic(:,:,k) = uilnt8(y((k=1)*m+1l:k*m, 1)) ;
end
% ===== Plot results =====
figure (1)

subplot (1,3, 2)

1lmagesc (filteredPic)

axls off

axls equal

title('Fi1ltered 1mage', 'FontName', 'Times', 'FontSize', 14)

figure (1)
subplot (1,3, 3)
pic = double(zeros(size (L)) )

r
1f prod(size(theta debias))~=0
= )

tallPic W(theta debias) ;
else
tallPic = W(theta);
end
for k=1: ¢
pic(:,:,k) = tallPic((k=1)*m+1l:k*m, :);
end

[MAE, MSE, PSNR]=Metrics(f, pic);
fprintf ("MAE=%f, MSE=%f, PSNR=%f\n', MAE, MSE, PSNR);

plct = uint&(pic) ;

13



10

15

20

25

30

335

40

45

50

CA 02781534 2012-05-22
WO 2011/063311 PCT/US2010/057541

lmagesc (pict)

axls off

axls equal

title('Reconstructed i1mage', 'FontName', 'Times', 'FontSize', 14)

function Y = Lpf(X, r)

A = fftshift (X);

r = r*size(A, 1)/2;

r2 = r*r;

alpha = size(A,1)/size(A,2);
alphaZz = alpha*alpha;

for 1=1:s1ze (A, 1)
for J=l:si1ize (A, 2)
1f (i-size(A,1)/2-1)"2+ alpha’Z*(j—-size (A, 2)/2-1)"2 > r2
A(lr j) — O;
end
end
end

Y = fftshift (A);

function S= FilteredDct (x)

m = size(x, 1)/3;

S = [Lpf(dctZ2(x(l:im,:)),0.65); Lepf(dctZ2(x(m+1:2*m, :)),r);
Lpf (detZ2 (x(2*m+1:3*m, :)),0.65)];

End

function x= FilteredIDct (s)

m = sizel(s, 1)/3;

x = [1dct2(Lpf(s(l:m,:),0.65)); idct2(Lpf(s(m+l:2*m,:),r));
idct2 (Lpf (s (2*m+1:3*m, :),0.65))];

end

function [MAE, MSE, PSNR] = Metrics (A, B)

E=abs (B-A) ;

E=[E(:) ]
MAE=sum(E) /size(E, 1) ;
E=E."2;

MSE=sum(E) /size(E, 1) ;
PSNR=10*1ogl0O (25572 /MSE) ;

[0067] The above description of the embodiments, alternative embodiments, and specific
examples, are given by way of 1llustration and should not be viewed as limiting. Further, many
changes and modifications within the scope of the present embodiments may be made without
departing from the spirit thereof, and the present invention includes such changes and
modifications.

[0068] The terms and expressions that have been employed in the foregoing specification
are used therein as terms of description and not of limitation, and there 1s no intention, in the
uses of such terms and expressions, to exclude equivalents of the features shown and described
or portions thereof, 1t being recognized that the scope of the invention i1s defined and limited

only by the claims which follow.
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What is claimed 1s:
1. A method for processing an image, comprising:

receiving a sample set of data generated by transtorming and sampling an optical
property of an original image 1n a spatial basis, wherein the transformation effected 1is

substantially diagonal 1n the spatial basis; and

applying a compressive sensing reconstruction technique to the sample set of data to
produce a set of inferred original image data.
2. The method of claim 1, further comprising
providing an 1image sensor having a plurality of photosensitive sensor elements;
providing an optical transtormation device having a plurality of transformation elements

responsive to the optical property wherein the transformation effected by the optical

transtformation device 1s substantially diagonal in the spatial basis;

projecting the image onto the optical transtormation device; and

sensing at the image sensor the optical responses of the transformation elements to the

original 1mage to produce the sample set of data.

3.  The method of claim 2, wherein providing an optical transtormation device comprises

providing an optical filter array having a plurality of filter elements.

4. The method of claim 3, wherein providing an optical filter array includes providing at least

two sets of the filter elements that exhibit different responses to color.

>. The method of claim 4, wherein providing the optical filter elements include providing

them arranged in a random color pattern satistying at least one predetermined distribution

condition.
6. The method of claim 3, wherein the optical filter array 1s provided with filter elements

responsive to one of several basic colors, the filter elements are arranged in a random color

pattern, and inferred original image data i1s produced in all of the basic colors.
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7. The method of claim 6, wherein the optical filter array 1s provided with filter elements
having a one-to-one relationship to substantially all the sensor array elements, each such being
responsive to one of the basic colors, the filter elements are arranged in a random color pattern
satisfying at least one predetermined distribution condition, and inferred original image data 1s

produced 1n all of the basic colors.

3. The method of claim 3, wherein the optical filter array 1s provided with filter elements
responsive to randomly composed panchromatic colors, the filter elements are arranged in a

random pattern, and inferred 1image data 1s produced along all axes of a suitable color space.

9. The method of claim 3, wherein the optical filter array 1s provided with a pattern of

randomly arranged transmissive or opaque filter elements.

10. The method of claim 2, wherein one or more of the sensor elements of the 1mage sensor

1s defective.

11. The method of claim 2, wherein multiple, sequential sample sets of data are produced

from which multiple, sequential sets of corresponding inferred original image data are produced.

12. The method of claim 1, wherein the optical property 1s the intensity of one of several
colors sampled 1n a random color pattern, and inferred original image data 1s produced in all of

the basic colors.

13. The method of claim 1, wherein the optical property i1s the intensity of one of several
panchromatic colors sampled 1in a random color pattern, and inferred image data 1s produced

along all axes of a suitable color space for each inferred original 1mage data element.

14.  The method of claim 1, wherein the optical property 1s intensity.

15. A system for processing an image, cComprising:

a data processing apparatus adapted to:
receive a sample set of data generated by transforming and sampling an optical property

of an original 1mage 1n a spatial basis, wherein the transformation effected i1s substantially

diagonal in the spatial basis; and
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apply a compressive sensing reconstruction technique to the sample set of data to

produce a set of inferred original image data.

16. The system of claim 15, further comprising

an 1mage sensor having a plurality of photosensitive sensor elements;

a optical transtormation device having a plurality of transformation elements responsive
to the optical property wherein the transtormation ettected by the optical transtormation device

1s substantially diagonal 1n the spatial basis ; and

an optical 1imaging device adapted to project the 1image onto the filter array, the image
sensor being disposed with respect to the optical transformation device so as to receive the
optical responses of the transtormation elements to the image at the photosensitive elements

corresponding thereto to produce the sample set of data.

17. The system of claim 16, wherein the optical transtormation device comprises an optical

filter array having a plurality of filter elements.

18. The system of claim 17, wherein at least two sets of filter elements exhibit different

responses to color.

19. The system of claim 18, wherein the optical filter elements are arranged 1in a random

color pattern satisfying at least one predetermined distribution condition.

20. The system of claim 17, wherein the filter elements are responsive to one of a several
basic colors and are arranged in a random color pattern, and inferred original image data i1s

produced 1n all of the basic colors.

21. The system of claim 20, wherein the filter elements have a one-to-one relationship to
substantially all the sensor array elements, are each responsive to one of a finite number of
colors, and are arranged 1n a random color pattern satisfying at least one predetermined

distribution condition, and the inferred original image data 1s produced 1n all of the basic colors.

22. The system of claim 17, wherein the filter elements are responsive to randomly
composed panchromatic colors and are arranged in a random pattern, and inferred image data 1s

produced along all axes of a suitable color space corresponding to each sensor element.
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23. The system of claim 17, wherein the filter elements are randomly arranged transmissive

or opaque filter elements.

24. The system of claim 16, wherein one or more of the sensor elements of the 1image sensor

1s defective.

25. The system of claim 16, wherein the sensor produces multiple, sequential sample sets of

data are from which the processing apparatus produces multiple, sequential sets of

corresponding inferred original image data.

26. The system of claim 15, wherein the optical property i1s the intensity of basic colors
sampled 1n a random color pattern satisfying at least one predetermined distribution condition,
and the data processing apparatus 1s adapted to produce inferred original image data in all of the

basic colors.

27. The system of claim 15, wherein the optical property 1s the intensity of one of a finite
number of panchromatic colors sampled in a random color pattern satisfying at least one
predetermined distribution condition, and the data processing apparatus 1s adapted to produce
inferred 1image data along all axes of a suitable color space for each inferred original image data

element.

28. The system of claim 15, wherein the optical property 1s intensity.

18



CA 02781534 2012-05-22
WO 2011/063311 PCT/US2010/057541

............................................................................................................................................

PROVIDE A RANDOMIZED COLOR FILTER ARRAY
CONTAINING A PLURALITY OF COLOR FILTERS

..........
........................................................

--------------------------------------------------------------------------------

FILTER THE IMAGE WITH THE CFA

-----------------------------------------------------
..........................................................

......

-------------------------------------------------------------------
................................................................

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
..............................................................................................

INFER THE FULL RESOLUTION IMAGE USING A COMPRESSED

SENSING RECONSTRUCTION ALGORITHM




PCT/US2010/057541

CA 02781534 2012-05-22

WO 2011/063311

- . . . . . . . L L -' & | . " ” | . ” ” ----- $ 5 > P e rrrrr Yy Yy Y M vy r r rr vy orre? v
SALL a1t e gk ot af of ok gk v o ol ol ol = PR
- . r q, v -0
o
.
1
wwedorrr rrx .\..\r\.*\.\.\.&. P B ————— e ‘|
. 1
' a” . Ys's 0
Sttt
ay rv 0
X7 i
’
A
- v’ 8
*
+*

’
P
-0 AR T ]
y PRI (s
! T
. . . 2 AN O
. ' . . o . \s\\‘uv‘
P 2R AU - P ; A
. - .
st ¥ . Jor " 2. g - QODHOLK LA
5 . . . ot ) S . . 090. 000 .l,oo.o
= iy . . ’
. ’ : . oeselotesels: Rereel
- Al ol ol ol i I R WD . %ﬁ. » 1O :
i . . atats .
R
« . . . . - s .
- d. W . . \.». . .
.\thn_. . ;W..u. R 5 S ktN--\ . Rl .
i - . . . & . . . ala .
4 L. - at
e = e v . . o o . . . S . . 0 B B
v L - - wwwy ey O
als P
. . - ST .
W X .S ..o)..»
. Y . R .
» . PR 444
e " . e
. L - -~ 4
. y .‘»v-
Taa - ' Pew
- . 4 . .' !‘IVOQV
- v -
2 ’ BT
;
- - FS L.
- Y ’ B i
" - . r
- .
3 : . ' .
L v
S st\\.\..
r -
. e
r .VG& \‘\\\\\L
y -Y...\ v .
. - 'L\u .7\\\\\
. . -
. . S v s,
\!\-.s .‘.‘.\s
..s\\ il
- A -
v 0 s 4NV 5 .
sY\s 0 P
- e e
g ‘\0\ Tr 4
i F T s s e .
. e Py
[ e | JENOE
’ . s > . LR 3
0 e v\pr.
p + . LAY
Y - e ¥,
f OO0 Ta e
% EARE
“
v - .‘0:.0 ﬂ:rs-l
~
ey’ &5
" . )
F oy
. x
. o . a7
; A &
. . CNIEY W
2 . .
. - L) oo = wu
' y LR R IR IR I R I I R L L B R L L S ] . .
v A "
R N L S B S S I WS . n +
; . O A R R I R I R R U N Y s
-
LR IR AR L AR N LR T T R i ot L S S Wa 4 e »
& e . B
’ .~ * P D
- ' P
¢+ 2 s,
¢ LI )
g PP AP AP R e
: LRI R
v
AP AN
; . . P A N
- LI A A
P P
. 22270 ey

« e = ®= ® ®= ® § § % WY 8 @ .

\‘\.\ \.\ \.\ \\ \\\ h Y
A AT

s
of LT AT NN
N
Cal N 7 o o
/ ] . e

vy r oy v =1 == me gy == oemeoemy == s byttt YYYYYY s s =y sy -

' PP o RS SS
o ._vf’o’rtv’o.v...t_v..ov..o a5
of Ob’..o’.v.).fb >y "t‘t.\

b PO O,



CA 02781534 2012-05-22
WO 2011/063311 PCT/US2010/057541

4 4 4 4 4 4 4
- 4 4

.
+ 4 4 4 4 44

s
* 4

4 4
*

d d & & bbb éddda




WO 2011/063311

M I B B I

IR R TR IR

L L R N N T T I R T B T N S N N S

R R I I T I N T I I N e B e [t L POy L F oL P

R A

P I L B I I I S I L T I L T I I B R L R B DU SR S

CA 02781534 2012-05-22

' l‘:} T B P R AN
. R ﬁ&&x&i’ﬁ{i{'}gﬁ IunTR
': I X Tt e
:1 ! T 4 % 5 5 v v v ¥ "D"‘ ’0.-".‘.-,0').0‘0!‘! \‘\!\\‘\k\‘\!\\\!‘!‘\'!’v.-"""’o-‘5D" b :
. i e e P N ‘:\ R w . ‘\:}A‘)ﬁ' \\;: "} e e e ‘e

. . ) s " Ny N\ » ) . e .
R R S AR )

. . a - )/ L ™ - i
s A R L ;.“"\':v\:_;\ N \. R
. \\‘;\ \.};. \. *.'b_ SO \;k\\'\‘\\‘ \ QA RN VN
. i " " -+ v ‘a L \\‘ te
," .‘\I.\‘ \\“\\ '\\:l.-:-:.:\ ‘:\:\‘\‘!‘!h::‘\b\l\.!‘l }-\. \ x \ \:::\ .:l:t::(‘ w :.
:' ~\\.'l‘l 0y e i 2 Y . - AR ARAR \\“. ... . .‘ .“. - X ", . - ':
. \\\\‘l.‘ o . ~'n o At :\.i‘\‘\"\t \:I‘\ &\ :‘I\‘\\‘ \‘-\ . ‘\\ .~
.: \:\:l:l‘a :‘\.\% - -,::}*{. . -‘\\:..;._.‘ \ .‘::\\L \ Q&\ .‘“.\:'%\\ .-‘l"l:\ \\‘\:\‘\\:: :\:\:‘ :.
:- '\\‘\\\.\: !‘;::\ : '\ .‘;v ‘b;:l ‘ :- n P , ., "t ‘q.‘b . \ . ‘\ '\ \:\:o: ._'
I :;:-.:\::..‘ ':J',k‘: \ L \\&x‘: \-‘,\: .:- \ ‘\‘:‘ .\:\ iy \.\. o.& -\-..‘\ \ ", OCEN s
B R )
RN ;;\\\ \\gﬁg‘s&, - ::E_vl‘:;l:,‘\;“:::, S ;\'Q\\}:q.%‘\\\ KA -
- < NN e n 0 n % N N et O Y s R A SO N, " R X
AR v RO O A‘\‘R‘ e a.%: t:\:w‘ e \)‘ n 'n, A‘\‘x‘\\\\ + . ».\ .
L S N ‘o N\, o '.- :._ e, :.4- 5 " oy *\'. ., = W 0.\ + .
BN R A AR R A R -
AR 2N " e, %‘\ N '\“.‘\."‘."_“' "', " R on ) o e .
AN e, ) ) Qv IO ER I v, v a e e e ot -
NN IR % n'\:‘}‘* '33}\ R R
,: \':\:5:\:- _’c.::‘s:' b NCY :'-:\:‘n'\'\ OO "'.'\;" n * '\ "\"o::‘-._ :‘-.xa‘ln_ N
AR v S R R AR Y
AR AN N XN :

RN SERERANIINNN - _

o \:-."s:\: : : oAy X ’\ 'q_\:-:-. :q\\ :‘-

- ‘-‘ :‘\.’\‘t - -%' '.l‘ *e \_‘

- AR WA e

': “‘\‘!‘\‘-.\\ , \ .t ‘l-. :

", ‘-“\'\- St N

" \.'\“\..‘\:\\ \:

: ‘\ |
e %. N

. \\E )
: :\k\};«;' '_
T W

AR

:-‘ ‘!..-"‘\1"'..‘. ‘\".-‘.“l""'!\'-\\\\-\\.\\\-\"\\!‘\‘\‘\‘"“.""".' LA . I T S N N N Y . T T I I I I 2

R TR i;m;ﬁ,
BB o U T ANA R e
.L“\ '\\‘\‘ v\..‘\" :‘h 4.’ I.‘Q
\- .\\ ‘:\:‘.';‘\‘::‘:.:"23::{“*.: ‘-:' i : i - \.\ \Ib \\\
. 'o s b Q.‘\- ‘\. or.o\“"\'.‘-\'.v‘cso-g‘o'. ‘,-g‘j.b -"'\ st-- \‘l “'l b ] [ a8
. AU AR MO A AT VN A B YR, 'ls‘.!ik AL Q‘. l.\Qb\x' AU o}
S R A R S RN
v N LY - (Y AL 4 - L Y < - . L .
B A A A A A A R R A AN
. i S e O e T N TN v A . A ".\ RN "‘;, OV R L,
.Q;sbvv,\wﬁ g > Ao \ooo“a e \} e \r_ca':b NN ‘\ - a‘s.‘\ \ . \H\
B R R R e S R I O A
Pat 'o‘c:o.'v‘\.\:\:h“\b o '-1,(9_;-: s, ° \'_xq,: ‘h‘\\‘t‘\\"\:b:‘q‘:q:o.q:arc:,:f.‘q‘_&-:_",\'k“:m ,-::a.‘\l\‘h\o"\,'-'\" .\‘\‘ -‘s‘x\:\:c;\-.q‘.h 1.0‘0. .
..:s :5:‘:-‘ O ’,h’bt‘:’}_:c:o\'v :.,\‘*‘ ~ t}'\'\' -‘7\: * "‘ \:\'\'."’q"f'r:o.:':‘aﬁ*':kr‘ 0.‘:;"& &" N .

G " - O v [
s - - - r * < 3 () .
h/ Cw ow \Q"\!oa-.f - b --k\su\\\-\b L R qV\
e - X - 3 " ~ = .
- .. i -.u‘\‘\. Q!\‘- .l;‘(c‘l“‘ \,‘t"i\‘ ‘-"\"\"\ ,\'V . a:w.'- o‘cqcﬁL‘*"m"’v*}o c‘oﬂ ¢ a
- - - . NGRD -t <
L) Q LY v
., b

! e o g 9 = = = = &

o™ LY > > - i A - \')\\: s vy m - 'a.c.-hcl,n-.;. -
b )
\-I.O‘O’-‘O.Q :x' “'.‘c"*' '\'\ .o’}t o‘cf\ '1~ e ™ \‘n a‘V.r_'oAQ'.‘o.‘f.s.q‘Q(Q J‘."\":.Eo,'\
. - R XY a 4 q\a-’.\ ., W oe e e ..-\!a-l;,b,ol‘-.r_‘g
"""‘\"' _.pv{(‘q‘ tl\\‘.\\ . = R TR N M M ) -
’ Nht et \‘ .\"\‘ ‘Q‘ e 4‘) "-."\- b '.‘\“.Y'. A .q"l';‘o"ﬁ‘o“‘-“%“r}.\ .
' an -.~-\\’ (BRI e T e N -.i'-c-‘.r'-'l.o,-‘lb.‘t'\‘- .
voccns%.& IR ONAE 3K - b u\t L A T MU L I U T e o 3
- LI - L IR TR BB/ 4 LR L RN A RN X N L .
-*c.c’)t';.\}\ < (RN R R Y WYY I R LAY P AR v
v r 8- » s:\n DA R LI WA - S \\ AL N AP X R A
PN SR Y ﬂ'" Y i w - e ~EH BN - v A‘-\'-'r’ - %W s f....‘{.“\‘ 3
. s » o3 Y I AN € a4 AR | CTE TR N S AN W) RLY & .
b v+ - m - c-or\I. A e Y Y -y nl:o.‘{‘#_{hg’\txg .
' s ¥ ¥ T e . B A At o » L) . (! Ih\
A - " v + & | > .G ‘ - N « $ &N .
 CHIEBCICAENERE SRR AR B 3 L R O SO AL MR '
R = ¥ > e e d ) w4 o LA ) .
.--.’r-q.ovnll.hna-'_r ‘a."\q .
. ;~ ’ (‘. re. sy v s )9.4.1-_‘&.-.._‘ ] ) *( s € .
LR T ‘4.~-\_‘|:-.'Q 15¢ ‘5:-'v (':I.: %' v
. [ v - -
. - * LA ra '
. ) - e PR .
N ' e 3
P -
" e ‘
. ah o ¢« .
' "4 rax .
. \‘!‘l" .
. -~ I." - -
. T v v 44
. - ¥ .
' LN -
. L] .
- “- e " 4
. Py vo. .
. T v . .
. DEICOE K
. ‘c‘v:.' 4'0,:0 ‘ < h .
. L a'w L Y h ] 0.0‘0
. o ".x . \"'« AR A, '\‘\’! '\:“‘
. \ v v u - - .
. vq\\\ < 4nm 40 v v v 44 -4 - LS LA * v r b hw E) Y 4
. ih' \\ l" r\\".' \ .,u‘.\ \'\‘.'0‘1‘0'1‘1. ‘\‘b"l‘o‘q\ c'. ’ﬁ"\“ \\\\I‘\~a\|‘-. .!‘\\h l"I\‘-‘ng_\o'\.\. .v' '
. 04.\..\‘»\\s~¢-cc,|-\\'c\ v!cl(f'%ucc.c L4 e LY a ¢ a K v Ney ARy -
.~ BRY IR e Yy LR A B T Y AN [ ER AR \5\\ \! L T & Ov W 4 8 5\.
- - -« . 8 UL IR n \ \\ \ n (\ L BEAL) q\\ . . r \1¢ ’ \h\ 4 - L ORI U a™ e .
- ST TR I N T A - \1_\qc§q\.n M R A 4 < l.l‘f-“"\, 4D anenn@
ko-.u\s\\r « A e 0!._l'q\vc\.\l’!‘b\\sﬁﬁsv_\‘\'\\\5.0‘0\“'\;'_{'\-5
N 1.0 ‘0 la‘\' .r. ’xlh' \l\\‘ - - " ‘Q ‘\\b . .I‘l‘f, \' s\ '\‘0’ . K ..'o‘ Rt ‘r "f‘oqu(‘ &, r,.\ .‘ ‘.
' '\q'- \1“ 5\ .-y w4 e q .\;‘«l ot ol ey - \ i \.\’\\ \'\{\'- \'I Q"|\ ‘I.‘.: P4y .‘b!l\ N
. Y Ql'!\h W -, L L) . . \“(I‘\l . - \ \\ .'\ ‘.\‘ L] 3 " & L o
- ;\\ r\ LA \\4 \.a - ) .‘\"\.‘ . ary \ \\\\ -n . a rah r &
. < v ’ - . [ + - - d My [ N - - a \lf. vh LB LY 11+ = f\(‘-.
. \a g‘s . *S$¥ e Y . v » o +. €
4 n r . 4 b’o‘v‘b’i's. \' "I i o ® L" .
N LR h VWS . I\ ., Yy -
- > LI AL N A - + &
“ 1 . \- L Y LA R LY
- CIL L 5 A a N, [' '
- 4« ey \, LI !“i - gy -
) » \'u t‘v \o‘l \‘\ \v r &
- ) LA -:\:'l e AN X -
. L n L] -’\\ "5 \:b 1\-\\ . .
. - [Y - . L Y n.. \»&\.‘,’_\- A WY r' S
1h\.|' -.‘\ ) \‘o‘b Q\c‘c . .5“\\'. '.\.\\\:\ {Q“{c o
- ' . - N -
. g ’;.’.\“l‘i‘g’é.\’c’g‘l‘c \\.‘r. "")\"- \.\ -‘l.".‘! . 4 5 - 3 < .r,.‘I .
. “ & B~ ‘n"\i\ R ™ \‘v-\.‘)\.|~ 3 - < J ) - et
« S \\’\t\s\\_t LA TR AL N L A 4 i 4 ,
D\‘. %- L) O TLA L A T R -‘r 3 .Q.J\ - L L ’ A 4 & .
* ’r ‘\‘I’\ '0.0 o‘atl ',\\ \\\‘-\ ‘r"\\."\/\ '*..V\t ‘t'\_ ( . . \‘ ", X b < - . ¥ »-.- '.
' \_\ ‘b~:0‘.‘."~“‘ £ ) i‘.\ DL ICR N R T \‘.c‘! o e T4 . L n Yy ) N T .\{I '
. B e - 3 v - . " . . Ly -
) "'~.'.'\:‘:) \"r-’:’:'z‘u'w‘ X\:" ::\-’\"\{t : ':‘:‘"(':’\ & ?\" e
. e % N ":\‘ ‘..‘-\t' .’:"n“b"'- R R NNy o r.;." :
" ' "\\ . ’:’5‘4‘5' D*t;\\. W ":’ % '\"'\"'\ e . ".‘.%‘(:‘ .
. ~ 5
o R | 5 S Y ..
. \,:;\.:\“o e S P e ON vk . -
O S S b\l\-ﬁ\" e A
o « T L O N O . LY w Y \\\"\.b - 4 9
' (‘(“‘b‘ﬁn""k‘o)"u‘-’ %y ‘h‘\\'(:\" PN {/) N e -
L o b < -2 ", 3 Wl - -
N G B S S Tt M U T i e N A N N N o e ! » N SO N -
-, sp$~',\-'l_ri7;\' \1!.5"“:;..'-_-'}5. T LG S ta vy . .C.I'\';'\.‘v,o\\\‘ a h'p e C . L)
M e Tt \’\N::"\ A S At L O S 0 S ST A S NN .:"\( "R A Y AN Y \;.:'h".rco'."'rrb SRS .
N a . L/ - NS S . LN -
St S R S A I A N R R R A AL \“‘.'."‘A‘:.‘d‘.f.“,\.‘.'v\"."}“ Wt L MR R e e e e, :
‘s T Y YT YT LY YYYYY WA S g d e g e vy r Y Yy o B el s mr Y R LU A R R R R
P T T T A T e S I T T T T T i B e R e e R T

‘.\‘k"\ C.l’:‘\\ LY .‘ .\..
A e R AR

_ :-;5&

¢:'-' :'c"u \ \%

LN B BEa )
AL A

YA

-
v

)

'
'
'
'
* Y ANl [ \ 58 44 .
L L s
ttr"h n \ w ¥ n ey
\ RGO \‘l\\\‘\‘l‘l‘!.Q . .
LY '\ A Y \_\\"\ ® \‘\ :‘!‘.;.;‘4"';‘;““' '
TS A AT N O LR M RO N MY "
IR A L T - W LX) .
D T :::‘:"E"\":‘:':‘; NRNARANY .
3 . -
b N " » - u. m'w g ¢ - - NN .y - v
.¢..’\q'\\\\ T e e e et e DRSO, . .
. nn NS e et LR AR R ER NN NX] (RN AR [ ] v
b Y ", * * . , -\ LT
“:*‘:;:\"\‘\: OO, W ‘\‘\:g::-:v:"-_: :.:.'a & A S e ::‘-. .
< » LN N .‘ . LW LR TR .
4\ \\i\ AN . . \\\ . e a4+
; 4\\-. . RN LR «*a’s .
L" O q;\\\ AR & \\\n!\. a4 .
Sl N y N T N N “h w0y (%S % a .,
\: c,\\: LR % '..:'t';‘;‘;.\ X :\:\,\,\:'\ '\.' ):\:\:\:\:-:;:q'..;‘-:" .:‘q:- ‘.
3 > I 5 A
¥, R S Y CIRC Y .\\\\\. TN B SO L IR 0
- “,)g(.:r\q- W " b R O N R L L R, a‘a .
3 - b L W -
:‘- “"“'v :\* 5:.:6“.\'4:.:::\-‘ - N ‘\(.‘: \\\\:\:\‘\'{:‘:;:(:«Q :.:'.: .
v ) ’
“ i MO W W . Ny e \‘\i L L3 ) N .
. k.#%c\-t\\%k \.’\\i'\ LB G A A Pl "
| ’ LR N
o: S r‘:f o b -'b\\\‘\‘n\\\: e 5" q,:q\ :
v o’ '5‘:"’('((.;,“- AR RN R q'{‘;‘ ‘o™ ’
. ,\\!{ f{ g.(f,o L] '\. \\\‘\:\\ g.q‘.‘c. 'a“q!b
P LN J L
-*Iv:”f.'(ofc-: :'\: :\:\:\ ‘\\‘-‘-:\:-.:t‘ !:4.1‘ .
AR I I 5 \\\‘\ . L NN '\ -
I IACRLK, N o e e e e ) .\ .
LN A ) < AT l.g‘
DR } \.‘.\_‘_\.\_‘\‘h wanta oy :\4\. .
¥ K o AT A Y
e S e e S S e N N e e SO e .
o LN Y T N
'y v'¢.’}(.‘\.0"<‘-{r"h N N N ‘o. .-o.q\ - *
RSN (lﬂ;“';'f 2 a" RN " \\\\\\‘\\l\-‘I\.‘; *, .! N e *
N e \c: _(c'q(q‘a Q“‘- - v :\ TNy SNNY e 'q.‘ q.ov v\ .
LSE BCAACA) fAaTRam A T LY LI} (%] - -
- CA A e AN a N N L) .4 LY
yh_-(f.‘.rq,q‘n e, " \g-
LA O A ‘ C e NN -
y‘\tr‘r“' l‘l“‘l"“l‘
e -',\’f"' .

P

ML) L4
’t.

n
R \\

S
R

e

-
’
%

o
o«

e

-
&

v
"d

“ﬂ

J

‘0

0,‘. o =

o

< o
%
¥,
&%
.
<
.
o,
4

7

- = = 4

. & .
. """’?\‘Q’ -
. A SN

Jon MRS R A

-
-

O:Q
.

- . o E:‘
‘.
g:
&

’.

.

3

Y

o
-
hJ

ﬂ‘-‘:
"t
%

“

¥
v
&

&
N

I

v

)

LY

AL

- O

-
4

SLONEN X \‘w:i '

.
P T S M Y Y Y Y Y swY oY A

PCT/US2010/057541



CA 02781534 2012-05-22
WO 2011/063311 PCT/US2010/057541

5/5
CFA = zeros(3*m, n);
md = randn{m, n);
for i=1: m
fori=irn
if end(l, §) < -0.4307
CRA(E, = 1;
else if rnd(i, I} < 0.4307
CFﬁ(mM =1
gise .
CRA(mam-+, §) = 1;
end
and
and
end

R = @{x) CFA.*X;
RT = @(x) CFA*x;

W = @(x) [idet2{x{1:m,2)}; idct{x{m+1:2%m,:}); idet2(x(2*m+1:3*m, 1 ))};
WT = @00 [det2{x{1:m,)): def2{x{m+1:2*m,)); de2(x(2*m+1:3*m,: )}

A k@-{}{} R{W(Xx i
AT = @{x} WT(RT(X)}

sigma=1; s
v = R{FC,, 1) 10,2 (0, 3)0]) + sigmatrandn(size(f));

tolA = 2.e-4;

FIG. 5
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