

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2019325656 B2

(54) Title
Thyroid hormone receptor beta agonist compounds

(51) International Patent Classification(s)
A61K 31/501 (2006.01) **C07D 403/10** (2006.01)
A61P 3/00 (2006.01)

(21) Application No: **2019325656** (22) Date of Filing: **2019.08.23**

(87) WIPO No: **WO20/041741**

(30) Priority Data

(31) Number 62/722,312	(32) Date 2018.08.24	(33) Country US
	62/867,117	2019.06.26

(43) Publication Date: **2020.02.27**
(44) Accepted Journal Date: **2025.04.24**

(71) Applicant(s)
Terns, Inc.

(72) Inventor(s)
KIRSCHBERG, Thorsten A.; HALCOMB, Randall; XU, Yingzi; ROMERO, F. Anthony

(74) Agent / Attorney
FPA Patent Attorneys Pty Ltd, Level 19, South Tower 80 Collins Street, Melbourne, VIC, 3000, AU

(56) Related Art
WO 2007/009913 A1

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

WO 2020/041741 A1

(43) International Publication Date
27 February 2020 (27.02.2020)

(51) International Patent Classification:

A61K 31/501 (2006.01) *A61P 3/00* (2006.01)
C07D 403/10 (2006.01)

Published:

— with international search report (Art. 21(3))

(21) International Application Number:

PCT/US2019/047968

(22) International Filing Date:

23 August 2019 (23.08.2019)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

62/722,312 24 August 2018 (24.08.2018) US
62/867,117 26 June 2019 (26.06.2019) US

(71) Applicant: TERNS, INC. [US/US]; 1810 Gateway Drive, Suite 320, San Mateo, California 94404 (US).

(72) Inventors: KIRSCHBERG, Thorsten A.; 1810 Gateway Drive, Suite 320, San Mateo, California 94404 (US). HAL-COMB, Randall; 1810 Gateway Drive, Suite 320, San Mateo, California 94404 (US). XU, Yingzi; 1810 Gateway Drive, Suite 320, San Mateo, California 94404 (US). ROMERO, F. Anthony; 1810 Gateway Drive, Suite 320, San Mateo, California 94404 (US).

(74) Agent: KUZELKA, Jane et al.; Morrison & Foerster LLP, 755 Page Mill Road, Palo Alto, California 94304-1018 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(54) Title: THYROID HORMONE RECEPTOR BETA AGONIST COMPOUNDS

(57) Abstract: Provided herein are compounds, preferably thyroid hormone receptor beta (THR beta) agonist compounds, compositions thereof, and methods of their preparation, and methods of agonizing THR beta and methods for treating disorders mediated by THR beta.

WO 2020/041741 A1

THYROID HORMONE RECEPTOR BETA AGONIST COMPOUNDS

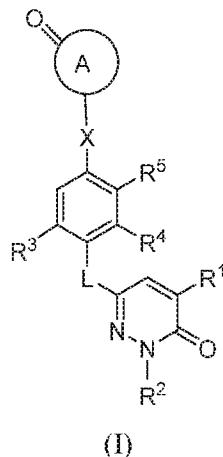
CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional Application No. 62/722,312, filed August 24, 2018, and U.S. Provisional Application No. 62/867,117, filed June 26, 2019, the disclosures of each of which are hereby incorporated by reference in their entireties for all purposes.

FIELD OF THE INVENTION

[0002] This invention relates to compounds, preferably thyroid hormone receptor beta (THR beta) agonist compounds, compositions thereof, and methods of their preparation, and methods of agonizing THR beta and methods for treating disorders mediated by THR beta.

STATE OF THE ART


[0003] The beneficial effects arising from treating hyperthyroid or hypothyroid patients with T3 / T4 endogenous ligands or early analogs of these endogenous ligands have been described in the literature (Richardson Hill Jr., S. et al. *J. Clin. Invest.* 1960, 39, 523-533). These early studies, as well as similar follow-up studies, established the heart as a major organ for the manifestation of side effects of both hyperthyroidism and hypothyroidism (Klein, I. et al. *Circulation*, 2007, 1725-1735). In particular, tachycardia, hypertrophism, atrial dysrhythmias, and atrial fibrillation are serious concerns. In addition, increased bone turn-over leading to decreased bone mineral density has also been noted. Negative effects at both sites, heart and bone, have been linked to the agonism of the THR alpha isoform, whereas the beneficial effects of THR agonism in the liver are largely linked to the THR beta isoform (Sinha, R. A. et al. *Nat. Rev. Endocrinology* 2018, 14, 259-269).

[0004] Diseases or disorders associated with THR beta include non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver disease (NAFLD), metabolic syndrome, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. There is a need for thyroid hormone analogs, such as those that are THR beta agonists, and preferably those that avoid the undesirable effects of hyperthyroidism and hypothyroidism, and maintain the beneficial effects of thyroid hormones, e.g., for the treatment for patients with non-alcoholic steatohepatitis (NASH). In particular, there is a need to develop new thyroid hormone analogs that are selective agonists for THR beta, and preferably those that avoid the undesirable effects associated with agonism of THR alpha, and maintain the beneficial effects of thyroid hormones, e.g., for the treatment for

patients with non-alcoholic steatohepatitis (NASH), non-alcoholic fatty liver disease (NAFLD), metabolic syndrome, dyslipidemia, hypertriglyceridemia, or hypercholesterolemia.

SUMMARY

[0005] In one aspect, provided herein is a compound of formula (I):

(I)

or a pharmaceutically acceptable salt thereof, wherein:

ring A together with the carbonyl (keto) group within the ring form a 5 membered heterocycle

containing 1-3 ring heteroatoms selected from the group consisting of N, O, and S, wherein the heterocycle is optionally substituted with 1-2 C₁-C₃ alkyl or C₃-C₄ cycloalkyl groups, and wherein the carbonyl (keto) group is not adjacent to the atom attached to X;

R¹ is C₁-C₄ alkyl optionally substituted with 1-5 halo or hydroxyl groups, C₃-C₅ cycloalkyl, CON(R¹⁰)₂, or NR¹⁰COR¹⁰;

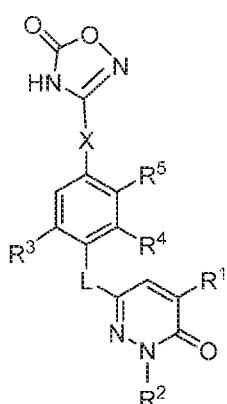
R² is H or C₁-C₃ alkyl;

L is O, CH₂, S, SO, SO₂, CO, CHF, CF₂, C(R¹¹)CN, CHR¹¹, or C(R¹¹)R¹¹;

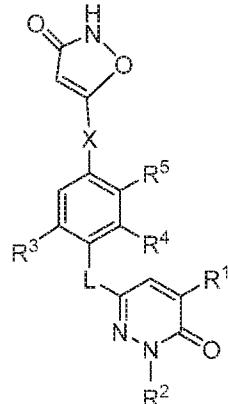
R³ and R⁴ are independently Cl, Br, methyl, or ethyl;

R⁵ is H, halo, C₁-C₄ alkyl, or C₃-C₄ cycloalkyl;

or R⁵ together with R⁴ and the intervening atoms form a 5-7 membered cycloalkyl or a 5-7 membered heterocycle containing 1-2 ring heteroatoms;

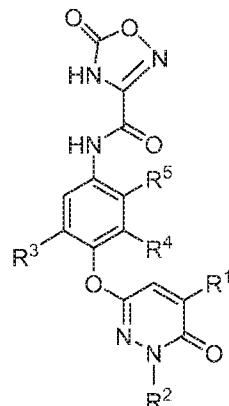

X is absent, O, NR¹², C(O)NR¹², NR¹²C(O), CR¹²R¹², OCR¹²R¹², CR¹²R¹²O, NR¹²CR¹²R¹², CR¹²R¹²NR¹², SO₂NR¹², or NR¹²SO₂;

each R¹⁰ is independently C₁-C₃ alkyl or H;


each R¹¹ is independently C₁-C₂ alkyl optionally substituted with 1-5 halo,

or two R¹¹ groups together with the carbon atom to which they are attached form a cyclopropyl or cyclobutyl ring; and
 each R¹² is independently H or methyl.

[0006] In some embodiments, the compound is of formula (IIA) or (IIB):


(IIA)

(IIB)

wherein R¹, R², R³, R⁴, R⁵, X, and L are as defined for the compound of formula (I).

[0007] In some embodiments, the compound is of formula (VD):

(VD)

wherein R¹, R², R³, R⁴, and R⁵ are as defined in claim 1.

[0008] In some embodiments, R¹ is C₁-C₄ alkyl optionally substituted with 1-2 halo or hydroxyl groups, or C₃-C₅ cycloalkyl. In some embodiments, R¹ is isopropyl, t-butyl, HO-CH(CH₃)-, HO-CH(CH₂CH₃)-, HO-C(CH₃)₂-, HO-CH₂CH(CH₃)-, cyclopropyl, or

[0009] In some embodiments, R² is H or -CH₃.

[0010] In some embodiments, R³ is chloro or -CH₃.

[0011] In some embodiments, R⁴ is chloro or -CH₃; or R⁵ together with R⁴ and the intervening atoms form a 5-6 membered cycloalkyl. In some embodiments, R⁵ together with R⁴ and the intervening atoms form cyclopentyl. In some embodiments, R⁵ is H or fluoro.

[0012] In some embodiments, X is a bond. In some embodiments, X is NR¹²C(O), OCR¹²R¹², or NR¹²CR¹²R¹²; and each R¹² is independently H or methyl. In some embodiments, X is -OCH₂-, -NHCH₂-, -NHC(O)-, -N(CH₃)CH₂-, or -N(H)CH(CH₃)-.

[0013] In some embodiments, L is O, CH₂, SO₂, CO, CHR¹¹, or C(R¹¹)R¹¹; and each R¹¹ is independently methyl or ethyl. In some embodiments, L is O, CH₂, SO₂, or CO.

[0014] In some embodiments, provided herein is a compound selected from the compounds in Table 1, or a pharmaceutically acceptable salt thereof.

[0015] In one aspect, provided herein is a pharmaceutical composition comprising a compound provided herein and at least one pharmaceutically acceptable excipient.

[0016] In one aspect, provided herein is a method of agonizing thyroid hormone receptor beta (THR beta) comprising contacting either an effective amount of a compound provided herein, or an effective amount of a pharmaceutical composition provided herein, with the THR beta.

[0017] In one aspect, provided herein is a method of treating a disorder which is mediated by THR beta in a patient, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In some embodiments, the disorder is non-alcoholic steatohepatitis (NASH).

DETAILED DESCRIPTION

Definitions

[0018] As used herein, the following definitions shall apply unless otherwise indicated. Further, if any term or symbol used herein is not defined as set forth below, it shall have its ordinary meaning in the art.

[0019] “Comprising” is intended to mean that the compositions and methods include the recited elements, but not excluding others. “Consisting essentially of” when used to define compositions and methods, shall mean excluding other elements of any essential significance to the combination. For example, a composition consisting essentially of the elements as defined herein would not exclude other elements that do not materially affect the basic and novel characteristic(s) of the claimed invention. “Consisting of” shall mean excluding more than trace amount of, e.g., other ingredients and substantial method steps recited. Embodiments defined by each of these transition terms are within the scope of this invention.

[0020] “Effective amount” or dose of a compound or a composition refers to that amount of the compound or the composition that results in an intended result as desired based on the disclosure herein. Effective amounts can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, *e.g.*, and without limitation, by determining the LD₅₀ (the dose lethal to 50 % of the population) and the ED₅₀ (the dose therapeutically effective in 50 % of the population).

[0021] The term “excipient” as used herein means an inert or inactive substance that may be used in the production of a drug or pharmaceutical, such as a tablet containing a compound of the invention as an active ingredient. Various substances may be embraced by the term excipient, including without limitation any substance used as a binder, disintegrant, coating, compression/encapsulation aid, cream or lotion, lubricant, solutions for parenteral administration, materials for chewable tablets, sweetener or flavoring, suspending/gelling agent, or wet granulation agent. Binders include, *e.g.*, carboxomers, povidone, xanthan gum, etc.; coatings include, *e.g.*, cellulose acetate phthalate, ethylcellulose, gellan gum, maltodextrin, enteric coatings, etc.; compression/encapsulation aids include, *e.g.*, calcium carbonate, dextrose, fructose dc (dc = “directly compressible”), honey dc, lactose (anhydrate or monohydrate; optionally in combination with aspartame, cellulose, or microcrystalline cellulose), starch dc, sucrose, etc.; disintegrants include, *e.g.*, croscarmellose sodium, gellan gum, sodium starch glycolate, etc.; creams or lotions include, *e.g.*, maltodextrin, carrageenan, etc.; lubricants include, *e.g.*, magnesium stearate, stearic acid, sodium stearyl fumarate, etc.; materials for chewable tablets include, *e.g.*, dextrose, fructose dc, lactose (monohydrate, optionally in combination with aspartame or cellulose), etc.; suspending/gelling agents include, *e.g.*, carrageenan, sodium starch glycolate, xanthan gum, etc.; sweeteners include, *e.g.*, aspartame, dextrose, fructose dc, sorbitol, sucrose dc, etc.; and wet granulation agents include, *e.g.*, calcium carbonate, maltodextrin, microcrystalline cellulose, etc.

[0022] “Patient” refers to mammals and includes humans and non-human mammals. Examples of patients include, but are not limited to mice, rats, hamsters, guinea pigs, pigs, rabbits, cats, dogs, goats, sheep, cows, and humans. In some embodiments, patient refers to a human.

[0023] “Pharmaceutically acceptable” refers to safe and non-toxic, preferably for *in vivo*, more preferably, for human administration.

[0024] “Pharmaceutically acceptable salt” refers to a salt that is pharmaceutically acceptable. A compound described herein may be administered as a pharmaceutically acceptable salt.

[0025] “Prodrug” refers to a compound that, after administration, is metabolized or otherwise converted to a biologically active or more active compound (or drug) with respect to at least one property. A prodrug, relative to the drug, is modified chemically in a manner that renders it, relative to the drug, less active or inactive, but the chemical modification is such that the corresponding drug is generated by metabolic or other biological processes after the prodrug is administered. A prodrug may have, relative to the active drug, altered metabolic stability or transport characteristics, fewer side effects or lower toxicity, or improved flavor (for example, see the reference Nogradi, 1985, *Medicinal Chemistry A Biochemical Approach*, Oxford University Press, New York, pages 388-392, incorporated herein by reference). A prodrug may be synthesized using reactants other than employing the corresponding drug. For illustration and without limitation, prodrugs include, carboxy esters, linear and cyclic phosphate esters and phosphoramides and phosphoramidates, carbamates, preferably phenolic carbamates (i.e., carbamates where the hydroxy group is part of an aryl or heteroaryl moiety, where the aryl and heteroaryl may be optionally substituted), and the likes.

[0026] “Salt” refers to an ionic compound formed between an acid and a base. When the compound provided herein contains an acidic functionality, such salts include, without limitation, alkali metal, alkaline earth metal, and ammonium salts. As used herein, ammonium salts include, salts containing protonated nitrogen bases and alkylated nitrogen bases. Exemplary and non-limiting cations useful in pharmaceutically acceptable salts include Na, K, Rb, Cs, NH₄, Ca, Ba, imidazolium, and ammonium cations based on naturally occurring amino acids. When the compounds utilized herein contain basic functionality, such salts include, without limitation, salts of organic acids, such as carboxylic acids and sulfonic acids, and mineral acids, such as hydrogen halides, sulfuric acid, phosphoric acid, and the likes. Exemplary and non-limiting anions useful in pharmaceutically acceptable salts include oxalate, maleate, acetate, propionate, succinate, tartrate, chloride, sulfate, bisulfate, mono-, di-, and tribasic phosphate, mesylate, tosylate, and the likes.

[0027] “Therapeutically effective amount” or dose of a compound or a composition refers to that amount of the compound or the composition that results in reduction or inhibition of symptoms or a prolongation of survival in a patient. The results may require multiple doses of the compound or the composition.

[0028] “Treating” or “treatment” of a disease in a patient refers to 1) preventing the disease from occurring in a patient that is predisposed or does not yet display symptoms of the disease; 2) inhibiting the disease or arresting its development; or 3) ameliorating or causing regression of the disease. As used herein, “treatment” or “treating” is an approach for obtaining beneficial or

desired results including clinical results. For purposes of this invention, beneficial or desired results include, but are not limited to, one or more of the following: decreasing one or more symptoms resulting from the disease or disorder, diminishing the extent of the disease or disorder, stabilizing the disease or disorder (e.g., preventing or delaying the worsening of the disease or disorder), delaying the occurrence or recurrence of the disease or disorder, delay or slowing the progression of the disease or disorder, ameliorating the disease or disorder state, providing a remission (whether partial or total) of the disease or disorder, decreasing the dose of one or more other medications required to treat the disease or disorder, enhancing the effect of another medication used to treat the disease or disorder, delaying the progression of the disease or disorder, increasing the quality of life, and/or prolonging survival of a patient. Also encompassed by “treatment” is a reduction of pathological consequence of the disease or disorder. The methods of the invention contemplate any one or more of these aspects of treatment.

[0029] An “isotopomer” of a compound is a compound in which one or more atoms of the compound have been replaced with isotopes of those same atoms. For example, where H has been replaced by D or T, or ¹²C has been replaced by ¹¹C or ¹⁴N has been replaced by ¹⁵N. For example, and without limitation, replacement of H with D can in some instances lead to reduced rates of metabolism and therefore longer half-lives. Replacement of H with T can provide radioligands potentially useful in binding studies. Replacement of ¹²C with the short-lived isotope ¹¹C can provide ligands useful in Positron Emission Tomography (PET) scanning. Replacement of ¹⁴N with ¹⁵N provides compounds that can be detected/monitored by ¹⁵N NMR spectroscopy. For example, an isotopomer of a compound containing -CH₂CH₃ is that compound but containing -CD₂CD₃ instead of the -CH₂CH₃.

[0030] Unless a specific isotope of an element is indicated in a formula, the disclosure includes all isotopologues of the compounds disclosed herein, such as, for example, deuterated derivatives of the compounds (where H can be ²H, *i.e.*, D). Isotopologues can have isotopic replacements at any or at all locations in a structure, or can have atoms present in natural abundance at any or all locations in a structure.

[0031] “Stereoisomer” or “stereoisomers” refer to compounds that differ in the stereogenicity of the constituent atoms such as, without limitation, in the chirality of one or more stereocenters or related to the cis or trans configuration of a carbon-carbon or carbon-nitrogen double bond. Stereoisomers include enantiomers and diastereomers.

[0032] “Tautomer” refers to alternate forms of a compound that differ in the position of a proton, such as enol-keto and imine-enamine tautomers, or the tautomeric forms of heteroaryl

groups containing a ring atom attached to both a ring -NH- moiety and a ring =N- moiety such as pyrazoles, imidazoles, benzimidazoles, triazoles, and tetrazoles.

[0033] "Alkyl" refers to monovalent saturated aliphatic hydrocarbyl groups having from 1 to 12 carbon atoms, preferably from 1 to 10 carbon atoms, and more preferably from 1 to 6 carbon atoms. This term includes, by way of example, linear and branched hydrocarbyl groups such as methyl (CH₃-), ethyl (CH₃CH₂-), *n*-propyl (CH₃CH₂CH₂-), isopropyl ((CH₃)₂CH-), *n*-butyl (CH₃CH₂CH₂CH₂-), isobutyl ((CH₃)₂CHCH₂-), *sec*-butyl ((CH₃)(CH₂CH₂)CH-), *t*-butyl ((CH₃)₃C-), *n*-pentyl (CH₃CH₂CH₂CH₂CH₂-), and neopentyl ((CH₃)₃CCH₂-). C_x alkyl refers to an alkyl group having x number of carbon atoms.

[0034] "Alkenyl" refers to straight or branched monovalent hydrocarbyl groups having from 2 to 6 carbon atoms and preferably 2 to 4 carbon atoms and having at least 1 and preferably from 1 to 2 sites of vinyl (>C=C<) unsaturation. Such groups are exemplified, for example, by vinyl, allyl, and but-3-en-1-yl. Included within this term are the *cis* and *trans* isomers or mixtures of these isomers. C_x alkenyl refers to an alkenyl group having x number of carbon atoms.

[0035] "Alkynyl" refers to straight or branched monovalent hydrocarbyl groups having from 2 to 6 carbon atoms and preferably 2 to 3 carbon atoms and having at least 1 and preferably from 1 to 2 sites of acetylenic (-C≡C-) unsaturation. Examples of such alkynyl groups include acetylenyl (-C≡CH), and propargyl (-CH₂C≡CH). C_x alkynyl refers to an alkynyl group having x number of carbon atoms.

[0036] "Substituted alkyl" refers to an alkyl group having from 1 to 5, preferably 1 to 3, or more preferably 1 to 2 substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, arylamino, substituted arylamino, heteroaryl amino, substituted heteroaryl amino, cycloalkylamino, substituted cycloalkylamino, heterocycloalkylamino, substituted heterocyclylamino, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclithio, substituted heterocyclithio, nitro, SO₃H, substituted sulfonyl, sulfonyloxy, sulfonylamino, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein.

[0037] "Substituted alkenyl" refers to alkenyl groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, arylamino, substituted arylamino, heteroaryl amino, substituted heteroaryl amino, cycloalkylamino, substituted cycloalkylamino, heterocycloalkylamino, substituted heterocyclylamino, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclthio, substituted heterocyclthio, nitro, SO_3H , substituted sulfonyl, sulfonyloxy, sulfonylamino, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein and with the proviso that any hydroxy or thiol substitution is not attached to a vinyl (unsaturated) carbon atom.

[0038] "Substituted alkynyl" refers to alkynyl groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, arylamino, substituted arylamino, heteroaryl amino, substituted heteroaryl amino, cycloalkylamino, substituted cycloalkylamino, heterocycloalkylamino, substituted heterocyclylamino, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclthio, substituted heterocyclthio, nitro, SO_3H , substituted sulfonyl, sulfonyloxy, sulfonylamino, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein and with the proviso that any hydroxyl or thiol substitution is not attached to an acetylenic carbon atom.

[0039] "Alkoxy" refers to the group -O-alkyl wherein alkyl is defined herein. Alkoxy includes, by way of example, methoxy, ethoxy, *n*-propoxy, isopropoxy, *n*-butoxy, *t*-butoxy, *sec*-butoxy, and *n*-pentoxy.

[0040] "Substituted alkoxy" refers to the group -O-(substituted alkyl) wherein substituted alkyl is defined herein. Preferred substituted alkyl groups in -O-(substituted alkyl) include halogenated alkyl groups and particularly halogenated methyl groups such as trifluoromethyl, difluoromethyl, fluoromethyl and the like.

[0041] "Acyl" refers to the groups H-C(O)-, alkyl-C(O)-, substituted alkyl-C(O)-, alkenyl-C(O)-, substituted alkenyl-C(O)-, alkynyl-C(O)-, substituted alkynyl-C(O)-, cycloalkyl-C(O)-, substituted cycloalkyl-C(O)-, aryl-C(O)-, substituted aryl-C(O)-, heteroaryl-C(O)-, substituted heteroaryl-C(O)-, heterocyclic-C(O)-, and substituted heterocyclic-C(O)-, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein. Acyl includes the "acetyl" group CH₃C(O)-.

[0042] "Acylamino" refers to the groups -NR³⁰C(O)alkyl, -NR³⁰C(O)substituted alkyl, -NR³⁰C(O)cycloalkyl, -NR³⁰C(O)substituted cycloalkyl, -NR³⁰C(O)alkenyl, -NR³⁰C(O)substituted alkenyl, alkoxy, substituted alkoxy-NR³⁰C(O)alkynyl, -NR³⁰C(O)substituted alkynyl, -NR³⁰C(O)aryl, -NR³⁰C(O)substituted aryl, -NR³⁰C(O)heteroaryl, -NR³⁰C(O)substituted heteroaryl, -NR³⁰C(O)heterocyclic, and -NR³⁰C(O)substituted heterocyclic wherein R³⁰ is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, or substituted cycloalkyl; and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0043] "Acyloxy" refers to the groups alkyl-C(O)O-, substituted alkyl-C(O)O-, alkenyl-C(O)O-, substituted alkenyl-C(O)O-, alkynyl-C(O)O-, substituted alkynyl-C(O)O-, aryl-C(O)O-, substituted aryl-C(O)O-, cycloalkyl-C(O)O-, substituted cycloalkyl-C(O)O-, heteroaryl-C(O)O-, substituted heteroaryl-C(O)O-, heterocyclic-C(O)O-, and substituted heterocyclic-C(O)O- wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.

[0044] "Amino" refers to the group -NH₂.

[0045] “Substituted amino” refers to the group $-NR^{31}R^{32}$ where R^{31} and R^{32} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, arylamino, substituted arylamino, heteroaryl amino, substituted heteroaryl amino, cycloalkylamino, substituted cycloalkylamino, heterocycloalkylamino, substituted heterocyclylamino, sulfonylamino, and substituted sulfonyl and wherein R^{31} and R^{32} are optionally joined, together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, provided that R^{31} and R^{32} are both not hydrogen, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein. When R^{31} is hydrogen and R^{32} is alkyl, the substituted amino group is sometimes referred to herein as alkylamino. When R^{31} and R^{32} are alkyl, the substituted amino group is sometimes referred to herein as dialkylamino. When referring to a monosubstituted amino, it is meant that either R^{31} or R^{32} is hydrogen but not both. When referring to a disubstituted amino, it is meant that neither R^{31} nor R^{32} are hydrogen.

[0046] “Aminocarbonyl” refers to the group $-C(O)NR^{33}R^{34}$ where R^{33} and R^{34} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R^{33} and R^{34} are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0047] “Aminothiocarbonyl” refers to the group $-C(S)NR^{33}R^{34}$ where R^{33} and R^{34} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R^{33} and R^{34} are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl,

alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0048] “Aminocarbonylamino” refers to the group $-NR^{30}C(O)NR^{33}R^{34}$ where R^{30} is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, or substituted cycloalkyl, and R^{33} and R^{34} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R^{33} and R^{34} are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0049] “Aminothiocarbonylamino” refers to the group $-NR^{30}C(S)NR^{33}R^{34}$ where R^{30} is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, or substituted cycloalkyl, and R^{33} and R^{34} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R^{33} and R^{34} are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0050] “Aminocarbonyloxy” refers to the group $-O-C(O)NR^{33}R^{34}$ where R^{33} and R^{34} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R^{33} and R^{34} are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0051] “Aminosulfonyl” refers to the group $-\text{SO}_2\text{NR}^{33}\text{R}^{34}$ where R^{33} and R^{34} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R^{33} and R^{34} are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0052] “Aminosulfonyloxy” refers to the group $-\text{O}-\text{SO}_2\text{NR}^{33}\text{R}^{34}$ where R^{33} and R^{34} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R^{33} and R^{34} are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0053] “Aminosulfonylamino” refers to the group $-\text{NR}^{30}-\text{SO}_2\text{NR}^{33}\text{R}^{34}$ where R^{30} is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, or substituted cycloalkyl, and R^{33} and R^{34} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R^{33} and R^{34} are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0054] “Amidino” refers to the group $-\text{C}(\text{=NR}^{35})\text{NR}^{33}\text{R}^{34}$ where R^{33} , R^{34} , and R^{35} are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and where R^{33} and R^{34} are optionally joined together with the nitrogen

bound thereto to form a heterocyclic or substituted heterocyclic group, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkoxy, substituted alkoxy, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0055] "Aryl" or "Ar" refers to a monovalent aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl (Ph)) or multiple condensed rings (e.g., naphthyl or anthryl) which condensed rings may or may not be aromatic (e.g., 2-benzoxazolinone, 2H-1,4-benzoxazin-3(4H)-one-7-yl, and the like) provided that the point of attachment is at an aromatic carbon atom. Preferred aryl groups include phenyl and naphthyl.

[0056] "Substituted aryl" refers to aryl groups which are substituted with 1 to 5, preferably 1 to 3, or more preferably 1 to 2 substituents selected from the group consisting of alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, arylamino, substituted arylamino, heteroaryl amino, substituted heteroaryl amino, cycloalkylamino, substituted cycloalkylamino, heterocycloalkylamino, substituted heterocyclylamino carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclyloxy, substituted heterocyclyloxy, heterocyclylthio, substituted heterocyclylthio, nitro, SO₃H, substituted sulfonyl, sulfonyloxy, sulfonylamino, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein.

[0057] "Aryloxy" refers to the group -O-aryl, where aryl is as defined herein, that includes, by way of example, phenoxy and naphthoxy.

[0058] "Substituted aryloxy" refers to the group -O-(substituted aryl) where substituted aryl is as defined herein.

[0059] "Arylthio" refers to the group -S-aryl, where aryl is as defined herein.

[0060] "Substituted arylthio" refers to the group -S-(substituted aryl), where substituted aryl is as defined herein.

[0061] "Arylamino" refers to the group -NR³⁷(aryl), where aryl is as defined herein and R³⁷ is hydrogen, alkyl, or substituted alkyl.

[0062] “Substituted arylamino” refers to the group $-NR^{37}(\text{substituted aryl})$, where R^{37} is hydrogen, alkyl, or substituted alkyl where substituted aryl is as defined herein.

[0063] “Carbonyl” refers to the divalent group $-\text{C}(\text{O})-$ which is equivalent to $-\text{C}(=\text{O})-$.

[0064] “Carboxy” or “carboxyl” refers to $-\text{COOH}$ or salts thereof.

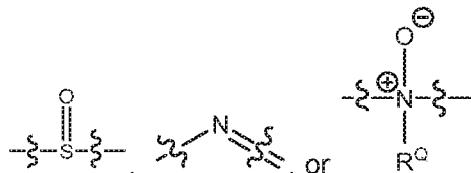
[0065] “Carboxyl ester” or “carboxy ester” refers to the groups $-\text{C}(\text{O})\text{O-alkyl}$, $-\text{C}(\text{O})\text{O-substituted alkyl}$, $-\text{C}(\text{O})\text{O-alkenyl}$, $-\text{C}(\text{O})\text{O-substituted alkenyl}$, $-\text{C}(\text{O})\text{O-alkynyl}$, $-\text{C}(\text{O})\text{O-substituted alkynyl}$, $-\text{C}(\text{O})\text{O-aryl}$, $-\text{C}(\text{O})\text{O-substituted aryl}$, $-\text{C}(\text{O})\text{O-cycloalkyl}$, $-\text{C}(\text{O})\text{O-substituted cycloalkyl}$, $-\text{C}(\text{O})\text{O-heteroaryl}$, $-\text{C}(\text{O})\text{O-substituted heteroaryl}$, $-\text{C}(\text{O})\text{O-heterocyclic}$, and $-\text{C}(\text{O})\text{O-substituted heterocyclic}$ wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.

[0066] “(Carboxyl ester)amino” refers to the group $-\text{NR}^{30}-\text{C}(\text{O})\text{O-alkyl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-substituted alkyl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-alkenyl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-substituted alkenyl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-alkynyl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-substituted alkynyl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-aryl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-substituted aryl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-cycloalkyl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-substituted cycloalkyl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-heteroaryl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-substituted heteroaryl}$, $-\text{NR}^{30}-\text{C}(\text{O})\text{O-heterocyclic}$, and $-\text{NR}^{30}-\text{C}(\text{O})\text{O-substituted heterocyclic}$ wherein R^{30} is alkyl or hydrogen, and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.

[0067] “(Carboxyl ester)oxy” refers to the group $-\text{O-C}(\text{O})\text{O-alkyl}$, $-\text{O-C}(\text{O})\text{O-substituted alkyl}$, $-\text{O-C}(\text{O})\text{O-alkenyl}$, $-\text{O-C}(\text{O})\text{O-substituted alkenyl}$, $-\text{O-C}(\text{O})\text{O-alkynyl}$, $-\text{O-C}(\text{O})\text{O-substituted alkynyl}$, $-\text{O-C}(\text{O})\text{O-aryl}$, $-\text{O-C}(\text{O})\text{O-substituted aryl}$, $-\text{O-C}(\text{O})\text{O-cycloalkyl}$, $-\text{O-C}(\text{O})\text{O-substituted cycloalkyl}$, $-\text{O-C}(\text{O})\text{O-heteroaryl}$, $-\text{O-C}(\text{O})\text{O-substituted heteroaryl}$, $-\text{O-C}(\text{O})\text{O-heterocyclic}$, and $-\text{O-C}(\text{O})\text{O-substituted heterocyclic}$ wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic are as defined herein.

[0068] “Cyano” refers to the group $-\text{C}\equiv\text{N}$.

[0069] “Cycloalkyl” refers to saturated or unsaturated but nonaromatic cyclic alkyl groups of from 3 to 10 carbon atoms, preferably from 3 to 8 carbon atoms, and more preferably from 3 to 6 carbon atoms, having single or multiple cyclic rings including fused, bridged, and spiro ring systems. C_x cycloalkyl refers to a cycloalkyl group having x number of ring carbon atoms.


Examples of suitable cycloalkyl groups include, for instance, adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, and cyclooctyl. One or more the rings can be aryl, heteroaryl, or heterocyclic provided that the point of attachment is through the non-aromatic, non-heterocyclic ring saturated carbocyclic ring. "Substituted cycloalkyl" refers to a cycloalkyl group having from 1 to 5 or preferably 1 to 3 substituents selected from the group consisting of oxo, thione, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, aryl, substituted aryl, aryloxy, substituted aryloxy, arylthio, substituted arylthio, carboxyl, carboxyl ester, (carboxyl ester)amino, (carboxyl ester)oxy, cyano, cycloalkyl, substituted cycloalkyl, cycloalkyloxy, substituted cycloalkyloxy, cycloalkylthio, substituted cycloalkylthio, guanidino, substituted guanidino, halo, hydroxy, heteroaryl, substituted heteroaryl, heteroaryloxy, substituted heteroaryloxy, heteroarylthio, substituted heteroarylthio, heterocyclic, substituted heterocyclic, heterocyclloxy, substituted heterocyclloxy, heterocyclthio, substituted heterocyclthio, nitro, SO_3H , substituted sulfonyl, sulfonyloxy, thioacyl, thiol, alkylthio, and substituted alkylthio, wherein said substituents are defined herein.

- [0070] "Cycloalkyloxy" refers to -O-cycloalkyl.
- [0071] "Substituted cycloalkyloxy" refers to -O-(substituted cycloalkyl).
- [0072] "Cycloalkylamino" refers to the group $-\text{NR}^{37}(\text{cycloalkyl})$ where R^{37} is hydrogen, alkyl, or substituted alkyl.
- [0073] "Substituted cycloalkylamino" refers to the group $-\text{NR}^{37}(\text{substituted cycloalkyl})$ where R^{37} is hydrogen, alkyl, or substituted alkyl and substituted cycloalkyl is as defined herein.
- [0074] "Cycloalkylthio" refers to -S-cycloalkyl.
- [0075] "Substituted cycloalkylthio" refers to -S-(substituted cycloalkyl).
- [0076] "Guanidino" refers to the group $-\text{NHC}(\text{=NH})\text{NH}_2$.
- [0077] "Substituted guanidino" refers to $-\text{NR}^{36}\text{C}(\text{=NR}^{36})\text{N}(\text{R}^{36})_2$ where each R^{36} is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic and two R^{36} groups attached to a common guanidino nitrogen atom are optionally joined together with the nitrogen bound thereto to form a heterocyclic or substituted heterocyclic group, provided that at least one R^{36} is not hydrogen, and wherein said substituents are as defined herein.

[0078] "Halo" or "halogen" refers to fluoro, chloro, bromo and iodo and preferably is fluoro or chloro.

[0079] "Hydroxy" or "hydroxyl" refers to the group -OH.

[0080] "Heteroalkylene" refers to an alkylene group wherein one or more carbons is replaced with -O-, -S-, SO₂, -NR^Q-,

moieties where R^Q is H or C₁-C₆ alkyl. "Substituted heteroalkylene" refers to heteroalkynylene groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the substituents disclosed for substituted alkylene.

[0081] "Heteroaryl" refers to an aromatic group of from 1 to 10 carbon atoms and 1 to 4 heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur within the ring. Such heteroaryl groups can have a single ring (e.g., pyridinyl or furyl) or multiple condensed rings (e.g., indolizinyl or benzothienyl) wherein the condensed rings may or may not be aromatic and/or contain a heteroatom provided that the point of attachment is through an atom of the aromatic heteroaryl group. In one embodiment, the nitrogen and/or the sulfur ring atom(s) of the heteroaryl group are optionally oxidized to provide for the N-oxide (N→O), sulfinyl, or sulfonyl moieties. Preferred heteroaryls include 5 or 6 membered heteroaryls such as pyridinyl, pyrrolyl, thiophenyl, and furanyl. Other preferred heteroaryls include 9 or 10 membered heteroaryls, such as indolyl, quinolinyl, quinolonyl, isoquinolinyl, and isoquinolonyl.

[0082] "Substituted heteroaryl" refers to heteroaryl groups that are substituted with from 1 to 5, preferably 1 to 3, or more preferably 1 to 2 substituents selected from the group consisting of the same group of substituents defined for substituted aryl.

[0083] "Heteroaryloxy" refers to -O-heteroaryl.

[0084] "Substituted heteroaryloxy" refers to the group -O-(substituted heteroaryl).

[0085] "Heteroarylthio" refers to the group -S-heteroaryl.

[0086] "Substituted heteroarylthio" refers to the group -S-(substituted heteroaryl).

[0087] "Heteroaryl amino" refers to the group -NR³⁷(heteroaryl) where R³⁷ is hydrogen, alkyl, or substituted alkyl.

[0088] "Substituted heteroaryl amino" refers to the group -NR³⁷(substituted heteroaryl), where R³⁷ is hydrogen, alkyl, or substituted alkyl and substituted heteroaryl is defined as herein.

[0089] "Heterocycle" or "heterocyclic" or "heterocycloalkyl" or "heterocyclyl" refers to a saturated or partially saturated, but not aromatic, group having from 1 to 10 ring carbon atoms, preferably from 1 to 8 carbon atoms, and more preferably from 1 to 6 carbon atoms, and from 1 to 4 ring heteroatoms, preferably from 1 to 3 heteroatoms, and more preferably from 1 to 2 heteroatoms selected from the group consisting of nitrogen, sulfur, or oxygen. C_x heterocycloalkyl refers to a heterocycloalkyl group having x number of ring atoms including the ring heteroatoms. Heterocycle encompasses single ring or multiple condensed rings, including fused bridged and spiro ring systems. In fused ring systems, one or more the rings can be cycloalkyl, aryl or heteroaryl provided that the point of attachment is through the non-aromatic ring. In one embodiment, the nitrogen and/or sulfur atom(s) of the heterocyclic group are optionally oxidized to provide for the N-oxide, sulfinyl, sulfonyl moieties.

[0090] "Heterocyclene" refers to a divalent saturated or partially saturated, but not aromatic, group having from 1 to 10 ring carbon atoms and from 1 to 4 ring heteroatoms selected from the group consisting of nitrogen, sulfur, or oxygen. "Substituted heterocyclene" refers to heterocyclene groups that are substituted with from 1 to 5 or preferably 1 to 3 of the same substituents as defined for substituted cycloalkyl

[0091] "Substituted heterocyclic" or "substituted heterocycloalkyl" or "substituted heterocyclyl" refers to heterocyclyl groups that are substituted with from 1 to 5 or preferably 1 to 3 of the same substituents as defined for substituted cycloalkyl.

[0092] "Heterocyclyloxy" refers to the group -O-heterocyclyl.

[0093] "Substituted heterocyclyloxy" refers to the group -O-(substituted heterocyclyl).

[0094] "Heterocyclylthio" refers to the group -S-heterocyclyl.

[0095] "Substituted heterocyclylthio" refers to the group -S-(substituted heterocyclyl).

[0096] "Heterocyclylamino" refers to the group -NR³⁷(heterocyclyl) where R³⁷ is hydrogen, alkyl, or substituted alkyl.

[0097] "Substituted heterocyclylamino" refers to the group -NR³⁷(substituted heterocyclyl), where R³⁷ is hydrogen, alkyl, or substituted alkyl and substituted heterocyclyl is defined as herein.

[0098] Examples of heterocyclyl and heteroaryl include, but are not limited to, azetidinyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazyl, pyrimidyl, pyridazyl, indolizyl, isoindolyl, indolyl, dihydroindolyl, indazolyl, purinyl, quinolizinyl, isoquinolinyl, quinolinyl, phthalazinyl, naphthylpyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, carbazolyl, carbolinyl, phenanthridinyl, acridinyl, phenanthrolinyl, isothiazolyl, phenazinyl, isoxazolyl, phenoxazinyl, phenothiazinyl, imidazolidinyl, imidazolinyl, piperidinyl, piperazinyl, indolinyl, phthalimidyl,

1,2,3,4-tetrahydroisoquinoliny1, 4,5,6,7-tetrahydrobenzo[b]thiophenyl, thiazolyl, thiazolidinyl, thiophenyl, benzo[b]thiophenyl, morpholiny1, thiomorpholiny1 (also referred to as thiamorpholiny1), 1,1-dioxothiomorpholiny1, piperidiny1, pyrrolidiny1, and tetrahydrofuranyl.

[0099] “Nitro” refers to the group -NO₂.

[0100] “Oxo” refers to the atom (=O) or (O).

[0101] “Spiro ring systems” refers to bicyclic ring systems that have a single ring carbon atom common to both rings.

[0102] “Sulfinyl” refers to the divalent group -S(O)- or -S(=O)-.

[0103] “Sulfonyl” refers to the divalent group -S(O)₂- or -S(=O)₂-.

[0104] “Substituted sulfonyl” refers to the group -SO₂-alkyl, -SO₂-substituted alkyl, -SO₂-OH, -SO₂-alkenyl, -SO₂-substituted alkenyl, -SO₂-cycloalkyl, -SO₂-substituted cycloalkyl, -SO₂-aryl, -SO₂-substituted aryl, -SO₂-heteroaryl, -SO₂-substituted heteroaryl, -SO₂-heterocyclic, -SO₂-substituted heterocyclic, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein. Substituted sulfonyl includes groups such as methyl-SO₂-, phenyl-SO₂-, and 4-methylphenyl-SO₂-. Preferred substituted alkyl groups on the substituted alkyl-SO₂- include halogenated alkyl groups and particularly halogenated methyl groups such as trifluoromethyl, difluoromethyl, fluoromethyl and the like.

[0105] “Substituted sulfinyl” refers to the group -SO-alkyl, -SO-substituted alkyl, -SO-alkenyl, -SO-substituted alkenyl, -SO-cycloalkyl, -SO-substituted cycloalkyl, -SO-aryl, -SO-substituted aryl, -SO-heteroaryl, -SO-substituted heteroaryl, -SO-heterocyclic, -SO-substituted heterocyclic, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein. Substituted sulfinyl includes groups such as methyl-SO-, phenyl-SO-, and 4-methylphenyl-SO-. Preferred substituted alkyl groups on the substituted alkyl-SO- include halogenated alkyl groups and particularly halogenated methyl groups such as trifluoromethyl, difluoromethyl, fluoromethyl and the like.

[0106] “Sulfonyloxy” or “substituted sulfonyloxy” refers to the group -OSO₂-alkyl, -OSO₂-substituted alkyl, -OSO₂-OH, -OSO₂-alkenyl, -OSO₂-substituted alkenyl, -OSO₂-cycloalkyl, -OSO₂-substituted cycloalkyl, -OSO₂-aryl, -OSO₂-substituted aryl, -OSO₂-heteroaryl, -OSO₂-substituted heteroaryl, -OSO₂-heterocyclic, -OSO₂-substituted heterocyclic, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0107] “Sulfonylamino” refers to the group $-\text{NR}^{37}(\text{substituted sulfonyl})$ where R^{37} is hydrogen, alkyl, or substituted alkyl and substituted sulfonyl is as defined here.

[0108] “Thioacyl” refers to the groups $\text{H}-\text{C}(\text{S})-$, $\text{alkyl}-\text{C}(\text{S})-$, substituted $\text{alkyl}-\text{C}(\text{S})-$, $\text{alkenyl}-\text{C}(\text{S})-$, substituted $\text{alkenyl}-\text{C}(\text{S})-$, $\text{alkynyl}-\text{C}(\text{S})-$, substituted $\text{alkynyl}-\text{C}(\text{S})-$, $\text{cycloalkyl}-\text{C}(\text{S})-$, substituted $\text{cycloalkyl}-\text{C}(\text{S})-$, $\text{aryl}-\text{C}(\text{S})-$, substituted $\text{aryl}-\text{C}(\text{S})-$, $\text{heteroaryl}-\text{C}(\text{S})-$, substituted $\text{heteroaryl}-\text{C}(\text{S})-$, heterocyclic- $\text{C}(\text{S})-$, and substituted heterocyclic- $\text{C}(\text{S})-$, wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.

[0109] “Mercapto” or “thiol” refers to the group $-\text{SH}$.

[0110] “Formyl” refers to the group $-\text{C}(\text{O})\text{H}$.

[0111] “Thiocarbonyl” refers to the divalent group $-\text{C}(\text{S})-$ which is equivalent to $-\text{C}(=\text{S})-$.

[0112] “Thione” refers to the atom $(=\text{S})$.

[0113] “Alkylthio” refers to the group $-\text{S-alkyl}$ wherein alkyl is as defined herein.

[0114] “Substituted alkylthio” refers to the group $-\text{S-(substituted alkyl)}$ wherein substituted alkyl is as defined herein. Preferred substituted alkyl groups on $-\text{S-(substituted alkyl)}$ include halogenated alkyl groups and particularly halogenated methyl groups such as trifluoromethyl, difluoromethyl, fluoromethyl and the like.

[0115] “Vinyl” refers to unsaturated hydrocarbon radical $-\text{CH}=\text{CH}_2$, derived from ethylene.

[0116] The terms “optional” or “optionally” as used throughout the specification means that the subsequently described event or circumstance may but need not occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not. For example, “the nitrogen atom is optionally oxidized to provide for the N-oxide ($\text{N}\rightarrow\text{O}$) moiety” means that the nitrogen atom may but need not be oxidized, and the description includes situations where the nitrogen atom is not oxidized and situations where the nitrogen atom is oxidized.

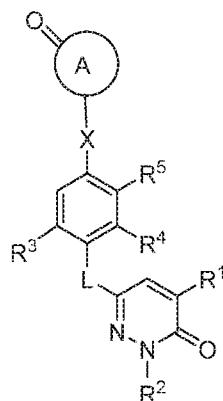
[0117] The term “optionally substituted” refers to a substituted or unsubstituted group. The substituted group may be substituted with one or more substituents, such as e.g., 1, 2, 3, 4 or 5 substituents. Preferably, the substituents are selected from the functional groups provided herein. In certain more preferred embodiments, the substituents are selected from oxo, halo, $-\text{CN}$, NO_2 , $-\text{CO}_2\text{R}^{100}$, $-\text{OR}^{100}$, $-\text{SR}^{100}$, $-\text{SOR}^{100}$, $-\text{SO}_2\text{R}^{100}$, $-\text{NR}^{101}\text{R}^{102}$, $-\text{CONR}^{101}\text{R}^{102}$, $-\text{SO}_2\text{NR}^{101}\text{R}^{102}$, $\text{C}_1\text{-C}_6$ alkyl, $\text{C}_1\text{-C}_6$ alkoxy, $-\text{CR}^{100}=\text{C}(\text{R}^{100})_2$, $-\text{CCR}^{100}$, $\text{C}_3\text{-C}_{10}$ cycloalkyl, $\text{C}_4\text{-C}_{10}$

heterocyclyl, C₆-C₁₄ aryl and C₅-C₁₂ heteroaryl, wherein each R¹⁰⁰ independently is hydrogen or C₁-C₈ alkyl; C₃-C₁₂ cycloalkyl; C₄-C₁₀ heterocyclyl; C₆-C₁₄ aryl; or C₂-C₁₂ heteroaryl; wherein each alkyl, cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with 1-3 halo, 1-3 C₁-C₆ alkyl, 1-3 C₁-C₆ haloalkyl or 1-3 C₁-C₆ alkoxy groups. More preferably, the substituents are selected from the group consisting of chloro, fluoro, -OCH₃, methyl, ethyl, *iso*-propyl, cyclopropyl, -OCF₃, -CF₃ and -OCHF₂.

[0118] R¹⁰¹ and R¹⁰² independently are hydrogen; C₁-C₈ alkyl, optionally substituted with -CO₂H or an ester thereof, C₁-C₆ alkoxy, oxo, -CR¹⁰³=C(R¹⁰³)₂, -CCR, C₃-C₁₀ cycloalkyl, C₃-C₁₀ heterocyclyl, C₆-C₁₄ aryl, or C₂-C₁₂ heteroaryl, wherein each R¹⁰³ independently is hydrogen or C₁-C₈ alkyl; C₃-C₁₂ cycloalkyl; C₄-C₁₀ heterocyclyl; C₆-C₁₄ aryl; or C₂-C₁₂ heteroaryl; wherein each cycloalkyl, heterocyclyl, aryl, or heteroaryl is optionally substituted with 1-3 alkyl groups or 1-3 halo groups, or R¹⁰¹ and R¹⁰² together with the nitrogen atom they are attached to form a 5-7 membered heterocycle.

[0119] Unless indicated otherwise, the nomenclature of substituents that are not explicitly defined herein are arrived at by naming the terminal portion of the functionality followed by the adjacent functionality toward the point of attachment. For example, the substituent “alkoxycarbonylalkyl” refers to the group (alkoxy)-C(O)-(alkyl)-.

[0120] It is understood that in all substituted groups defined above, polymers arrived at by defining substituents with further substituents to themselves (e.g., substituted aryl having a substituted aryl group as a substituent which is itself substituted with a substituted aryl group, etc.) are not intended for inclusion herein. In such cases, the maximum number of such substituents is three. That is to say that each of the above definitions is constrained by a limitation that, for example, substituted aryl groups are limited to –substituted aryl-(substituted aryl)-substituted aryl.


[0121] It is understood that the above definitions are not intended to include impermissible substitution patterns (e.g., methyl substituted with 4 fluoro groups). Such impermissible substitution patterns are well known to the skilled artisan.

[0122] It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. All combinations of the embodiments pertaining to the chemical groups represented by the variables are specifically embraced by the present invention and are disclosed herein just as if each and every combination was individually and explicitly disclosed, to the

extent that such combinations embrace compounds that are stable compounds (i.e., compounds that can be isolated, characterized, and tested for biological activity). In addition, all subcombinations of the chemical groups listed in the embodiments describing such variables are also specifically embraced by the present invention and are disclosed herein just as if each and every such sub-combination of chemical groups was individually and explicitly disclosed herein.

Compounds

[0123] In one aspect, provided herein is a compound of formula (I):

(I)

or a tautomer or an N-oxide thereof, or an isotopomer of each thereof, or a prodrug of each of the above, or a stereoisomer of the aforesaid, or a pharmaceutically acceptable salt of each of the foregoing, or a solvate of each of the preceding, wherein:

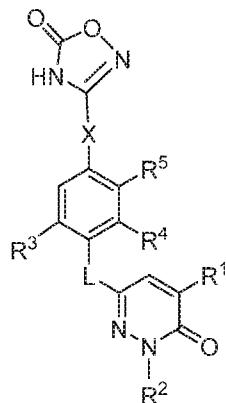
ring A together with the carbonyl (keto) group within the ring form a 5 membered heterocycle containing 1-3 ring heteroatoms selected from the group consisting of N, O, and S, wherein the heterocycle is optionally substituted with 1-2 substituents selected from the group consisting of C₁-C₃ alkyl and C₃-C₄ cycloalkyl, and wherein the carbonyl (keto) group is not adjacent to the atom attached to X;

R¹ is C₁-C₄ alkyl; C₁-C₄ alkyl optionally substituted with 1-5 halo, preferably fluoro, or hydroxyl groups; C₃-C₅ cycloalkyl, CON(R¹⁰)₂, or NR¹⁰COR¹⁰, wherein each R¹⁰ is independently C₁-C₃ alkyl or H;

R² is H or C₁-C₃ alkyl;

L is O, CH₂, S, SO, SO₂, CO, CHF, CF₂, C(R¹¹)CN such as C(Me)CN, CHR¹¹, or C(R¹¹)R¹¹, wherein each R¹¹ is C₁-C₂ alkyl optionally substituted with 1-5 halo, preferably fluoro, or the 2

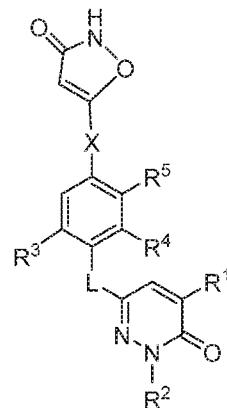
R^{11} groups together with the carbon atom they are attached to form a cyclopropyl or cyclobutyl ring;


each of R^3 and R^4 is independently Cl, Br, Me, or ethyl;

R^5 is H, halo, C₁-C₄ alkyl preferably CH₃, or C₃-C₄ cycloalkyl, or R^5 together with R^4 and the intervening atoms form a 5-7 membered cycloalkyl or a 5-7 membered heterocycle containing 1-2 ring heteroatoms; and

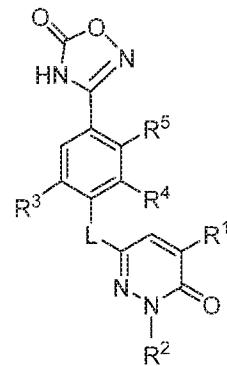
X is absent (i.e., X is a bond), or is O, NR¹², C(O)NR¹², NR¹²C(O), CR¹²R¹², OCR¹²R¹², CR¹²R¹²O, NR¹²CR¹²R¹², CR¹²R¹²NR¹², SO₂NR¹², or NR¹²SO₂, wherein each R¹² is independently H or methyl.

[0124] In some embodiments, the compound of formula (I) is a pharmaceutically acceptable salt thereof.


[0125] In one embodiment, the compound of formula (I) is a compound of formula (IIA):

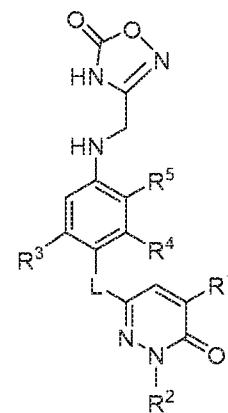
(IIA)

wherein the variables are defined as in formula (I).


[0126] In one embodiment, the compound of formula (I) is a compound of formula (IIB):

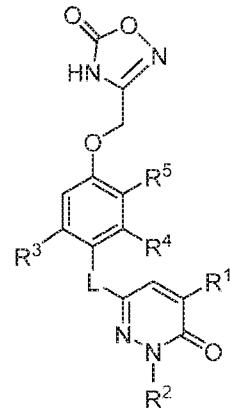
(IIIB)

wherein the variables are defined as in formula (I).


[0127] In one embodiment, the compound of formula (I) is a compound of formula (IIIA).

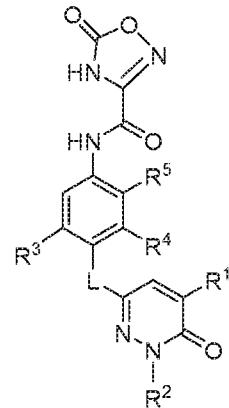
(IIIA)

wherein the variables are defined as in formula (I).


[0128] In one embodiment, the compound of formula (I) is a compound of formula (IIIB):

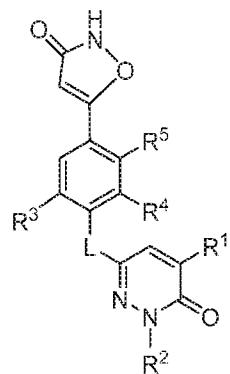
(IIIB)

wherein the variables are defined as in formula (I).


[0129] In one embodiment, the compound of formula (I) is a compound of formula (IIIC):

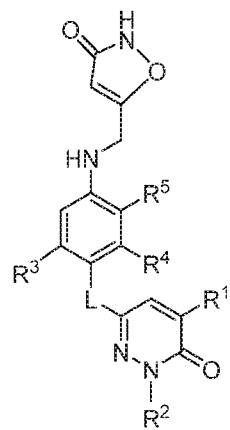
(IIIC)

wherein the variables are defined as in formula (I).


[0130] In one embodiment, the compound of formula (I) is a compound of formula (IIID):

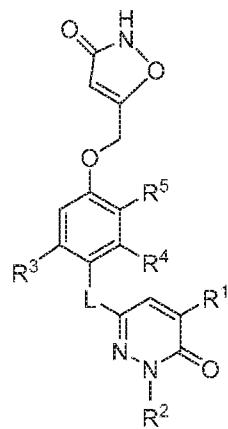
(IIID)

wherein the variables are defined as in formula (I).


[0131] In one embodiment, the compound of formula (I) is a compound of formula (IVA):

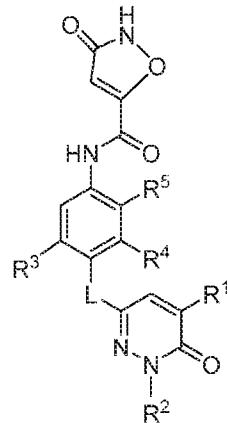
(IVA)

wherein the variables are defined as in formula (I).


[0132] In one embodiment, the compound of formula (I) is a compound of formula (IVB):

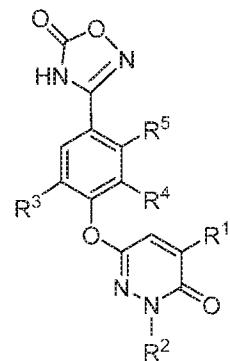
(IVB)

wherein the variables are defined as in formula (I).


[0133] In one embodiment, the compound of formula (I) is a compound of formula (IVC):

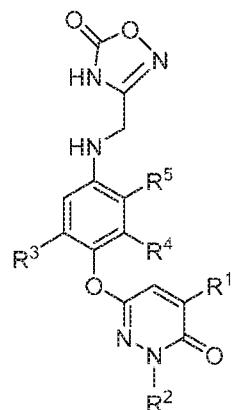
(IVC)

wherein the variables are defined as in formula (I).


[0134] In one embodiment, the compound of formula (I) is a compound of formula (IVD):

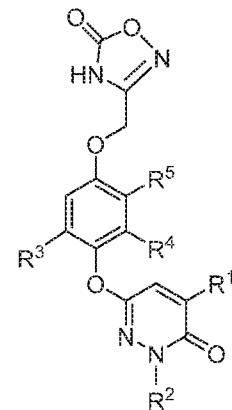
(IVD)

wherein the variables are defined as in formula (I).


[0135] In one embodiment, the compound of formula (I) is a compound of formula (VA):

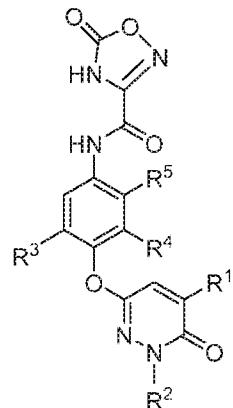
(VA)

wherein the variables are defined as in formula (I).


[0136] In one embodiment, the compound of formula (I) is a compound of formula (VB):

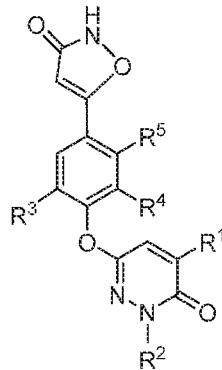
(VB)

wherein the variables are defined as in formula (I).


[0137] In one embodiment, the compound of formula (I) is a compound of formula (VC):

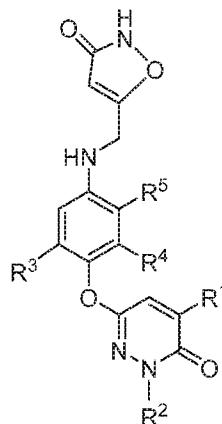
(VC)

wherein the variables are defined as in formula (I).


[0138] In one embodiment, the compound of formula (I) is a compound of formula (VD):

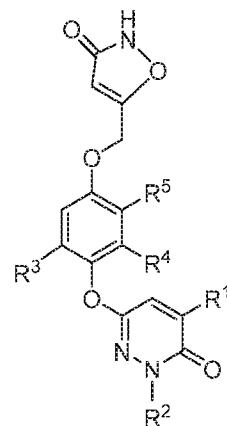
(VD)

wherein the variables are defined as in formula (I).


[0139] In one embodiment, the compound of formula (I) is a compound of formula (VIA):

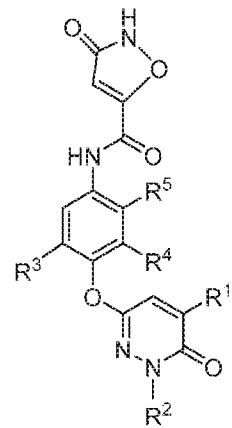
(VIA)

wherein the variables are defined as in formula (I).


[0140] In one embodiment, the compound of formula (I) is a compound of formula (VIB):

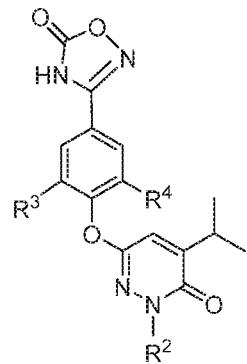
(VIB)

wherein the variables are defined as in formula (I).


[0141] In one embodiment, the compound of formula (I) is a compound of formula (VIC):

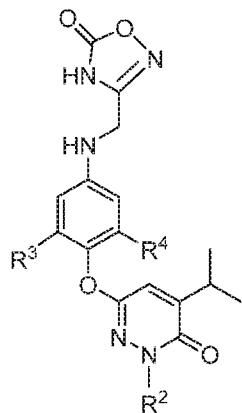
(VIC)

wherein the variables are defined as in formula (I).


[0142] In one embodiment, the compound of formula (I) is a compound of formula (VID):

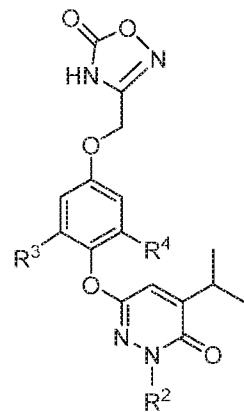
(VID)

wherein the variables are defined as in formula (I).


[0143] In one embodiment, the compound of formula (I) is a compound of formula (VIIA).

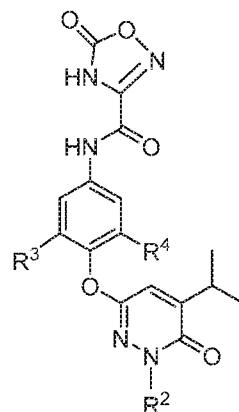
(VIIA)

wherein R² is H or methyl, and the variables are defined as in formula (I).


[0144] In one embodiment, the compound of formula (I) is a compound of formula (VIIB):

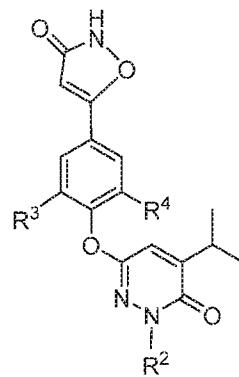
(VIB)

wherein R² is H or methyl, and the variables are defined as in formula (I).


[0145] In one embodiment, the compound of formula (I) is a compound of formula (VIIC):

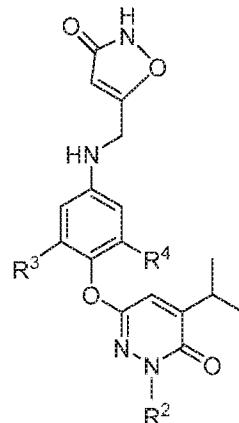
(VII C)

wherein R² is H or methyl, and the variables are defined as in formula (I).


[0146] In one embodiment, the compound of formula (I) is a compound of formula (VIID):

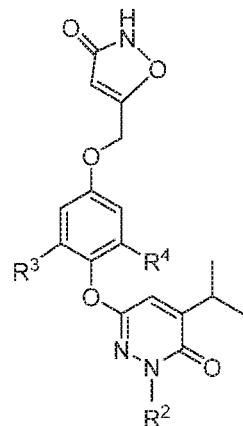
(VIID)

wherein R² is H or methyl, and the variables are defined as in formula (I).


[0147] In one embodiment, the compound of formula (I) is a compound of formula (VIIIA):

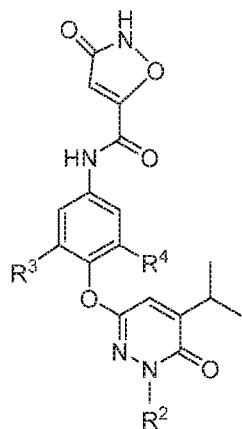
(VIIIA)

wherein R² is H or methyl, and the variables are defined as in formula (I).


[0148] In one embodiment, the compound of formula (I) is a compound of formula (VIIIB):

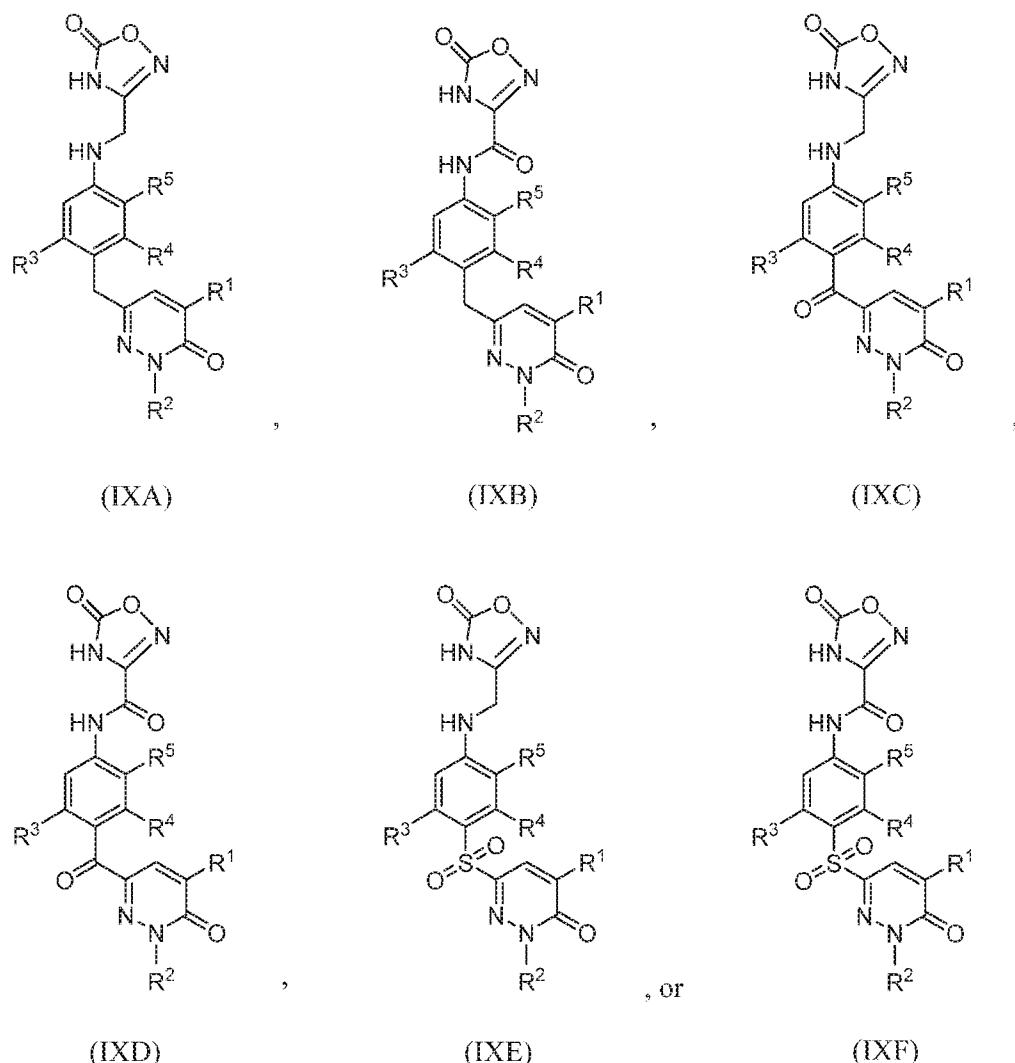
(VIIIB)

wherein R^2 is H or methyl, and the variables are defined as in formula (I).


[0149] In one embodiment, the compound of formula (I) is a compound of formula (VIIIC):

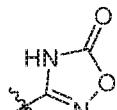
(VIIIC)

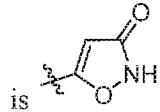
wherein R^2 is H or methyl, and the variables are defined as in formula (I).


[0150] In one embodiment, the compound of formula (I) is a compound of formula (VIIID):

(VIIID)

wherein R^2 is H or methyl, and the variables are defined as in formula (I).


[0151] In one embodiment, the compound of formula (I) is a compound of formula (IXA), (IXB), (IXC), (IXD), (IXE), or (IXF):


wherein the variables are defined as in formula (I). In some embodiments, the compound is of formula (IXA). In some embodiments, the compound is of formula (IXB). In some embodiments, the compound is of formula (IXC). In some embodiments, the compound is of formula (IXD). In some embodiments, the compound is of formula (IXE). In some embodiments, the compound is of formula (IXF).

[0152] In one embodiment, ring A together with the carbonyl (keto) group within the ring form a 5 membered heterocycle containing 1-3 ring heteroatoms selected from the group consisting of N, O, and S, and wherein the keto group is not adjacent to the atom attached to X. In one embodiment, ring A together with the carbonyl (keto) group within the ring form a 5 membered heterocycle containing 1-3 ring heteroatoms selected from the group consisting of N, O, and S, wherein the heterocycle is substituted with 1-2 C₁-C₃ alkyl or C₃-C₄ cycloalkyl, and wherein the keto group is not adjacent to the atom attached to X. In one embodiment, the 5

membered heterocycle contains 1-3 ring heteroatoms selected from the group consisting of N and O. In some embodiments, ring A together with the carbonyl (keto) group within the ring is

. In some embodiments, ring A together with the carbonyl (keto) group within the ring is

[0153] In one embodiment, R¹ is C₁-C₄ alkyl. In some embodiments, R¹ is methyl, ethyl, *n*-propyl, isopropyl, *n*-butyl, or *t*-butyl. In some embodiments, R¹ is C₃-C₄ alkyl. In one embodiment, R¹ is isopropyl. In some embodiments, R¹ is *t*-butyl. In one embodiment, R¹ is C₁-C₄ alkyl optionally substituted with 1-5 halo, preferably fluoro. In some embodiments, R¹ is C₁-C₄ alkyl optionally substituted with 1-2 halo, such as fluoro or chloro. In one embodiment, R¹ is C₁-C₄ alkyl optionally substituted with 1-5 halo or hydroxyl groups. In some embodiments, R¹ is C₂-C₄ alkyl optionally substituted with 1-5 halo or hydroxyl groups. In some embodiments, R¹ is C₁-C₄ alkyl optionally substituted with 1-2 halo or hydroxyl groups. In one embodiment, R¹ is C₁-C₄ alkyl optionally substituted with 1-5 hydroxyl groups. In some embodiments, R¹ is C₁-C₄ alkyl optionally substituted with 1-2 hydroxyl groups. In some embodiments, R¹ is C₁-C₄ alkyl substituted with 1 hydroxyl group. In some embodiments, R¹ is C₁-C₄ alkyl optionally substituted with 1-2 halo or hydroxyl groups. In some embodiments, R¹ is HO-CH(CH₃)-. In some embodiments, R¹ is HO-CH(CH₂CH₃)-. In some embodiments, R¹ is HO-C(CH₃)₂- . In some embodiments, R¹ is HO-CH₂CH(CH₃)-. In one embodiment, R¹ is C₃-C₅ cycloalkyl. In some embodiments, R¹ is a monocyclic C₃-C₅ cycloalkyl. In some embodiments, R¹ is cyclopropyl, cyclobutyl, or cyclopentyl. In some embodiments, R¹ is cyclopropyl. In some embodiments, R¹ is a fused bicyclic C₃-C₅ cycloalkyl. In some

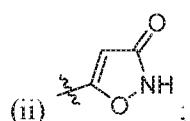
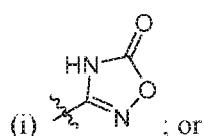
embodiments, R¹ is a bridged bicyclic C₃-C₅ cycloalkyl. In some embodiments, R¹ is . In one embodiment, R¹ is CON(R¹⁰)₂. In one embodiment, R¹ is NR¹⁰COR¹⁰.

[0154] In one embodiment, each R¹⁰ is independently C₁-C₃ alkyl. In some embodiments, each R¹⁰ is independently methyl, ethyl, *n*-propyl, or isopropyl. In some embodiments, each R¹⁰ is methyl. In one embodiment, each R¹⁰ is H. In some embodiments, one R¹⁰ is H and the other R¹⁰ is C₁-C₃ alkyl. In some embodiments, one R¹⁰ is H and the other R¹⁰ is methyl.

[0155] In one embodiment, R² is H. In one embodiment, R² is C₁-C₃ alkyl. In some embodiments, R² is methyl, ethyl, *n*-propyl, or isopropyl. In some embodiments, R² is methyl. In some embodiments, R² is H or -CH₃.

[0156] In one embodiment, L is O. In one embodiment, L is CH₂. In one embodiment, L is S. In one embodiment, L is SO. In one embodiment, L is SO₂. In one embodiment, L is CO. In one embodiment, L is CHF. In one embodiment, L is CF₂. In one embodiment, L is C(R¹¹)CN. In one embodiment, L is C(Me)CN. In one embodiment, L is CHR¹¹ or C(R¹¹)R¹¹, wherein each R¹¹ is independently C₁-C₂ alkyl optionally substituted with 1-5 halo, preferably fluoro, or the 2 R¹¹ groups together with the carbon atom they are attached to form a cyclopropyl or cyclobutyl ring. In one embodiment, L is CHR¹¹. In one embodiment, L is C(R¹¹)R¹¹. In one embodiment, each R¹¹ independently is C₁-C₂ alkyl, i.e., is methyl or ethyl. In one embodiment, each R¹¹ independently is C₁-C₂ alkyl substituted with 1-5 halo, preferably fluoro. In one embodiment, the 2 R¹¹ groups together with the carbon atom they are attached to form a cyclopropyl or cyclobutyl ring. In some embodiments, L is O, CH₂, SO₂, CO, CHR¹¹, or C(R¹¹)R¹¹, and each R¹¹ is independently methyl or ethyl. In some embodiments, L is O, CH₂, SO₂, or CO.

[0157] In one embodiment, R³ is Cl. In one embodiment, R³ is Br. In one embodiment, R³ is Me. In one embodiment, R³ is ethyl. In some embodiments, R³ is Cl or -CH₃. In one embodiment, R⁴ is Cl. In one embodiment, R⁴ is Br. In one embodiment, R⁴ is Me. In one embodiment, R⁴ is ethyl. In one embodiment, R³ and R⁴ are each Cl. In some embodiments, R³ and R⁴ are each methyl. In some embodiments, R³ is Cl and R⁴ is methyl. In some embodiments, R³ is methyl and R⁴ is Cl.



[0158] In one embodiment, R⁵ is H. In one embodiment, R⁵ is halo. In some embodiments, R⁵ is fluoro, chloro, or bromo. In some embodiments, R⁵ is fluoro. In one embodiment, R⁵ is C₁-C₄ alkyl. In some embodiments, R⁵ is C₁-C₃ alkyl. In some embodiments, R⁵ is methyl, ethyl, *n*-propyl, or isopropyl. In one embodiment, R⁵ is CH₃. In some embodiments, R⁵ is H or -CH₃. In one embodiment, R⁵ is C₃-C₄ cycloalkyl. In some embodiments, R⁵ is cyclopropyl. In some embodiments, R⁵ is cyclobutyl. In one embodiment, R⁴ together with R⁵ and the intervening atoms form a 5-7 membered cycloalkyl. In some embodiments, R⁴ together with R⁵ and the intervening atoms form cyclopentyl or cyclohexyl. In some embodiments, R⁴ together with R⁵ and the intervening atoms form cyclopentyl. In one embodiment, R⁴ together with R⁵ and the intervening atoms form a 5-7 membered heterocycle containing 1-2 ring heteroatoms. Preferred heteroatoms include one or more of N, O, and S.

[0159] In one embodiment, X is absent (i.e., X is a bond). In one embodiment, X is O. In one embodiment, X is NR¹². In one embodiment, X is C(O)NR¹². In one embodiment, X is

NR¹²C(O). In one embodiment, X is NR¹²SO₂. In one embodiment, X is SO₂NR¹². In one embodiment, X is NR¹²C(O). In one embodiment, X is CR¹²R¹². In one embodiment, X is OCR¹²R¹². In one embodiment, X is CR¹²R¹²O. In one embodiment, X is CR¹²R¹²NH. In one embodiment, X is NR¹²CR¹²R¹². In some embodiments, X is NR¹²C(O), OCR¹²R¹², or NR¹²CR¹²R¹², and each R¹² is independently H or methyl. In some embodiments, X is N(CH₃)CH₂. In one embodiment, X is CR¹²R¹²NR¹². In one embodiment, X is NH. In one embodiment, X is CH₂. In one embodiment, X is OCH₂. In one embodiment, X is CH₂O. In one embodiment, X is NHCH₂. In one embodiment, X is CH₂NH. In one embodiment, X is NHC(O). In one embodiment, X is C(O)NH. In one embodiment, X is SO₂NH. In one embodiment, X is NHSO₂. In some embodiments, X is OCH₂, NHCH₂, NHC(O), N(CH₃)CH₂, or N(H)CH(CH₃). In one embodiment, R¹² is H. In one embodiment, R¹² is methyl. In some embodiments, all R¹² groups in a given moiety, such as OCR¹²R¹², are H. In some embodiments, all R¹² groups in a given moiety, such as OCR¹²R¹², are methyl. In some embodiments, the R¹² groups in a given moiety, such as OCR¹²R¹², are a combination of H and methyl.

[0160] In one aspect, provided is a compound of formula (I) wherein the compound has any one or more of the following features:

(I) ring A together with the carbonyl group within the ring is:

(II) R¹ is:

(iii) C₁-C₄ alkyl optionally substituted with 1-5 halo or hydroxyl groups; or

(iv) C₃-C₅ cycloalkyl;

(III) R² is H or C₁-C₃ alkyl;

(IV) R³ is Cl or methyl;

(V) R⁴ is Cl or methyl;

(VI) R⁵ is H, halo, or C₁-C₄ alkyl;

(VII) R⁵ together with R⁴ and the intervening atoms form a 5-7 membered cycloalkyl or a 5-7 membered heterocycle containing 1-2 ring heteroatoms;

(VIII) X is:

(v) a bond; or

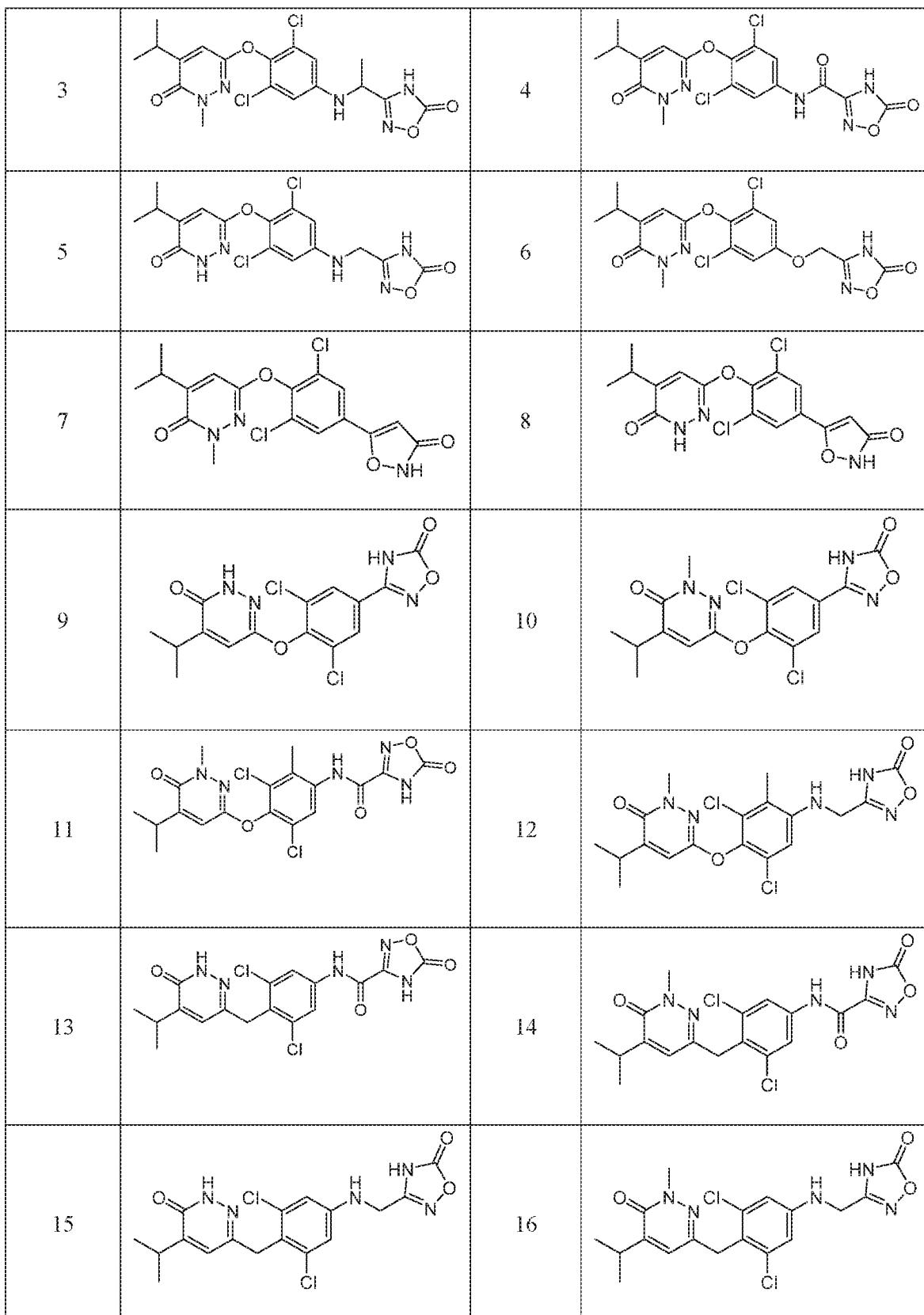
(vi) NR¹²C(O), OCR¹²R¹², or NR¹²CR¹²R¹², wherein each R¹² is independently H or methyl; and

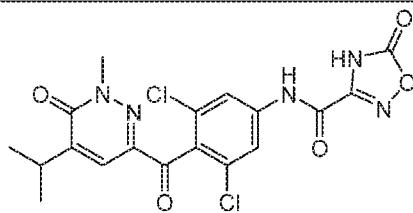
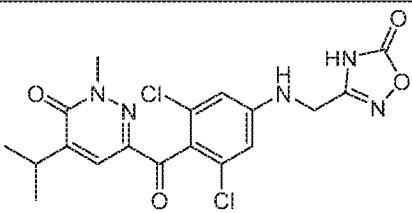
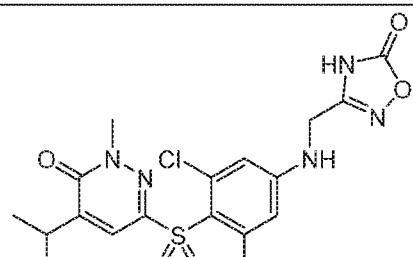
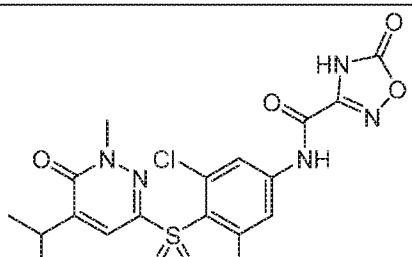
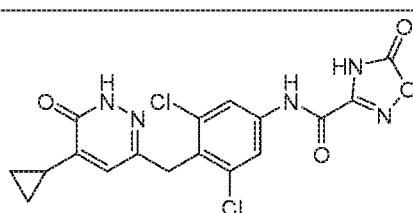
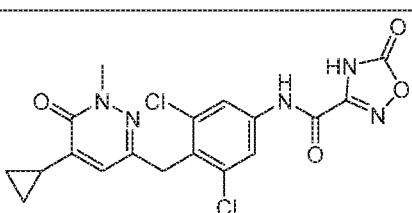
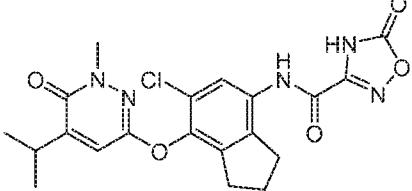
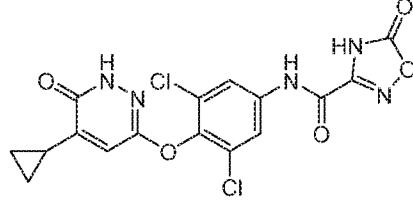
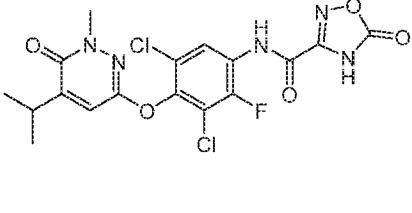
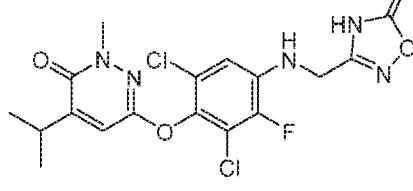
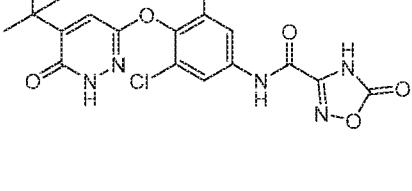
(IX) L is O, CH₂, SO₂, or CO.

[0161] In one variation, (I) applies. In one variation, (II) applies. In one variation, (III) applies. In one variation, (IV) applies. In one variation, (V) applies. In one variation, (VI) applies. In one variation, (VII) applies. In one variation, (VIII) applies. In one variation, (IX) applies. In one aspect of this variation, (I), (II), (III), (IV), (V), (VI), (VIII), and (IX) apply. In another aspect of this variation, (I), (II), (III), (IV), (VII), (VIII), and (IX) apply. In one variation, (i), (iii), and (vi) apply. In one variation, (ii), (iii), and (v) apply. In one variation, (i), (iii), and (vi) apply. In one variation, (i), (iv), and (vi) apply. In one variation, (i), (iii), (VII), and (vi) apply.

[0162] In some embodiments, the compound of formula (I) is an agonist of THR beta. In some embodiments, the compound of formula (I) is an agonist of THR beta and is selective over THR alpha. In some embodiments, the compound of formula (I) has at least 2-fold selectivity for THR beta over THR alpha. In some embodiments, the compound of formula (I) has at least 5-fold selectivity for THR beta over THR alpha. In some embodiments, the compound of formula (I) has at least 10-fold selectivity for THR beta over THR alpha. In some embodiments, the compound of formula (I) has at least 20-fold selectivity for THR beta over THR alpha. In some embodiments, the compound of formula (I) has at least 50-fold selectivity for THR beta over THR alpha. In some embodiments, the compound of formula (I) has at least 75-fold selectivity for THR beta over THR alpha. In some embodiments, the compound of formula (I) has at least 100-fold selectivity for THR beta over THR alpha. In some embodiments, the compound of formula (I) has at least 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95-, or 100-fold selectivity for THR beta over THR alpha. In

any such embodiment, in one aspect selectivity is assessed via a biochemical assay, such as the TR-FRET assay described in Example B1.


[0163] In the descriptions herein, it is understood that every description, variation, embodiment or aspect of a moiety may be combined with every description, variation, embodiment or aspect of other moieties the same as if each and every combination of descriptions is specifically and individually listed. For example, every description, variation, embodiment or aspect provided herein with respect to the ring A moiety of formula (I) may be combined with every description, variation, embodiment or aspect of R¹, R², R³, R⁴, R⁵, R¹⁰, R¹¹, R¹², X, and L the same as if each and every combination were specifically and individually listed. It is also understood that all descriptions, variations, embodiments or aspects of formula (I), where applicable, apply equally to other formulae detailed herein, and are equally described, the same as if each and every description, variation, embodiment or aspect were separately and individually listed for all formulae. For example, all descriptions, variations, embodiments or aspects of formula (I), where applicable, apply equally to any of formulae as detailed herein, such as formulae (IIA), (IIB), (IIIA)-(IIID), (IVA)-(IVD), (VA)-(VD), (VIA)-(VID), (VIIA)-(VIID), (VIIIA)-(VIIID), and (IXA)-(IXF), and are equally described, the same as if each and every description, variation, embodiment or aspect were separately and individually listed for all formulae.












[0164] In some embodiments, provided is a compound selected from the compounds in Table 1, or pharmaceutically acceptable salt thereof. Although certain compounds described in the present disclosure, including in Table 1, are presented as specific stereoisomers and/or in a non-stereochemical form, it is understood that any or all stereochemical forms, including any enantiomeric or diastereomeric forms, and any tautomers or other forms of any of the compounds of the present disclosure, including in Table 1, are herein described.

[0165] In one embodiment, provided herein is a compound selected from those tabulated below in Table 1:

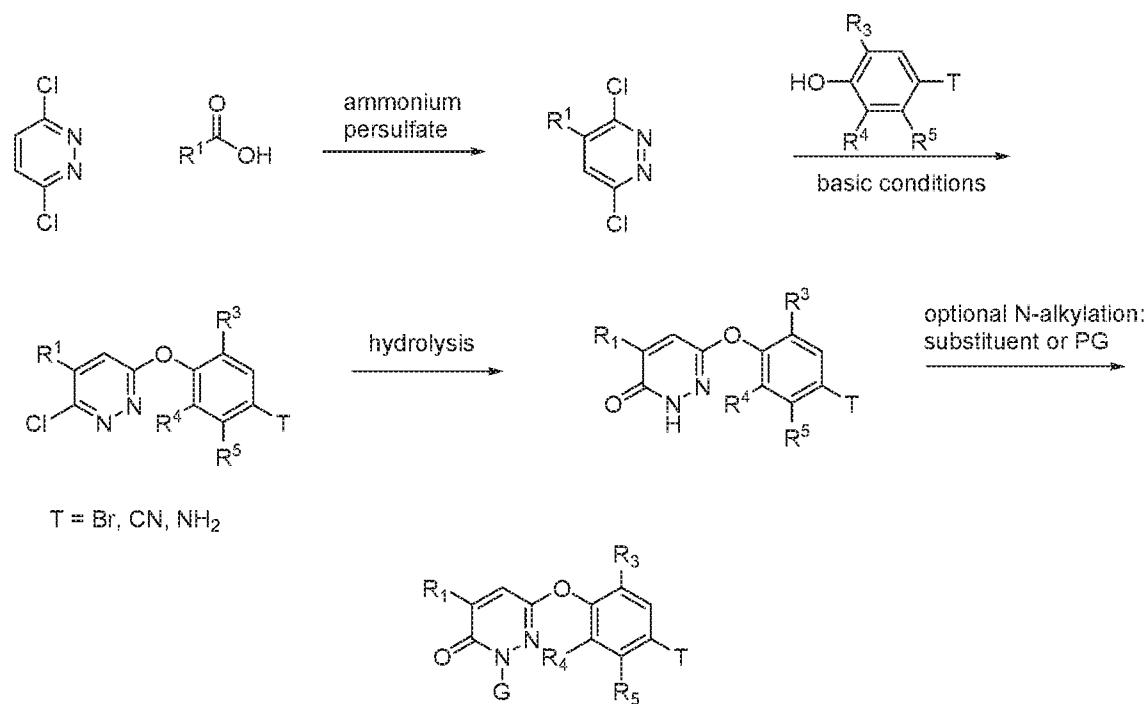
Table 1

Example	Structure	Example	Structure
1		2	

17		18	
19		20	
21		22	
23		24	
25		26	
27		28	

29		30	
31		32	
33		34	
35		36	
37			

or a tautomer or an N-oxide thereof, or an isotopomer of each thereof, or a prodrug of each of the above, or a stereoisomer of the aforesaid, or a pharmaceutically acceptable salt of each of the foregoing, or a solvate of each of the preceding.

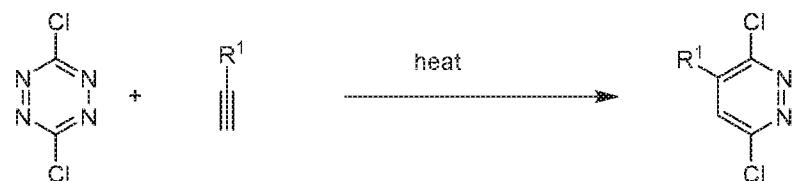

[0166] In some embodiments, provided herein is a compound selected from those listed in Table 1 or a pharmaceutically acceptable salt thereof.

[0167] The invention also includes all salts, such as pharmaceutically acceptable salts, of compounds referred to herein. The invention also includes any or all of the stereochemical forms, including any enantiomeric or diastereomeric forms, and any tautomers or other forms, such as N-oxides, solvates, prodrugs, or isotopomers, of the compounds described. Unless

stereochemistry is explicitly indicated in a chemical structure or name, the structure or name is intended to embrace all possible stereoisomers of a compound depicted. In addition, where a specific stereochemical form is depicted, it is understood that other stereochemical forms are also embraced by the invention. All forms of the compounds are also embraced by the invention, such as crystalline or non-crystalline forms of the compounds. Compositions comprising a compound of the invention are also intended, such as a composition of substantially pure compound, including a specific stereochemical form thereof. Compositions comprising a mixture of compounds of the invention in any ratio are also embraced by the invention, including mixtures of two or more stereochemical forms of a compound of the invention in any ratio, such that racemic, non-racemic, enantioenriched and scalemic mixtures of a compound are embraced.

Methods of Synthesis

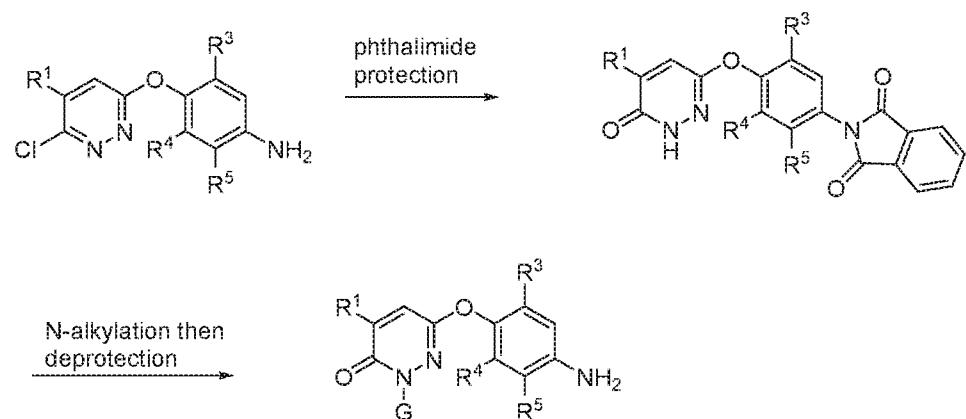
Scheme 1: General synthesis of biaryl-ether core



wherein R^1 , R^3 , R^4 , and R^5 are as defined for the compound of formula (I); T is Br , CN , or NH_2 ; and PG and G are suitable protecting groups.

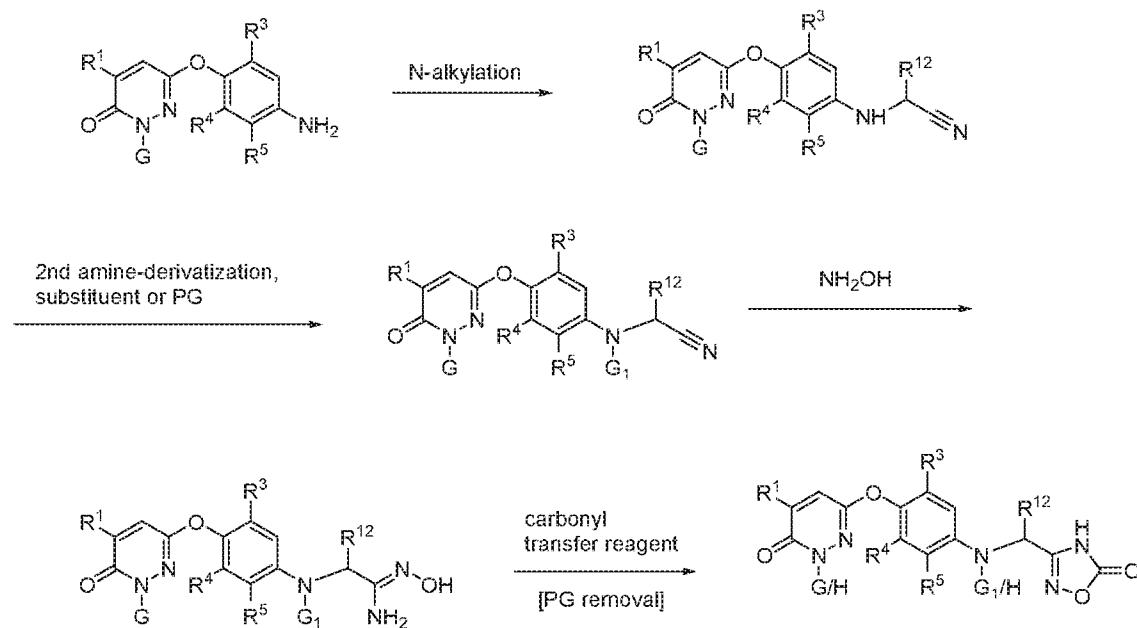
[0168] The biaryl-ether core of the compounds disclosed herein can be prepared as outlined in Scheme 1. Reaction of 3,6-dichloropyridazine and compounds of general formula $\text{R}^1\text{-CO}_2\text{H}$ with ammonium persulfate provides R^1 -substituted dichloropyridazine compounds, which can

then be reacted with phenol derivatives, hydrolyzed, and optionally N-protected to provide the desired intermediate compounds.

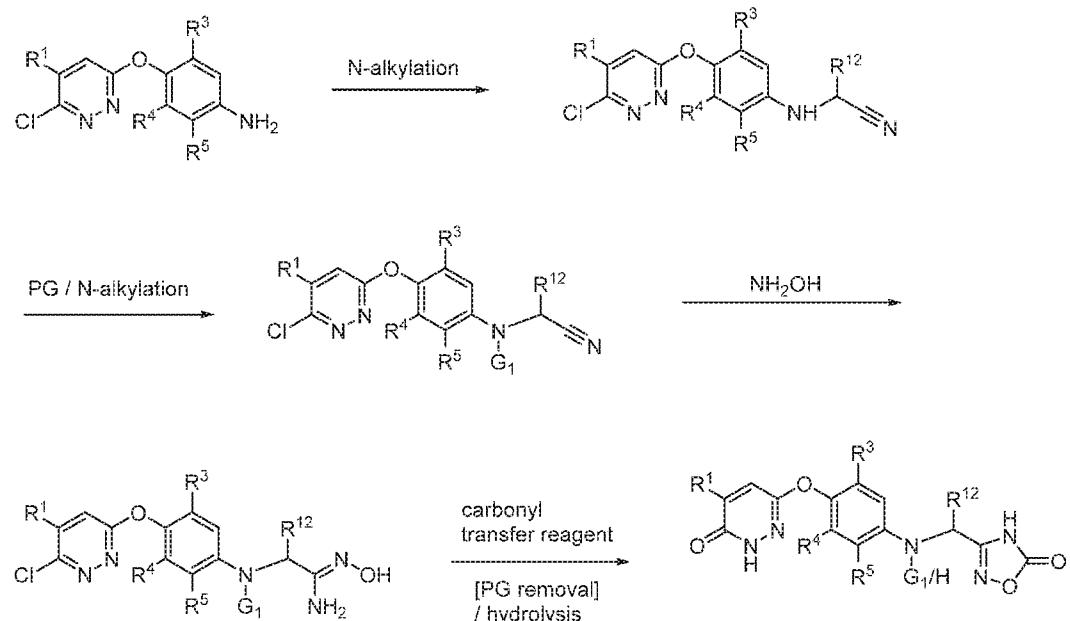

Scheme 1': Alternative pyridazine synthesis

wherein R¹ is as defined for the compound of formula (I).

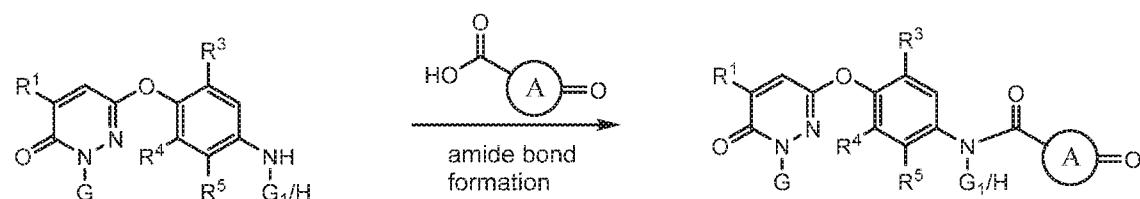
[0169] Scheme 1' provides an alternative synthesis of the pyridazines used for the preparation of compounds of formula (I) disclosed herein. Reaction of 3,6-dichloro-1,2,4,5-tetrazine with R¹-substituted acetylenes affords R¹-substituted dichloropyridazine compounds.


Scheme 1a: Arriving at G = alkyl and T = NH₂

wherein R¹, R³, R⁴, and R⁵ are as defined for the compound of formula (I); and G is a suitable protecting group.

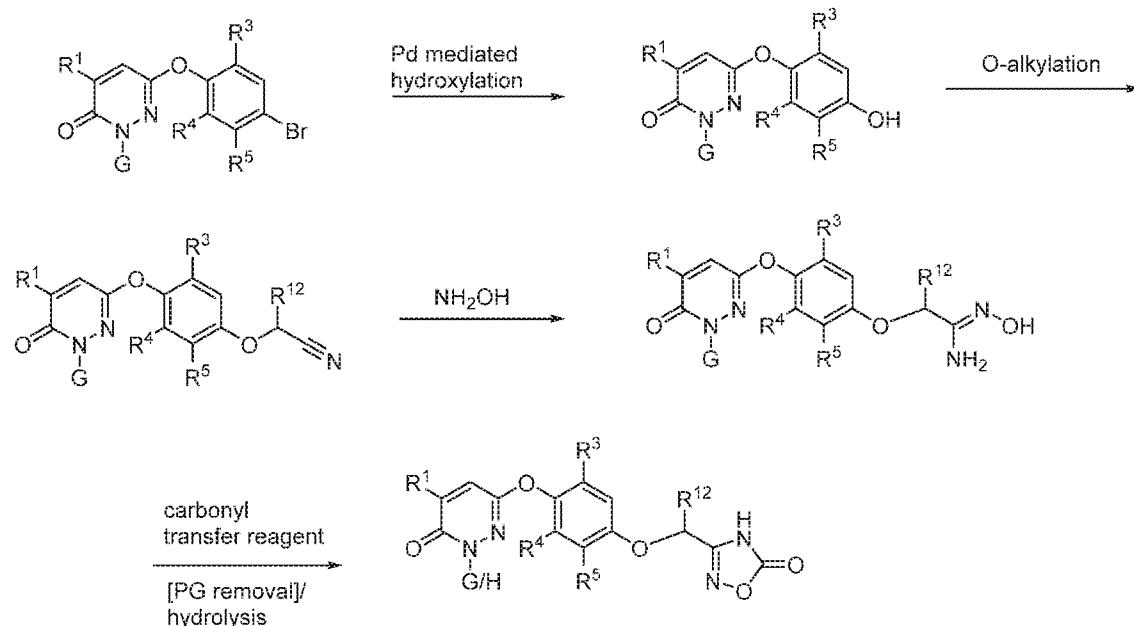

[0170] Scheme 1a outlines a synthesis wherein G is an alkyl group and T is NH₂. Compounds having the biaryl-ether core with an amine moiety can undergo phthalimide protection, N-alkylation, and subsequent deprotection to provide the desired intermediate compounds.

Scheme 2:



wherein R^1 , R^3 , R^4 , R^5 , and R^{12} are as defined for the compound of formula (I); and PG, G, and G_1 are suitable protecting groups.

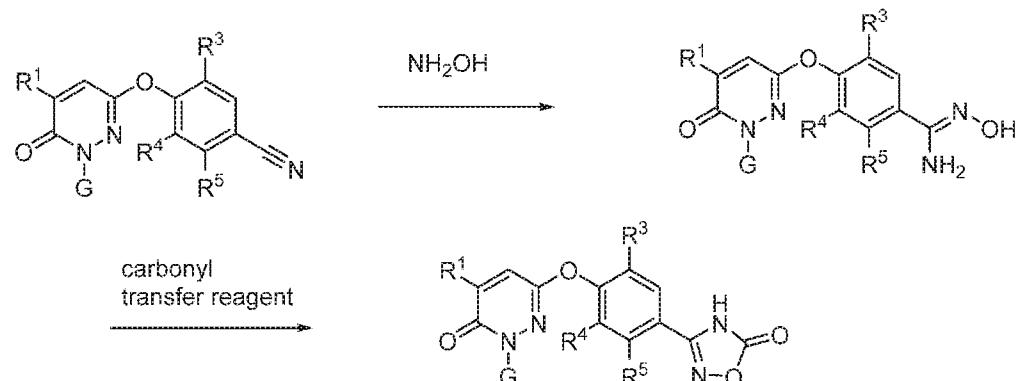
[0171] Scheme 2 outlines the synthesis of certain compounds of formula (I) disclosed herein. Compounds having the biaryl-ether core with an amine moiety, for example as provided in Scheme 1a, can undergo N-alkylation and second amine derivatization, followed by reaction with NH_2OH , treatment with a carbonyl transfer reagent, and optional deprotection to afford the desired compounds.


Scheme 2a:

[0172] Scheme 2a outlines an alternative synthesis of certain compounds of formula (I) disclosed herein. Compounds having the biaryl-ether core with an amine moiety can undergo N-alkylation, protection of the amine group, reaction with NH_2OH , treatment with a carbonyl transfer reagent, and optional deprotection or hydrolysis to afford the desired compounds.

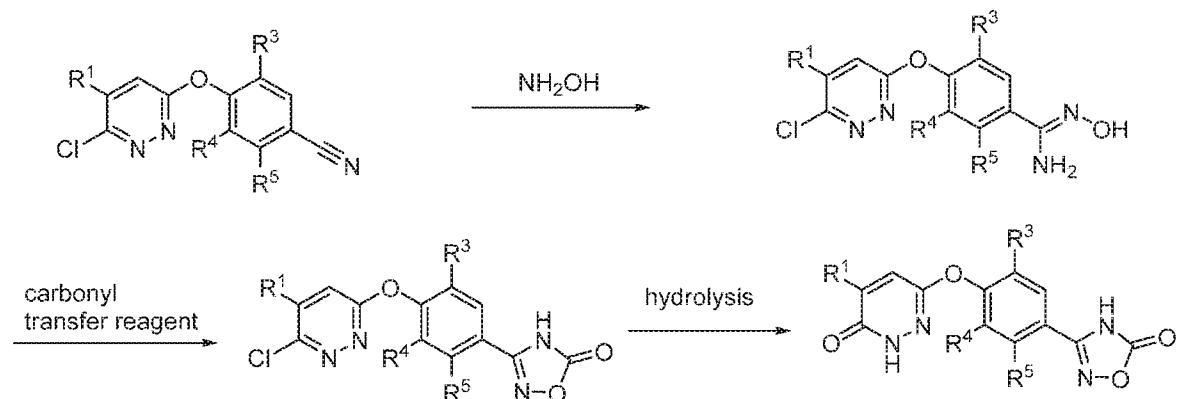
Scheme 3:

[0173] Scheme 3 shows the synthesis of certain compounds of formula (I). Reaction of biaryl-ether derivatives containing an amine moiety with carboxylic acid derivatives of ring A provides amide bond formation to form the desired compounds.

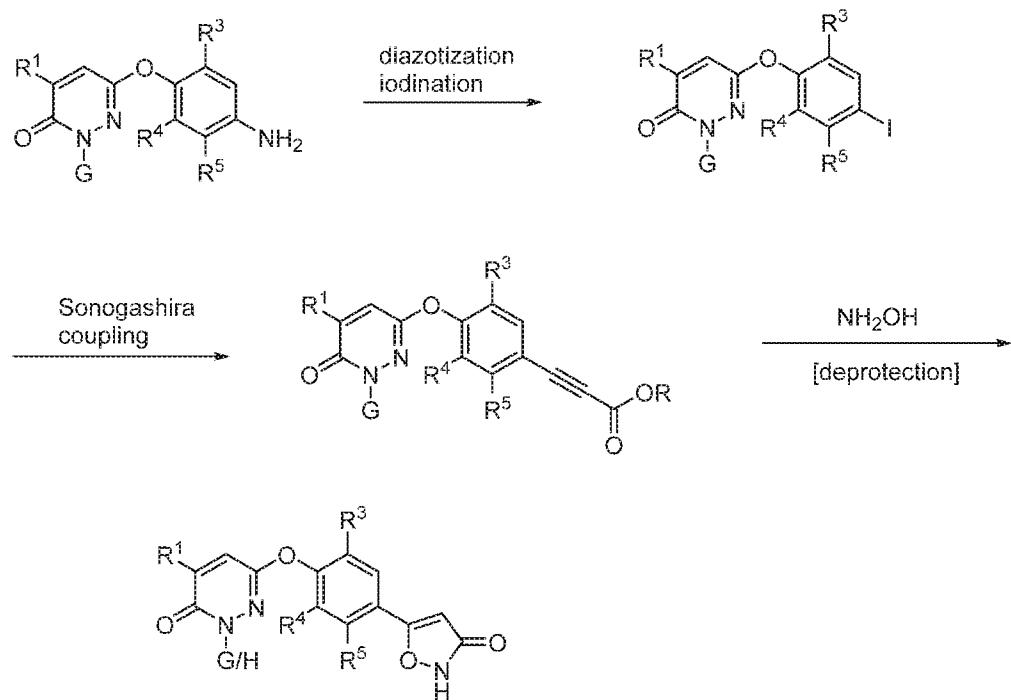

Scheme 4:

wherein R^1 , R^3 , R^4 , R^5 , and R^{12} are as defined for the compound of formula (I); and G and PG are suitable protecting groups.

[0174] Scheme 4 shows the synthesis of certain compounds of formula (I). Palladium-mediated hydroxylation of biaryl-ether derivatives containing a bromo group, followed by O-alkylation, reaction with NH_2OH , treatment with a carbonyl transfer reagent, and optional deprotection or hydrolysis provides the desired compounds.


Scheme 5:

wherein R^1 , R^3 , R^4 , and R^5 are as defined for the compound of formula (I); and G is a suitable protecting group.


[0175] Scheme 5 shows the synthesis of certain compounds of formula (I). Treatment of biaryl-ether derivatives containing a cyano group with NH₂OH, followed by treatment with a carbonyl transfer reagent provides the desired compounds.

Scheme 6:

[0176] Scheme 6 shows the synthesis of certain compounds of formula (I). Treatment of biaryl-ether derivatives containing a cyano group with NH₂OH, followed by treatment with a carbonyl transfer reagent and hydrolysis provides the desired compounds.

Scheme 7:

wherein R¹, R³, R⁴, and R⁵ are as defined for the compound of formula (I); and G is a suitable protecting group.

[0177] Scheme 7 shows the synthesis of certain compounds of formula (I).

Diazotization/iodination of biaryl-ether derivatives containing an amino group, followed by Sonogashira coupling, reaction with NH₂OH, and subsequent optional deprotection provides the desired compounds.

[0178] Synthesis of certain compounds provided herein are schematically illustrated above, and provided in the Examples section below. The variables listed in the schemes above are as defined for the compound of formula (I) or any variation, embodiments, or aspect thereof. Synthesis of other compounds provided herein will be apparent to the skilled artisan based on the guidance provided herein and based on synthetic methods well known to the skilled artisan.

[0179] Where it is desired to obtain a particular enantiomer of a compound, this may be accomplished from a corresponding mixture of enantiomers using any suitable conventional procedure for separating or resolving enantiomers. Thus, for example, diastereomeric derivatives may be produced by reaction of a mixture of enantiomers, *e.g.*, a racemate, and an appropriate chiral compound. The diastereomers may then be separated by any convenient means, for example by crystallization, and the desired enantiomer recovered. In another resolution process, a racemate may be separated using chiral High Performance Liquid Chromatography. Alternatively, if desired a particular enantiomer may be obtained by using an appropriate chiral intermediate in one of the processes described.

[0180] Chromatography, recrystallization and other conventional separation procedures may also be used with intermediates or final products where it is desired to obtain a particular isomer of a compound or to otherwise purify a product of a reaction.

[0181] Solvates and/or polymorphs of a compound provided herein or a pharmaceutically acceptable salt thereof are also contemplated. Solvates contain either stoichiometric or non-stoichiometric amounts of a solvent, and are often formed during the process of crystallization. Hydrates are formed when the solvent is water, or alcoholates are formed when the solvent is alcohol. Polymorphs include the different crystal packing arrangements of the same elemental composition of a compound. Polymorphs usually have different X-ray diffraction patterns, infrared spectra, melting points, density, hardness, crystal shape, optical and electrical properties, stability, and/or solubility. Various factors such as the recrystallization solvent, rate of crystallization, and storage temperature may cause a single crystal form to dominate.

[0182] It is understood that the synthetic process disclosed here may be modified to arrive at various compounds of the invention by selection of appropriate reagents and starting materials.

It is also understood that where protection of certain active or incompatible groups (e.g., an amine or a carboxylic acid) is required, the formulae in e.g., the scheme(s) provided here intend and include compounds where such active or incompatible groups are in appropriate protected forms. For a general description of protecting groups and their use, see P.G.M. Wuts and T.W. Greene, *Greene's Protective Groups in Organic Synthesis* 4th edition, Wiley-Interscience, New York, 2006.

Pharmaceutical Compositions and Formulations

[0183] Pharmaceutical compositions of any of the compounds detailed herein are embraced by this invention. Thus, the invention includes pharmaceutical compositions comprising a compound of the invention or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or excipient. In one aspect, the pharmaceutically acceptable salt is an acid addition salt, such as a salt formed with an inorganic or organic acid. Pharmaceutical compositions according to the invention may take a form suitable for oral, buccal, parenteral, nasal, topical or rectal administration or a form suitable for administration by inhalation.

[0184] A compound as detailed herein may in one aspect be in a purified form and compositions comprising a compound in purified forms are detailed herein. Compositions comprising a compound as detailed herein or a salt thereof are provided, such as compositions of substantially pure compounds. In some embodiments, a composition containing a compound as detailed herein or a salt thereof is in substantially pure form. In one variation, “substantially pure” intends a composition that contains no more than 35% impurity, wherein the impurity denotes a compound other than the compound comprising the majority of the composition or a salt thereof. For example, a composition of a substantially pure compound selected from a compound of Table 1 intends a composition that contains no more than 35% impurity, wherein the impurity denotes a compound other than the compound or a salt thereof. In one variation, a composition of substantially pure compound or a salt thereof is provided wherein the composition contains no more than 25% impurity. In another variation, a composition of substantially pure compound or a salt thereof is provided wherein the composition contains or no more than 20% impurity. In still another variation, a composition of substantially pure compound or a salt thereof is provided wherein the composition contains or no more than 10% impurity. In a further variation, a composition of substantially pure compound or a salt thereof is provided wherein the composition contains or no more than 5% impurity. In another variation, a composition of substantially pure compound or a salt thereof is provided wherein the composition contains or no more than 3% impurity. In still another variation, a composition of

substantially pure compound or a salt thereof is provided wherein the composition contains or no more than 1% impurity. In a further variation, a composition of substantially pure compound or a salt thereof is provided wherein the composition contains or no more than 0.5% impurity.

In yet other variations, a composition of substantially pure compound means that the composition contains no more than 15% or preferably no more than 10% or more preferably no more than 5% or even more preferably no more than 3% and most preferably no more than 1% impurity, which impurity may be the compound in a different stereochemical form. For instance, and without limitation, a composition of substantially pure (S) compound means that the composition contains no more than 15% or no more than 10% or no more than 5% or no more than 3% or no more than 1% of the (R) form of the compound.

[0185] In one variation, the compounds herein are synthetic compounds prepared for administration to an individual such as a human. In another variation, compositions are provided containing a compound in substantially pure form. In another variation, the invention embraces pharmaceutical compositions comprising a compound detailed herein and a pharmaceutically acceptable carrier or excipient. In another variation, methods of administering a compound are provided. The purified forms, pharmaceutical compositions and methods of administering the compounds are suitable for any compound or form thereof detailed herein.

[0186] The compound may be formulated for any available delivery route, including an oral, mucosal (e.g., nasal, sublingual, vaginal, buccal or rectal), parenteral (e.g., intramuscular, subcutaneous or intravenous), topical or transdermal delivery form. A compound may be formulated with suitable carriers to provide delivery forms that include, but are not limited to, tablets, caplets, capsules (such as hard gelatin capsules or soft elastic gelatin capsules), cachets, troches, lozenges, gums, dispersions, suppositories, ointments, cataplasms (poultices), pastes, powders, dressings, creams, solutions, patches, aerosols (e.g., nasal spray or inhalers), gels, suspensions (e.g., aqueous or non-aqueous liquid suspensions, oil-in-water emulsions or water-in-oil liquid emulsions), solutions and elixirs.

[0187] One or several compounds described herein can be used in the preparation of a formulation, such as a pharmaceutical formulation, by combining the compound or compounds as an active ingredient with a pharmaceutically acceptable carrier, such as those mentioned above. Depending on the therapeutic form of the system (e.g., transdermal patch vs. oral tablet), the carrier may be in various forms. In addition, pharmaceutical formulations may contain preservatives, solubilizers, stabilizers, re-wetting agents, emulgators, sweeteners, dyes, adjusters, and salts for the adjustment of osmotic pressure, buffers, coating agents or antioxidants. Formulations comprising the compound may also contain other substances which

have valuable therapeutic properties. Pharmaceutical formulations may be prepared by known pharmaceutical methods. Suitable formulations can be found, *e.g.*, in *Remington: The Science and Practice of Pharmacy*, Lippincott Williams & Wilkins, 21st ed. (2005), which is incorporated herein by reference.

[0188] Compounds as described herein may be administered to individuals (*e.g.*, a human) in a form of generally accepted oral compositions, such as tablets, coated tablets, and gel capsules in a hard or in soft shell, emulsions or suspensions. Examples of carriers, which may be used for the preparation of such compositions, are lactose, corn starch or its derivatives, talc, stearate or its salts, *etc.* Acceptable carriers for gel capsules with soft shell are, for instance, plant oils, wax, fats, semisolid and liquid polyols, and so on. In addition, pharmaceutical formulations may contain preservatives, solubilizers, stabilizers, re-wetting agents, emulgators, sweeteners, dyes, adjusters, and salts for the adjustment of osmotic pressure, buffers, coating agents or antioxidants.

[0189] Any of the compounds described herein can be formulated in a tablet in any dosage form described.

[0190] Compositions comprising a compound provided herein are also described. In one variation, the composition comprises a compound and a pharmaceutically acceptable carrier or excipient. In another variation, a composition of substantially pure compound is provided.

Methods of Use/Treatments

[0191] Compounds and compositions detailed herein, such as a pharmaceutical composition containing a compound of any formula provided herein, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or excipient, may be used in methods of administration and treatment as provided herein. The compounds and compositions may also be used in *in vitro* methods, such as *in vitro* methods of administering a compound or composition to cells for screening purposes and/or for conducting quality control assays.

[0192] In one aspect, provided herein is a method of agonizing thyroid hormone receptor beta (THR beta) comprising contacting either an effective amount of a compound provided herein, or an effective amount of a pharmaceutical composition provided herein, with the THR beta.

[0193] In one aspect, provided herein is a method of treating a disorder, which is mediated by THR beta, in a patient, comprising administering to the patient in need thereof a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein.

[0194] Methods of treating a disorder mediated by THR beta, including without limitation non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, and symptoms and manifestations of each thereof are well known to the skilled artisan and can be adapted to treating such a disorder with a compound or composition provided herein.

[0195] In one aspect, provided herein is a method of agonizing thyroid hormone receptor beta (THR beta) comprising contacting either an effective amount of a compound provided herein, or a salt thereof, such as a pharmaceutically acceptable salt thereof, or an effective amount of a pharmaceutical composition provided herein, with the THR beta. In one aspect, provided herein is a method of selectively agonizing THR beta over THR alpha comprising contacting either an effective amount of a compound provided herein, or a pharmaceutically acceptable salt thereof, or an effective amount of a pharmaceutical composition provided herein, with the THR beta. In one such aspect, the method selectively agonizes THR beta over THR alpha by at least 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 15-, 20-, 25-, 30-, 35-, 40-, 45-, 50-, 55-, 60-, 65-, 70-, 75-, 80-, 85-, 90-, 95-, or 100-fold. In any such embodiment, in one aspect selectivity is assessed via a biochemical assay, such as the TR-FRET assay described in Example B1.

[0196] In one aspect, provided herein is a method of treating a disease or disorder that is mediated by THR beta in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, the disease or disorder is a liver disease or disorder. In one aspect, provided herein is a method of treating a disease or disorder of the liver associated with sub-optimal THR beta agonism in a patient in need thereof, comprising administering to the patient a compound of formula (I), or a pharmaceutically acceptable salt thereof, wherein the compound selectively agonizes THR beta over THR alpha.

[0197] In one aspect, provided herein is a method of treating non-alcoholic fatty liver disease in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, provided herein is a method of treating non-alcoholic steatohepatitis (NASH) in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, provided herein is a method of treating metabolic syndrome in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, provided herein is a method of treating dyslipidemia in a patient in need thereof, comprising administering to the patient a

therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, provided herein is a method of treating hypertriglyceridemia in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, provided herein is a method of treating hypercholesterolemia in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein.

[0198] In any of the embodiments described herein, a patient having a disease or disorder associated with THR beta agonism may include, but is not limited to, a patient with an underlying hypothyroid disorder.

[0199] In another aspect is provided a method of delaying the onset and/or development of a disease or disorder that is mediated by THR beta in a patient (such as a human) who is at risk for developing the disease or disorder. It is appreciated that delayed development may encompass prevention in the event the individual does not develop the disease or disorder. An individual at risk of developing a disease or disorder that is mediated by THR beta in one aspect has one or more risk factors for developing the disease or disorder, such as age, increased waist circumference, high body to mass index or the presence of an associated comorbidity.

[0200] In one aspect, provided herein is a method of delaying the onset and/or development of non-alcoholic fatty liver disease in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, provided herein is a method of delaying the onset and/or development of non-alcoholic steatohepatitis (NASH) in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, provided herein is a method of delaying the onset and/or development of metabolic syndrome in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, provided herein is a method of delaying the onset and/or development of dyslipidemia in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, provided herein is a method of delaying the onset and/or development of hypertriglyceridemia in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a

compound provided herein, or a therapeutically effective amount of a composition provided herein. In one aspect, provided herein is a method of delaying the onset and/or development of hypercholesterolemia in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound provided herein, or a therapeutically effective amount of a composition provided herein.

[0201] In one aspect, provided herein is a compound of formula (I) or any variation thereof, or a pharmaceutically acceptable salt thereof, for use in therapy. In some embodiments, provided herein is a compound of formula (I) or any variation thereof, or a pharmaceutically acceptable salt thereof or pharmaceutical composition comprising such compound or a pharmaceutically acceptable salt thereof or pharmaceutical composition comprising such compound or a pharmaceutically acceptable salt thereof, for use in the treatment of non-alcoholic fatty liver disease. In some embodiments, provided herein is a compound of formula (I) or any variation thereof, or a pharmaceutically acceptable salt thereof or pharmaceutical composition comprising such compound or a pharmaceutically acceptable salt thereof, for use in the treatment of non-alcoholic steatohepatitis (NASH). In some embodiments, provided is a compound of formula (I) or any variation thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising such compound or a pharmaceutically acceptable salt thereof, for use in the treatment of metabolic syndrome. In some embodiments, provided is a compound of formula (I) or any variation thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising such compound or a pharmaceutically acceptable salt thereof, for use in the treatment of dyslipidemia. In some embodiments, provided is a compound of formula (I) or any variation thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising such compound or a pharmaceutically acceptable salt thereof, for use in the treatment of hypertriglyceridemia. In some embodiments, provided is a compound of formula (I) or any variation thereof, or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising such compound or a pharmaceutically acceptable salt thereof, for use in the treatment of hypercholesterolemia.

[0202] In another embodiment, provided herein is a compound of formula (I) or any variation thereof, or a pharmaceutically acceptable salt thereof, for use in the manufacture of a medicament for the treatment of non-alcoholic fatty liver disease. In another embodiment, provided herein is a compound of formula (I) or any variation thereof, or a pharmaceutically acceptable salt thereof, for use in the manufacture of a medicament for the treatment of non-alcoholic steatohepatitis (NASH). In another embodiment, provided herein is a compound of formula (I) or any variation thereof, or a pharmaceutically acceptable salt thereof, for use in the manufacture of a medicament for the treatment of metabolic syndrome. In some embodiments,

the medicament is for the treatment of dyslipidemia. In some embodiments, the medicament is for the treatment of hypertriglyceridemia. In some embodiments, the medicament is for the treatment of dyslipidemia. In some embodiments, the medicament is for the treatment of hypercholesterolemia.

[0203] In some embodiments, the individual is a mammal. In some embodiments, the individual is a primate, dog, cat, rabbit, or rodent. In some embodiments, the individual is a primate. In some embodiments, the individual is a human. In some embodiments, the human is at least about or is about any of 18, 21, 30, 50, 60, 65, 70, 75, 80, or 85 years old. In some embodiments, the human is a child. In some embodiments, the human is less than about or about any of 21, 18, 15, 10, 5, 4, 3, 2, or 1 years old.

Dosing and Method of Administration

[0204] The dose of a compound described herein, or a stereoisomer, tautomer, solvate, or salt thereof, administered to an individual (such as a human) may vary with the particular compound or salt thereof, the method of administration, and the particular disease or disorder, such as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis (NASH), metabolic syndrome, hypertriglyceridemia, dyslipidemia, or hypercholesterolemia, being treated. In some embodiments, the amount of the compound, or a stereoisomer, tautomer, solvate, or salt thereof, is a therapeutically effective amount.

[0205] The compounds provided herein or a salt thereof may be administered to an individual via various routes, including, e.g., intravenous, intramuscular, subcutaneous, oral, and transdermal.

[0206] The effective amount of the compound may in one aspect be a dose of between about 0.01 and about 100 mg/kg. Effective amounts or doses of the compounds of the present disclosure may be ascertained by routine methods, such as modeling, dose escalation, or clinical trials, taking into account routine factors, e.g., the mode or route of administration or drug delivery, the pharmacokinetics of the agent, the severity and course of the disease to be treated, the subject's health status, condition, and weight. An exemplary dose is in the range of about from about 0.7 mg to 7 g daily, or about 7 mg to 350 mg daily, or about 350 mg to 1.75 g daily, or about 1.75 to 7 g daily.

[0207] Any of the methods provided herein may in one aspect comprise administering to an individual a pharmaceutical composition that contains an effective amount of a compound provided herein, or a stereoisomer, tautomer, solvate, or salt thereof, and a pharmaceutically acceptable excipient.

[0208] A compound or composition provided herein may be administered to an individual in accordance with an effective dosing regimen for a desired period of time or duration, such as at least about one month, at least about 2 months, at least about 3 months, at least about 6 months, or at least about 12 months or longer, which in some variations may be for the duration of the individual's life. In one variation, the compound is administered on a daily or intermittent schedule. The compound can be administered to an individual continuously (for example, at least once daily) over a period of time. The dosing frequency can also be less than once daily, e.g., about a once weekly dosing. The dosing frequency can be more than once daily, e.g., twice or three times daily. The dosing frequency can also be intermittent, including a 'drug holiday' (e.g., once daily dosing for 7 days followed by no doses for 7 days, repeated for any 14 day time period, such as about 2 months, about 4 months, about 6 months or more). Any of the dosing frequencies can employ any of the compounds described herein together with any of the dosages described herein.

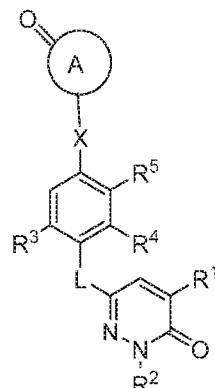
Articles of Manufacture and Kits

[0209] The present disclosure further provides articles of manufacture comprising a compound described herein or a salt thereof, a composition described herein, or one or more unit dosages described herein in suitable packaging. In certain embodiments, the article of manufacture is for use in any of the methods described herein. Suitable packaging is known in the art and includes, for example, vials, vessels, ampules, bottles, jars, flexible packaging and the like. An article of manufacture may further be sterilized and/or sealed.

[0210] The present disclosure further provides kits for carrying out the methods of the present disclosure, which comprises one or more compounds described herein or a composition comprising a compound described herein. The kits may employ any of the compounds disclosed herein. In one variation, the kit employs a compound described herein or pharmaceutically acceptable salt thereof. The kits may be used for any one or more of the uses described herein, and, accordingly, may contain instructions for the treatment of any disease or described herein, for example for the treatment of non-alcoholic steatohepatitis (NASH).

[0211] Kits generally comprise suitable packaging. The kits may comprise one or more containers comprising any compound described herein. Each component (if there is more than one component) can be packaged in separate containers or some components can be combined in one container where cross-reactivity and shelf life permit.

[0212] The kits may be in unit dosage forms, bulk packages (e.g., multi-dose packages) or sub-unit doses. For example, kits may be provided that contain sufficient dosages of a


compound as disclosed herein and/or an additional pharmaceutically active compound useful for a disease detailed herein to provide effective treatment of an individual for an extended period, such as any of a week, 2 weeks, 3 weeks, 4 weeks, 6 weeks, 8 weeks, 3 months, 4 months, 5 months, 7 months, 8 months, 9 months, or more. Kits may also include multiple unit doses of the compounds and instructions for use and be packaged in quantities sufficient for storage and use in pharmacies (e.g., hospital pharmacies and compounding pharmacies).

[0213] The kits may optionally include a set of instructions, generally written instructions, although electronic storage media (e.g., magnetic diskette or optical disk) containing instructions are also acceptable, relating to the use of component(s) of the methods of the present disclosure. The instructions included with the kit generally include information as to the components and their administration to an individual.

Exemplary Embodiments

[0214] The present disclosure is further described by the following embodiments. The features of each of the embodiments are combinable with any of the other embodiments where appropriate and practical.

[0215] Embodiment 1. A compound of formula (I-a):

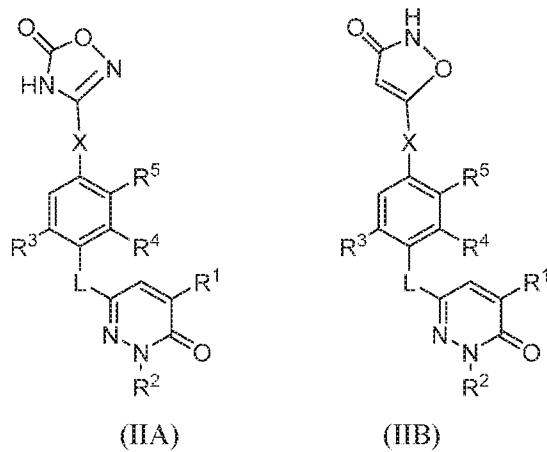
(I-a)

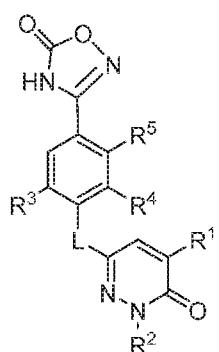
or a tautomer or an N-oxide thereof, or an isotopomer of each thereof, or a prodrug of each of the above, or a stereoisomer of the aforesaid, or a pharmaceutically acceptable salt of each of the foregoing, or a solvate of each of the preceding, wherein:

ring A together with the carbonyl (keto) group within the ring form a 5 membered heterocycle containing 1-3 ring heteroatoms selected from N, O, and S, wherein the heterocycle is optionally substituted with 1-2 C₁-C₃ alkyl or C₃-C₄ cycloalkyl, and wherein the carbonyl (keto) group is not adjacent to the atom attached to X;

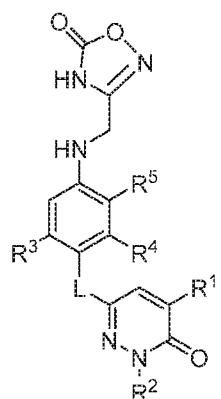
R^1 is C_1 - C_4 alkyl; C_1 - C_4 alkyl optionally substituted with 1-5 halo, preferably fluoro; C_3 - C_5 cycloalkyl, $CON(R^{10})_2$, or $NR^{10}COR^{10}$, wherein each R^{10} independently is C_1 - C_3 alkyl or H;

R² is H or C₁-C₃ alkyl;

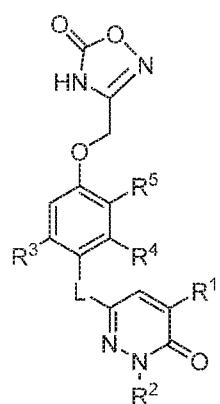

L is O, CH₂, S, SO, SO₂, CO, CHF, CF₂, C(R¹¹)CN, CHR¹¹, or C(R¹¹)R¹¹, wherein each R¹¹ is C₁-C₂ alkyl optionally substituted with 1-5 halo, preferably fluoro, or the 2 R¹¹ groups together with the carbon atom they are attached to form a cyclopropyl or cyclobutyl ring;

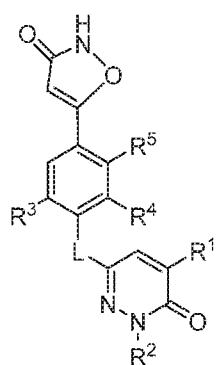

each of R^3 and R^4 is independently Cl, Br, Me, or ethyl;

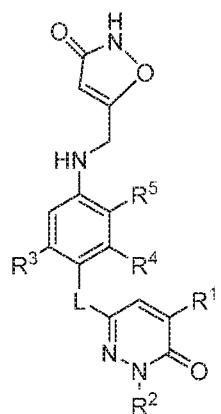
R^5 is H, halo, C_1 - C_4 alkyl, or C_3 - C_4 cycloalkyl, or R^5 together with R^4 and the intervening atoms form a 5-7 membered cycloalkyl or a 5-7 membered heterocycle containing 1-2 ring heteroatoms;

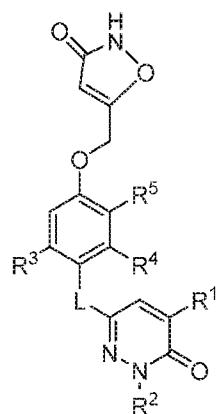

X is absent (i.e., X is a bond), or is O, NR¹², C(O)NR¹², NR¹²C(O), CR¹²R¹², OCR¹²R¹², CR¹²R¹²O, NR¹²CR¹²R¹², CR¹²R¹²NR¹², SO₂NR¹², NR¹²SO₂ wherein each R¹² independently is H or methyl.

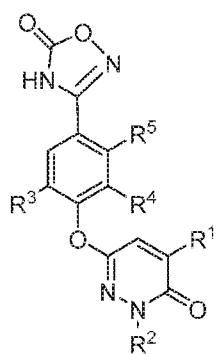
[0216] Embodiment 2. The compound of embodiment 1 of formula (IIA), (IIB), (IIIA), (IIIB), (IIIC), (IVA), (IVB), (IVC), (IVA), (VB), (VC), (VIA), (VIB), or (VIC):

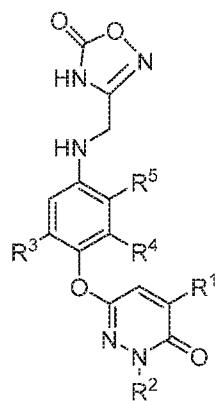


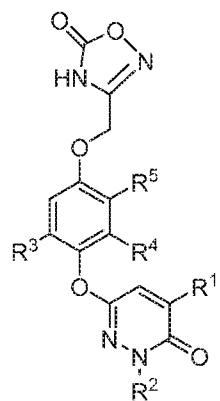

(III A)

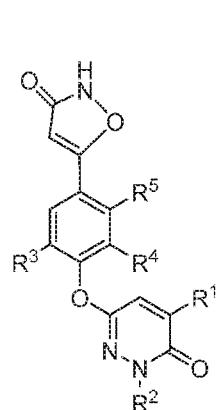

(HIB)

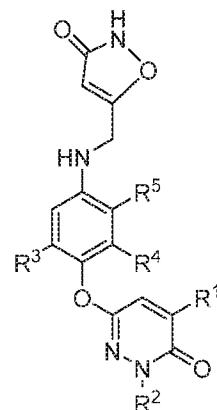

(III C)

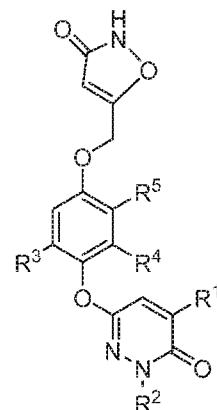

(IVA)


(IVB)

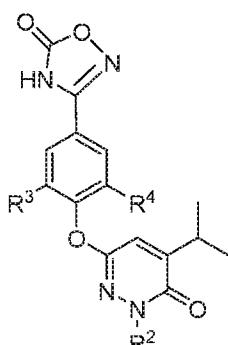

(IVC)

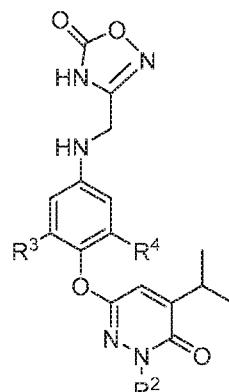

(VA)


(VB)

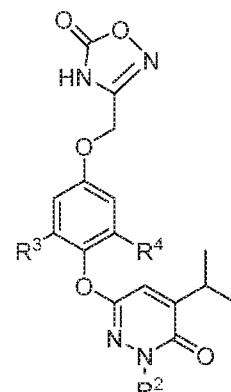

(VC)

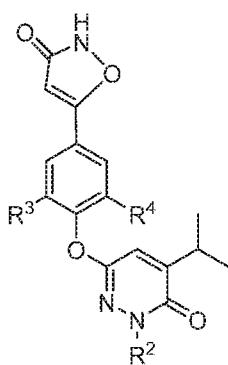
(VIA)

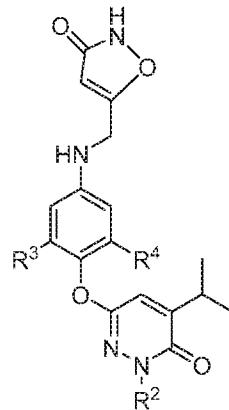

(VIB)

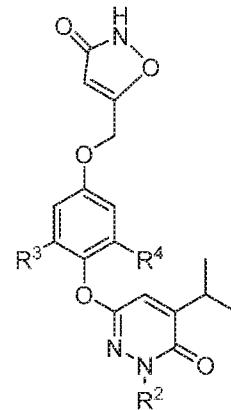

(VIC)

wherein the variables are defined as in embodiment 1.


[0217] Embodiment 3. The compound of embodiment 1, of formula (VIIA), (VIIB), (VIIC), (VIIIA), (VIIIB), or (VIIIC):


(VIIA)


(VII B)


(VII C)

(VIIIA)

(VIIIB)

(VIIIC)

wherein R² is H or methyl, and the remaining variables are defined as in embodiment 1.

[0218] Embodiment 4. The compound of embodiment 1, wherein R¹ is isopropyl.

[0219] Embodiment 5. The compound of embodiment 1, wherein R² is H.

- [0220] Embodiment 6. The compound of embodiment 1, wherein R³ is chloro.
- [0221] Embodiment 7. The compound of embodiment 1, wherein R⁴ is chloro.
- [0222] Embodiment 8. The compound of embodiment 1, wherein R⁵ is hydrogen.
- [0223] Embodiment 9. The compound of embodiment 1, wherein X is a bond.
- [0224] Embodiment 10. The compound of embodiment 1, wherein X is CHR¹¹, OCHR¹¹, NR¹¹CHR¹¹, NR¹¹CH₂, CHR¹¹NH, CHR¹¹NR¹¹, NHCR¹¹R¹¹, C(O)NR¹², NR¹²C(O), SO₂NR¹², or NR¹²SO₂, wherein R¹² is defined as in embodiment 1.
- [0225] Embodiment 11. The compound of embodiment 1, wherein X is NH, CH₂, OCH₂, CH₂O, NHCH₂, CH₂NH, C(O)NH, NHC(O), SO₂NH, or NSO₂.
- [0226] Embodiment 12. The compound of embodiment 1, wherein -X- is -NH-CH₂-,-NHC(O)- or -O-CH₂-.
- [0227] Embodiment 13. The compound of embodiment 1, wherein -L- is O.
- [0228] Embodiment 14. A compound selected from those tabulated in Table 1.
- [0229] Embodiment 15. A pharmaceutical composition comprising a compound of embodiment 1 and at least one pharmaceutically acceptable excipient.
- [0230] Embodiment 16. A method of agonizing thyroid hormone receptor beta (THR beta) comprising contacting either an effective amount of a compound of embodiment 1, or an effective amount of the composition of embodiment 15, with the THR beta.
- [0231] Embodiment 17. A method of treating a disorder, which is mediated by THR beta, in a patient, comprising administering to the patient a therapeutically effective amount of a compound of embodiment 1, or a therapeutically effective amount of the composition of embodiment 15.

EXAMPLES

- [0232] It is understood that the present disclosure has been made only by way of example, and that numerous changes in the combination and arrangement of parts can be resorted to by those skilled in the art without departing from the spirit and scope of present disclosure.
- [0233] The chemical reactions in the Examples described can be readily adapted to prepare a number of other compounds disclosed herein, and alternative methods for preparing the compounds of this disclosure are deemed to be within the scope of this disclosure. For example, the synthesis of non-exemplified compounds according to the present disclosure can be successfully performed by modifications apparent to those skilled in the art, e.g., by appropriately protecting interfering groups, by utilizing other suitable reagents known in the art other than those described, or by making routine modifications of reaction conditions, reagents,

and starting materials. Alternatively, other reactions disclosed herein or known in the art will be recognized as having applicability for preparing other compounds of the present disclosure.

[0234] The following abbreviations may be relevant for the application.

Abbreviations

Ac: acetyl

ACN: acetonitrile

Boc: tertiarybutyloxycarbonyl

Bu: butyl

DBA: dibenzylideneacetone

DMAP: dimethylaminopyridine

DMF: dimethylformamide

DMF-DMA: dimethylformamide dimethylacetal

DMSO: dimethylsulfoxide

DSC: disuccinimidylcarbonate

Et: ethyl

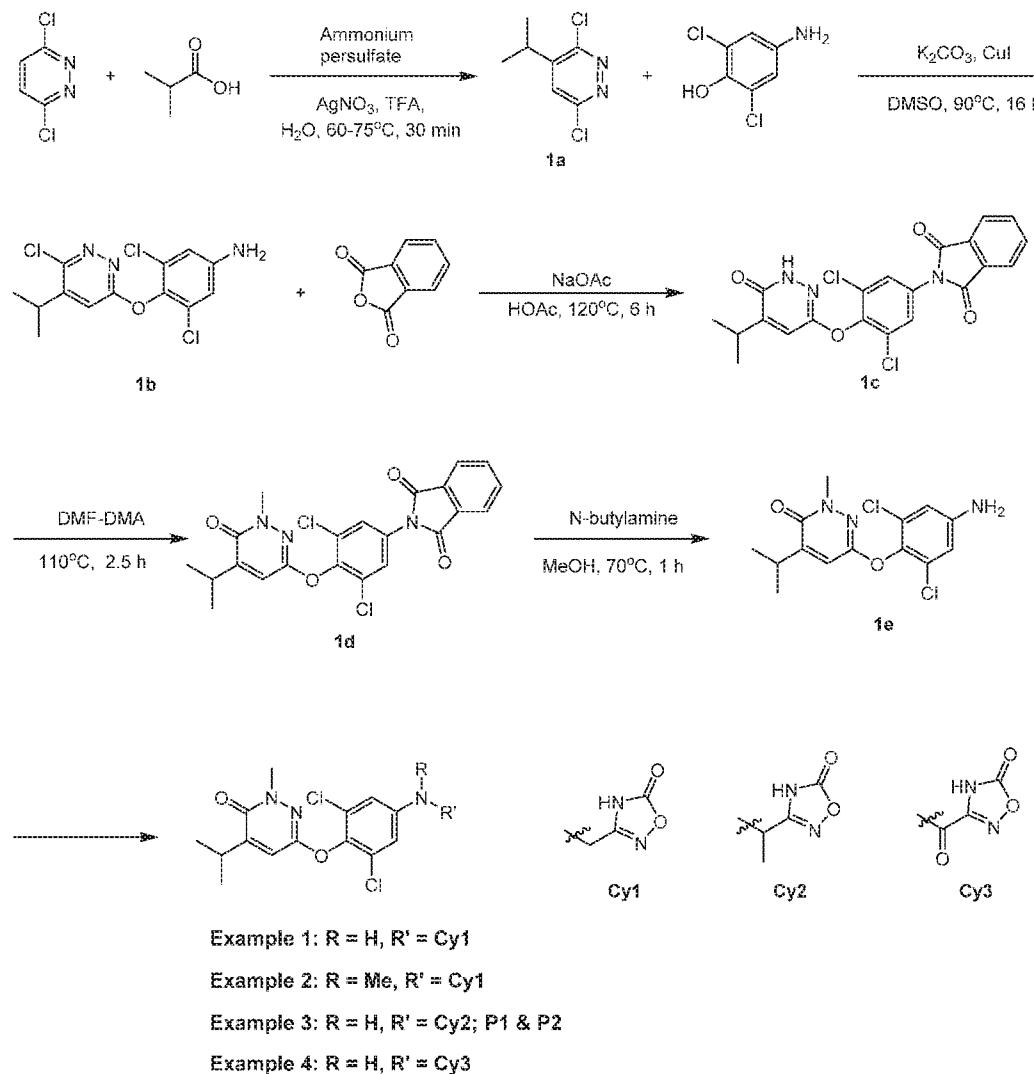
Me: methyl

Pr: propyl

Py or Pyr: pyridine

rt: room temperature

SEMCl: 2-(Trimethylsilyl)ethoxymethyl chloride


SFC: supercritical fluid chromatography

TEA: triethylamine

THF: tetrahydrofuran

TFA: trifluoroacetic acid

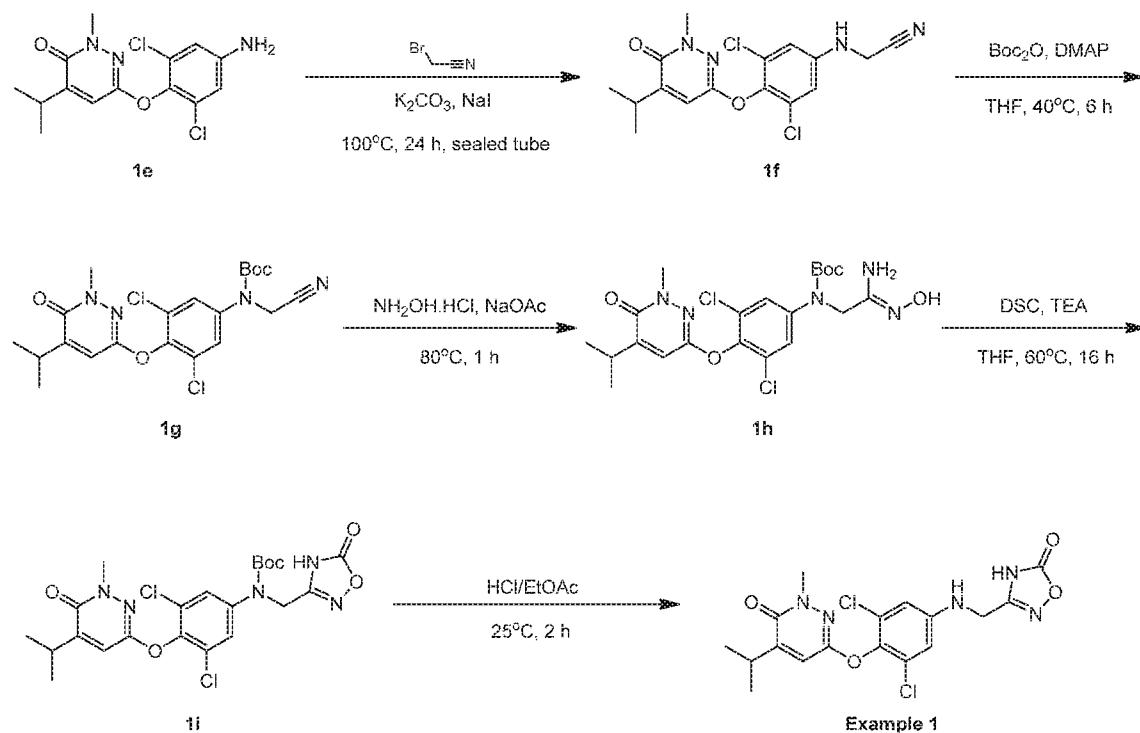
t-Bu Xphos: 2-Di-tert-butylphosphino-2',4',6'-triisopropylbiphenyl

*Synthetic Examples***Scheme A: 6-(4-amino-2,6-dichlorophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (Compound 1e)**

[0235] **3,6-dichloro-4-isopropylpyridazine (1a).** Sulfuric acid (19.75 g, 201.37 mmol, 10.73 mL) was added to a mixture of 3,6-dichloropyridazine (10 g, 67.12 mmol), 2-methylpropanoic acid (6.21 g, 70.48 mmol, 6.54 mL) and AgNO₃ (5.70 g, 33.56 mmol, 5.64 mL) in H₂O (200 mL) at 60°C. Then a solution of ammonium persulphate (45.95 g, 201.37 mmol) in H₂O (100 mL) was added by drop-wise to the mixture at 75°C, the resulting mixture was stirred at 75°C for 30min. TLC showed the reaction was completed. after cooling the mixture was adjusted to pH = 9~10 with NH₃·H₂O, the mixture was extracted with ethyl acetate (200 mL*2), the organic phases were washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated to give

1a. The product was used directly in next step. MS mass calculated for $[M+1]^+$ ($C_7H_8Cl_2N_2$) requires m/z 191.1, LCMS found m/z 191.1; 1H NMR (400MHz, $CDCl_3$) δ 7.38 (s, 1H), 3.24 - 3.31 (m, 1H), 1.31 (d, J = 6.8 Hz, 6H).

[0236] 3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)aniline (1b). To a solution of 4-amino-2,6-dichlorophenol (3 g, 16.85 mmol) and 3,6-dichloro-4-isopropylpyridazine (**1a**) (3.22 g, 16.85 mmol) in DMSO (30 mL) was added K_2CO_3 (9.32 g, 67.41 mmol) and CuI (1.93 g, 10.11 mmol). Then the mixture was degassed and purged with N_2 for 3 times, and stirred at 90°C for 16 hours under N_2 atmosphere. TLC and LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was concentrated in vacuum. The residue was partitioned between ethyl acetate (1000 mL*2) and H_2O (500 mL). The combined organic phase was washed with brine (50 mL*3), dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuum. The residue was purified by column chromatography (SiO_2 , petroleum ether/ethyl acetate = 10:1 to 3:1, according TLC) to give **1b**. MS mass calculated for $[M+1]^+$ ($C_{13}H_{12}Cl_3N_3O$) requires m/z 332.0, LCMS found m/z 332.0; 1H NMR (400MHz, DMSO) δ 7.66 (s, 1H), 6.67 - 6.76 (m, 2H), 5.67 (s, 2H), 3.11 - 3.21 (m, 1H), 1.28 (d, J = 6.85 Hz, 6H).


[0237] 2-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)isoindoline-1,3-dione (1c). To a mixture of 3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)aniline (**1b**) (2.6 g, 7.82 mmol) and isobenzofuran-1,3-dione (1.16 g, 7.82 mmol) in HOAc (5 mL) was added $NaOAc$ (3.21 g, 39.08 mmol). The mixture was stirred at 120°C for 6 hours. LCMS showed the starting material was consumed completely and desired MS was detected. The reaction mixture was concentrated under reduced pressure to remove AcOH. The solid was dissolved in water and the pH was adjusted to 9 with saturate $NaHCO_3$ solution (10 mL). Then the mixture was partitioned with ethyl acetate (30 mL * 2) and H_2O (30 mL). The combined organic phase was washed with brine (10 mL*3), dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuum. The solid was diluted in ethyl acetate (10 mL), and then petroleum ether (50 mL) was added in the mixture by portions. The mixture was filtered to collect solid. The solid was dried to give **1c**. MS mass calculated for $[M+1]^+$ ($C_{21}H_{15}Cl_2N_3O_4$) requires m/z 444.0, LCMS found m/z 444.1; 1H NMR (400MHz, DMSO) δ 12.21 (s, 1H), 7.98 - 8.06 (m, 2H), 7.90 - 7.97 (m, 2H), 7.78 - 7.83 (m, 2H), 7.46 (s, 1H), 3.03 - 3.10 (m, 1H), 1.20 (d, J = 6.85 Hz, 6H).

[0238] 2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)isoindoline-1,3-dione (1d). A solution of 2-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)iso-indoline-1,3-dione (**1c**) (500 mg, 1.13 mmol) in

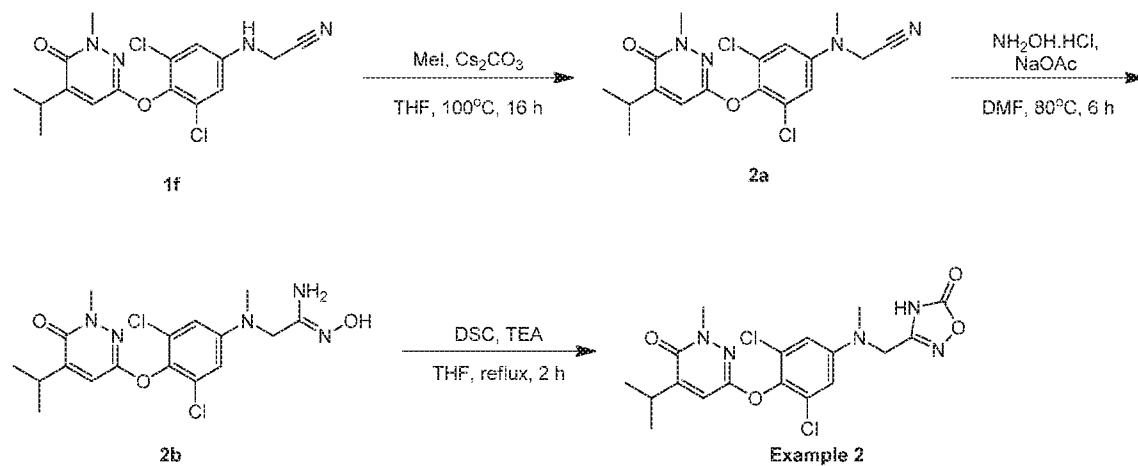
DMF-DMA (4 mL) was stirred at 110°C for 2.5 hours. TLC showed the starting material was consumed completely and two new spots formed. The mixture was concentrated in vacuum. The residue was partitioned between Ethyl acetate (10 mL*2) and H₂O (3 mL). The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give **1d**. The product was used directly in next step without further purification.

[0239] **6-(4-amino-2,6-dichlorophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (1e).** A mixture of 2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)isoindoline-1,3-dione (**1d**) (700 mg, 1.53 mmol) and butan-1-amine (335.13 mg, 4.58 mmol) in MeOH (10 mL) was stirred at 70°C for 1 hour. TLC (Petroleum ether: Ethyl acetate = 1:1, P1: R_f = 0.6) and LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was concentrated in vacuum to give a residue. The residue was purified by preparative TLC (petroleum ether: ethyl acetate = 1:1, P1: R_f = 0.6) to give **1e**. MS mass calculated for [M+1]⁺ (C₁₄H₁₅Cl₂N₃O₂) requires m/z 328.1, LCMS found m/z 328.2; ¹H NMR (400MHz, CD₃OD) δ 7.22 (s, 1 H) 6.70 (s, 1 H) 3.52 (s, 3 H) 3.17 (dt, *J*=13.81, 7.13 Hz, 1 H) 1.43 (s, 2 H) 1.25 (d, *J*=6.58 Hz, 6 H).

Example 1: 3-(((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one

[0240] **2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)amino)-acetonitrile (1f).** To a solution of 6-(4-amino-2,6-dichlorophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (**1e**) (240 mg, 731.28 umol) in ACN (4 mL) was added 2-bromoacetonitrile (438.58 mg, 3.66 mmol, 243.65 uL), NaI (219.23 mg, 1.46 mmol) and K₂CO₃ (202.13 mg, 1.46 mmol). Then the mixture was sealed in tube, and stirred at 100°C for 16 hours. LCMS showed the starting material was consumed completely and desired MS was detected. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (5 mL*3). The combined filtrates were concentrated to dryness to give a residue. The residue was purified by preparative TLC (petroleum ether: ethyl acetate = 1:1, P1: R_f = 0.5) to give **1f** as a yellow oil. MS mass calculated for [M+1]⁺ (C₁₆H₁₆Cl₂N₄O₂) requires m/z 367.1, LCMS found m/z 366.8; ¹H NMR (400MHZ, CDCl₃) δ 7.04 (s, 1H), 6.72 (s, 2H), 4.13 (d, J = 6.85 HZ, 2H), 3.54 (s, 3H), 3.21 - 3.28 (m, 1H), 1.26 (d, J = 6.85 HZ, 5H).

[0241] **Tert-butyl (cyanomethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl) oxy)-phenyl)carbamate (1g).** To a solution 2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)amino)acetonitrile (**1f**) (210 mg, 571.85 umol) in THF (3 mL) was added Boc₂O (374.41 mg, 1.72 mmol, 394.12 uL) and DMAP (69.86 mg, 571.85 umol). The mixture was stirred at 40°C for 3 hours. TLC (Petroleum ether: Ethyl acetate = 1:1, P1: R_f = 0.9) and LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was partitioned between ethyl acetate (10 mL*2) and H₂O (3 mL) twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether: ethyl acetate = 3:1, P1: R_f = 0.5) to give **1g**. MS mass calculated for [M+1]⁺ (C₂₁H₂₄Cl₂N₄O₄) requires m/z 467.1, LCMS found m/z 467.0; ¹H NMR (400MHZ, CDCl₃)δ 7.45 (s, 2H), 4.61 (s, 2H), 3.43 (s, 3H), 3.13 (dt, J = 13.8, 6.8 HZ, 1H), 1.45 (s, 9H), 1.22 (d, J = 6.8 HZ, 6H).

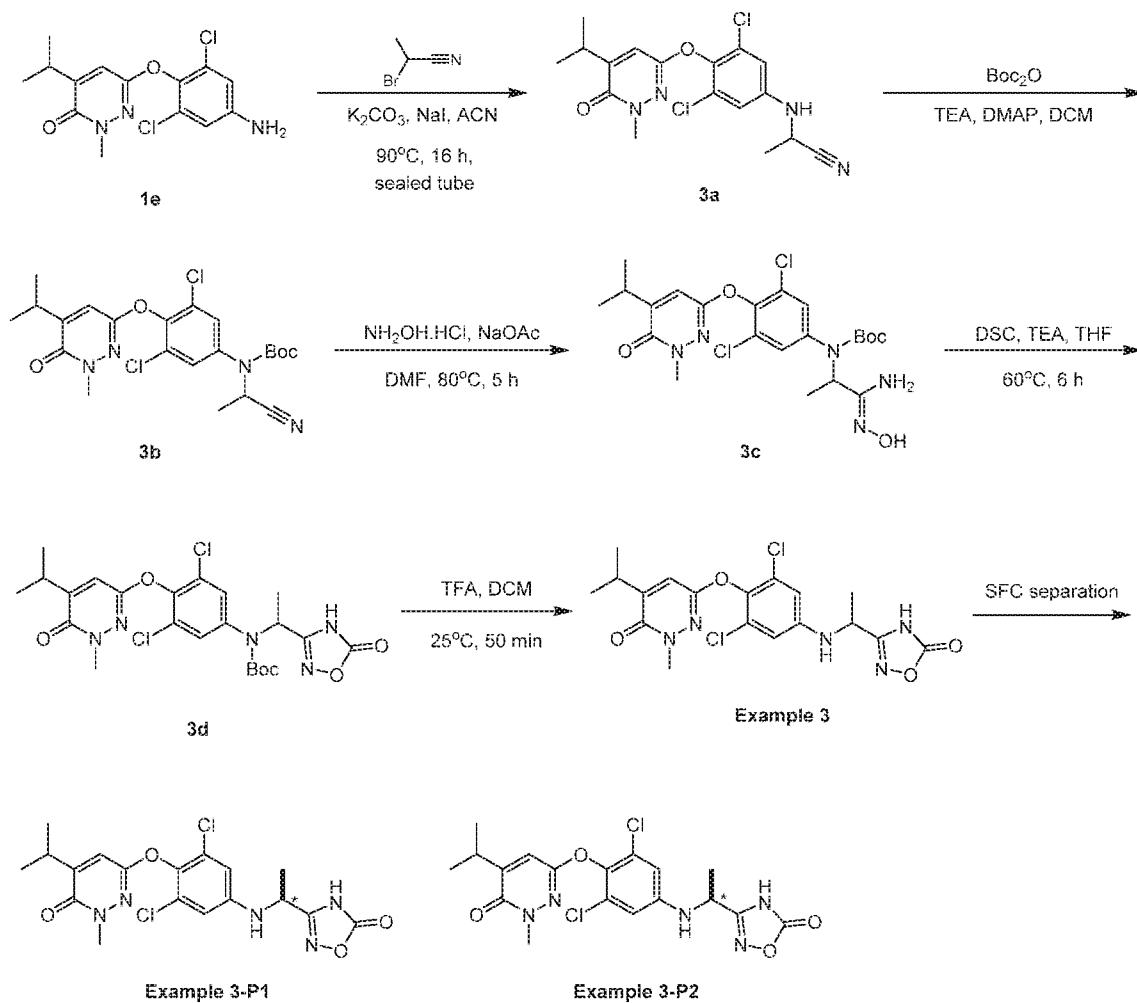

[0242] **(Z)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)carbamate (1h).** To a solution of tert-butyl (cyanomethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)carbamate (**1g**) (250 mg, 534.94 umol) in DMF (3 mL) was added NH₂OH.HCl (297.39 mg, 4.28 mmol) and NaOAc (351.06 mg, 4.28 mmol). The mixture was stirred at 80°C for 1 hour. LCMS showed the starting material was consumed completely and desired MS was detected. The reaction mixture was concentrated under reduced pressure to remove DMF. The residue was partitioned between ethyl acetate (10 mL*2) and H₂O (3 mL). The combined

organic phase was washed with brine (5 mL*3), dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuum to give **1h** (260 mg, crude) as a yellow solid. The product was used directly for the next step without further purification. MS mass calculated for $[\text{M}+\text{I}]^+$ ($\text{C}_{21}\text{H}_{27}\text{Cl}_2\text{N}_5\text{O}_5$) requires m/z 500.1, LCMS found m/z 500.1.

[0243] **tert-butyl (3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (1i).** To a solution of (Z/E)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-carbamate (**1h**) (260 mg, 519.61 umol) in THF (3 mL) was added DSC (173.04 mg, 675.49 umol, 1.3 eq) and TEA (105.16 mg, 1.04 mmol, 144.65 μL). The mixture was stirred at 60°C for 16 hours. TLC (Dichloromethane: Methanol = 10:1, P1: R_f = 0.3) and LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was partitioned between ethyl acetate (10 mL*2) and H_2O (3 mL). The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuum to give a residue. The residue was purified by prep-TLC (SiO_2 , DCM: MeOH = 10:1, P1: R_f = 0.3) to give **1i**. MS mass calculated for $[\text{M}+\text{I}]^+$ ($\text{C}_{22}\text{H}_{25}\text{Cl}_2\text{N}_5\text{O}_6$) requires m/z 526.1, LCMS found m/z 526.2; ^1H NMR (400MHz, CD₃OD) δ 7.54 (s, 2H), 7.32 (s, 1H), 4.77 (s, 2H), 3.48 (s, 3H), 3.18 (dt, J = 13.6, 6.84 Hz, 1H), 1.46 (s, 9H), 1.27 (d, J = 6.8 Hz, 6H).

[0244] **3-(((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one (Example 1).** To a solution of tert-butyl (3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (**1i**) (170 mg, 322.97 umol) in HCl/EtOAc (2 mL) was stirred at 25°C for 2 hours. LCMS andHPLC showed the starting material was consumed completely and desired MS was detected. The mixture was diluted with water (0.5 mL) and the pH was adjusted to 8 with NaHCO_3 (5 mL). Then the mixture was partitioned with Ethyl acetate 10 mL twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuum to give a residue. The residue was purified by Prep-HPLC (FA) column: Luna C18 100*30 5u; mobile phase: [water (0.2%FA)-ACN]; B%: 25%-60%,12 min] to give **Example 1**. MS mass calculated for $[\text{M}+\text{I}]^+$ ($\text{C}_{17}\text{H}_{17}\text{Cl}_2\text{N}_5\text{O}_4$) requires m/z 426.1, LCMS found m/z 426.0; ^1H NMR (400 MHz, CD₃OD) δ 7.23 (s, 1H), 6.76 (s, 2H), 4.88 (s, 139H), 4.28 (s, 2H), 3.50 (s, 3H), 3.12 - 3.21 (m, 1H), 1.25 (d, J = 7.06 Hz, 6H).

Example 2: 3-(((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)(methyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one


[0245] 2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)(methyl)amino) acetonitrile (**2a**). To a solution of 2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)amino)acetonitrile (**1f**) (50 mg, 136.15 umol) in THF (2 mL) was added Cs_2CO_3 (66.54 mg, 204.23 umol) and MeI (193.26 mg, 1.36 mmol, 84.76 μL). The mixture was stirred at 100°C for 16 hours under sealed tube. TLC and LCMS showed ~30% of Reactant **1f** was remained and the desired MS was detected. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (5 mL*3). The combined filtrates were concentrated to dryness to give a residue. The residue was purified by prep-TLC (SiO_2 , petroleum ether: ethyl acetate = 1:1, according TLC) to give the **2a**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{17}\text{H}_{18}\text{Cl}_2\text{N}_4\text{O}_2$) requires m/z 381.1, LCMS found m/z 381.0. ^1H NMR (400 MHZ, CDCl_3) δ 7.03 (d, $J = 0.7$ Hz, 1H), 6.82 (s, 2H), 4.19 (s, 2H), 3.54 (s, 3H), 3.28 - 3.20 (m, 1H), 3.05 (s, 3H), 1.27 - 1.25 (m, 6H).

[0246] (Z)-2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)(methyl)-amino)- N' -hydroxyacetimidamide (**2b**). To a solution of 2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)(methyl)amino)acetonitrile (**2a**) (52 mg, 136.39 umol) in DMF (2 mL) was added $\text{NH}_2\text{OH.HCl}$ (75.82 mg, 1.09 mmol) and NaOAc (89.51 mg, 1.09 mmol). The mixture was stirred at 80°C for 6 hours. TLC showed reactant **2a** was consumed completely, LCMS showed one main peak with desired MS. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (5 mL*3). The combined filtrates were washed with brine (10

mL), dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO_2 , DCM: MeOH = 10:1, according TLC) to give 2b. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{17}\text{H}_{21}\text{Cl}_2\text{N}_5\text{O}_3$) requires m/z 414.1, LCMS found m/z 414.1.

[0247] **3-(((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)(methyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one (Example 2).** To a solution of (Z/E)-2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)(methyl)amino)-N'-hydroxyacetimidamide (2b) (30 mg, 65.17 μmol) in THF (2 mL) was added DSC (21.70 mg, 84.72 μmol) and TEA (33.97 mg, 335.75 μmol , 46.73 μL). The mixture was stirred at 80°C for 2 hours. TLC and LCMS showed 2b was consumed completely and desired MS was detected. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was checked by HPLC and then purified by prep-HPLC (column: Waters Atlantis T3 150*30*5um; mobile phase: [water (0.225%FA)-ACN]; B%: 40%-70%, 13min) to give **Example 2**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{18}\text{H}_{19}\text{Cl}_2\text{N}_5\text{O}_4$) requires m/z 440.1, LCMS found m/z 440.1. ^1H NMR (400MHz, CD_3OD) δ 7.24 (s, 1H), 6.92 (s, 2H), 4.48 (s, 2H), 3.49 (s, 3H), 3.17 (td, J = 7.2, 13.9 Hz, 1H), 3.05 (s, 3H), 1.26 (d, J = 6.8 Hz, 6H).

Example 3: P1 and P2: 3-(1-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)amino)ethyl)-1,2,4-oxadiazol-5(4H)-one

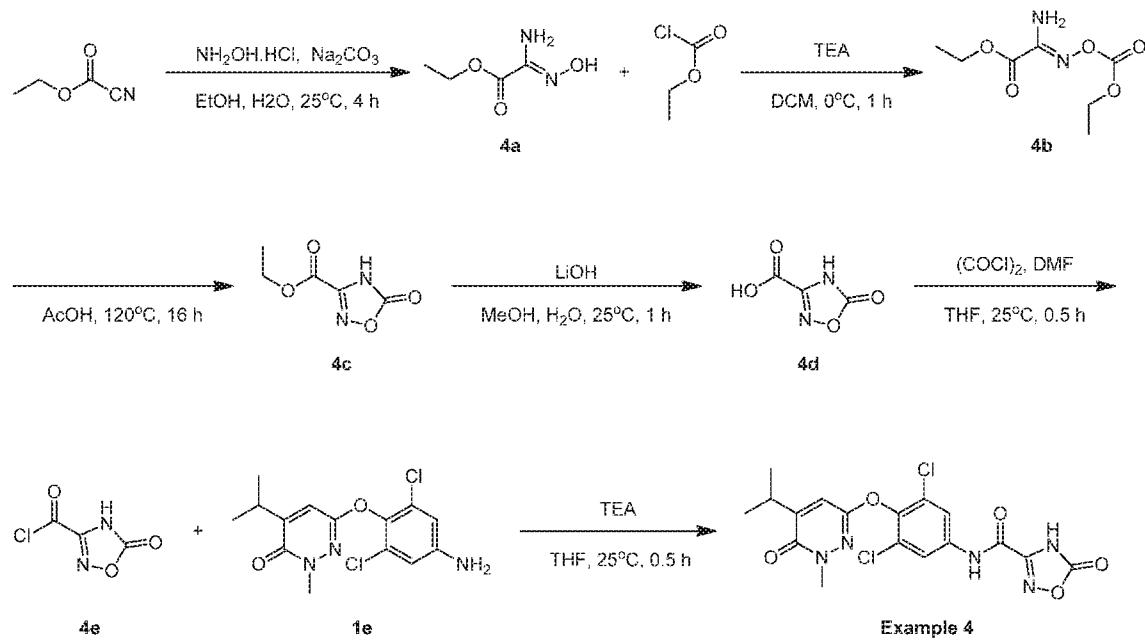
[0248] 2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)amino) propanenitrile (**3a**). A mixture of 6-(4-amino-2,6-dichlorophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (**1e**) (0.2 g, 609.40 umol, 1 *eq*), K₂CO₃ (168.44 mg, 1.22 mmol), NaI (182.69 mg, 1.22 mmol) and 2-bromopropanenitrile (816.44 mg, 6.09 mmol) in CH₃CN (5 mL) was added to a seal tube and heated to 90°C for 16 hours. LCMS showed desired MS and STM of **1e**, the mixture was filtered and washed with ethyl acetate (10 mL*2). The combined filtrates was washed with brine (20 mL), and the organic phase was concentrated to give **3a** (0.25 g, crude), the crude product was used for the next step directly. MS mass calculated for [M+1]⁺ (C₁₇H₁₈Cl₂N₄O₂) requires *m/z* 381.1, LCMS found *m/z* 381.0.

[0249] Tert-butyl (1-cyanoethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)carbamate (3b). A mixture of 2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)amino) propanenitrile (3a) (0.25 g, 655.73 umol), Boc₂O (429.33 mg, 1.97 mmol, 451.93 uL) and DMAP (80.11 mg,

655.73 umol) in THF (5 mL) was heated to 50°C for 1 hour. LCMS showed desired MS, and TLC showed new spot. The mixture was concentrated, and the residue was purified by prep-TLC (petroleum ether: ethyl acetate = 3:1) to give **3b**. MS mass calculated for $[M+1]^+$ ($C_{22}H_{26}Cl_2N_4O_4$) requires m/z 481.1, LCMS found m/z 481.3; 1H NMR (400MHz, $CDCl_3$) δ 7.31 (s, 2H), 7.07 (s, 1H), 3.51 (s, 3H), 3.30 - 3.23 (m, 1H), 3.20 (q, $J = 7.0$ Hz, 1H), 2.03 (s, 3H), 1.75 (d, $J = 7.0$ Hz, 3H), 1.57 (s, 4H), 1.51 - 1.43 (m, 9H), 1.28 (d, $J = 6.8$ Hz, 6H).

[0250] **(Z/E)-tert-butyl (1-amino-1-(hydroxyimino)propan-2-yl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)carbamate (3c).** A mixture of tert-butyl (1-cyanoethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy) phenyl)carbamate (**3b**) (80 mg, 166.19 umol), $NH_2OH.HCl$ (92.39 mg, 1.33 mmol) and $NaOAc$ (109.07 mg, 1.33 mmol) in DMF (3 mL) was heated to 80°C for 5 hours. LCMS showed desired MS, TLC (Petroleum ether: Ethyl acetate = 1:1, $R_f = 0.47$) showed new point, the mixture was filtered and washed with ethyl acetate (10 mL*2), the filtrate was washed with brine (10 mL*2), the organic phase was dried over Na_2SO_4 , filtered and concentrated, the residue was purified by prep-TLC (petroleum ether : ethyl acetate = 1:1) to give **3c**. MS mass calculated for $[M+1]^+$ ($C_{22}H_{29}Cl_2N_5O_5$) requires m/z 514.2, LCMS found m/z 514.0;

[0251] **Tert-butyl (3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)(1-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)ethyl)carbamate (3d).** A mixture of (Z/E)-tert-butyl (1-amino-1-(hydroxyimino)propan-2-yl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)carbamate (**3c**) (39 mg, 75.82 umol), DSC (25.25 mg, 98.56 umol) and TEA (15.34 mg, 151.63 umol, 21.11 uL) in THF (4 mL) was heated to 60°C for 2 hours. Then the mixture was heated to reflux for another 4 hours. TLC (Petroleum ether: Ethyl acetate = 1:1, $R_f = 0$) showed the reaction was completed, and the mixture was concentrated to give **3d** (70 mg, crude), which was used for the next step directly.


MS mass calculated for $[M+1]^+$ ($C_{23}H_{27}Cl_2N_5O_6$) requires m/z 540.1, LCMS found m/z 540.2;

[0252] **3-(1-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)amino)ethyl)-1,2,4-oxadiazol-5(4H)-one (Example 3).** To a solution of tert-butyl (3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)(1-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)ethyl)carbamate (**3d**) (70 mg, 129.53 umol) in DCM (2 mL) was added TFA (0.5 mL), and the mixture was stirred at 25°C for 50 min. LCMS showed the reaction was completed, and desired MS was detected. Then the mixture was concentrated in vacuum. The residue was purified by prep-HPLC (FA) (column: Waters Atlantis T3 150*30*5um; mobile phase: [water (0.225%FA)-ACN]; B%: 40%-80%, 13min) to give 3-(1-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-

yl)oxy)phenyl)amino)ethyl)-1,2,4-oxadiazol-5(4H)-one **Example 3**. MS mass calculated for $[M+1]^+$ ($C_{18}H_{19}Cl_2N_5O_4$) requires m/z 440.0, LCMS found m/z 440.1; 1H NMR (400MHz, CD_3OD) δ 7.25 (d, $J = 0.8$ Hz, 1H), 6.78 (s, 2H), 4.55 (q, $J = 6.8$ Hz, 1H), 3.52 (s, 3H), 3.23 - 3.13 (m, 1H), 1.60 (d, $J = 6.8$ Hz, 3H), 1.27 (d, $J = 7.0$ Hz, 6H).

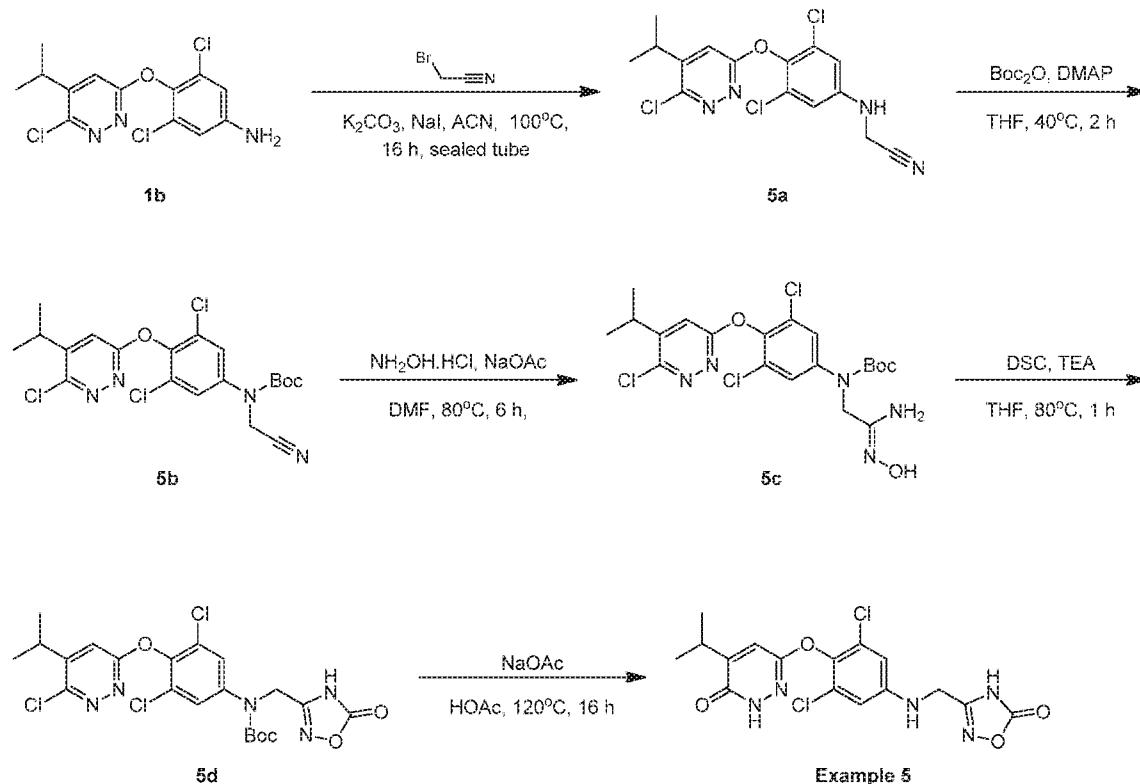
[0253] SFC separation: 3-(1-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)amino)ethyl)-1,2,4-oxadiazol-5(4H)-one (**Example 3**) (17.17 mg, 39.00 umol, 1 eq) was separated by SFC ([Monitoring] Instrument: Thar SFC80 preparative SFC; Column: Chiralpak AS-H, 250*30mm i.d. 10u; Mobile phase: A for CO_2 and B for $MeOH$ (0.1% ammonia); Gradient: B% = 40%; Flow rate: 70 g/min; Wavelength: 220 nm; Column temperature: 40°C; System back pressure: 100 bar) to give **Example-P1**; MS mass calculated for $[M+1]^+$ ($C_{18}H_{19}Cl_2N_5O_4$) requires m/z 440.1, LCMS found m/z 440.0; 1H NMR (400MHz, CD_3OD) δ 7.23 (d, $J = 0.8$ Hz, 1H), 6.75 (s, 2H), 4.48 (q, $J = 6.8$ Hz, 1H), 3.51 (s, 3H), 3.17 (td, $J = 6.6, 13.6$ Hz, 1H), 1.58 (d, $J = 6.8$ Hz, 3H), 1.26 (d, $J = 7.2$ Hz, 6H) and **Example-P2**; MS mass calculated for $[M+1]^+$ ($C_{18}H_{19}Cl_2N_5O_4$) requires m/z 440.1, LCMS found m/z 440.0; 1H NMR (400MHz, CD_3OD) δ 7.23 (s, 1H), 6.75 (s, 2H), 4.48 (q, $J = 6.8$ Hz, 1H), 3.51 (s, 3H), 3.17 (quin, $J = 6.8$ Hz, 1H), 1.58 (d, $J = 6.8$ Hz, 3H), 1.26 (d, $J = 6.8$ Hz, 6H).

Example 4: N-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0254] **(Z/E)-ethyl 2-amino-2-(hydroxyimino)acetate (4a).** To a solution of ethyl carbonocyanide (2.5 g, 25.23 mmol, 2.48 mL) in EtOH (25 mL) was added NH₂OH.HCl (2.63 g, 37.85 mmol) and Na₂CO₃ (2.67 g, 25.23 mmol). The mixture was stirred at 25°C for 2 hours. TLC showed the reaction was completed. LCMS showed one main peak with desired MS. The reaction mixture was concentrated under reduced pressure to remove EtOH. The residue was diluted with H₂O (5 mL) and extracted with EtOAc (20 mL * 5). The combined organic layers was washed with brine (5 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by re-crystallization from MTBE: petroleum ether = 1:1 (20 mL) at 70°C to give 4a. MS mass calculated for [M+1]⁺ (C₄H₈N₂O₃) requires *m/z* 133.1, LCMS found *m/z* 133.1; ¹H NMR (400MHz, CDCl₃) δ 8.90 (br s, 1H), 5.12 (br s, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 1.36 (t, *J* = 7.2 Hz, 3H)

[0255] **(Z)-ethyl 2-amino-2-(((ethoxycarbonyl)oxy)imino)acetate (4b).** To a solution of (Z/E)-ethyl 2-amino-2-(hydroxyimino)acetate (4a) (1 g, 7.57 mmol) in DCM (5 mL) was added TEA (2.30 g, 22.71 mmol, 3.16 mL) and ethyl carbonochloridate (903.56 mg, 8.33 mmol, 792.59 μ L). The mixture was stirred at 0°C for 1 hour. TLC indicated 5a was consumed completely and one new spot formed. The reaction was clean according to TLC. The reaction mixture was concentrated under reduced pressure to give 4b (1.34 g, crude). ¹H NMR (400MHz, CDCl₃) δ 5.44 (br s, 2H), 4.40 (q, *J* = 7.2 Hz, 2H), 4.34 (q, *J* = 7.2 Hz, 2H), 1.42 - 1.38 (m, 3H), 1.38 - 1.34 (m, 3H).

[0256] **Ethyl 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxylate (4c).** A solution of (Z/E)-ethyl 2-amino-2-(((ethoxycarbonyl)oxy)imino)acetate (4b) (1.34 g, 6.56 mmol) in AcOH (5 mL) was degassed and purged with N₂ for 3 times, and then the mixture was stirred at 120°C for 10 hours under N₂ atmosphere. LCMS showed 4b was consumed completely and one main peak with the desired MS was detected. The reaction mixture was concentrated under reduced pressure to remove AcOH and then to give the 4c (1.03 g, crude). The crude product was used in next step without further purification. MS mass calculated for [M-1]⁺ (C₅H₆N₂O₄) requires *m/z* 157.0, LCMS found *m/z* 157.0.


[0257] **5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxylic acid (4d).** To a solution of ethyl 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxylate (4c) (200 mg, 1.26 mmol, 1 *eq*) in MeOH (1 mL) and H₂O (0.2 mL) was added LiOH (36.35 mg, 1.52 mmol, 1.2 *eq*). The mixture was stirred at 25°C for 1 hour. TLC showed reactant 4 was consumed completely and one new spot was formed. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was diluted with HCl (1M, 5 mL) to adjust the pH = 4~6 and then extracted with EtOAc (5 mL * 4). The combined organic layers were washed with brine (5 mL), dried over anhydrous

Na_2SO_4 , filtered and concentrated under reduced pressure to give **4d** (114 mg, crude). The crude product was used in next step without further purification. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_5\text{H}_6\text{N}_2\text{O}_4$) requires m/z 159.0, LCMS found no m/z ; ^1H NMR (400MHz, DMSO) δ 4.35 (q, $J = 7.0$ Hz, 2H), 1.28 (t, $J = 7.0$ Hz, 3H).

[0258] **5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carbonyl chloride (4e).** To a solution of 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxylic acid (**4d**) (110 mg, 845.77 umol) in THF (3 mL) was added $(\text{COCl})_2$ (128.82 mg, 1.01 mmol, 88.84 μL) and DMF (6.18 mg, 84.58 umol, 6.51 μL). The mixture was stirred at 25°C for 1 hour. A few drops of reaction mixture were quenched with MeOH for monitoring. TLC indicated **4d** was consumed completely and one new spot formed, the mixture was concentrated under reduced pressure to give **4e** (155 mg, crude). The crude product was used in next step without further purification.

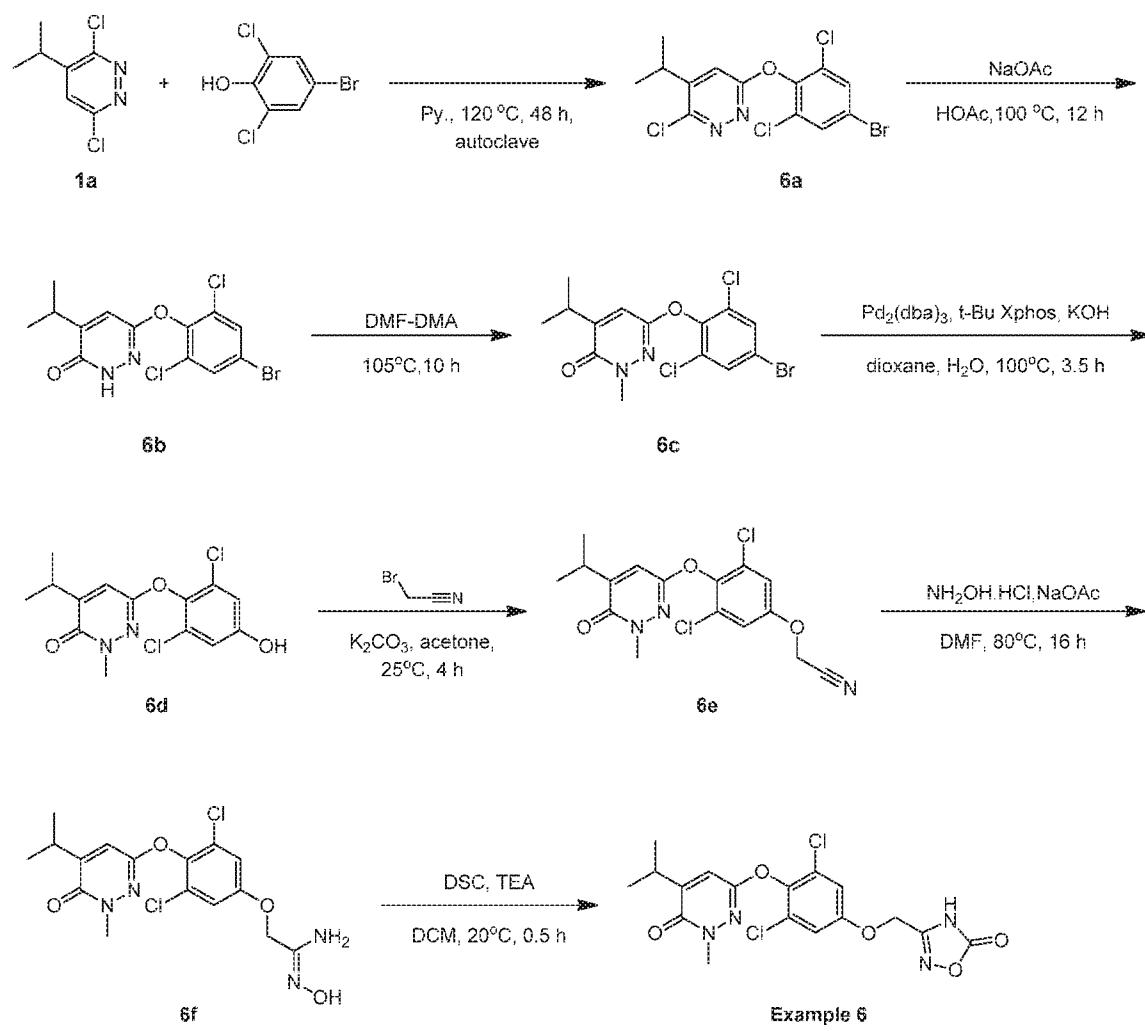
[0259] **N-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 4).** To a solution of 6-(4-amino-2,6-dichlorophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (**1e**) (20 mg, 60.94 umol) in THF (3 mL) was added TEA (18.50 mg, 182.82 umol, 25.45 μL) and 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carbonyl chloride (**4e**) (13.57 mg, 91.41 umol). The mixture was stirred at 25°C for 0.5 hour. LCMS showed **1e** was consumed completely and desired MS was detected. The reaction mixture was quenched by addition MeOH (1 mL) at 25 °C, and then concentrated under reduced pressure to give a residue. The residue was checked by HPLC and purified by Prep-HPLC (column: Xtimate C18 150*25mm*5um; mobile phase: [water (10mM NH_4HCO_3)-ACN]; B%: 30%-55%, 10min) to give **Example 4**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{17}\text{H}_{15}\text{Cl}_2\text{N}_5\text{O}_5$) requires m/z 440.0, LCMS found m/z 440.0. ^1H NMR (400MHz, CD_3OD) δ 7.93 (s, 2H), 7.31 (s, 1H), 3.51 (s, 3H), 3.19 (quind, $J = 7.0, 13.8$ Hz, 1H), 1.27 (d, $J = 6.8$ Hz, 6H).

Example 5: 3-(((3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one

[0260] 2-((3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)phenyl)amino)acetonitrile (5a). To a solution of 3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)aniline (**1b**) (180 mg, 432.94 umol) and 2-bromoacetonitrile (259.65 mg, 2.16 mmol, 144.25 μL) in ACN (2 mL) was added K_2CO_3 (119.67 mg, 865.87 umol) and NaI (129.79 mg, 865.87 umol). The mixture was stirred at 100°C for 16 hours under sealed tube. LCMS showed reactant **1b** was consumed completely and desired MS was detected. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO_2 , petroleum ether: ethyl acetate = 1:1, according TLC) to give **4a**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{15}\text{H}_{13}\text{Cl}_3\text{N}_4\text{O}$) requires m/z 371.0, LCMS found m/z 371.0. $^1\text{H NMR}$ (400MHz, CD_3Cl) δ 7.25 (s, 1H), 6.66 (s, 2H), 4.83 - 4.77 (m, 1H), 4.05 (d, J = 6.4 Hz, 2H), 3.29 (td, J = 6.8, 13.6 Hz, 1H), 1.37 (d, J = 6.8 Hz, 6H).

[0261] Tert-butyl (cyanomethyl)(3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)phenyl)carbamate (5b). To a solution of 2-((3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)phenyl)amino)acetonitrile (**5a**) (172 mg, 379.50 umol) in THF (10 mL) was added DMAP (51.00 mg, 417.45 umol) and Boc_2O (248.48 mg, 1.14 mmol, 261.55 μL). The mixture was stirred at 40°C for 2 hours. TLC indicated Reactant **5a** was consumed completely and one new spot formed. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO_2 , petroleum ether: ethyl

acetate = 1:1, according TLC) to give **5b**. MS mass calculated for $[M+1]^+$ ($C_{20}H_{21}Cl_3N_4O_3$) requires m/z 471.1, LCMS found m/z 471.1. 1H NMR (400MHz, CD₃Cl) δ 7.38 (s, 2H), 7.24 (s, 1H), 4.48 (s, 2H), 3.29 (td, J = 6.7, 13.6 Hz, 1H), 1.53 (s, 9H), 1.37 (d, J = 6.8 Hz, 6H).


[0262] (Z/E)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)phenyl)carbamate (**5c**). To a solution of tert-butyl (cyanomethyl)(3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)phenyl)carbamate (**5b**) (145 mg, 307.36 umol) in DMF (2 mL) was added NH₂OH.HCl (170.87 mg, 2.46 mmol) and NaOAc (201.70 mg, 2.46 mmol). The mixture was stirred at 80°C for 6 hours. TLC showed reactant **5b** was consumed completely. LCMS showed one main peak with desired MS. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (5 ml*3). The combined filtrates were washed with brine (10 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether: ethyl acetate = 1:1, according TLC) to give **5c**. MS mass calculated for $[M+1]^+$ ($C_{20}H_{24}Cl_3N_5O_4$) requires m/z 504.1, LCMS found m/z 504.1. 1H NMR (400MHz, CD₃Cl) δ 7.37 (s, 2H), 7.21 (s, 1H), 5.11 (br s, 2H), 4.23 (s, 2H), 3.28 (td, J = 7.0, 13.8 Hz, 1H), 2.09 (s, 1H), 1.49 (s, 9H), 1.36 (d, J = 6.8 Hz, 6H).

[0263] Tert-butyl (3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (**5d**). To a solution of (Z/E)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)phenyl)carbamate (**5c**) (50 mg, 89.15 umol) in THF (2 mL) was added DSC (29.69 mg, 115.89 umol) and TEA (33.97 mg, 335.75 umol, 46.73 uL). The mixture was stirred at 80°C for 1 hour. LCMS showed **5c** was consumed completely and desired MS was detected. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (dichloromethane: methanol = 10:1, according TLC) to give **5d**. MS mass calculated for $[M+1]^+$ ($C_{21}H_{22}Cl_3N_5O_5$) requires m/z 530.1, LCMS found m/z 530.1.

[0264] 3-(((3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one (**Example 5**). To a solution of (tert-butyl (3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate) **5d** (68 mg, 115.30 umol) in AcOH (3 mL) was added NaOAc (75.66 mg, 922.40 umol). The mixture was stirred at 110°C for 3 hours. LCMS showed reactant **5d** was consumed and desired MS was detected. The reaction mixture was concentrated under reduced pressure to remove AcOH and then to give a residue. The residue was checked by HPLC and purified by Prep-HPLC (column: Waters Xbridge Prep OBD C18 150*30 5u; mobile phase: [water (0.225%FA)-ACN]; B%: 30%-65%, 13min) to give **Example 5**. MS mass

calculated for $[M+1]^+$ ($C_{16}H_{15}Cl_2N_5O_4$) requires m/z 412.0, LCMS found m/z 412.0. 1H NMR (400MHz, DMSO) δ 12.11 (s, 1H), 7.31 (s, 1H), 6.79 (s, 2H), 6.66 (br t, J = 6.0 Hz, 1H), 4.27 (d, J = 6.2 Hz, 2H), 3.02 (td, J = 7.0, 13.6 Hz, 1H), 1.17 (d, J = 6.8 Hz, 6H).

Example 6: 3-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenoxy)methyl)-1,2,4-oxadiazol-5(4H)-one

[0265] **6-(4-bromo-2,6-dichlorophenoxy)-3-chloro-4-isopropylpyridazine (6a).** A mixture of 4-bromo-2,6-dichlorophenol (3.04 g, 12.56 mmol) and 3,6-dichloro-4-isopropyl-pyridazine (**1a**) (2 g, 10.47 mmol) in pyridine (10 mL) was stirred at 130°C for 48 hours in a 100 mL of autoclave. LCMS showed the starting material of **1a** was consumed completely and the desired MS was found. The mixture was diluted with Tol. (30 mL) and concentrated in vacuum. The residue was partitioned between ethyl acetate (30 mL*2) and H₂O (10 mL). The combined organic phase was washed with brine (10 mL*3), dried with anhydrous Na₂SO₄, filtered and

concentrated in vacuum. The residue was purified by column chromatography (SiO₂, petroleum ether: ethyl acetate = 1:0 to 100:1) to give **6a**. MS mass calculated for [M+1]⁺ (C₁₃H₁₀BrCl₃N₂O) requires *m/z* 394.9, LCMS found *m/z* 394.9. ¹H NMR (400MHz, DMSO) δ ppm 7.98 - 8.04 (m, 1 H) 7.92 - 7.97 (m, 1 H) 7.84 (s, 1 H) 3.11 - 3.29 (m, 1 H) 1.23 - 1.47 (m, 6 H).

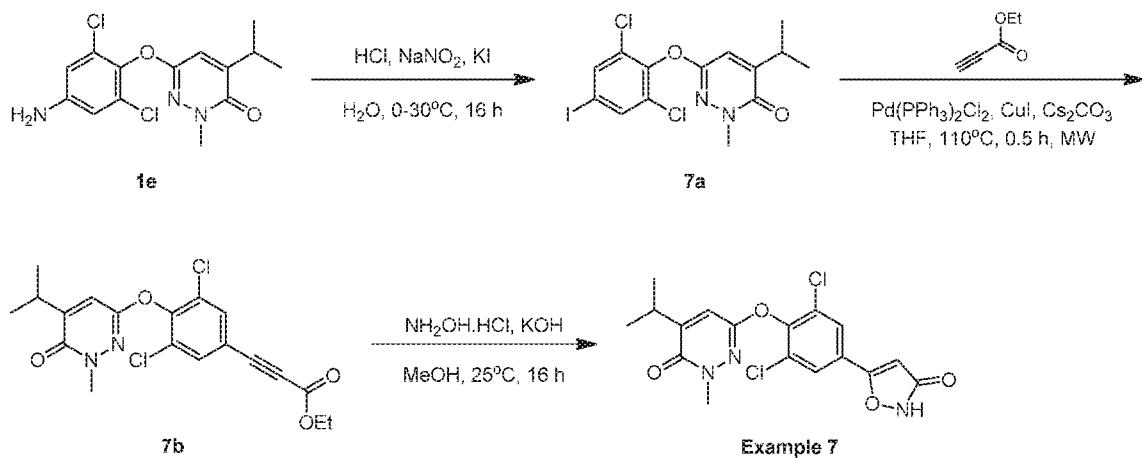
[0266] **6-(4-bromo-2,6-dichlorophenoxy)-4-isopropylpyridazin-3(2H)-one (6b).** A mixture of 6-(4-bromo-2,6-dichloro-phenoxy)-3-chloro-4-isopropyl-pyridazine (**6a**) (1 g, 2.52 mmol) and NaOAc (827.59 mg, 10.09 mmol) in AcOH (10 mL) was stirred at 120°C for 18 hours.

LCMS showed the starting material was consumed completely and the desired MS was found. The mixture was concentrated in vacuum. The solid was dissolved in water and the pH was adjusted to 9 with saturated NaHCO₃ (2 mL). Then the mixture was extracted with Ethyl acetate (10 mL*2). The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give **6b**. The product was used directly for the next step without further purification. [M+1]⁺ (C₁₃H₁₁BrCl₂N₂O₂) requires *m/z* 376.9, LCMS found *m/z* 376.9. ¹H NMR (400MHz, DMSO) δ ppm 12.22 (br s, 1 H) 7.91 - 8.02 (m, 2 H) 7.39 (s, 1 H) 2.97 - 3.11 (m, 1 H) 2.87 - 2.95 (m, 1 H) 1.29 (d, *J*=6.72 Hz, 1 H) 1.15 - 1.23 (m, 6 H).

[0267] **6-(4-bromo-2,6-dichlorophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (6c).** A mixture of 3-(4-bromo-2,6-dichloro-phenoxy)-5-isopropyl-1H-pyridazin-6-one (**6b**) (500 mg, 1.32 mmol) in DMF-DMA (22.42 g, 188.19 mmol, 25.00 mL) was stirred at 105°C for 16 hours. LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was concentrated in vacuum. The residue was partitioned between ethyl acetate (10 mL*2) and H₂O (3 mL). The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate=1:0 to 30:1) to give **6c**. [M+1]⁺ (C₁₄H₁₃BrCl₂N₂O₂) requires *m/z* 391.0, LCMS found *m/z* 391.0. ¹H NMR (400MHz, DMSO) δ ppm 7.96 (s, 2 H) 7.41 (s, 1 H) 3.32 (s, 1 H) 3.08 (dt, *J*=13.67, 6.84 Hz, 1 H) 2.50 (br d, *J*=3.53 Hz, 8 H) 1.18 (d, *J*=7.06 Hz, 5 H) 1.23 (br s, 1 H).

[0268] **6-(2,6-dichloro-4-hydroxyphenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (6d).** A mixture of 6-(4-bromo-2,6-dichlorophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (**6c**) (170 mg, 433.59 umol), KOH (31.63 mg, 563.67 umol), t-Bu Xphos (27.62 mg, 65.04 umol) and Pd₂(dba)₃ (39.70 mg, 43.36 umol) in dioxane (8 mL) and H₂O (8 mL) was degassed and purged with N₂ for 3 times, and then the mixture was stirred at 100°C for 3.5 hours under N₂ atmosphere. TLC showed **6c** was consumed completely, and LCMS detected the desired MS. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (5 mL*3). The combined filtrates were concentrated to give a residue. The residue was purified by

prep-TLC (SiO₂, ethyl acetate: petroleum ether = 1:1, according to TLC) to give **6d**. MS mass calculated for [M+1]⁺ (C₁₄H₁₄Cl₂N₂O₃) requires *m/z* 329.0, MS found *m/z* 329.0. ¹H NMR (400MHz, CDCl₃) δ 7.06 (s, 1H), 6.93 (s, 2H), 6.45 (br s, 1H), 3.55 (s, 3H), 3.25 (td, *J* = 6.8, 13.6 Hz, 1H), 1.27 (d, *J* = 6.8 Hz, 6H).

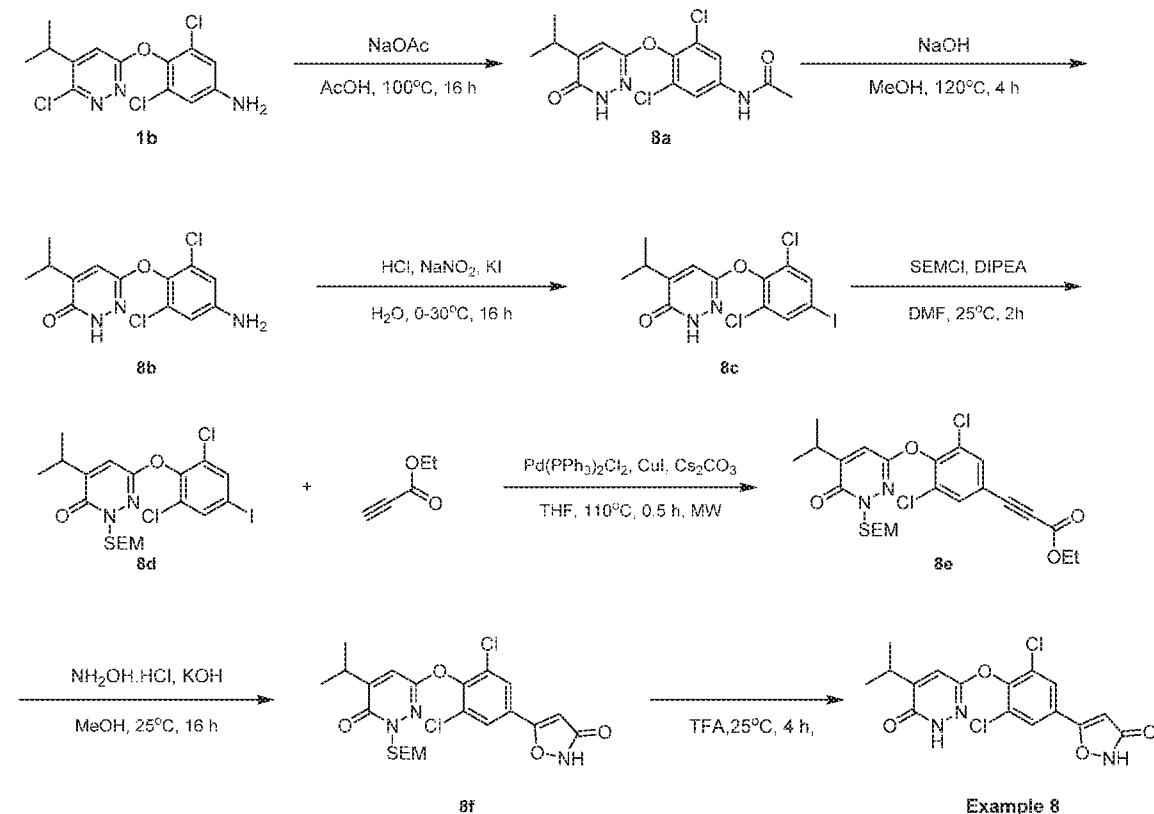

[0269] **2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenoxy)acetonitrile (6e).** To a solution of 6-(2,6-dichloro-4-hydroxyphenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (**6d**) (40 mg, 121.51 umol) in acetone (2 mL) was added K₂CO₃ (50.38 mg, 364.54 umol) and 2-bromoacetonitrile (21.86 mg, 182.27 umol, 12.15 uL). The mixture was stirred at 20°C for 2 hours. TLC showed **6d** was consumed completely and one new spot was formed. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOH (5 mL*3). The combined filtrates were concentrated to dryness to give a residue. The residue was purified by prep-TLC (SiO₂, ethyl acetate: petroleum ether = 1:1) to give **6e** as a yellow solid. MS mass calculated for [M+1]⁺ (C₁₆H₁₅Cl₂N₃O₃) requires *m/z* 368.0, MS found *m/z* 368.0. ¹H NMR (400MHz, CDCl₃) δ 7.04 (s, 3H), 4.80 (s, 2H), 3.53(s, 3H), 3.25 (td, *J* = 6.8, 13.4 Hz, 1H), 1.27 (d, *J* = 6.8 Hz, 6H).

[0270] **(Z/E)-2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenoxy)-N'-hydroxyacetimidamide (6f).** To a solution of 2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenoxy)acetonitrile (**6e**) (38 mg, 103.20 umol) in DMF (2 mL) was added NH₂OH.HCl (57.37 mg, 825.61 umol) and NaOAc (67.72 mg, 825.61 umol). The mixture was stirred at 80°C for 6 hours. TLC showed **6e** was consumed completely, and LCMS showed one main peak with desired MS. The reaction mixture was concentrated under reduced pressure to remove DMF. The residue was diluted with brine (5 mL) and extracted with EtOAc (5 mL * 3). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give **6f** (66.3 mg, crude). The product was used into the next step without further purification. MS mass calculated for [M+1]⁺ (C₁₆H₁₈Cl₂N₄O₄) requires *m/z* 401.0, LCMS found *m/z* 401.2.

[0271] **3-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenoxy)methyl)-1,2,4-oxadiazol-5(4H)-one (Example 6).** To a solution of (Z/E)-2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenoxy)-N'-hydroxyacetimidamide (**6f**) (66.3 mg, 132.19 umol) in THF (2 mL) was added DSC (44.02 mg, 171.85 umol) and TEA (26.75 mg, 264.38 umol, 36.80 uL). The mixture was stirred at 60°C for 4 hours. LCMS showed **6f** was consumed completely and desired MS was detected. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Waters Xbridge Prep OBD C18 150*30 5u; mobile phase:

[water(0.04%NH₃H₂O)-ACN];B%: 5%-35%,10min) to give **Example 6**. MS mass calculated for [M+1]⁺(C₁₇H₁₆Cl₂N₄O₅) requires *m/z* 427.1, LCMS found *m/z* 427.1. ¹H NMR (400MHz, CD₃OD) δ 7.30 (s, 1H), 7.24 (s, 2H), 5.10 (s, 2H), 3.49 (s, 3H), 3.19 (quind, *J* = 7.0, 13.8 Hz, 1H), 1.27 (d, *J* = 6.8 Hz, 6H).

Example 7: 5-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)isoxazol-3(2H)-one


[0272] **6-(2,6-dichloro-4-iodophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (7a).** To a solution of 6-(4-amino-2,6-dichlorophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (**1e**) (50 mg, 152.35 umol) in HCl (5 M, 304.70 uL) was added NaNO₂ (12.61 mg, 182.82 umol) at 0°C. Then the mixture was stirred for 0.5 hour at 0°C. Then a solution of KI (50.58 mg, 304.70 umol) in H₂O (1.5 mL) was added in the mixture, and the mixture was stirred at 20°C for another 16 hours. TLC indicated Reactant **1e** was consumed completely. LCMS showed Reactant **1e** was consumed completely and one main peak with the desired MS was formed. The reaction mixture was extracted with EtOAc (5 mL*4). The combined organic layers were washed with brine (5 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether: ethyl acetate=1:1, product R_f = 0.80, according TLC) to give **7a**. MS mass calculated for [M+1]⁺(C₁₄H₁₂Cl₂N₂O₂) requires *m/z* 438.9, LCMS found *m/z* 438.9. ¹H NMR (400MHz, CDCl₃) δ 7.71 (s, 2H), 7.04 (s, 1H), 3.52 (s, 3H), 3.25 (td, *J* = 7.0, 13.4 Hz, 1H), 1.26 (d, *J* = 6.8 Hz, 6H).

[0273] **Ethyl 3-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)propiolate (7b).** A mixture of 6-(2,6-dichloro-4-iodophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (**7a**) (25 mg, 56.94 umol), ethyl propionate (12.29 mg, 125.26 umol), Pd(PPh₃)₂Cl₂ (4.00 mg, 5.69 umol), CuI (2.17 mg, 11.39 umol) and Cs₂CO₃ (37.10 mg, 113.88

umol) in THF (5 mL) was degassed and purged with N₂ for 3 times. Then the mixture was stirred at 110°C for 0.5 hour under microwave. TLC indicated Reactant 7a was consumed completely and many spots formed. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (5 mL*3). The combined filtrates were concentrated to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether: ethyl acetate = 3:1, according TLC) to give 7b. MS mass calculated for [M+1]⁺(C₁₉H₁₈Cl₂N₂O₄) requires *m/z* 409.1, LCMS found *m/z* 409.1. ¹H NMR (400MHz, CDCl₃) δ 7.61 (s, 2H), 7.06 (s, 1H), 4.32 (q, *J* = 7.0 Hz, 2H), 3.51 (s, 3H), 3.25 (quind, *J* = 6.8, 13.8 Hz, 1H), 1.37 (t, *J* = 7.2 Hz, 3H), 1.27 (d, *J* = 6.8 Hz, 6H).

[0274] **5-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)isoxazol-3(2H)-one (Example 7).** To a solution of ethyl 3-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)propiolate (7b) (27 mg, 48.56 umol) in MeOH (3 mL) was added NH₂OH.HCl (13.50 mg, 194.22 umol) and KOH (16.35 mg, 291.33 umol). The mixture was stirred at 25°C for 16 hours. TLC showed reactant 7b was consumed completely. The reaction mixture was concentrated under reduced pressure to remove MeOH. The residue was diluted with H₂O (5 mL) and extracted with EtOAc (5 mL * 3). The combined organic layers were washed with brine (5 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was checked by HPLC and purified by prep-HPLC (column: Waters Xbridge Prep OBD C18 150*30 5u; mobile phase: [water (0.04%NH₃H₂O)-ACN]; B%: 5%-35%, 10min) to give Example 7. MS mass calculated for [M+1]⁺(C₁₇H₁₅Cl₂N₃O₄) requires *m/z* 396.0, LCMS found *m/z* 396.0. ¹H NMR (400MHz, CDCl₃) δ 7.76 (s, 2H), 7.08 (s, 1H), 6.25 (s, 1H), 3.52 (s, 3H), 3.31 - 3.22 (m, 1H), 1.28 (d, *J* = 6.8 Hz, 6H).

Example 8: 5-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)isoxazol-3(2H)-one

[0275] **N-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)acetamide (8a).** To a solution of 3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)aniline (**1b**) (1 g, 3.01 mmol) in AcOH (10 mL) was added NaOAc (863.18 mg, 10.52 mmol). The mixture was stirred at 100°C for 16 hours. LCMS showed one main peak with the desired MS. The reaction mixture was concentrated under reduced pressure to remove AcOH. The residue was diluted with water (20 mL) and added 1N NaOH to adjusted pH = 9~10. The suspension was extracted with EtOAc (10mL*4), the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give **8a** (1.55 g, crude). The product was used into the next step which without further purification. MS mass calculated for [M+1]⁺ (C₁₅H₁₅Cl₂N₃O₃) requires *m/z* 356.1, LCMS found *m/z* 356.1.

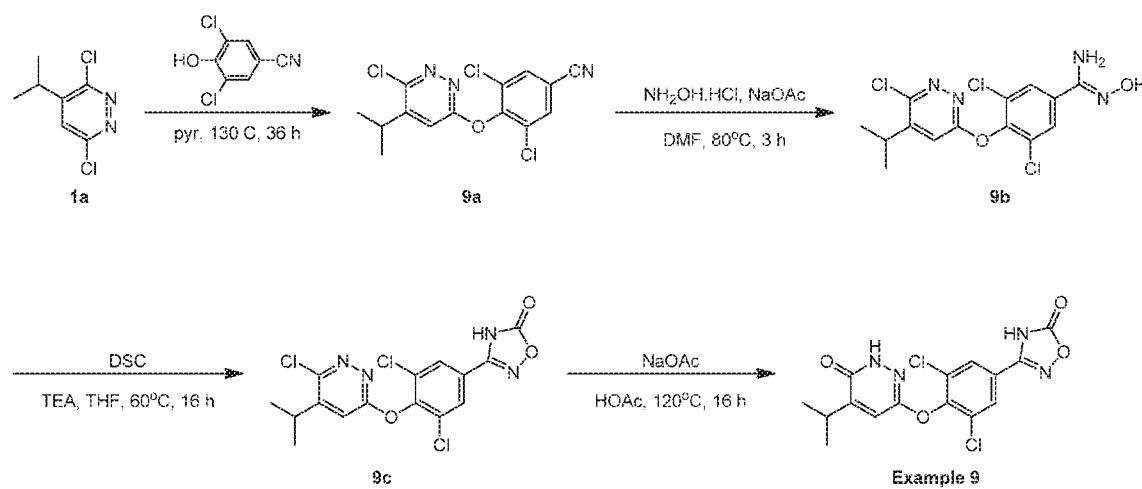
[0276] **6-(4-amino-2,6-dichlorophenoxy)-4-isopropylpyridin-3(2H)-one (8b).** To a solution of N-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)acetamide (**8a**) (1.55 g, 3.48 mmol) in MeOH (20 mL) was added aqueous of NaOH (1 M, 21.26 mL). The mixture was stirred at 120°C for 4 hours. LCMS showed one main peak with the desired MS. The reaction mixture was concentrated under reduced pressure to remove MeOH. The residue was diluted with water (20 mL) and extracted with EtOAc (10mL*4). The combined organic layers were dried over anhydrous Na₂SO₄, filtered and

concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate = 5:1 to 1:5, according TLC) to give **8b**. MS mass calculated for [M+1]⁺ (C₁₃H₁₃Cl₂N₃O₂) requires m/z 314.0, LCMS found m/z 314.0. ¹H NMR (400MHz, DMSO) δ 12.11 (s, 1H), 7.25 (s, 1H), 6.64 (s, 2H), 5.60 (s, 2H), 3.07 - 2.94 (m, 1H), 1.19 - 1.12 (m, 7H).

[0277] **6-(2,6-dichloro-4-iodophenoxy)-4-isopropylpyridazin-3(2H)-one (8c).** To a solution of 6-(4-amino-2,6-dichlorophenoxy)-4-isopropylpyridazin-3(2H)-one (**8b**) (250 mg, 795.76 umol) in HCl (967.11 mg, 7.96 mmol, 948.14 uL, 30% purity) was added NaNO₂ (65.89 mg, 954.91 umol) at 0°C, the mixture was stirred for 0.5 hour. Then to the mixture was added a solution of KI (264.19 mg, 1.59 mmol) in H₂O (5 mL). Then the mixture was stirred at 20°C for another 16 hours. LCMS showed one main peak with the desired MS. The reaction mixture was extracted with EtOAc (10 mL*4). The combined organic layers were washed, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether: ethyl acetate = 3:1, product R_f = 0.60, according TLC) to give **8c**. MS mass calculated for [M+1]⁺ (C₁₃H₁₁Cl₂IN₂O₂) requires m/z 424.9, LCMS found m/z 424.9. ¹H NMR (400 MHz, CDCl₃) δ 10.50 - 10.29 (m, 1H), 7.75 - 7.69 (m, 2H), 7.13 - 7.08 (m, 1H), 3.30 - 3.14 (m, 1H), 1.28 - 1.25 (m, 6H).

[0278] **6-(2,6-dichloro-4-iodophenoxy)-4-isopropyl-2-((2-(trimethylsilyl)ethoxy)methyl)pyridazin-3(2H)-one (8d).** To a mixture of 6-(2,6-dichloro-4-iodophenoxy)-4-isopropylpyridazin-3(2H)-one (**8c**) (50 mg, 117.63 umol), DIPEA (30.41 mg, 235.27 umol, 40.98 uL) in DMF (4 mL) was added 2-(chloromethoxy)ethyl-trimethyl-silane (58.84 mg, 352.90 umol, 62.46 uL). The mixture was degassed and purged with N₂ for 3 times, the mixture was stirred at 25°C for 2 hours under N₂ atmosphere. TLC indicated **8c** was consumed completely. LCMS showed one main peak with the desired MS. The reaction mixture was quenched by addition water (5 mL), and then extracted with EtOAc (6 mL *3). The combined organic layers were concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether: ethyl acetate = 5:1, according TLC) to give **8d**. MS mass calculated for [M+1]⁺ (C₁₉H₂₅Cl₂IN₂O₃Si) requires m/z 555.0, LCMS found m/z 555.0. ¹H NMR (400 MHz, CD₃OD) δ 7.78 - 7.61 (m, 2H), 7.13 - 7.00 (m, 1H), 5.28 - 5.16 (m, 2H), 3.58 - 3.50 (m, 2H), 3.32 - 3.18 (m, 1H), 1.31 - 1.23 (m, 6H), 0.91 - 0.83 (m, 2H), 0.01 - 0.11 (m, 9H).

[0279] **Ethyl 3-(3,5-dichloro-4-((5-isopropyl-6-oxo-1-((2-(trimethylsilyl)ethoxy)methyl)-1,6-dihydropyridazin-3-yl)oxy)phenyl)propiolate (8e).** A mixture of 6-(2,6-dichloro-4-iodophenoxy)-4-isopropyl-2-((2-(trimethylsilyl)ethoxy)methyl)pyridazin-3(2H)-one (**8d**) (18


mg, 32.41 umol), ethyl propiolate (7.00 mg, 71.31 umol, 7.00 uL), $\text{Pd}(\text{PPh}_3)_4\text{Cl}_2$ (2.28 mg, 3.24 umol), CuI (1.23 mg, 6.48 umol) and Cs_2CO_3 (21.12 mg, 64.83 umol) in THF (4 mL) was degassed and purged with N_2 for 3 times, and then the mixture was stirred at 110°C for 0.5 hour under microwave. TLC indicated **8d** was consumed completely and many spots formed. LCMS showed one main peak with the desired MS was formed. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (5 mL * 3). The combined filtrates were concentrated to dryness to give a residue. The residue was purified by prep-TLC (SiO_2 , petroleum ether: ethyl acetate = 8:1, according TLC) to give **8e**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{24}\text{H}_{30}\text{Cl}_2\text{N}_2\text{O}_5\text{Si}$) requires m/z 525.1, LCMS found m/z 525.1. ^1H NMR (400 MHz, CD_3OD) δ 7.61 - 7.57 (m, 2H), 7.08 - 7.06 (m, 1H), 5.19 - 5.17 (m, 2H), 4.35 - 4.28 (m, 2H), 3.57 - 3.50 (m, 2H), 3.31 - 3.19 (m, 1H), 1.38 - 1.34 (m, 3H), 1.28 - 1.25 (m, 6H), 0.89 - 0.84 (m, 2H), -0.03 - 0.06 (m, 9H).

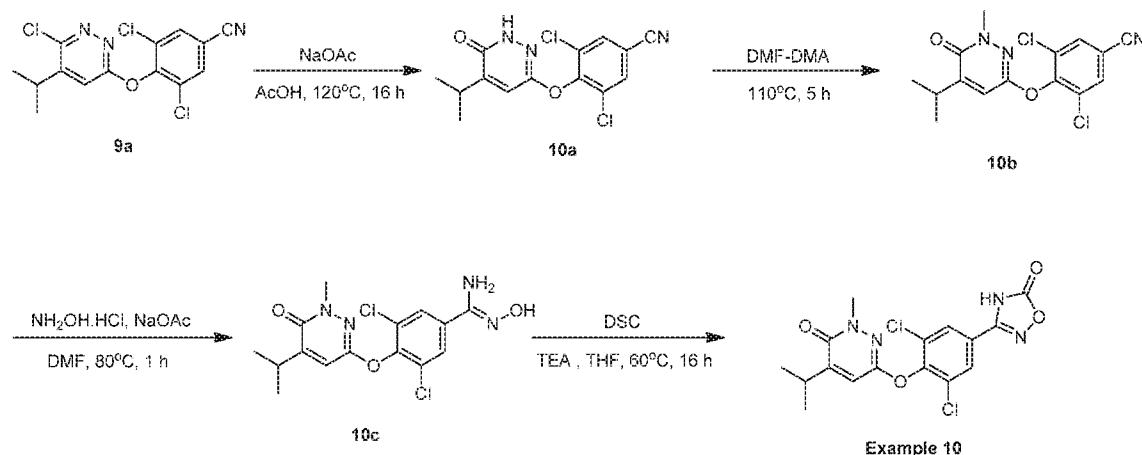
[0280] **5-(3,5-dichloro-4-((5-isopropyl-6-oxo-1-((2-(trimethylsilyl)ethoxy)methyl)-1,6-dihdropyridazin-3-yl)oxy)phenyl)isoxazol-3(2H)-one (8f).** To a solution of Ethyl 3-(3,5-dichloro-4-((5-isopropyl-6-oxo-1-((2-(trimethylsilyl)ethoxy)methyl)-1,6-dihdropyridazin-3-yl)oxy)phenyl)propiolate (**8e**) (5 mg, 9.51 umol) in MeOH (2 mL) was added $\text{NH}_2\text{OH.HCl}$ (2.64 mg, 38.06 umol) and KOH (3.20 mg, 57.09 umol). The mixture was stirred at 25°C for 5 hours. TLC indicated **8e** was consumed completely. LCMS showed one main peak with the desired MS was formed. The reaction mixture was concentrated under reduced pressure to remove MeOH . The residue was diluted with H_2O (5 mL) and extracted with EtOAc (5 mL * 3). The combined organic layers were washed with brine (5 mL), dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO_2 , petroleum ether: ethyl acetate = 3:2, according TLC) to give **8f**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{22}\text{H}_{27}\text{Cl}_2\text{N}_3\text{O}_5\text{Si}$) requires m/z 512.1, LCMS found m/z 512.1. ^1H NMR (400 MHz, CD_3OD) δ 7.78 - 7.73 (m, 2H), 7.12 - 7.08 (m, 1H), 6.29 - 6.24 (m, 1H), 5.23 - 5.20 (m, 2H), 3.59 - 3.52 (m, 2H), 3.33 - 3.22 (m, 1H), 1.30 - 1.27 (m, 6H), 0.90 - 0.85 (m, 2H), -0.05 - 0.10 (m, 9H).

[0281] **5-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)isoxazol-3(2H)-one (Example 8).** A solution of 5-(3,5-dichloro-4-((5-isopropyl-6-oxo-1-((2-(trimethylsilyl)ethoxy)methyl)-1,6-dihdropyridazin-3-yl)oxy)phenyl)isoxazol-3(2H)-one (**8f**) (4 mg, 7.81 umol) in TFA (2 mL) was stirred at 25°C for 4 hours. LCMS showed **8f** was consumed completely and the desired MS was detected. Then the mixture was concentrated in vacuum. The residue was checked by HPLC and purified by prep-HPLC (column: Luna C18 100*30 5u; mobile phase: [water (0.2%FA)-ACN]; B%: 30%-60%, 12min)

to give **Example 8**. MS mass calculated for $[M+1]^+$ ($C_{16}H_{13}Cl_2N_3O_4$) requires m/z 382.0, LCMS found m/z 382.0. 1H NMR (400 MHz, CD_3OD) δ 7.91 - 7.86 (m, 2H), 7.37 - 7.35 (m, 1H), 6.48 - 6.46 (m, 1H), 3.20 - 3.14 (m, 1H), 1.33 - 1.24 (m, 6H).

Example 9: 3-[3,5-dichloro-4-[(5-isopropyl-6-oxo-1H-pyridazin-3-yl)oxy]phenyl]-4H-1,2,4-oxadiazol-5-one

[0282] 3,5-dichloro-4-(6-chloro-5-isopropyl-pyridazin-3-yl)oxy-benzonitrile (9a). A mixture of 3,5-dichloro-4-hydroxy-benzonitrile (**1a**) (100 mg, 531.88 umol) and 3,6-dichloro-4-isopropyl-pyridazine (101.62 mg, 531.88 umol) in Py (3 mL) was stirred at 130°C for 36 hours. LCMS showed **1a** was consumed completely and desired MS was detected. The mixture was diluted with Tol. (5 mL*3) and concentrated in vacuum to give a residue. The residue was purified by preparative TLC (petroleum ether: ethyl acetate = 5:1) to give **9a**. MS mass calculated for $[M+1]^+$ ($C_{14}H_{10}Cl_3N_3O$) requires m/z 342.0, LCMS found m/z 342.1; 1H NMR (400MHz, CD_3OD) δ 8.02 (s, 2H), 7.67 (s, 1H), 3.47 - 3.50 (m, 1H), 3.32 - 3.39 (m, 1H), 1.37 (d, J = 6.84 Hz, 6H).


[0283] (Z/E)-3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)-N'-hydroxybenzimidamide (9b). To a solution of 3,5-dichloro-4-(6-chloro-5-isopropyl-pyridazin-3-yl)oxy-benzonitrile (**9a**) (60 mg, 175.13 umol) in DMF (2 mL) was added $NH_2OH.HCl$ (97.36 mg, 1.40 mmol) and $NaOAc$ (114.93 mg, 1.40 mmol). The mixture was stirred at 80°C for 1 hour. LCMS showed the starting material was consumed completely and desired MS was detected. The reaction mixture was concentrated under reduced pressure to remove DMF. The residue was partitioned between ethyl acetate (10 mL*2) and H_2O (3 mL). The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuum to give a residue. The residue was purified by preparative TLC

(petroleum ether: ethyl acetate = 5:1) to give **9b**. MS mass calculated for $[M+1]^+$ ($C_{14}H_{13}Cl_3N_4O_2$) requires m/z 375.0, LCMS found m/z 375.0.

[0284] **3-(3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)phenyl)-1,2,4-oxadiazol-5(4H),-one (9c).** To a solution of (Z/E)-3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)-N'-hydroxybenzimidamide (**9b**) (60 mg, 159.73 umol) in THF (3 mL) was added DSC (53.19 mg, 207.65 umol) and TEA (32.33 mg, 319.46 umol, 44.46 uL). The mixture was stirred at 60°C for 16 hours. LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was concentrated in vacuum to give **9c** (60 mg, crude). The product was used directly for the next step without further purification. MS mass calculated for $[M+1]^+$ ($C_{15}H_{11}Cl_3N_4O_3$) requires m/z 401.0, LCMS found m/z 401.0.

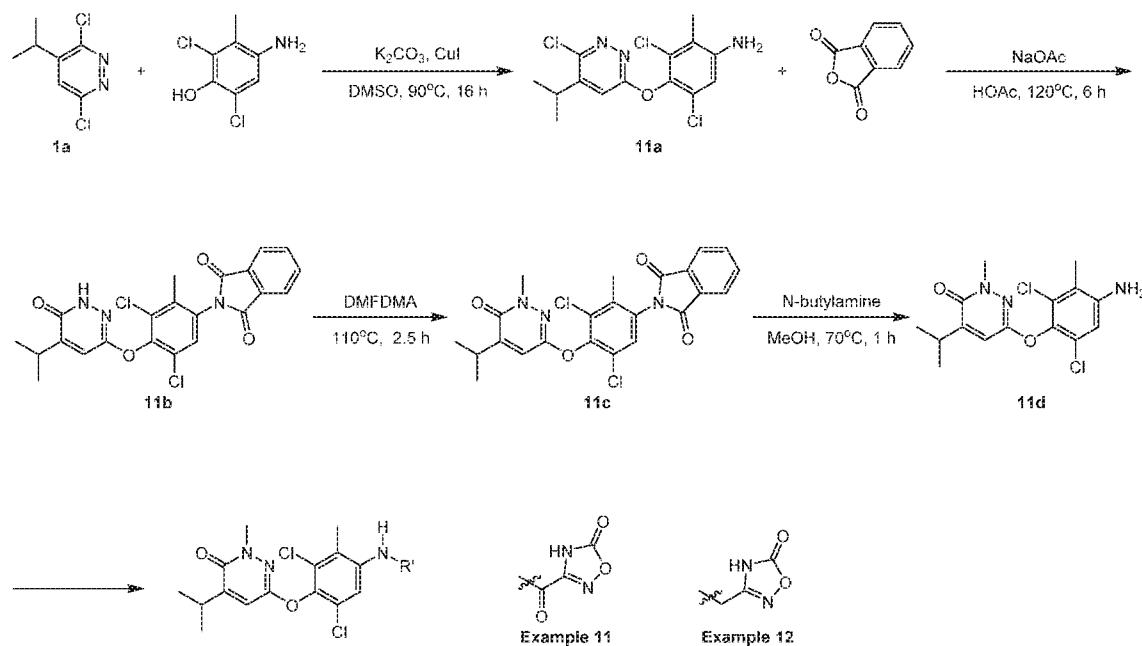
[0285] **3-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-1,2,4-oxadiazol-5(4H),-one (Example 9).** To a solution of 3-(3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)phenyl)-1,2,4-oxadiazol-5(4H),-one (**9c**) (60 mg, 149.39 umol) in HOAc (3 mL) was added NaOAc (49.02 mg, 597.56 umol). The mixture was stirred at 120°C for 16 hours. LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was concentrated in vacuum to give a residue. The residue was purified by Prep-HPLC (column: Waters Atlantis T3 150*30*5um; mobile phase: [water (0.225%FA)-ACN]; B%: 35%-75%, 13min) to give **Example 9**. MS mass calculated for $[M+1]^+$ ($C_{15}H_{12}Cl_2N_4O_4$) requires m/z 383.0, LCMS found m/z 383.0; 1H NMR (400MHZ, CD₃OD) δ 7.93 (s, 2H), 7.38 (d, J = 0.8 HZ, 1H), 3.17 (spt, J = 6.8 HZ, 1H), 1.29 (d, J = 6.8 HZ, 6H).

Example 10: 3-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-1,2,4-oxadiazol-5(4H),-one

[0286] **3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)benzonitrile (10a).**

To a solution of 3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)benzonitrile (9a) (40 mg, 116.75 umol) in HOAc (4 mL) was added NaOAc (38.31 mg, 467.01 umol). The mixture was stirred at 120°C for 16 hours. LCMS showed the starting material was consumed completely and the desired MS was found. The mixture was concentrated in vacuum. The solid was dissolved in water and the pH was adjusted to 9 with NaHCO₃ (4 mL). Then the mixture was partitioned with ethyl acetate 10 mL twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give 10a (34 mg, crude). MS mass calculated for [M+1]⁺ (C₁₄H₁₁Cl₂N₃O₂) requires *m/z* 324.0, LCMS found *m/z* 324.2; ¹H NMR (400MHz, DMSO) δ 12.28 (s, 1H), 8.27 - 8.35 (m, 2H), 7.44 (s, 1H), 3.27 - 3.44 (m, 25H), 2.98 - 3.10 (m, 1H), 1.15 - 1.23 (m, 6H).

[0287] **3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)benzonitrile (10b).**

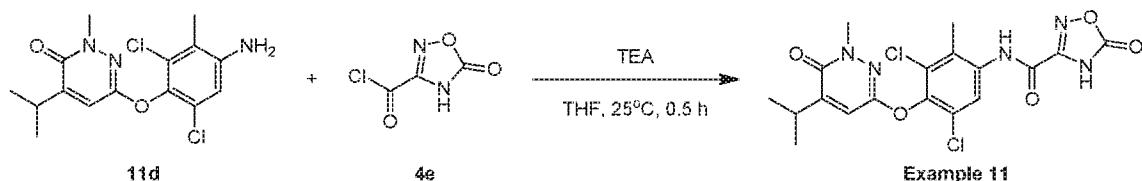

A mixture of 3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)benzonitrile (10a) (34 mg, 104.89 umol) in DMF-DMA (2 mL) was stirred at 110°C for 5 hours under reflux. LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was concentrated in vacuum. The residue was partitioned between ethyl acetate (10 mL) and H₂O (3 mL) twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give a residue. The residue was purified by preparative TLC (petroleum ether: ethyl acetate = 5:1) to give 10b. MS mass calculated for [M+1]⁺ (C₁₅H₁₃Cl₂N₃O₂) requires *m/z* 338.0, LCMS found *m/z* 338.0; ¹H NMR (400MHz, CD₃OD) δ 8.00 (s, 2H), 7.38 (s, 1H), 3.48 (s, 3H), 3.14 - 3.25 (m, 1H), 1.28 (d, *J* = 6.85 Hz, 6H).

(Z)-3,5-dichloro-N'-hydroxy-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)benzimidamide (10c). To a solution of 3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-

1,6-dihydropyridazin-3-yl)oxy)benzonitrile (**10b**) (25 mg, 73.92 umol) in DMF (2 mL) was added NH₂OH.HCl (41.10 mg, 591.39 umol) and NaOAc (48.51 mg, 591.39 umol). The mixture was stirred at 80°C for 1 hour. LCMS showed **10b** was consumed completely and desired MS was detected. The reaction mixture was concentrated under reduced pressure to remove DMF. The residue was partitioned between ethyl acetate (10 mL) and H₂O (3 mL). The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give **10c** (25 mg, crude). The product was used directly for the next step without further purification. MS mass calculated for [M+1]⁺ (C₁₅H₁₆Cl₂N₄O₃) requires *m/z* 371.1, LCMS found *m/z* 371.2.

[0288] **3-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-1,2,4-oxadiazol-5(4H),-one (Example 10).** To a solution of (Z)-3,5-dichloro-N'-hydroxy-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3yl)oxy)benzimidamide (**10c**) (25 mg, 67.35 umol) in THF (3 mL) was added DSC (22.43 mg, 87.55 umol) and TEA (13.63 mg, 134.69 umol, 18.75 uL). The mixture was stirred at 60°C for 16 hours. LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was concentrated in vacuum to give a residue. The residue was purified by Prep-HPLC (column: Waters Atlantis T3 150*30*5um; mobile phase: [water (0.225%FA)-ACN]; B%: 30%-70%, 13min) to give **Example 10**. MS mass calculated for [M+1]⁺ (C₁₆H₁₄Cl₂N₄O₄) requires *m/z* 397.0, LCMS found *m/z* 397.0; ¹H NMR (400MHZ, CD₃OD) δ 7.92 - 7.98 (m, 2H), 7.37 (d, *J* = 0.73 HZ, 1H), 3.48 (s, 3H), 3.12 - 3.26 (m, 1H), 1.28 (d, *J* = 6.85 HZ, 6H).

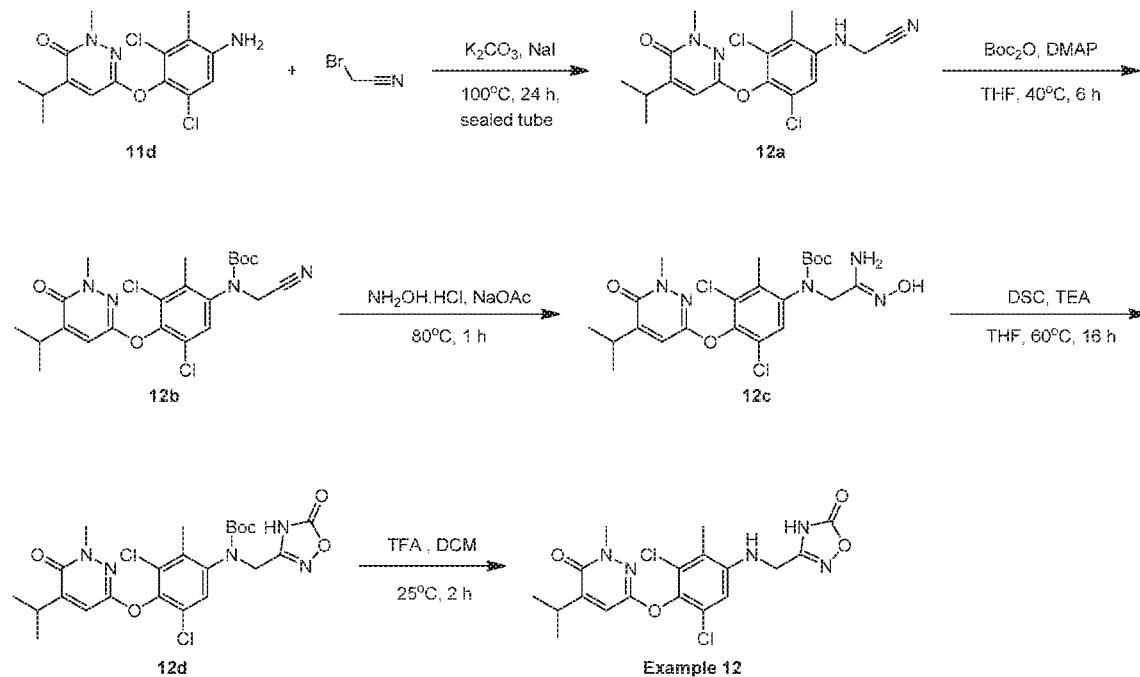
Scheme B: 6-(4-amino-2,6-dichloro-3-methylphenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (Compound 11d)


[0289] **3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)oxy)-2-methylaniline (11a).** To a mixture of 4-amino-2,6-dichloro-3-methyl-phenol (0.2 g, 1.04 mmol) and 3,6-dichloro-4-isopropyl-pyridazine (**1a**) (198.97mg, 1.04 mmol) in DMSO (5 mL) was added K_2CO_3 (575.75 mg, 4.17 mmol) and CuI (119.01 mg, 624.86 umol) at 25°C. Then the mixture was stirred at 90°C for 16 hours. The mixture was added to H_2O (25 mL) and extracted with ethyl acetate (20 mL*2). The combined organic phase was washed with brine (20 mL*2), dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuum. The mixture was washed by petroleum ether (5 mL), filtered. The filter cake was concentrated in vacuum to give **11a**.

[0290] **2-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)-2-methylphenyl)isoindoline-1,3-dione (11b).** To a mixture of 3,5-dichloro-4-(6-chloro-5-isopropyl-pyridazin-3-yl)oxy-2-methyl-aniline (**11a**) (0.4 g, 1.15 mmol) and isobenzofuran-1,3-dione (170.92 mg, 1.15 mmol) in AcOH (10 mL) was added NaOAc (378.63 mg, 4.62 mmol) at 25 °C. Then the mixture was stirred at 120°C for 12 hours. LCMS showed the reaction was completed. The mixture was concentrated to get residue, to the residue was added to H_2O (20 mL) and extracted with ethyl acetate (50 mL*2). The combined organic phase was washed with brine (50 mL*2), dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuum. The residue was washed by MTBE (5 mL) and filtered. The filter cake was concentrated to give **11b**. MS mass calculated for $[M+1]^+$ ($C_{22}H_{17}Cl_2N_3O_4$) required m/z 458.1, LCMS found m/z 458.1.

[0291] **2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)isoindoline-1,3-dione (11c).** A mixture of 2-[3,5-dichloro-4-[(5-isopropyl-6-oxo-1H-pyridazin-3-yl)oxy]-2-methyl-phenyl]isoindoline-1,3-dione (11b) (0.37 g, 807.34 umol) in DMF-DMA (5 mL) was stirred at 105°C for 4 hours. LCMS showed the reaction was completed. The mixture was added to H₂O (20 mL) and extracted with ethyl acetate (20 mL*2). The combined organic phase was washed with brine (20 mL*2), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give 11c. The crude was used next step directly. MS mass calculated for [M+1]⁺ (C₂₂H₁₇Cl₂N₃O₄) required *m/z* 472.1, LCMS found *m/z* 472.1.

[0292] **6-(4-amino-2,6-dichloro-3-methylphenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (11d).** To a solution of 2-[3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-2-methyl-phenyl]isoindoline-1,3-dione (11c) (440 mg, 931.57 umol) in MeOH (1 mL) were added butan-1-amine (2 M, 1.40 mL) at 70°C. The mixture was stirred at 70°C for 1 hour. The mixture was concentrated in vacuum. The residue was purified by prep-TLC (SiO₂, petroleum ether /ethyl acetate= 1:1) to give 11d. MS mass calculated for [M+1]⁺ (C₂₂H₁₇Cl₂N₃O₄) required *m/z* 342.1, LCMS found *m/z* 342.1. ¹H NMR (400 MHz, CD₃OD) δ 7.22 (s, 1H), 6.77 (s, 1H), 3.50 (s, 3H), 3.20 - 3.14 (m, 1H), 2.20 (s, 3H), 1.25 (d, *J* = 6.8 Hz, 6H).


Example 11: N-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)-2-methylphenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0293] **N-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)-2-methylphenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 11).** To a solution of 6-(4-amino-2,6-dichloro-3-methylphenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (11d) (20.85 mg, 60.94 umol) in THF (3 mL) was added TEA (18.50 mg, 182.82 umol) and 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carbonyl chloride (4e) (13.57 mg, 91.41 umol). The mixture was stirred at 25°C for 0.5 hours. TLC showed 11d was consumed. The reaction mixture was quenched by addition MeOH (1 mL) at 25 °C, and then concentrated under reduced pressure to give a residue. The residue was purified by Prep-HPLC (column: Xtimate C18 150*25mm*5um; mobile phase: [water (10mM NH₄HCO₃)-ACN]; B%: 20%-50%, 10min) to give Example 11. MS mass calculated for [M+1]⁺ (C₁₈H₁₇Cl₂N₅O₅) required *m/z* 454.1, LCMS

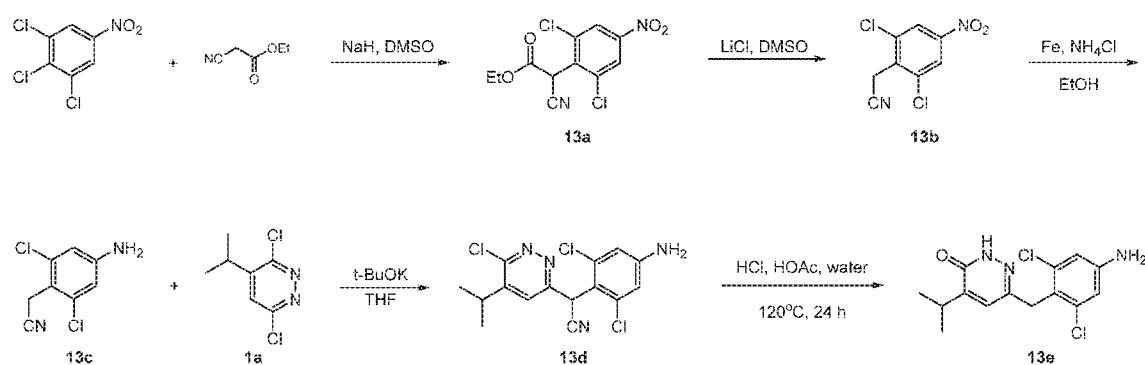
found *m/z* 454.1; ¹H NMR (400 MHz, CD₃OD) δ 7.77 (s, 1H), 7.31 (d, *J* = 0.7 Hz, 1H), 3.49 (s, 3H), 3.23 - 3.11 (m, 1H), 2.38 (s, 3H), 1.27 (d, *J* = 6.8 Hz, 6H).

Example 12: 3-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)-2-methylphenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one

[0294] 2-[3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-2-methyl-anilino]acetonitrile (12a). To a solution of 6-(4-amino-2,6-dichloro-3-methylphenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (11d) (50 mg, 146.10 umol) in ACN (1 mL) was added 2-bromoacetonitrile (87.62 mg, 730.52 umol, 48.68 uL), NaI (43.80 mg, 292.21 umol) and K_2CO_3 (40.39 mg, 292.21 umol). The mixture was stirred at 100°C for 16 hours. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (5 mL*3). The combined filtrates were concentrated to give a residue. The residue was purified by Prep-TLC (SiO_2 , petroleum ether : ethyl acetate= 1: 1) to give (12a). ¹H NMR (400 MHz, CDCl_3) δ 7.04 (s, 1H), 6.71 (s, 1H), 4.20 (d, *J* = 6.6 Hz, 2H), 4.13 (q, *J* = 7.2 Hz, 1H), 4.08 - 4.01 (m, 1H), 3.53 (s, 3H), 3.31 - 3.16 (m, 1H), 2.27 (s, 3H), 1.59 (br s, 4H), 1.38 - 1.15 (m, 8H).

[0295] tert-butyl N-(cyanomethyl)-N-[3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-2-methyl-phenyl]carbamate (12b). To a solution of 2-[3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-2-methyl-anilino]acetonitrile (12a) (55 mg, 144.26 umol) in THF (1 mL) was added Boc_2O (94.45 mg, 432.78 umol, 99.42 uL) and DMAP

(17.62 mg, 144.26 umol). The mixture was stirred at 40°C for 1 hour. LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was partitioned between ethyl acetate (10 mL) and H₂O (3 mL) twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether: ethyl acetate= 3: 1) to give **12b**. MS mass calculated for [M+1]⁺ (C₂₂H₂₆Cl₂N₄O₄) required *m/z* 481.1, LCMS found *m/z* 481.1; ¹H NMR (400MHz, CDCl₃) δ 7.04 (d, *J* = 1.0 Hz, 1H), 4.57 - 4.27 (m, 2H), 3.48 (br s, 3H), 3.28 - 3.16 (m, 1H), 2.29 (s, 3H), 1.66 - 1.47 (m, 10H), 1.38 (br s, 6H).


[0296] **tert-butyl N-[(2Z)-2-amino-2-hydroxyimino-ethyl]-N-[3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-2-methyl-phenyl]carbamate (12c).** To a solution of tert-butyl N-(cyanomethyl)-N-[3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-2-methyl-phenyl]carbamate (**12b**) (40 mg, 83.10 umol) in DMF (1 mL) was added NH₂OH.HCl (46.19 mg, 664.77 umol) and NaOAc (54.53 mg, 664.77 umol). The mixture was stirred at 80°C for 1 hour. The residue was partitioned between ethyl acetate (10 mL) and H₂O (3 mL) twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by Prep-TLC (SiO₂, petroleum ether : ethyl acetate= 1: 1) to give **12c**. MS mass calculated for [M+1]⁺ (C₂₂H₂₉Cl₂N₅O₅) required *m/z* 514.2, LCMS found *m/z* 514.2; ¹H NMR (400MHz, CDCl₃) δ 7.16 (s, 1H), 7.05 (d, *J* = 1.0 Hz, 1H), 5.27 (br s, 2H), 3.50 (s, 3H), 3.33 - 3.17 (m, 1H), 2.25 (s, 4H), 1.39 (s, 8H), 1.28 - 1.26 (m, 7H).

[0297] **tert-butyl N-[3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-2-methyl-phenyl]-N-[(5-oxo-4H-1,2,4-oxadiazol-3-yl)methyl]carbamate (12d).** To a solution of tert-butyl N-[(2Z)-2-amino-2-hydroxyimino-ethyl]-N-[3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-2-methyl-phenyl]carbamate (**12c**) (40 mg, 77.76 umol) in THF (1 mL) was added DSC (25.90 mg, 101.09 umol) and TEA (15.74 mg, 155.52 umol, 21.65 uL). The mixture was stirred at 60°C for 16 hours. LCMS showed the starting material was consumed completely and desired MS was detected. The mixture was partitioned between ethyl acetate (10 mL) and H₂O (3 mL). Twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give a residue. The residue was purified by prep-TLC (SiO₂, DCM: MeOH= 5:1) to give **12d**. MS mass calculated for [M+1]⁺ (C₂₂H₂₉Cl₂N₅O₅) required *m/z* 540.1, LCMS found *m/z* 540.1.

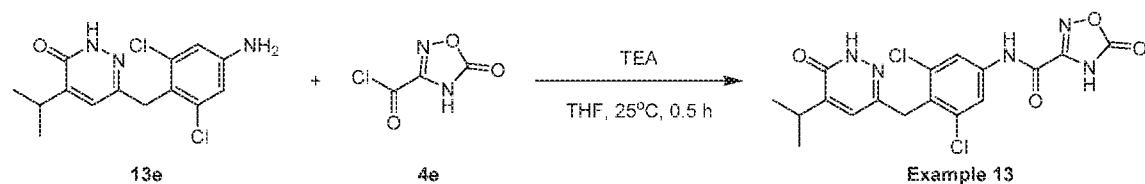
[0298] **3-[[3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-2-methyl-anilino]methyl]-4H-1,2,4-oxadiazol-5-one (Example 12).** To a solution of tert-butyl N-[3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-2-methyl-phenyl]-N-[(5-oxo-4H-

1,2,4-oxadiazol-3-yl)methyl]carbamate (**12d**) (30 mg, 55.51 μ mol) in EtOAc (1 mL) were added HCl/EtOAc (2 M, 27.76 μ L) at 25°C. The mixture was stirred at 25 °C for 1 hour. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by Prep-HPLC (HCl condition) to give **Example 12**. MS mass calculated for $[M+1]^+$ ($C_{22}H_{29}Cl_2N_5O_5$) required m/z 440.1, LCMS found m/z 440.2. 1H NMR (400MHz, CD_3OD) δ 7.24 (s, 1H), 6.72 (s, 1H), 4.37 (s, 2H), 3.48 (s, 3H), 3.23 - 3.11 (m, 1H), 2.29 (s, 3H), 1.26 (d, J = 6.8 Hz, 6H).

Scheme C: 6-(4-amino-2,6-dichlorobenzyl)-4-isopropylpyridazin-3(2H)-one (Compound **13e)**

[0299] **ethyl 2-cyano-2-(2,6-dichloro-4-nitrophenyl)acetate (13a).** To a suspension of NaH (1.41 g, 35.33 mmol, 60% purity) in DMSO (40 mL) was added ethyl 2-cyanoacetate (4.00 g, 35.33 mmol) drop wise at 0°C and stirred at 15°C for 30 minutes, then 1,2,3-trichloro-5-nitrobenzene (4 g, 17.66 mmol) was added, the resulting mixture was stirred at 15°C for 16 hours. Then the mixture was quenched with water (100 mL) and adjusted to pH=1 with 1 M HCl. And the white precipitate was collected by filtration and dried over in vacuum. The solid was washed with petroleum ether (40 mL) and dried in vacuum to give **13a**. 1H NMR (400 MHz, $CDCl_3$) δ 8.32 (s, 2H), 5.72 (s, 1H), 4.38 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H).

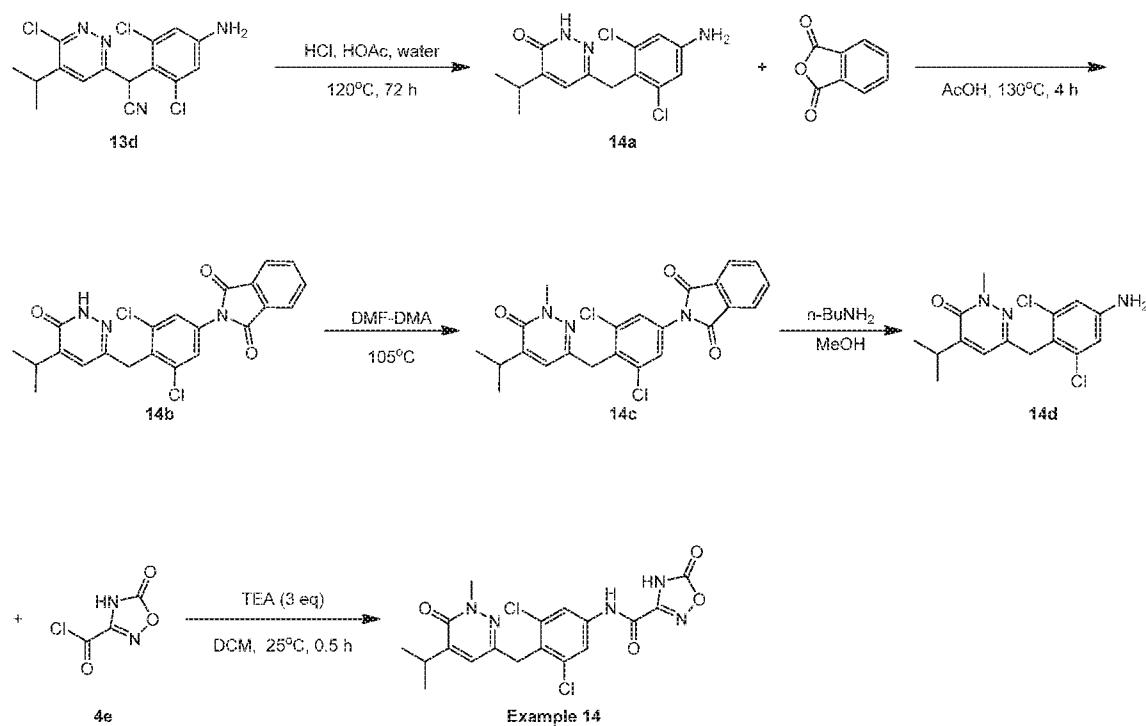
[0300] **2-(2,6-dichloro-4-nitrophenyl)acetonitrile (13b)** A mixture of ethyl 2-cyano-2-(2,6-dichloro-4-nitrophenyl)acetate (**13a**) (1.7 g, 5.61 mmol) and LiCl (285.33 mg, 6.73 mmol) in DMSO (6 mL), H_2O (2.5 mL) was heated to 165°C for 1 hour. After cooling, the mixture was quenched with water (50 mL) and extracted with ethyl acetate (20 mL*2), the organic phases were washed with brine, dried over Na_2SO_4 , filtered and concentrated to give **13b**. 1H NMR (400 MHz, $CDCl_3$) δ 8.21 (s, 2H), 4.03 (s, 2H).


[0301] **2-(4-amino-2,6-dichlorophenyl)acetonitrile (13c).** A mixture of 2-(2,6-dichloro-4-nitrophenyl)acetonitrile (**13b**) (1 g, 4.33 mmol) and Fe (1.21 g, 21.64 mmol) in $HOAc$ (10 mL)

was heated to 15°C for 1 hour. TLC showed new point, the mixture was filtered, the filtrate was added water (100 mL) and extracted with ethyl acetate (50 mL), the organic phase was neutralized with sat. NaHCO₃ (20 mL*2), washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated to give 13c. ¹H NMR (400 MHz, CDCl₃) δ 6.67 (s, 2H), 3.88 (s, 4H).

[0302] **2-(4-amino-2,6-dichlorophenyl)-2-(6-chloro-5-isopropylpyridazin-3-yl)acetonitrile (13d).** To a solution of 2-(4-amino-2,6-dichlorophenyl)acetonitrile (13c) (0.43 g, 2.14 mmol) and 3,6-dichloro-4-isopropylpyridazine (1a) (408.62 mg, 2.14 mmol) in THF (5 mL) was added t-BuOK (1 M, 4.28 mL) drop wise at 60°C, the resulting mixture was heated to 60°C for 40 minutes. After cooling, the mixture was diluted with ethyl acetate (20 mL) and washed with brine (20 mL). The organic layer was separated, dried with Na₂SO₄, filtered and concentrated, the residue was purified by silica gel chromatography (petroleum ether : ethyl acetate= 5:1) to give 13d. MS mass calculated for [M+1]⁺(C₁₅H₁₃Cl₃N₄) required m/z 355.0, LCMS found m/z 355.1; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (s, 1H), 6.69 (s, 2H), 6.33 (s, 1H), 3.99 (br s, 2H), 3.33 (td, J = 6.8, 13.6 Hz, 1H), 1.32 (dd, J = 4.0, 6.8 Hz, 6H).

[0303] **6-(4-amino-2,6-dichlorobenzyl)-4-isopropylpyridazin-3(2H)-one (13e).** A solution of 2-(4-amino-2,6-dichlorophenyl)-2-(6-chloro-5-isopropylpyridazin-3-yl)acetonitrile (13d) (0.15 g, 421.76 umol) in HOAc (0.6 mL), H₂O (0.6 mL) and conc.HCl (2.4 mL) was heated to 120°C for 32 hours. LCMS showed desired MS. After cooling, the mixture was adjusted to pH~7 with 4M NaOH at 0°C, the solid was filtered and dried to give 13e as off white solid, the solid was used for the next step directly. MS mass calculated for [M+1]⁺(C₁₄H₁₅Cl₂N₃O) required m/z 311.0, LCMS found m/z 311.1.


Example 13: N-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

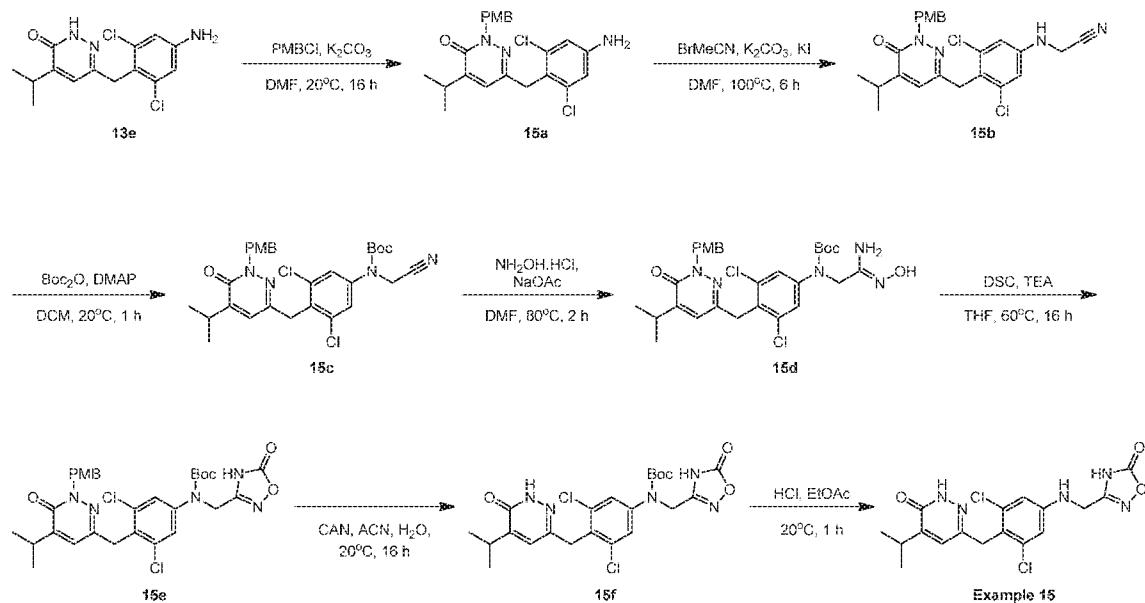
[0304] **N-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 13).** To a solution of 6-(4-amino-2,6-dichlorobenzyl)-4-isopropylpyridazin-3(2H)-one (13e) (20 mg, 64.06 umol) in THF (3 mL) was added TEA (19.45 mg, 192.19 umol) and 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carbonyl chloride (4e) (14.27 mg, 96.09 umol, 1.5 eq). The mixture was stirred at 25°C for 0.5 hours. TLC showed 13e was consumed completely. The reaction mixture was quenched by

addition MeOH (1 mL) at 25 °C, and then concentrated under reduced pressure to give a residue. The residue was checked by HPLC and purified by Prep-HPLC (column: Waters Xbridge 150*25 5u; mobile phase: [water (10mM NH4HCO3)-ACN]; B%: 5%-35%, 10min) to give **Example 13**. MS mass calculated for [M+1]⁺ (C₁₇H₁₅Cl₂N₅O₄) requires *m/z* 424.0, LCMS found *m/z* 424.0. ¹H NMR (400 MHz, CD₃OD) δ 7.87 (s, 2H), 7.23 (s, 1H), 4.30 (s, 2H), 3.16 - 3.04 (m, 1H), 1.20 (d, *J* = 7.1 Hz, 6H).

Example 14: N-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0305] **6-(4-amino-2,6-dichlorobenzyl)-4-isopropylpyridazin-3(2H)-one (14a).** To a solution of 2-(4-amino-2,6-dichlorophenyl)-2-(6-chloro-5-isopropylpyridazin-3-yl) acetonitrile (**13d**) (1.5 g, 4.22 mmol) in con. HCl (16 mL) and HOAc (2 mL) was added H₂O (2 mL). The mixture was stirred at 120°C for 72 hours. LCMS showed the desired mass. The mixture was adjusted to pH= 7 by addition of 6 M aqueous sodium hydroxide solution. The suspension was stirred for 15 minutes. The resulting solid was filtered and washed with H₂O and petroleum ether. The residue was purified by column chromatography (petroleum ether: ethyl acetate= 5: 1 to 1: 1) to give **14a**. ¹H NMR (400 MHz, DMSO-d₆) δ 12.59 (s, 1H), 7.12 - 7.10 (m, 1H), 6.62 (s, 2H), 5.60 (s, 2H), 3.99 (s, 2H), 2.96 (td, *J* = 6.9, 13.5 Hz, 1H), 1.11 (d, *J* = 6.8 Hz, 6H).

[0306] **2-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)isoindoline-1,3-dione (14b).** A solution of 6-(4-amino-2,6-dichlorobenzyl)-4-isopropylpyridazin-3(2H)-one (14a) (450 mg, 1.44 mmol) in AcOH (5 mL) was added isobenzofuran-1,3-dione (213.50 mg, 1.44 mmol). The mixture was stirred at 130°C for 4 hours. LCMS showed desired mass. The reaction mixture was concentrated under reduced pressure to remove AcOH. This mixture was extracted with water (50 mL) and Ethyl acetate (50 mL), and then washed with NaHCO₃ (20 mL*3), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give 14b. The product was used in next step without further purification. MS mass calculated for [M+1]⁺ (C₂₂H₁₇Cl₂N₃O₃) required m/z 442.1, LCMS found m/z 442.1.


[0307] **2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)isoindoline-1,3-dione (14c).** A mixture of 2-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)isoindoline-1,3-dione (14b) (600 mg, 1.36 mmol) and DMF-DMA (5 mL) was heated to 105°C for 3 hours. LCMS showed desired mass. The reaction mixture was and concentrated under reduced pressure to give 14c. The product was used in next step without further purification. MS mass calculated for [M+1]⁺ (C₂₃H₁₉Cl₂N₃O₃) required m/z 456.1, LCMS found m/z 456.1.

[0308] **6-(4-amino-2,6-dichlorobenzyl)-4-isopropyl-2-methylpyridazin-3(2H)-one (14d).** A solution of 2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)isoindoline-1,3-dione (14c) (600 mg, 1.31 mmol) in N-butylamine (981.11 mg, 6.57 mmol) and MeOH (3 mL) was heated to 70°C for 3 hours. TLC showed reaction was completely. LCMS showed desired mass. The reaction mixture concentrated under reduced pressure. The residue was purified by column chromatography (petroleum ether : ethyl acetate=3: 1 to 2: 1) to give 14d. MS mass calculated for [M+1]⁺ (C₁₈H₁₇Cl₂N₃O₄) required m/z 326.1, LCMS found m/z 326.0. ¹H NMR (400 MHz, CD₃OD) δ 7.08 - 7.04 (m, 1H), 6.72 - 6.69 (m, 2H), 4.13 (s, 2H), 3.70 (s, 3H), 3.14 - 3.06 (m, 1H), 1.15 (d, J = 6.8 Hz, 6H).

[0309] **N-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 14).** A solution of 6-(4-amino-2,6-dichlorobenzyl)-4-isopropyl-2-methylpyridazin-3(2H)-one (14d) (19.43 mg, 59.78 umol) in DCM (2 mL) was added TEA (18.15 mg, 179.33 umol, 3eq) and 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carbonyl chloride (4e) (8.88 mg, 59.78 umol). The mixture was degassed and purged with N₂ for 3 times stirred at 25 °C for 0.5 hours. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by Prep-HPLC (NH₄CO₃) to give Example 14. MS mass calculated for [M+1]⁺ (C₁₈H₁₇Cl₂N₅O₄) required m/z 438.1, LCMS found m/z 438.0; ¹H NMR (400 MHz, CD₃OD)

δ 7.89 (s, 2H), 7.18 (s, 1H), 4.30 (s, 2H), 3.69 - 3.63 (m, 3H), 3.13 (td, J = 7.0, 13.8 Hz, 1H), 1.19 (d, J = 6.8 Hz, 6H).

Example 15: 3-(((3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one

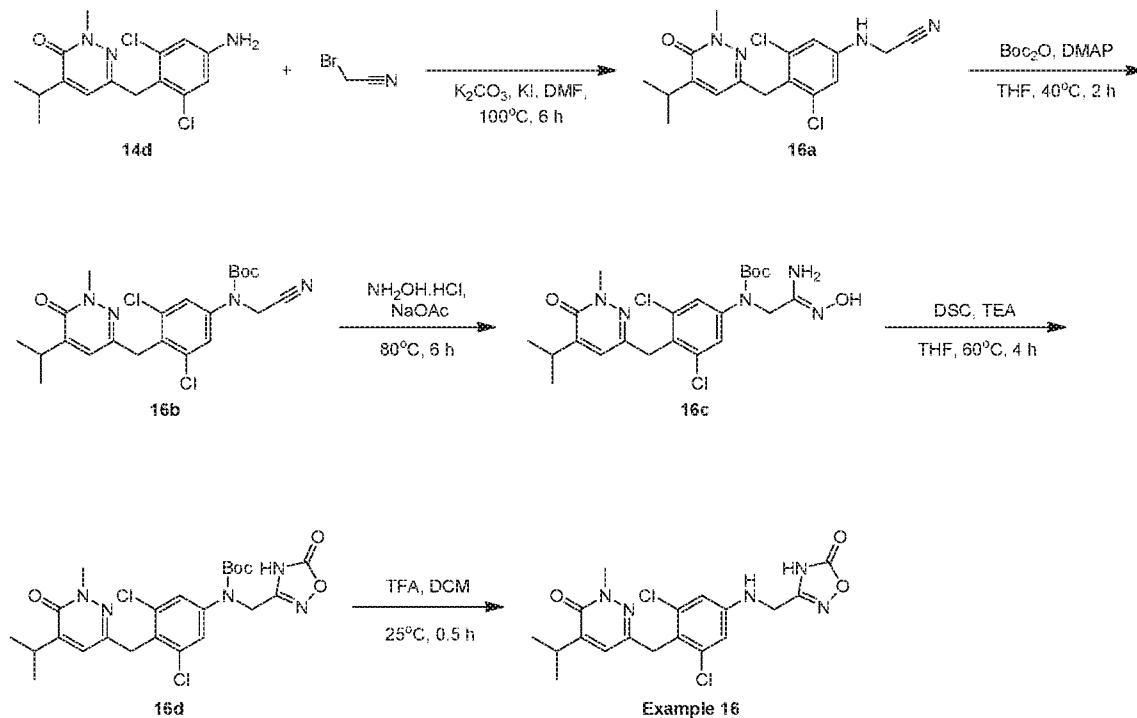
[0310] 6-(4-amino-2,6-dichlorobenzyl)-4-isopropyl-2-(4-methoxybenzyl)pyridazin-3(2H)-one (15a). To a solution of 6-(4-amino-2,6-dichlorobenzyl)-4-isopropylpyridazin-3(2H)-one (13e) (200 mg, 640.63 umol) in DMF (5 mL) was added PMB-Cl (120.39 mg, 768.75 umol), K₂CO₃ (106.25 mg, 768.75 umol). The mixture was stirred at 20°C for 16 hours. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOH (5 mL*3). The combined filtrates were concentrated to dryness to give a residue. The residue was purified by prep-TLC to give 15a. ¹H NMR (400 MHz, DMSO-d₆) δ ppm 7.17 (d, J = 8.6 Hz, 2H), 7.04 (s, 1H), 6.85 - 6.80 (m, 2H), 6.65 (s, 2H), 5.63 (s, 2H), 5.02 (s, 2H), 4.01 (s, 2H), 3.71 (s, 3H), 2.97 (td, J = 6.8, 13.5 Hz, 1H), 1.07 (d, J = 7.1 Hz, 6H).

[0311] 2-((3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)amino)acetonitrile (15b). To a solution of 6-(4-amino-2,6-dichlorobenzyl)-4-isopropyl-2-(4-methoxybenzyl)pyridazin-3(2H)-one (15a) (150 mg, 346.95 umol) and 2-bromoacetonitrile (416.16 mg, 3.47 mmol) in DMF (10 mL) was added K₂CO₃ (57.54 mg, 416.34 umol) and KI (28.80 mg, 173.47 umol). The mixture was stirred at 100°C for 6 hours. The reaction mixture was quenched by addition water 5 mL, and then extracted with EtOAc (5 mL * 3). The combined organic layers were washed with brine (5 mL), dried over

anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO_2 , petroleum ether : ethyl acetate = 1:1, according TLC) to give **15b**. ^1H NMR (400 MHz, DMSO-d_6) δ 7.15 (d, J = 8.6 Hz, 2H), 7.12 (s, 1H), 6.87 (s, 2H), 6.83 (d, J = 8.8 Hz, 2H), 6.76 (t, J = 6.7 Hz, 1H), 5.00 (s, 2H), 4.37 (d, J = 6.6 Hz, 2H), 4.08 (s, 2H), 3.71 (s, 3H), 2.99 (td, J = 6.7, 13.7 Hz, 1H), 1.08 (d, J = 6.8 Hz, 6H).

[0312] **tert-butyl (cyanomethyl)(3,5-dichloro-4-((5-isopropyl-1-(4-methoxybenzyl)-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)carbamate (15c)**. To a solution of 2-((3,5-dichloro-4-((5-isopropyl-1-(4-methoxybenzyl)-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)amino)acetonitrile (**15 b**) (133 mg, 282.15 umol) in THF (3 mL) was added DMAP (34.47 mg, 282.15 umol) and Boc_2O (184.74 mg, 846.45 umol). The mixture was stirred at 20°C for 1 hour. The reaction was clean according to TLC. LCMS showed one main peak with desired MS. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO_2 , petroleum ether : ethyl acetate = 1:1, according TLC) to give **15c**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{29}\text{H}_{32}\text{Cl}_2\text{N}_4\text{O}_4$) required m/z 571.2, LCMS found m/z 471.1/571.1; ^1H NMR (400 MHz, CD_3Cl) δ 7.35 - 7.33 (m, 2H), 7.31 (s, 1H), 6.91 (s, 1H), 6.82 (d, J = 8.8 Hz, 2H), 5.13 (s, 2H), 4.49 (s, 2H), 4.24 (s, 2H), 3.78 (s, 3H), 3.16 (quin, J = 6.9 Hz, 1H), 1.51 (s, 9H), 1.15 (d, J = 6.6 Hz, 6H).

[0313] **(Z)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-((5-isopropyl-1-(4-methoxybenzyl)-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)carbamate (15d)**. To a solution of tert-butyl (cyanomethyl)(3,5-dichloro-4-((5-isopropyl-1-(4-methoxybenzyl)-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)carbamate (**15c**) (100 mg, 174.98 umol) in DMF (3 mL) was added $\text{NH}_2\text{OH.HCl}$ (97.27 mg, 1.40 mmol) and NaOAc (114.83 mg, 1.40 mmol). The mixture was stirred at 80°C for 6 hours. LCMS showed one main peak with desired MS. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (5 mL*3). The combined filtrates were washed with brine 10 mL, dried over anhydrous Na_2SO_4 , filtered and concentrated under reduced pressure to give **15d** was used into the next step without further purification as an off-white gum. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{14}\text{H}_{15}\text{Cl}_2\text{N}_3\text{O}_2$) required m/z 604.2, LCMS found m/z 504.2/604.2; ^1H NMR (400 MHz, DMSO-d_6) δ 9.15 (s, 1H), 7.51 (s, 2H), 7.18 (s, 1H), 7.11 (d, J = 8.6 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 5.40 (s, 2H), 4.96 (s, 2H), 4.21 (s, 2H), 4.19 (s, 2H), 3.71 (s, 3H), 2.99 (td, J = 6.8, 13.5 Hz, 1H), 1.38 (s, 9H), 1.09 (d, J = 6.8 Hz, 6H).


[0314] **tert-butyl (3,5-dichloro-4-((5-isopropyl-1-(4-methoxybenzyl)-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (15e)**. To a solution of (Z)-tert-butyl (2-amino-2-

(hydroxyimino)ethyl)(3,5-dichloro-4-((5-isopropyl-1-(4-methoxybenzyl)-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)carbamate (**15d**) (40.00 mg, 66.17 umol) in THF (3 mL) was added TEA (13.39 mg, 132.34 umol) and DSC (22.04 mg, 86.02 umol) at 0°C. The mixture was stirred at 65°C for 16 hours. LCMS showed one main peak with desired MS. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by Prep-TLC (dichloromethane: methanol = 10:1) to give **15e**. MS mass calculated for $[M+1]^+$ ($C_{30}H_{33}Cl_2N_5O_6$) required m/z 630.1, LCMS found m/z 630.1.

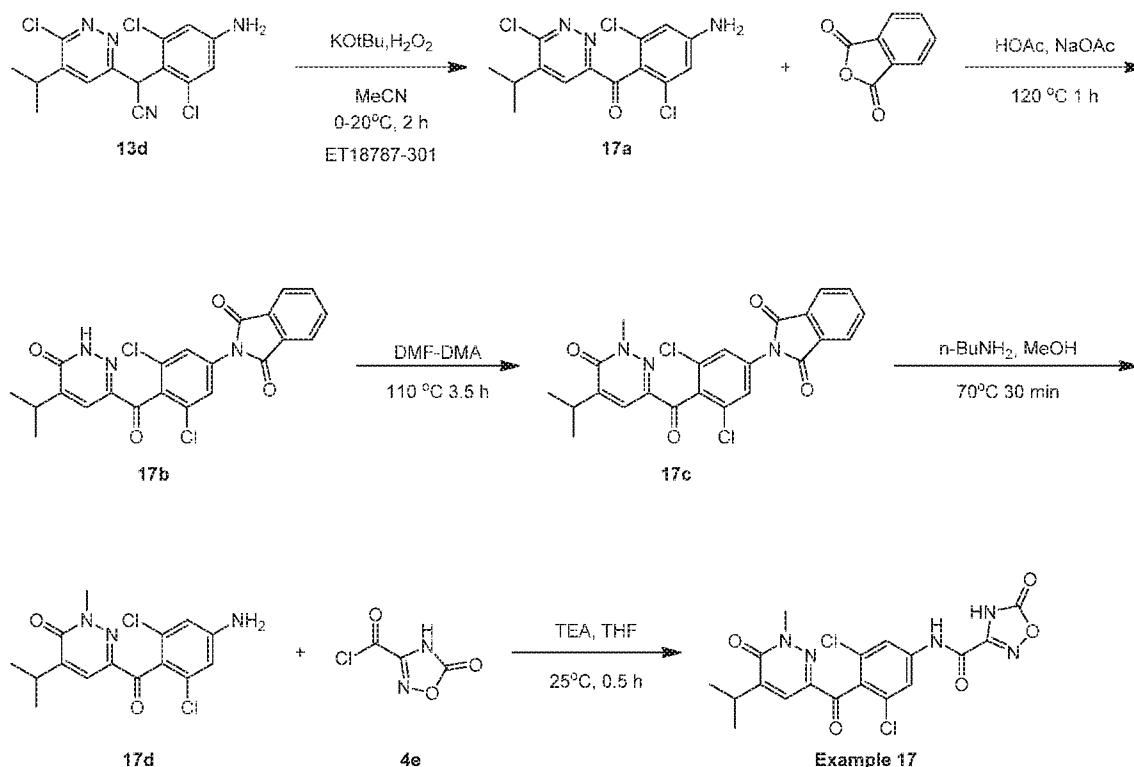
[0315] **tert-butyl (3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (**15f**)**. To a solution of **tert-butyl (3,5-dichloro-4-((5-isopropyl-1-(4-methoxybenzyl)-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (**15e**)** (17 mg, 21.57 umol) in ACN (2 mL) and H₂O (0.5 mL) was added CAN (47.30 mg, 86.28 umol). The mixture was stirred at 20°C for 4 hours. TLC showed **15e** was remained ~10% and one new spot was formed. The reaction mixture was concentrated under reduced pressure to remove ACN. The residue was diluted with brine 5 mL and extracted with EtOAc 30 mL (10 mL *3). The combined organic layers were washed with brine 10 mL, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give **15f**. MS mass calculated for $[M+1]^+$ ($C_{22}H_{25}Cl_2N_5O_5$) required m/z 510.1, LCMS found m/z 510.1.

[0316] **3-(((3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one (Example 15)**. A solution of **tert-butyl (3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (**15f**)** (33 mg, 64.66 umol) in EtOAc (2 mL) and HCl/EtOAc (2 M, 161.65 uL) was stirred at 20°C for 1 hour. TLC indicated starting material was consumed completely and one new spot was formed. LCMS detected the desired MS. The reaction mixture was concentrated under reduced pressure to remove EtOAc. The residue was purified by prep-HPLC (column: Luna C18 100*30 5u; mobile phase: [water (0.04%HCl)-ACN]; B%: 25%-50%, 12min) to give **Example 15**. MS mass calculated for $[M+1]^+$ ($C_{17}H_{17}Cl_2N_5O_3$) required m/z 410.0, LCMS found m/z 410.0. ¹H NMR (400 MHz, CD₃OD) δ 7.12 (s, 1H), 6.76 (s, 2H), 4.28 (s, 2H), 4.17 (s, 2H), 3.08 (td, J = 6.9, 13.6 Hz, 1H), 1.17 (d, J = 6.8 Hz, 6H).

Example 16: 3-(((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one

[0317] **2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)amino)acetonitrile (16a).** To a solution of 6-(4-amino-2,6-dichlorobenzyl)-4-isopropyl-2-methylpyridazin-3(2H)-one (**14d**) (150 mg, 459.81 umol) and 2-bromoacetonitrile (551.53 mg, 4.60 mmol) in DMF (5 mL) was added KI (38.16 mg, 229.91 umol) and K_2CO_3 (76.26 mg, 551.77 umol). The mixture was stirred at 100°C for 8 hours. LCMS showed desired mass. After cooling, the reaction mixture was partitioned between ethyl acetate (20 mL) and H_2O (20 mL). The organic phase was separated, washed with brine (10 mL), dried over Na_2SO_4 , filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (petroleum ether : ethyl acetate = 2:1) to give **16a**. $^1\text{H NMR}$ (400 MHz, DMSO-d_6) δ 7.10 (s, 1H), 6.85 (s, 2H), 6.75 (t, $J = 6.7$ Hz, 1H), 4.35 (d, $J = 6.6$ Hz, 2H), 4.07 (s, 2H), 3.53 (s, 3H), 3.01 (td, $J = 7.0, 13.7$ Hz, 1H), 1.10 (d, $J = 6.8$ Hz, 6H).

[0318] **tert-butyl (cyanomethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)carbamate (16b).** A mixture of 2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)amino)acetonitrile (**16a**) (20 mg, 54.76 umol), DMAP (6.69 mg, 54.76 umol) and Boc_2O (119.50 mg, 547.56 umol) in THF (2 mL) was stirred at 20°C for 0.5 hours. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (petroleum ether : ethyl acetate = 2:1) to give **16b**. $^1\text{H NMR}$ (400 MHz, CD_3OD) δ 7.45 (s, 2H), 7.22 - 7.19 (m,


1H), 4.67 - 4.64 (m, 2H), 4.35 - 4.32 (m, 2H), 3.66 - 3.62 (m, 3H), 3.17 - 3.09 (m, 1H), 1.51 - 1.47 (m, 9H), 1.19 (d, J = 7.0 Hz, 6H).

[0319] (Z)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)carbamate (16c). To a solution of tert-butyl (cyanomethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)carbamate (16b) (50 mg, 107.44 umol) in DMF (2 mL) was added NH₂OH.HCl (37.33 mg, 537.20 umol) and NaOAc (44.07 mg, 537.20 umol). The mixture was stirred at 80°C for 1 hour. LCMS showed desired mass. The reaction mixture was partitioned between ethyl acetate (20 mL) and H₂O (20 mL). The organic phase was separated, washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give 16c without further purification. MS mass calculated for [M+1]⁺ (C₂₂H₂₉Cl₂N₅O₄) required *m/z* 498.2, LCMS found *m/z* 498.2.

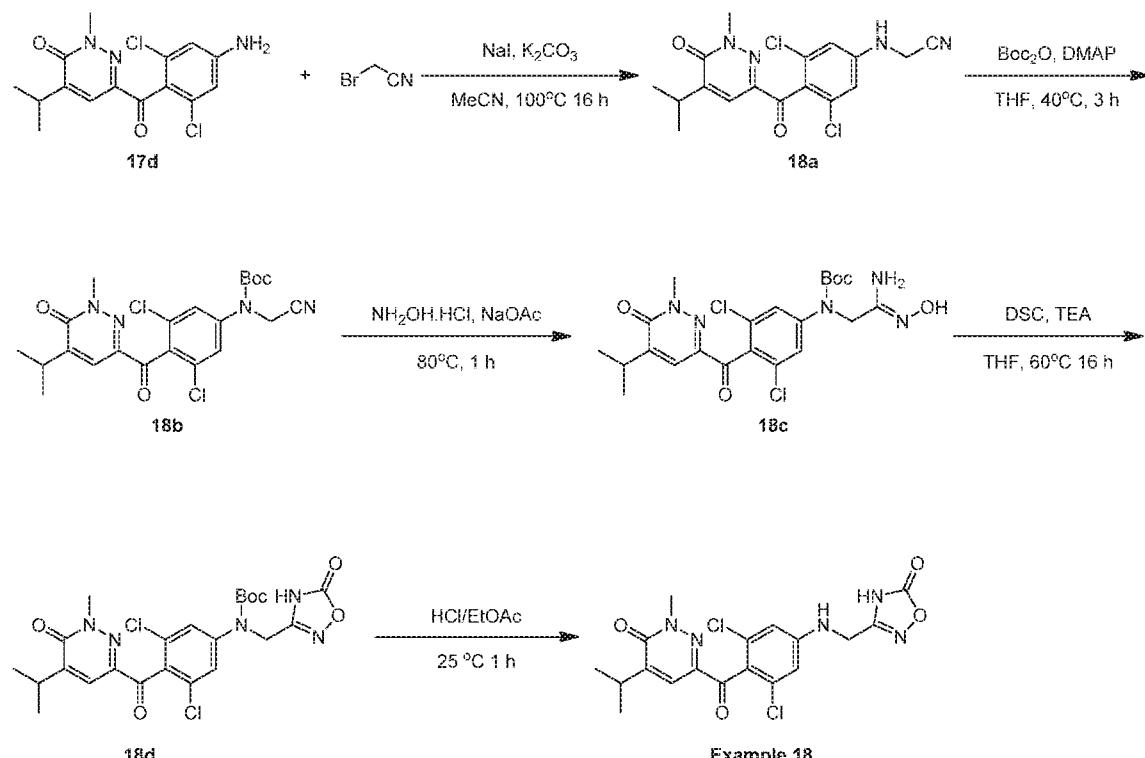
[0320] tert-butyl (3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (16d). To a solution of (Z)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)carbamate (16c) (26 mg, 52.17 umol) in THF (2 mL) was added DSC (17.37 mg, 67.82 umol) and TEA (10.56 mg, 104.33 umol). The mixture was stirred at 60°C for 16 hours. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure. The residue was purified by prep-TLC (dichloromethane: methanol = 10: 1) to give 16d. MS mass calculated for [M+1]⁺ (C₂₃H₂₇Cl₂N₅O₅) required *m/z* 524.1, LCMS found *m/z* 524.1.

[0321] 3-(((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one (Example 16). To a solution of tert-butyl (3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (16d) (24 mg, 45.77 umol) in EtOAc (1 mL) was added EtOAc/HCl (4 M, 11.44 uL). The mixture was stirred at 20°C for 2 hours. LCMS showed desired mass. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (FA) to give Example 16. MS mass calculated for [M+1]⁺ (C₁₈H₁₉Cl₂N₅O₃) required *m/z* 424.1, LCMS found *m/z* 424.1. ¹H NMR (400 MHz, CD₃OD) δ 7.10 - 7.06 (m, 1H), 6.76 (s, 2H), 4.27 (s, 2H), 4.16 (s, 2H), 3.70 - 3.67 (m, 3H), 3.14 - 3.06 (m, 1H), 1.15 (d, J = 6.8 Hz, 6H).

Example 17: N-(3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0322] **(4-amino-2,6-dichlorophenyl)(6-chloro-5-isopropylpyridazin-3-yl)methanone (17a).** To a solution of 2-(4-amino-2,6-dichloro-phenyl)-2-(6-chloro-5-isopropyl-pyridazin-3-yl)acetonitrile (**13d**) (0.9 g, 2.53 mmol) in CH_3CN (20 mL) was added t-BuOK (1 M, 2.40 mL) at 20°C . And the mixture was stirred at 20°C for 0.5 hours. Then the mixture was cooled to 0°C and H_2O_2 (573.85 mg, 5.06 mmol, 486.31 μL , 30% purity) was added in the mixture by dropwise. Then the mixture was stirred at 0°C for 0.5 hours, and stirred at 20°C for another 2 hours. Then saturated Na_2SO_3 solution (5 mL) was added in the mixture, and the mixture was stirred at 20°C for 1 hour. Then the mixture was concentrated in vacuum to remove CH_3CN . The residue was extracted with EtOAc (10 mL*2). The combined organic layer was washed with brine (5 mL), dried over Na_2SO_4 , filtered and concentrated in vacuum. The residue was purified by column silicagel chromatography (petroleum ether : ethyl acetate=30:1 to 5:1) to give **17a**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{14}\text{H}_{12}\text{Cl}_3\text{N}_3\text{O}$) required m/z 344.0, LCMS found m/z 344.0/346.0; $^1\text{H}\text{NMR}$ (400 MHz, DMSO-d_6) δ 8.24 (s, 1 H) 6.67 (s, 2 H) 6.21 (s, 2 H) 3.18 - 3.31 (m, 1 H) 2.50 (br s, 5 H) 1.27 - 1.39 (m, 6 H).

[0323] **2-(3,5-dichloro-4-(5-isopropyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)isoindoline-1,3-dione (17b).** To a solution of (4-amino-2,6-dichlorophenyl)(6-chloro-5-isopropylpyridazin-3-yl)methanone (**17a**) (260 mg, 797.11 μmol) in HOAc (10 mL) was added NaOAc (326.94 mg, 3.99 mmol) and isobenzofuran-1,3-dione


(129.87 mg, 876.82 umol). The mixture was stirred at 120°C for 1 hour. LCMS showed the desired mass. The mixture was concentrated in vacuum, the residue was diluted in H₂O (50 mL*2) and NaHCO₃ (50 mL*2). Then the mixture was extracted with ethyl acetate (30 mL*2). The combined organic layer was concentrated in vacuum. The residue was purified by prep-TLC to give 17b. MS mass calculated for [M+1]⁺ (C₂₂H₁₅Cl₂N₃O₄) required *m/z* 456.0, LCMS found *m/z* 456.0.

[0324] **2-(3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)isoindoline-1,3-dione (17c).** To a solution of 2-(3,5-dichloro-4-(5-isopropyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)isoindoline-1,3-dione (17b) (250 mg, 547.91 umol) in DMF-DMA (30 mL), the mixture was stirred at 110°C for 3.5 hours. LCMS showed desired mass. The reaction mixture was partitioned between H₂O 30 mL*2 and EtOAc 30 mL*2. The organic phase was concentrated under reduced pressure to give 17c. The crude product was used into the next step without further purification. MS mass calculated for [M+1]⁺ (C₂₃H₁₇Cl₂N₃O₄) required *m/z* 470.1, LCMS found *m/z* 470.1.

[0325] **6-(4-amino-2,6-dichlorobenzoyl)-4-isopropyl-2-methylpyridazin-3(2H)-one (17d).** To a solution of 2-(3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)isoindoline-1,3-dione (17c) (200 mg, 425.26 umol) in MeOH (2 mL) was added N-butyramine (190.39 mg, 1.28 mmol, 204.72 μ L). The mixture was stirred at 70°C for 0.5 hours. LCMS showed desired mass. The mixture was concentrated under vacuum. The residue was purified by prep-TLC to give 17d. MS mass calculated for [M+1]⁺ (C₁₅H₁₅Cl₂N₃O₂) required *m/z* 340.1, LCMS found *m/z* 340.1; ¹H NMR (400 MHz, CD₃OD) δ 7.85 (d, *J* = 0.9 Hz, 1H), 6.64 (s, 2H), 3.76 - 3.72 (m, 4H), 3.22 - 3.14 (m, 1H), 1.29 - 1.26 (m, 7H).

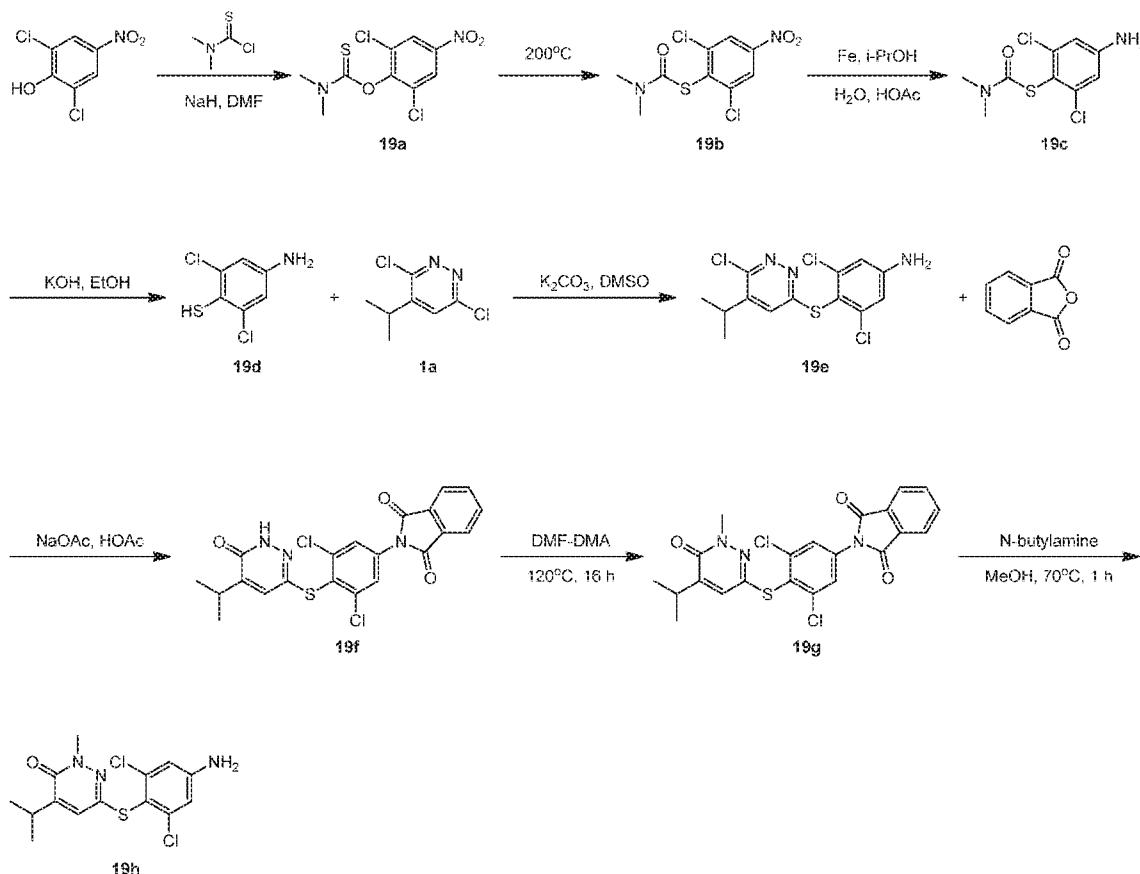
[0326] **N-(3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 17).** To a solution of 6-(4-amino-2,6-dichlorobenzoyl)-4-isopropyl-2-methylpyridazin-3(2H)-one (17d) (20 mg, 58.79 umol) in THF (5 mL) was added TEA (17.85 mg, 176.36 umol) and 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carbonyl chloride (4e) (13.10 mg, 88.18 umol). The mixture was stirred at 25°C for 0.5 hours. LCMS showed desired MS was detected. The reaction mixture was quenched by addition MeOH 1 mL at 25 °C, and then concentrated under reduced pressure to give a residue. The residue was checked by HPLC and purified by Prep-HPLC (column: Waters Xbridge 150*25 5u; mobile phase: [water (10mM NH₄HCO₃)-ACN]; B%: 20%-40%, 10min) to give Example 17. MS mass calculated for [M+1]⁺ (C₁₈H₁₅Cl₂N₅O₅) required *m/z* 452.0, LCMS found *m/z* 452.0; ¹H NMR (400 MHz, CD₃OD) δ 7.94 (br s, 2H), 7.93 (br d, *J* = 2.9 Hz, 1H), 3.73 (s, 3H), 3.26 - 3.11 (m, 1H), 1.30 (br d, *J* = 6.7 Hz, 6H).

Example 18: 3-(((3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazine-3-carbonyl)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one

[0327] **2-((3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazine-3-carbonyl)phenyl)amino)acetonitrile (18a).** To a solution of 6-(4-amino-2,6-dichlorobenzoyl)-4-isopropyl-2-methylpyridin-3(2H)-one (72 mg, 211.64 umol) (**17d**) in MeCN (2 mL) was added 2-bromoacetonitrile (126.93 mg, 1.06 mmol, 70.52 uL), NaI (63.45 mg, 423.28 umol) and K₂CO₃ (58.50 mg, 423.28 umol). The mixture was stirred at 100°C for 13 hours. The reaction mixture was extracted with ethyl acetate (20 mL*2) and H₂O (20 mL*2). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄ filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (petroleum ether : ethyl acetate= 1: 1) to give **18a**. MS mass calculated for [M+1]⁺ (C₁₇H₁₆Cl₂N₄O₂) required *m/z* 379.1, LCMS found *m/z* 379.2; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 0.7 Hz, 1H), 6.68 (s, 2H), 4.16 (d, *J* = 6.8 Hz, 2H), 3.77 (s, 3H), 3.27 - 3.19 (m, 1H), 1.28 (d, *J* = 6.8 Hz, 6H).

[0328] **tert-butyl (cyanomethyl)(3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazine-3-carbonyl)phenyl)carbamate (18b).** To a solution of 2-((3, 5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazine-3-carbonyl)phenyl)amino)-acetonitrile (**18a**) (53 mg, 139.75 umol) in THF (3 mL) was added DMAP (17.07 mg, 139.75 umol) and Boc₂O (274.51 mg, 1.26 mmol, 288.95 uL). The mixture was stirred at 25°C for 5

minutes. The mixture was partitioned between ethyl acetate (10 mL*2) and H₂O (10 mL*2). The combined organic phase was washed with brine (10 mL*2), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give a residue. The residue was purified by prep-TLC (petroleum ether : ethyl acetate= 1: 1) to give **18b**. ¹H NMR (400 MHz, CDCl₃) δ 7.87 - 7.84 (m, 1H), 7.35 (s, 2H), 4.52 (s, 2H), 3.75 (s, 3H), 3.28 - 3.19 (m, 1H), 1.54 (s, 9H), 1.29 (d, J = 7.0 Hz, 6H).


[0329] **(Z)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)carbamate (18c)**. To a solution of tert-butyl (cyanomethyl)(3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)carbamate (**18b**) (32 mg, 66.76 umol) in DMF (3 mL) was added NH₂OH.HCl (37.11 mg, 534.05 umol) and NaOAc (27.38 mg, 333.78 umol). The mixture was stirred at 80°C for 1 hour. After cooling to room temperature, the reaction mixture was concentrated under reduced pressure to remove DMF. The residue was partitioned between ethyl acetate (10 mL) and H₂O (3 mL) twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give **18c**. The product was used directly for the next step without further purification.

[0330] **tert-butyl (3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (18d)**. To a solution of (Z)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)carbamate (32 mg, 62.45 umol) (**18c**) in THF (3 mL) was added DSC (20.80 mg, 81.19 umol) and TEA (12.64 mg, 124.91 umol, 17.39 uL). The mixture was stirred at 60°C for 13 hours. LCMS showed the desired mass. The reaction mixture was extracted with ethyl acetates 20 mL*2 and H₂O 20 mL*2. The combined organic layers were washed with brine 20 mL, dried over Na₂SO₄, filtered and concentrated under reduced pressure to give **18d** as a yellow solid. The crude product was used for the next step without further purification. MS mass calculated for [M+1]⁺ (C₂₃H₂₅Cl₂N₅O₆) required *m/z* 538.1, LCMS found *m/z* 438.2/538.2.

[0331] **3-(((3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one (Example 18)**. A solution of tert-butyl (3,5-dichloro-4-(5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazine-3-carbonyl)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (**18d**) (22 mg, 40.86 umol) in EtOAc/HCl (2 M, 2 mL). The mixture was stirred at 25°C for 1 hour. LCMS showed desired mass. The mixture was concentrated in vacuum. The residue was purified by prep-HPLC (FA) to give **Example 18**. MS mass calculated for [M+1]⁺ (C₁₈H₁₇Cl₂N₅O₄)

required *m/z* 438.1, LCMS found *m/z* 438.2; ¹H NMR (400 MHz, MeOD) δ 7.86 (s, 1H), 6.78 - 6.71 (m, 2H), 4.32 (s, 2H), 3.72 (s, 3H), 3.18 (td, *J* = 6.8, 13.7 Hz, 1H), 1.27 (d, *J* = 6.8 Hz, 6H).

Scheme D: 6-((4-amino-2,6-dichlorophenyl)thio)-4-isopropyl-2-methylpyridazin-3(2H)-one (19h)

[0332] **O-(2,6-dichloro-4-nitrophenyl) dimethylcarbamothioate (19a).** To a solution of 2,6-dichloro-4-nitrophenol (1 g, 4.81 mmol) in DMF (20 mL) was added NaH (288.44 mg, 7.21 mmol, 60% purity). Then the mixture was stirred at 20°C for 1 hour. Then N,N-dimethylcarbamothioyl chloride (950.81 mg, 7.69 mmol) was added in the mixture. The mixture was stirred at 20°C for 16 hours. The mixture was extracted with EtOAc (20 mL*2). The combined organic layer was washed with brine (15 mL), dried over Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by column silicagel chromatography (petroleum ether : ethyl acetate= 20: 1 to 5: 1) to give 19a. ¹HNMR (400MHz, CDCl₃) δ 8.28 (s, 2H) 3.50 (s, 3H) 3.44 (s, 3H).

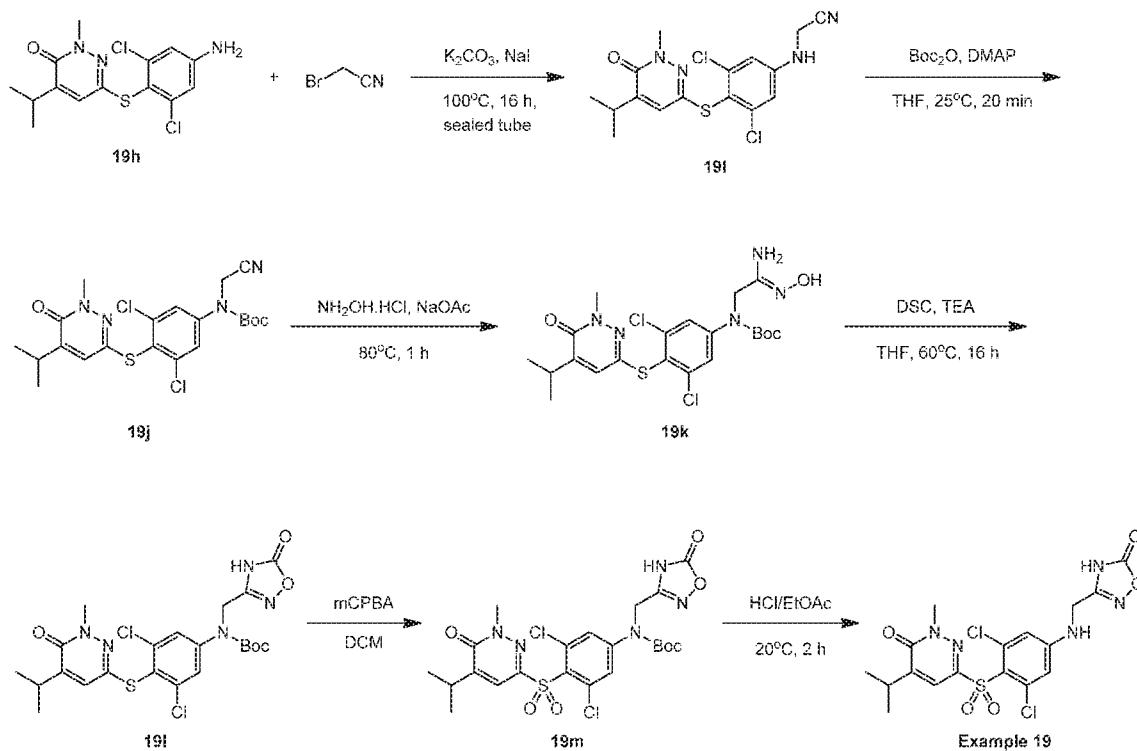
[0333] **S-(2,6-dichloro-4-nitrophenyl) dimethylcarbamothioate (19b).** O-(2,6-dichloro-4-nitrophenyl) dimethylcarbamothioate (19a) (0.9 g, 3.05 mmol) was added in a flask and stirred

at 200°C for 4 hours. LCMS showed desired MS. The mixture was cooled to 20°C to give **19b**. The crude reaction product was used directly in next step. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.44 (s, 2H) 3.13 (br s, 3H) 2.95 (br s, 3H).

[0334] **O-(2,6-dichloro-4-nitrophenyl) dimethylcarbamothioate (19c).** To a solution of **S-(2,6-dichloro-4-nitrophenyl) dimethylcarbamothioate (19b)** (0.8 g, 2.71 mmol) in AcOH (10 mL), 2-propanol (20 mL) and H₂O (10 mL) was added Fe (1.06 g, 18.97 mmol). Then the mixture was stirred at 95°C for 2 hours. The mixture was cooled to 20°C, and saturated NaHCO₃ solution was added in the mixture until pH= 8~9 and filtered. Then the filtrate was concentrated in vacuum to remove most solvent. Then the residue was extracted with H₂O (50 mL) and EtOAc (50 mL*2). The combined organic layer was dried over Na₂SO₄, filtered and concentrated in vacuum to give **19c**. The product was used directly in next step. ¹H NMR (400 MHz, CDCl₃) δ 6.73 (s, 2H) 3.98 (br s, 2H) 2.90 - 3.25 (m, 6H).

[0335] **4-amino-2,6-dichlorobzenenethiol (19d).** To a solution of **O-(2,6-dichloro-4-nitrophenyl) dimethylcarbamothioate (19c)** (0.7 g, 2.64 mmol) in EtOH (20 mL) was added KOH (3 M, 20 mL). Then the mixture was refluxed at 100°C for 16 hours. LCMS showed the reaction was completed. The mixture was cooled to 20°C, and HCl solution (1M) was added in the mixture until pH= 2~3. The mixture was extracted with EtOAc (50 mL). The organic layer was dried over Na₂SO₄, filtered and concentrated in vacuum to give **19d**. The product was used directly in next step. ¹H NMR (400 MHz, CDCl₃) δ 7.27 (s, 2H) 6.70 (s, 2H) 4.23 (s, 1H) 3.70 (br s, 2H).

[0336] **3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)thio)aniline (19e).** To a solution of **4-amino-2,6-dichlorobzenenethiol (19d)** (520 mg, 2.68 mmol) and **3,6-dichloro-4-isopropylpyridazine (1a)** (511.90 mg, 2.68 mmol) in DMSO (15 mL) was added K₂CO₃ (1.11 g, 8.04 mmol). Then the mixture was stirred at 95°C for 16 hours. After cooling to room temperature, the mixture was diluted with water (50 mL) and extracted with EtOAc (50 mL*2). The combined organic layer was washed with brine (30 mL), dried over Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by Prep-TLC (petroleum ether : ethyl acetate=2:1) to give **19e**. ¹H NMR (400 MHz, CDCl₃) δ ppm 7.01 (s, 1H) 6.78 (s, 2H) 4.10 (br s, 2H) 3.14 - 3.27 (m, 1H) 1.23 (d, *J* = 6.84 Hz, 6H).


[0337] **2-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)thio)phenyl)isoind-oline-1,3-dione (19f).** To a mixture of **3,5-dichloro-4-((6-chloro-5-isopropylpyridazin-3-yl)thio)aniline (19e)** (1 g, 2.87 mmol) and isobenzofuran-1,3-dione (424.79 mg, 2.87 mmol) in HOAc (8 mL) was added NaOAc (1.18 g, 14.34 mmol). The mixture was stirred at 120°C for 16 hours. The reaction mixture was concentrated under

reduced pressure to remove AcOH. The solid was dissolved in water and the pH was adjusted to 9 with NaHCO₃ (10 mL). Then the mixture was partitioned with ethyl acetate (30 mL) twice. The combined organic phase was washed with brine (10 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The solid was stirred in ethyl acetate (10 mL) and petroleum ether (50 mL), then filtered and dried to give 19f. The product was used directly for the next step without further purification. ¹H NMR (400 MHz, DMSO) δ 8.00 - 8.05 (m, 2 H) 7.93 - 7.97 (m, 2 H) 7.84 (s, 2 H) 7.32 (d, J = 0.86 Hz, 1 H) 3.01 (quin, J = 6.79 Hz, 1 H) 1.14 (d, J = 6.85 Hz, 6 H).

[0338] **2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)thio)-phenyl)isoindoline-1,3-dione (19g).** A solution of 2-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)thio)phenyl)isoindoline-1,3-dione (19f) (955 mg, 2.07 mmol) in DMF-DMA (8 mL) was stirred at 120°C for 16 hr. The mixture was concentrated in vacuum to give a residue. The residue was partitioned between ethyl acetate (10 mL) and H₂O (3 mL) twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give 19g. The product was used directly for the next step without further purification. MS mass calculated for [M+1]⁺ (C₂₂H₁₇Cl₂N₃O₃S) required m/z 474.0, LCMS found m/z 474.0.

[0339] **6-((4-amino-2,6-dichlorophenyl)thio)-4-isopropyl-2-methylpyridazin-3(2H)-one (19h).** A mixture of 2-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)thio)-phenyl)isoindoline-1,3-dione (19g) (980 mg, 2.07 mmol) and butan-1-amine (453.29 mg, 6.20 mmol, 612.55 uL in MeOH (2 mL) was stirred at 70°C for 1 hour. The mixture was concentrated in vacuum to give a residue. The residue was purified by preparative TLC (petroleum ether : ethyl acetate=1:1) to give 19h. MS mass calculated for [M+1]⁺ (C₁₄H₁₅Cl₂N₃OS) required m/z 344.0, LCMS found m/z 344.1; ¹H NMR (400 MHz, CD₃OD) δ 6.85 (d, J = 0.73 Hz, 1 H) 6.80 (s, 2 H) 3.64 (s, 3 H) 3.09 (qd, J = 7.01, 6.48 Hz, 1 H) 1.12 (d, J = 6.97 Hz, 6 H).

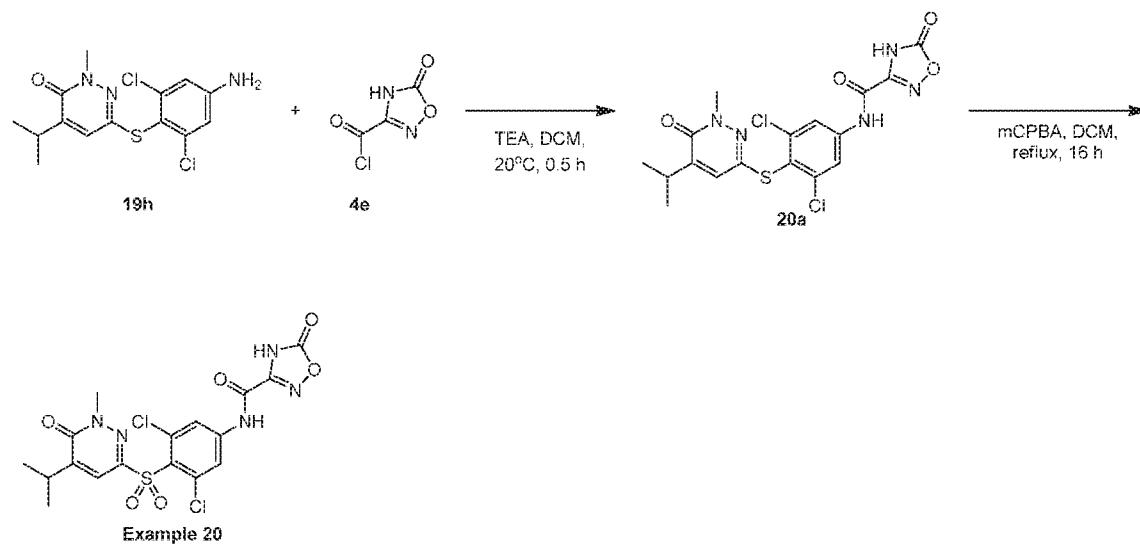
Example 19: 3-(((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)sulfonyl)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one

[0340] **2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)thio)phenyl)amino)acetonitrile (19i).** To a solution of 6-((4-amino-2,6-dichlorophenyl)thio)-4-isopropyl-2-methylpyridazin-3(2H)-one (**19h**) (420 mg, 1.22 mmol) in ACN (3 mL) was added 2-bromoacetonitrile (731.69 mg, 6.10 mmol, 406.49 uL), K₂CO₃ (337.23 mg, 2.44 mmol) and NaI (365.75 mg, 2.44 mmol). The mixture was stirred at 100°C for 16 hours. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (10 mL*3). The combined filtrates were concentrated to dryness to give a residue. The residue was purified by preparative TLC (petroleum ether : ethyl acetate=1:1) to give **19i**. MS mass calculated for [M+1]⁺ (C₁₆H₁₆Cl₂N₄OS) required m/z 383.3, LCMS found m/z 383.0; ¹H NMR (400 MHz, CDCl₃) δ 6.82 (s, 2H) 6.79 (d, J = 0.73 Hz, 1H) 4.39 (d, J = 6.85 Hz, 1H) 4.12 - 4.24 (m, 2H) 3.77 (s, 1H) 3.67 (s, 3H) 3.11 - 3.20 (m, 1H) 1.16 (d, J = 6.85 Hz, 6H).

[0341] **tert-butyl (cyanomethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)thio)phenyl)carbamate (19j).** To a solution of 2-((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)thio)phenyl)amino)acetonitrile (**19i**) (420 mg, 1.10 mmol) in THF (3 mL) was added DMAP (133.87 mg, 1.10 mmol) and Boc₂O (717.45 mg, 3.29 mmol) at 25°C. The mixture was stirred at 25°C for 20 minutes. The mixture was partitioned between ethyl acetate 10 mL and H₂O 3 mL twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in

vacuum. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate = 3:1) to give 19j. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (s, 2H) 6.84 (s, 1H) 4.53 (s, 2H) 3.64 (s, 3H) 3.18 (dt, J = 13.66, 6.80 Hz, 1H) 1.53 (s, 9H) 1.18 (d, J = 6.85 Hz, 6H).

[0342] (Z)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)thio)phenyl)carbamate (19k). To a solution of tert-butyl (cyanomethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)thio)phenyl)carbamate (19j) (250 mg, 517.16 umol, 1 eq) in DMF (3 mL) was added NH₂OH.HCl (287.50 mg, 4.14 mmol, 8 eq) and NaOAc (339.38 mg, 4.14 mmol, 8 eq) at 25°C. The mixture was stirred at 80°C for 1 hour. The reaction mixture was concentrated under reduced pressure to remove DMF. The residue was diluted with water (5 mL) and extracted with ethyl acetate (15 mL, twice). The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate = 1:1) to give 19k. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H) 7.60 (s, 2H) 7.05 (d, J = 0.66 Hz, 1H) 4.31 (s, 2H) 3.59 (s, 3H) 3.11 (dt, J = 13.67, 6.84 Hz, 1H) 1.49 (s, 9H) 1.17 (d, J = 7.06 Hz, 6H).

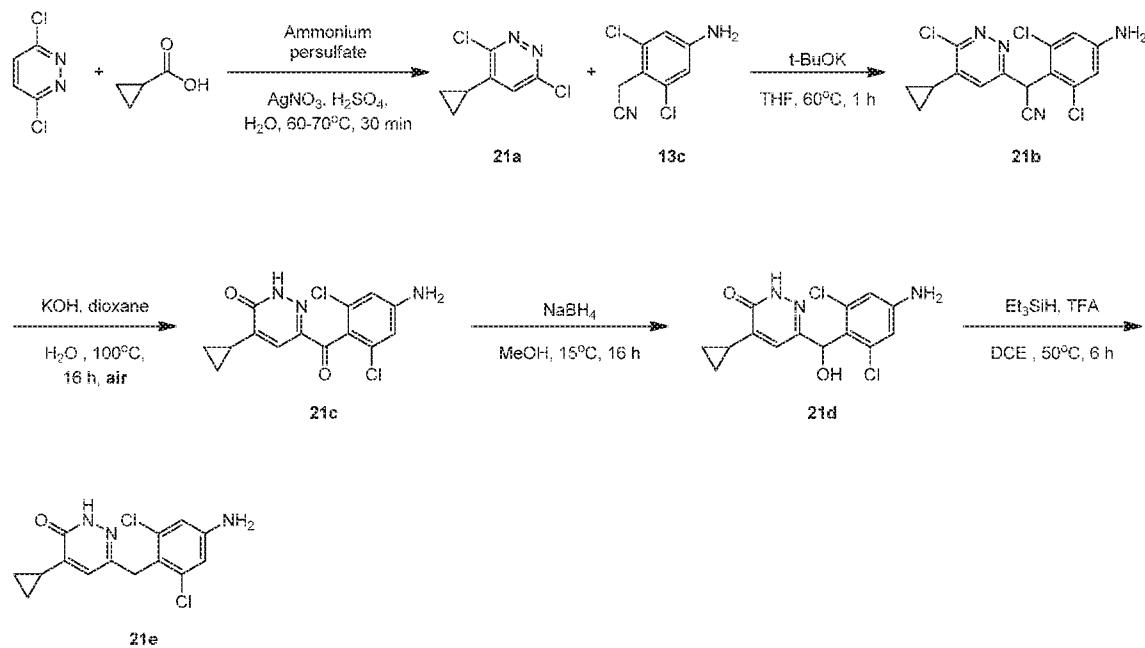

[0343] tert-butyl (3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)thio)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (19l). To a solution of (Z)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)thio)phenyl)carbamate (19k) (220 mg, 425.99 umol) in THF (4 mL) was added DSC (141.86 mg, 553.79 umol) and TEA (86.21 mg, 851.99 umol, 118.59 uL). The mixture was stirred at 60°C for 16 hours. The mixture was concentrated in vacuum to give a residue. The residue was purified by prep-TLC (SiO₂, DCM: MeOH = 10:1) to give 19l. MS mass calculated for [M+1]⁺ (C₂₂H₂₅Cl₂N₅O₅S) required m/z 542.4, LCMS found m/z 542.1; ¹H NMR (400 MHz, CD₃OD) δ 7.63 (s, 2H) 7.04 (d, J = 0.73 Hz, 1H) 4.82 (s, 2H) 3.58 (s, 3H) 3.07 - 3.15 (m, 1H) 1.48 (s, 9H) 1.16 (d, J = 6.85 Hz, 6H).

[0344] tert-butyl(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)sulfonyl)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (19m). To a solution of tert-butyl (3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)thio)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (19l) (20 mg, 36.87 umol) in DCM (2 mL) was added m-CPBA (37.43 mg, 184.35 umol, 85% purity). Then the mixture was stirred at 60°C for 48 hours. The reaction mixture was quenched by addition Na₂SO₃ (23 mg) at 20°C and was stirred for 30 minutes. Then the mixture was concentrated under reduced pressure to give 19m. MS mass calculated for [M+1]⁺ (C₂₂H₂₅Cl₂N₅O₇S)

required *m/z* 574.4, LCMS found *m/z* 574.1. The product was used directly for the next step without further purification.

[0345] **3-(((3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)sulfonyl)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one (Example 19).** A solution of tert-butyl (3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)sulfonyl)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (**19m**) (20 mg, 34.82 umol) in HCl/EtOAc (4 M, 2 mL) was stirred at 20°C for 2 hours. The mixture was concentrated in vacuum to give a residue. The residue was purified by Prep-HPLC (column: Luna C18 100*30 5u; mobile phase: [water (0.04%HCl)-ACN]; B%: 20%-50%, 11min) to give **Example 19**. MS mass calculated for [M+1]⁺ (C₁₇H₁₇Cl₂N₅O₅S) requires *m/z* 474.3, LCMS found *m/z* 474.0; ¹HNMR (400 MHz, CD₃OD) δ 7.74 (s, 1H) 6.83 (s, 2H) 4.38 (s, 2H) 3.72 (s, 3H) 3.13 (br d, *J* = 1.71 Hz, 1H) 1.24 (d, *J* = 6.85 Hz, 6H).

Example 20: N-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)sulfonyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide



[0346] **N-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)thio)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (20a).** To a mixture of 6-((4-amino-2,6-dichlorophenyl)thio)-4-isopropyl-2-methylpyridazin-3(2H)-one (**19h**) (20 mg, 58.10 umol) in DCM (5 mL) was add TEA (29.39 mg, 290.48 umol, 40.43 uL) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (**4e**) (8.63 mg, 58.10 umol), the mixture was stirred at 25°C for 0.2 hours. The reaction mixture was partitioned between H₂O (5 mL) and EtOAc (5 mL). The organic phase was separated, washed with brine (5 mL*3), dried over Na₂SO₄,

filtered and concentrated under reduced pressure to give a residue. The crude product was purified by reversed-phase HPLC (0.1% FA condition) to give **20a**. MS mass calculated for $[M+1]^+$ ($C_{17}H_{15}Cl_2N_5O_4S$) required m/z 456.0, LCMS found m/z 456.1; 1H NMR (400 MHz, CD_3OD) δ 7.94 - 8.14 (m, 2H) 7.07 (s, 1H) 3.52 - 3.64 (m, 3H) 3.05 - 3.18 (m, 1H) 1.17 (d, J = 6.85 Hz, 6H).

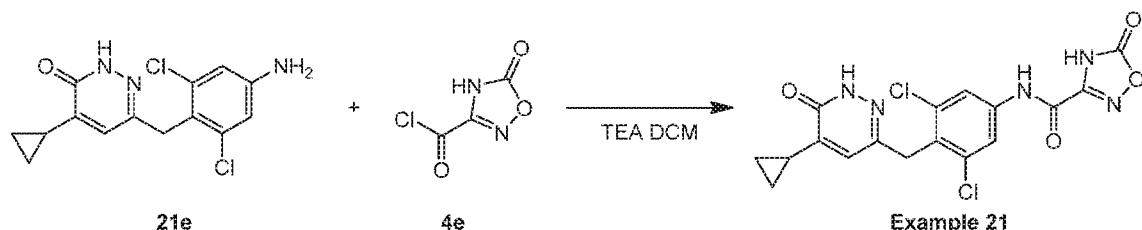
[0347] **N-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)sulfonyl)-phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 20).** The mixture of **N-(3,5-dichloro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)thio)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (20a)** (8 mg, 17.53 umol) in DCM (1 mL) was added MCPBA (21.36 mg, 105.19 umol, 85% purity), the mixture was stirred at 50°C for 16 hours. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by Prep-HPLC (aqueous acetonitrile w/ TFA) to give **Example 20**. MS mass calculated for $[M+1]^+$ ($C_{17}H_{15}Cl_2N_5O_6S$) required m/z 488.0, LCMS found m/z 488.1; 1H NMR (400 MHz, DMSO) δ 11.40 - 11.66 (m, 1H) 8.09 - 8.13 (m, 2H) 7.72 - 7.75 (m, 1H) 3.62 - 3.65 (m, 3H) 3.08 - 3.11 (m, 1H) 1.16 - 1.21 (m, 6H).

Scheme E: 6-(4-amino-2,6-dichlorobenzyl)-4-cyclopropylpyridazin-3(2H)-one (21e)

[0348] **3,6-dichloro-4-cyclopropylpyridazine (21a).** H_2SO_4 (9.88 g, 100.69 mmol) was added to a solution of 3,6-dichloropyridazine (5 g, 33.56 mmol), cyclopropanecarboxylic acid (2.89 g, 33.56 mmol) and $AgNO_3$ (5.70 g, 33.56 mmol) in H_2O (100 mL) at 60°C, then

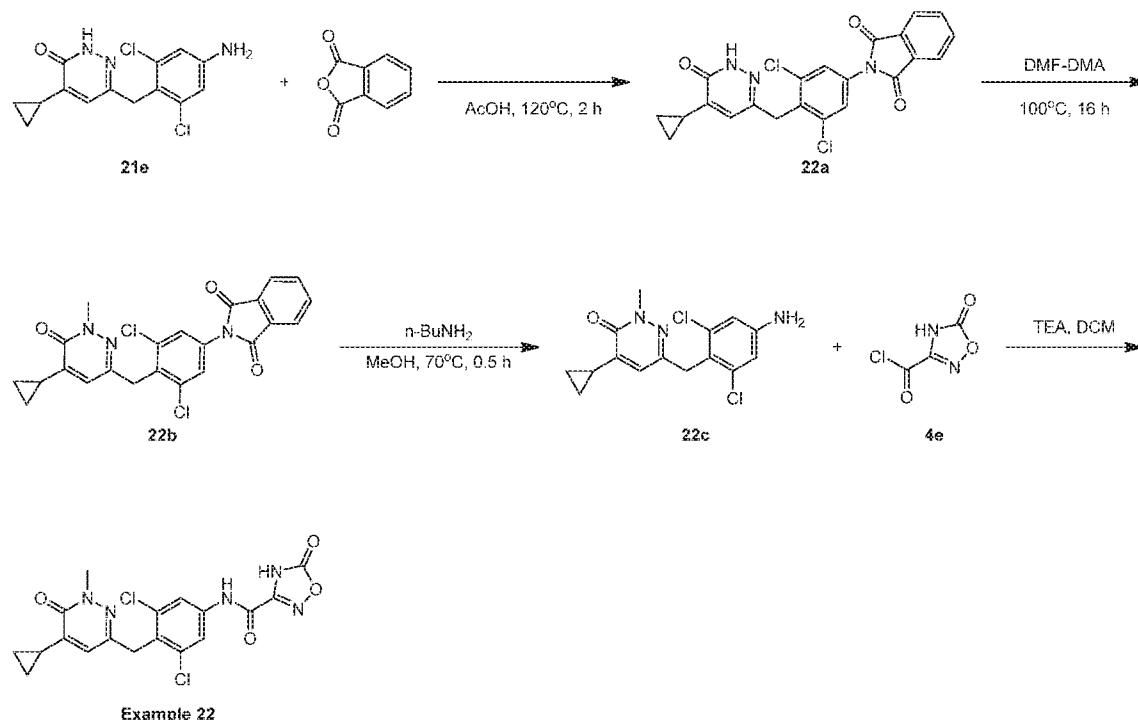
ammonium persulfate (22.98 g, 100.69 mmol) in H₂O (100 mL) was added to the mixture at 70°C, the resulting mixture was stirred at 70°C for 30 minutes. The mixture was extracted with ethyl acetate (100 mL * 2), the combined organic phase was washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated, the residue was purified by MPLC (silica gel, petroleum ether : ethyl acetate = 5:1) to give **21a**. ¹HNMR (400 MHz, CD₃Cl) δ 6.94 (s, 1H), 2.27 - 2.14 (m, 1H), 1.37 - 1.23 (m, 2H), 0.91 - 0.77 (m, 2H).

[0349] **2-(4-amino-2,6-dichlorophenyl)-2-(6-chloro-5-cyclopropylpyridazin-3-yl)acetonitrile (21b).** To a solution of 3,6-dichloro-4-cyclopropylpyridazine (**21a**) (0.4 g, 2.12 mmol) and 2-(4-amino-2,6-dichlorophenyl)acetonitrile (**13c**) (467.96 mg, 2.33 mmol) in THF (10 mL) was added t-BuOK (1 M, 4.23 mL) drop wise at 60°C, the resulting mixture was stirred at 60°C for 40 minutes. After cooling, the mixture was diluted with ethyl acetate (20 mL), washed with brine (20 mL), the organic phase was dried over Na₂SO₄, filtered and concentrated, the residue was purified by silica gel chromatography (petroleum ether : ethyl acetate = 2:1) to give **21b**. ¹H NMR (400 MHz, DMSO-d₆) δ 7.00 (s, 1H), 6.71 - 6.68 (m, 2H), 6.46 (s, 1H), 6.02 (s, 2H), 2.22 - 2.14 (m, 1H), 1.25 - 1.19 (m, 2H), 0.88 - 0.75 (m, 2H).


[0350] **6-(4-amino-2,6-dichlorobenzoyl)-4-cyclopropylpyridazin-3(2H)-one (21c).** To a solution of 2-(4-amino-2,6-dichlorophenyl)-2-(6-chloro-5-cyclopropylpyridazin-3-yl)acetonitrile (**21b**) (365 mg, 1.03 mmol) in dioxane (5 mL) and H₂O (10 mL) was added KOH (1.16 g, 20.64 mmol). The mixture was stirred at 100°C for 16 hours under O₂. LCMS showed one main peak with the desired MS. The reaction mixture was concentrated under reduced pressure to remove dioxane. The residue was diluted with aqueous HCl 2M to adjust the pH=5-7 and extracted with EtOAc (20 mL * 4). The combined organic layers were washed with brine 20 mL, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give **21c**. MS mass calculated for [M+1]⁺ (C₁₄H₁₁Cl₂N₃O₂) required *m/z* 324.0, LCMS found *m/z* 324.1.

[0351] **6-((4-amino-2,6-dichlorophenyl)(hydroxy)methyl)-4-cyclopropylpyridazin-3(2H)-one (21d).** To a solution of 6-(4-amino-2,6-dichlorobenzoyl)-4-cyclopropylpyridazin-3(2H)-one (**21c**) (100 mg, 308.49 umol) in MeOH (5 mL) was added NaBH₄ (116.70 mg, 3.08 mmol) at 0°C. The mixture was stirred at 15°C for 16 hours. LCMS detected the desired MS. The reaction mixture was concentrated under reduced pressure to remove MeOH. The residue was diluted with water (5 mL) and extracted with EtOAc (10 mL * 3). The combined organic layers were washed with brine (5 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, ethyl acetate: petroleum ether = 2:1, TLC) to give **21d**. MS mass calculated for [M+1]⁺ (C₁₄H₁₃Cl₂N₃O₂) required *m/z* 326.1, LCMS found *m/z* 326.1; ¹H NMR (400 MHz, DMSO-d₆) δ 12.58 (s, 1H),

7.16 (s, 1H), 6.54 (s, 2H), 6.07 - 6.05 (m, 1H), 6.02 - 6.00 (m, 1H), 5.64 (s, 2H), 2.12 - 2.07 (m, 1H), 1.01 (br dd, $J = 2.8, 8.5$ Hz, 2H), 0.81 (br t, $J = 6.0$ Hz, 2H).


[0352] **6-(4-amino-2,6-dichlorobenzyl)-4-cyclopropylpyridazin-3(2H)-one (21e).** To a solution of 6-((4-amino-2,6-dichlorophenyl)(hydroxy)methyl)-4-cyclopropylpyridazin-3(2H)-one (21d) (50 mg, 153.29 μ mol) in TFA (1 mL) and DCE (5 mL) was added Et₃SiH (89.12 mg, 766.46 μ mol). The mixture was stirred at 50°C for 6 hours. LCMS showed one main peak the desired MS. The reaction mixture was diluted with saturated NaHCO₃ (5 mL) and extracted with DCM (10 mL * 2). The combined organic layers were washed with brine (5 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, ethyl acetate: petroleum ether = 2:1; TLC) to give 21e. MS mass calculated for [M+1]⁺ (C₁₄H₁₃Cl₂N₃O) required *m/z* 310.0, LCMS found *m/z* 310.1; ¹H NMR (400 MHz, CDCl₃) δ 10.39 (br s, 2H), 6.68 (s, 2H), 6.64 (s, 1H), 4.10 (s, 2H), 2.19 - 2.14 (m, 1H), 1.12 - 1.06 (m, 2H), 0.85 - 0.79 (m, 2H).

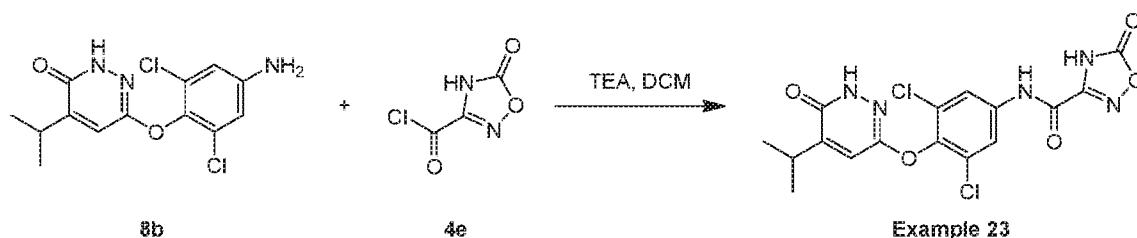
Example 21: N-(3,5-dichloro-4-((5-cyclopropyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0353] **N-(3,5-dichloro-4-((5-cyclopropyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 21).** To a solution of 6-(4-amino-2,6-dichlorobenzyl)-4-cyclopropylpyridazin-3(2H)-one (21e) (16 mg, 51.58 μ mol) in DCM (2 mL) was added TEA (15.66 mg, 154.75 μ mol) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (4e) (11.49 mg, 77.37 μ mol). The mixture was stirred at 25°C for 0.5 hours. LCMS showed the desired MS. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Xtimate C18 150*25mm*5um; mobile phase: [water (10mM NH₄HCO₃)-ACN]; B%: 20%-40%, 10 min) to give Example 21. MS mass calculated for [M+1]⁺ (C₁₇H₁₃Cl₂N₅O₄) required *m/z* 422.0, LCMS found *m/z* 422.0; ¹H NMR (400 MHz, CD₃OD) δ 7.86 (s, 2H), 6.88 (s, 1H), 4.23 (s, 2H), 2.15 - 2.06 (m, 1H), 1.10 - 1.04 (m, 2H), 0.85 - 0.79 (m, 2H).

Example 22: N-(3,5-dichloro-4-((5-cyclopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

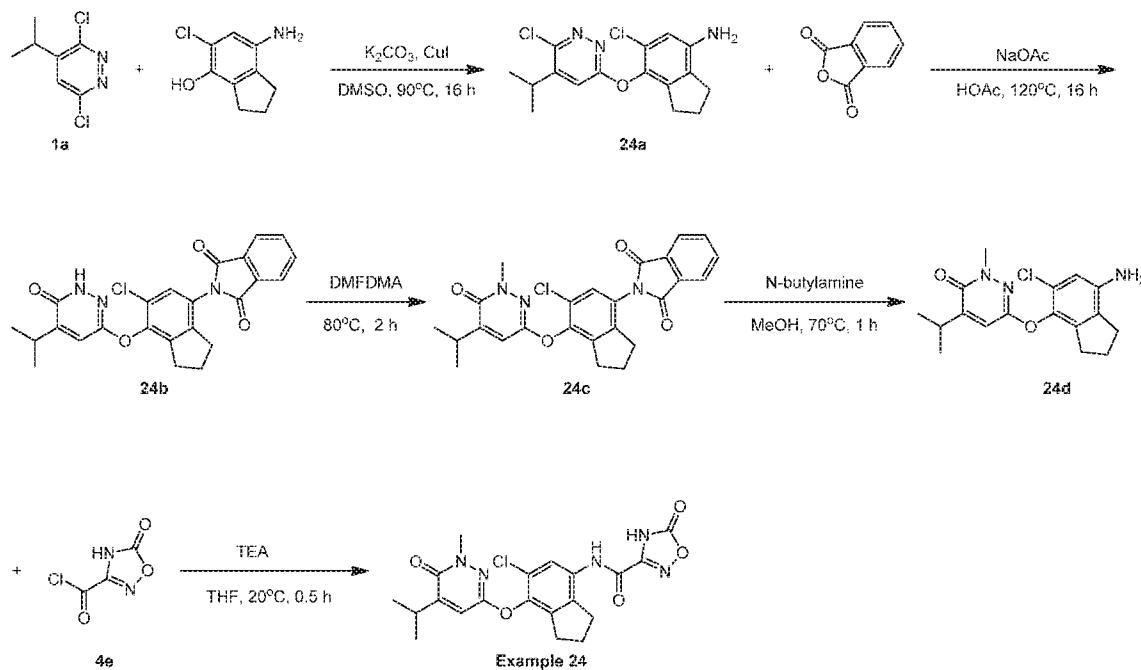
Example 22

[0354] **2-(3,5-dichloro-4-((5-cyclopropyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)isoindoline-1,3-dione (22a).** To a solution of 6-(4-amino-2,6-dichlorobenzyl)-4-cyclopropylpyridazin-3(2H)-one (21e) (44 mg, 141.85 umol) in AcOH (3 mL) was added isobenzofuran-1,3-dione (22.06 mg, 148.95 umol). The mixture was stirred at 120°C for 2 hours. TLC showed one new spot was formed. The reaction mixture was concentrated under reduced pressure to remove AcOH. The residue was diluted with water 2 mL and added saturated aqueous NaHCO₃ to modified pH=9~10. The suspension was extracted with EtOAc 20 mL (5mL*4), the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give 22a was used into the next step without further purification as light yellow oil. MS mass calculated for [M+1]⁺ (C₂₂H₁₅Cl₂N₃O₃) required m/z 440.1, LCMS found m/z 440.1.


[0355] **2-(3,5-dichloro-4-((5-cyclopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)isoindoline-1,3-dione (22b).** A solution of 2-(3,5-dichloro-4-((5-cyclopropyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)phenyl)isoindoline-1,3-dione (22a) (70 mg, 158.99 umol) in DMF-DMA (5 mL) was degassed and purged with N₂ for 3 times, and then the mixture was stirred at 100°C for 3hr under N₂ atmosphere. LCMS showed 22a was consumed completely and one main peak with the desired MS. The reaction mixture was

concentrated under reduced pressure to remove DMF-DMA, and then the mixture was to give a residue. The residue was diluted with H₂O 5 mL and extracted with EtOAc 20 mL (5 mL * 4). The combined organic layers were washed with brine 5 mL, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give 22b was used into the next step without further purification as a light yellow gum. MS mass calculated for [M+1]⁺ (C₂₃H₁₇Cl₂N₃O₃) required *m/z* 454.1, LCMS found *m/z* 454.0.

[0356] **6-(4-amino-2,6-dichlorobenzyl)-4-cyclopropyl-2-methylpyridazin-3(2H)-one (22c).** To a solution of 2-(3,5-dichloro-4-((5-cyclopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)isoindoline-1,3-dione (22b) (100 mg, 154.08 umol) in MeOH (3 mL) was added N-butylamine (33.81 mg, 462.24 umol). The mixture was stirred at 70°C for 0.5hr. LCMS detected the desired MS. The reaction mixture was concentrated under reduced pressure to remove solvent. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate; TLC) to give 22c. MS mass calculated for [M+1]⁺ (C₁₅H₁₅Cl₂N₃O) required *m/z* 324.1, LCMS found *m/z* 324.0; ¹H NMR (400 MHz, CDCl₃) δ 6.70 - 6.65 (m, 2H), 6.48 (s, 1H), 4.07 (s, 2H), 3.79 (br s, 2H), 3.74 (s, 3H), 2.24 - 2.13 (m, 1H), 1.07 - 0.99 (m, 2H), 0.75 - 0.66 (m, 2H).


[0357] **N-(3,5-dichloro-4-((5-cyclopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 22).** To a solution of 6-(4-amino-2,6-dichlorobenzyl)-4-cyclopropyl-2-methylpyridazin-3(2H)-one (22c) (10 mg, 30.84 umol) in DCM (2 mL) was added TEA (9.36 mg, 92.53 umol, 12.88 uL) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (4e) (6.87 mg, 46.27 umol). The mixture was stirred at 25°C for 0.5 hours. LCMS showed the desired MS. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was checked by HPLC and purified by prep-HPLC (column: Waters Xbridge 150*25 5u; mobile phase: [water (10mM NH₄HCO₃)-ACN]; B%: 5%-35%, 14 min) to give Example 22 as a white solid. MS mass calculated for [M+1]⁺ (C₁₈H₁₅Cl₂N₅O₄) required *m/z* 436.0, LCMS found *m/z* 436.0; ¹H NMR (400 MHz, CD₃OD) δ 7.87 (s, 2H), 6.85 (s, 1H), 4.24 (s, 2H), 3.65 (s, 3H), 2.20 - 2.09 (m, 1H), 1.11 - 1.04 (m, 2H), 0.83 - 0.75 (m, 2H).

Example 23: N-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

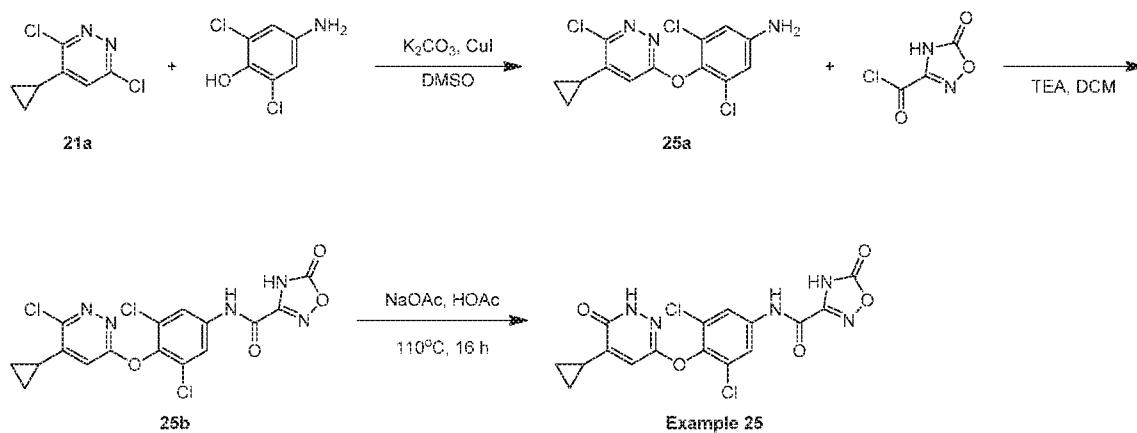
[0358] **N-(3,5-dichloro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 23).** To a solution of 3-(4-amino-2,6-dichloro-phenoxy)-5-isopropyl-1H-pyridazin-6-one(8b) (13.7 g, 43.61 mmol) in THF (140 mL) was added TEA (13.24 g, 130.82 mmol) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (4e) (9.71 g, 65.41 mmol). The mixture was stirred at 20°C for 0.5 hours. LCMS showed a peak with the desired MS. The reaction mixture was concentrated under reduced pressure to give a crude product. The crude product was triturated with EtOAc (100 mL) at 80 °C for 30 min, and then cooled to 20°C. The suspension was filtered and filter cake was washed with EtOAc (5 mL*3) and concentrated to dryness to give **Example 23.** MS mass calculated for [M+1]⁺(C₁₆H₁₃Cl₂N₅O₅) required *m/z* 426.0, LCMS found *m/z* 426.0; ¹H NMR (400 MHz, CD₃OD) δ 7.92 (s, 2H), 7.33 (d, *J* = 0.9 Hz, 1H), 3.21 - 3.13 (m, 1H), 1.29 (d, *J* = 6.8 Hz, 6H).

Example 24: N-(6-chloro-7-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)-2,3-dihydro-1H-inden-4-yl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0359] **6-chloro-7-(6-chloro-5-isopropyl-pyridazin-3-yl)oxy-indan-4-amine (24a).** 7-amino-5-chloro-indan-4-ol (0.39 g, 2.12 mmol), 3,6-dichloro-4-isopropyl-pyridazine (**1a**) (405.77 mg, 2.12 mmol), CuI (40.45 mg, 212.38 umol) and K₂CO₃ (440.28 mg, 3.19 mmol) in DMA (15 mL) was de-gassed with N₂ and then heated to 100°C for 16 hours under N₂. LCMS showed the reaction was completed, and desired MS was detected. The mixture was filtered through a pad of celite, washed with ethyl acetate (20 mL*2). The combined organic phase was washed with brine (20 mL), dried over Na₂SO₄, filtered and concentrated. The residue was purified by silica gel chromatography (petroleum ether : ethyl acetate= 3: 1) to give **24a**. MS mass calculated for [M+1]⁺ (C₁₆H₁₇Cl₂N₃O) required m/z 338.1, LCMS found m/z 338.1. ¹H NMR (400 MHz, DMSO-d₆) δ 7.53 (s, 1H), 6.56 (s, 1H), 5.15 (br s, 2H), 3.14 (td, J = 6.8, 13.6 Hz, 1H), 2.68 (br t, J = 7.3 Hz, 2H), 2.60 (br t, J = 7.4 Hz, 2H), 2.03 - 1.95 (m, 2H), 1.27 (d, J = 6.7 Hz, 6H).

[0360] **2-[6-chloro-7-(5-isopropyl-6-oxo-1H-pyridazin-3-yl)oxy]indan-4-ylisoindoline-1,3-dione (24b).** To a mixture of 6-chloro-7-(6-chloro-5-isopropyl-pyridazin-3-yl)oxy-indan-4-amine (**24a**) (120 mg, 354.79 umol) and isobenzofuran-1,3-dione (52.55 mg, 354.79 umol) in NaOAc (101.87 mg, 1.24 mmol) was added AcOH (1 mL). The mixture was stirred at 120°C for 16 hours. The reaction mixture was concentrated under reduced pressure to remove AcOH. The solid was dissolved in water and the pH was adjusted to 9 with NaHCO₃ (10 mL). Then the mixture was partitioned with Ethyl acetate (30 mL). Twice. The combined organic phase was

washed with brine (10 mL*3), dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuum to give **24b**. The product was used directly in next step without further purification. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{24}\text{H}_{20}\text{ClN}_3\text{O}_4$) required m/z 450.1, LCMS found m/z 450.2.


[0361] **2-[6-chloro-7-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-indan-4-yl]isoindoline-1,3-dione (24c).** A solution of 2-[6-chloro-7-[(5-isopropyl-6-oxo-1H-pyridazin-3-yl)oxy]indan-4-yl]isoindoline-1,3-dione (**24b**) (150 mg, 333.42 μmol) in DMFDMA (2 mL) was stirred at 80°C for 2 hours. The mixture was concentrated in vacuum. The residue was partitioned between ethyl acetate 10 mL and H_2O 3 mL twice. The combined filtrate was washed with brine (20 mL), and the organic phase was concentrated to give **24c**, the crude product was used for the next step directly. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{25}\text{H}_{22}\text{ClN}_3\text{O}_4$) required m/z 464.1, LCMS found m/z 464.2.

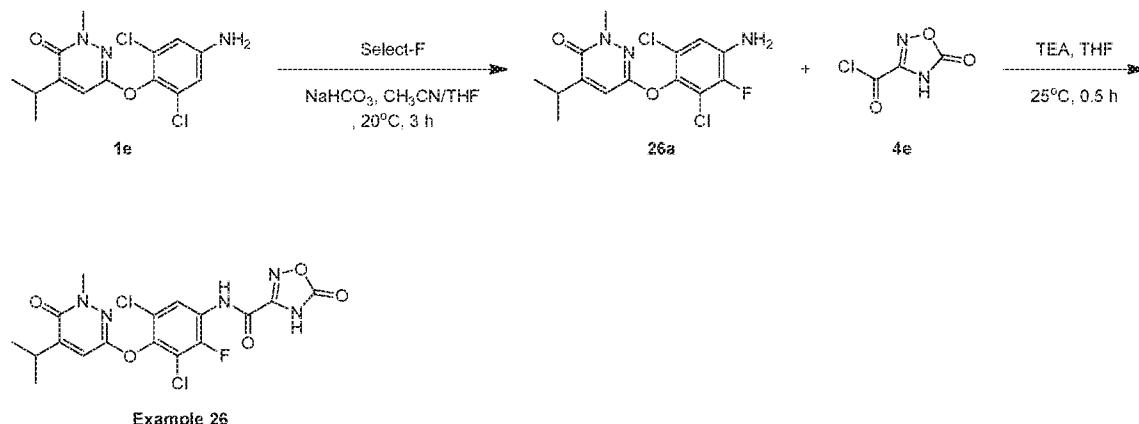
[0362] **6-(7-amino-5-chloro-indan-4-yl)oxy-4-isopropyl-2-methyl-pyridazin-3-one (24d).** A mixture of 2-[6-chloro-7-(5-isopropyl-1-methyl-6-oxo-pyridazin-3-yl)oxy-indan-4-yl]isoindoline-1,3-dione (**24c**) (100 mg, 215.56 μmol) and N-butylamine (15.77 mg, 215.56 μmol) in MeOH (2 mL) was stirred at 25°C for 1 hour. The mixture was concentrated in vacuum. The residue was purified by prep-TLC (SiO_2 , petroleum ether /ethyl acetate= 1: 1) to give **24d**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{17}\text{H}_{20}\text{ClN}_3\text{O}_2$) required m/z 334.1, LCMS found m/z 334.1.

[0363] **N-(6-chloro-7-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)-2,3-dihydro-1H-inden-4-yl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide**

(Example 24). To a solution of **24d** (10 mg, 29.96 μmol , 1 eq) in THF (5 mL) was added TEA (9.09 mg, 89.87 μmol , 12.51 μL) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (**4e**) (6.67 mg, 44.94 μmol). The mixture was stirred at 25°C for 0.5 hours. The reaction mixture was quenched by addition MeOH (1 mL) at 25 °C, and then concentrated under reduced pressure to give a residue. The residue was checked by HPLC and then was purified by Prep-HPLC (column: Luna C18 100*30 5u; mobile phase: [water (0.04%HCl)-ACN]; B%: 35%-60%, 12min) to give **Example 24**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{20}\text{H}_{20}\text{ClN}_5\text{O}_5$) required m/z 446.1, LCMS found m/z 446.2; ^1H NMR (400 MHz, CD_3OD) δ 7.55 (s, 1H), 7.27 (s, 1H), 3.50 (s, 3H), 3.20 - 3.12 (m, 1H), 2.94 (br t, J = 7.4 Hz, 2H), 2.87 (br t, J = 7.3 Hz, 2H), 2.17 - 2.12 (m, 2H), 1.27 (d, J = 6.8 Hz, 6H).

Example 25: N-(3,5-dichloro-4-((5-cyclopropyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0364] 3,5-dichloro-4-((6-chloro-5-cyclopropylpyridazin-3-yl)oxy)aniline (25a).

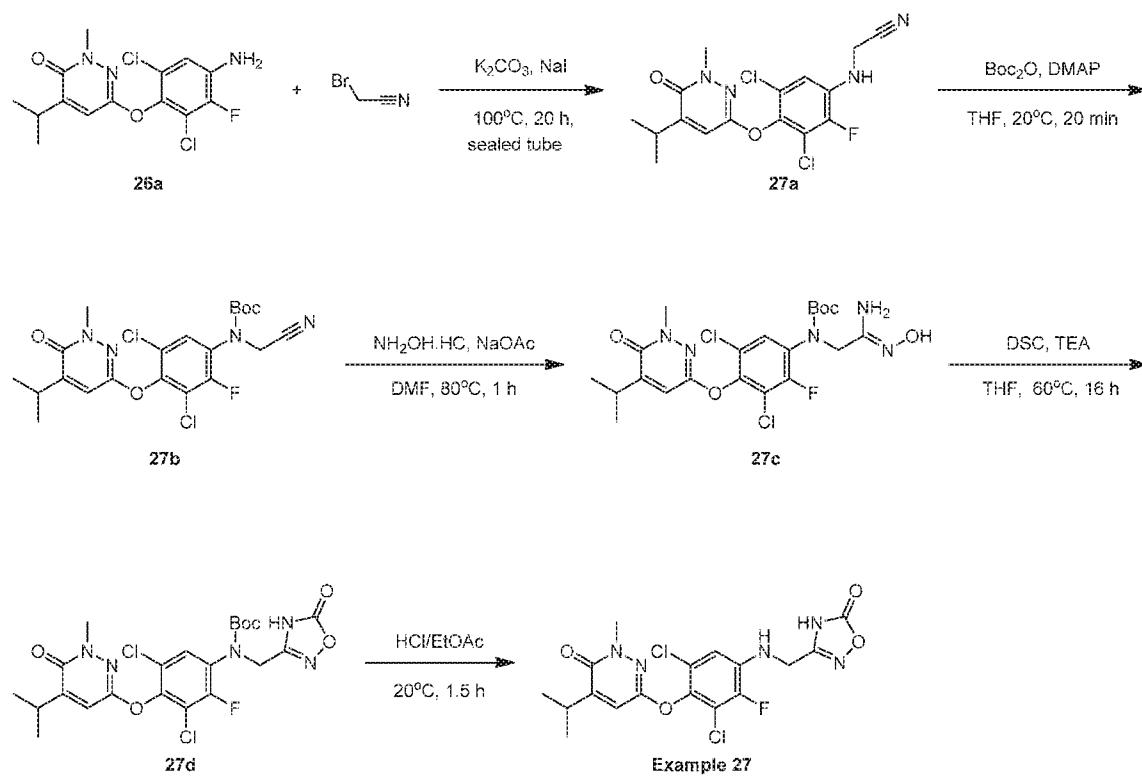

3,6-dichloro-4-cyclopropyl-pyridazine (1 g, 5.29 mmol) (**21a**), 4-amino-2,6-dichloro-phenol (941.67 mg, 5.29 mmol), K_2CO_3 (1.10 g, 7.93 mmol) and CuI (201.49 mg, 1.06 mmol) in DMA (5 mL) was de-gassed and then heated to 100°C for 16 hours under N_2 . Solids were filtered off and to the filtrate was added water (20 mL) and was extracted with ethyl acetate (15 mL*2). The combined organic layers were washed with brine (20 mL), dried over Na_2SO_4 , filtered and concentrated. The residue was purified by silica gel chromatography (petroleum ether : ethyl acetate = 5: 1) to give **25a**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{13}\text{H}_{10}\text{Cl}_3\text{N}_3\text{O}$) required m/z 330.0, LCMS found m/z 329.9/331.9;

[0365] N-(3,5-dichloro-4-((5-cyclopropyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (25b). To a solution of 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxylic acid (11.80 mg, 90.75 umol) in THF (2 mL) was added one drop DMF, then $(\text{COCl})_2$ (11.52 mg, 90.75 umol, 7.94 μL , 1.5 eq) was added at 0°C, the mixture was stirred at 25°C for 1 hour, the solution was added to a mixture of 3,5-dichloro-4-((6-chloro-5-cyclopropylpyridazin-3-yl)oxy)aniline (**25a**) (20 mg, 60.50 umol) and TEA (18.37 mg, 181.50 umol, 25.26 μL) in DCM (3 mL) at 25°C, the resulting mixture was stirred at 25°C for 30 minutes. The mixture was concentrated, the residue was purified by prep-TLC (dichloromethane: methanol = 10: 1) to give **25b**. MS mass calculated for $[\text{M}+1]^+$ ($\text{C}_{16}\text{H}_{10}\text{Cl}_3\text{N}_5\text{O}_4$) required m/z 442.0, LCMS found m/z 442.0.

[0366] N-(3,5-dichloro-4-((5-cyclopropyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 25). A mixture of N-(3,5-dichloro-4-((6-chloro-5-cyclopropylpyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (**25b**) (30 mg, 67.78 umol) and NaOAc (33.36 mg, 406.65 umol) in HOAc (3 mL) was heated to 110°C for 16 hours. The mixture was concentrated. -The residue was purified by prep-HPLC (neutral) to give **Example 25**. MS mass calculated for $[\text{M}+1]^+$

(C₁₆H₁₁Cl₂N₅O₅) required *m/z* 424.2, LCMS found *m/z* 424.2; ¹H NMR (400 MHz, MeOD) δ 7.92 (s, 2H), 7.03 (s, 1H), 2.28 - 2.18 (m, 1H), 1.23 - 1.14 (m, 2H), 1.04 - 0.94 (m, 2H).

Example 26: N-(3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide



[0367] **6-(4-amino-2,6-dichloro-3-fluorophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (26a).** To a suspension of 6-(4-amino-2,6-dichloro-phenoxy)-4-isopropyl-2-methyl-pyridazin-3-one (**1e**) (20 g, 60.94 mmol) in CH₃CN (200 mL) and THF (60 mL) under a nitrogen atmosphere was added NaHCO₃ (15.36 g, 182.82 mmol). To the resulting solution was added Select F (21.59 g, 60.94 mmol) by portion wise addition over 30 min. The mixture was stirred at 20°C for 16 hours. The reaction mixture was partitioned between H₂O 200 mL and EtOAc 300 mL. The organic phase was separated, washed with brine (100 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO₂, petroleum ether /ethyl acetate=4/1 to 1/1; TLC) to give **26a**. MS mass calculated for [M+1]⁺ (C₁₄H₁₄Cl₂FN₃O₂) required *m/z* 346.0, LCMS found *m/z* 346.0; ¹H NMR (400 MHz, CDCl₃) δ 7.02 (s, 1H), 6.80 (d, *J* = 8.8 Hz, 1H), 3.89 (br s, 2H), 3.53 (s, 3H), 3.24 (quind, *J* = 6.8, 13.5 Hz, 1H), 1.26 (d, *J* = 6.8 Hz, 6H).

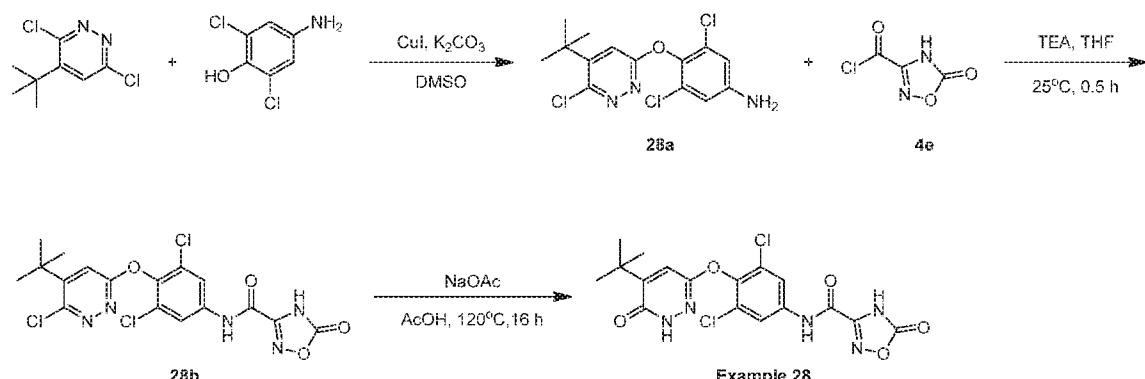
[0368] **N-(3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 26).** To a solution of 6-(4-amino-2,6-dichloro-3-fluoro-phenoxy)-4-isopropyl-2-methyl-pyridazin-3-one (**26a**) (13 g, 37.55 mmol) in THF (130 mL) was added TEA (11.40 g, 112.66 mmol) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (**4e**) (8.37 g, 56.33 mmol). The mixture was stirred at 20°C for 0.5 hours. LCMS showed a peak with the desired MS. The mixture was diluted with 1M HCl to modified pH 6-7 and extracted with EtOAc 300 mL (100 mL * 3). The combined organic layers were washed with brine 150 mL, dried over anhydrous Na₂SO₄, filtered to give a

light yellow liquid. The light yellow liquid was concentrated under reduced pressure to remove solvent and until the solid was dissolved out. The mixture was stirred at 20°C for 1 hour and filtered to give **Example 26**. MS mass calculated for $[M+1]^+$ ($C_{17}H_{14}Cl_2FN_5O_5$) required m/z 458.0, LCMS found m/z 458.0; 1H NMR (400 MHz, CD_3OD) δ 8.30 (d, J = 7.5 Hz, 1H), 7.35 (s, 1H), 3.51 (s, 3H), 3.24 - 3.12 (m, 1H), 1.28 (d, J = 6.8 Hz, 6H).

Example 27: 3-(((3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one

[0369] **2-((3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)amino)acetonitrile (27a).** To a solution of 6-(4-amino-2,6-dichloro-3-fluorophenoxy)-4-isopropyl-2-methylpyridazin-3(2H)-one (**26a**) (20 mg, 57.77 umol) in ACN (2 mL) was added 2-bromoacetonitrile (52.26 mg, 435.72 umol, 29.03 μ L), K_2CO_3 (24.09 mg, 174.29 umol) and NaI (26.12 mg, 174.29 umol). The mixture was stirred at 100°C for 20 hours. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (5 mL*3). The combined filtrates were concentrated to dryness to give a residue. The residue was purified by preparative TLC (petroleum ether : ethyl acetate=1:1) to give **27a**. MS mass calculated for $[M+1]^+$ ($C_{16}H_{15}Cl_2FN_4O_2$) required m/z 385.2, LCMS found m/z 385.0; 1H NMR

(400 MHz, CDCl₃) δ 7.04 (s, 1H) 6.81 (d, J = 8.16 Hz, 1H) 4.38 - 4.50 (m, 1H) 4.21 (d, J = 7.06 Hz, 2H) 3.54 (s, 3H) 3.24 (dt, J = 13.62, 6.75 Hz, 1H) 1.26 - 1.28 (m, 6H).

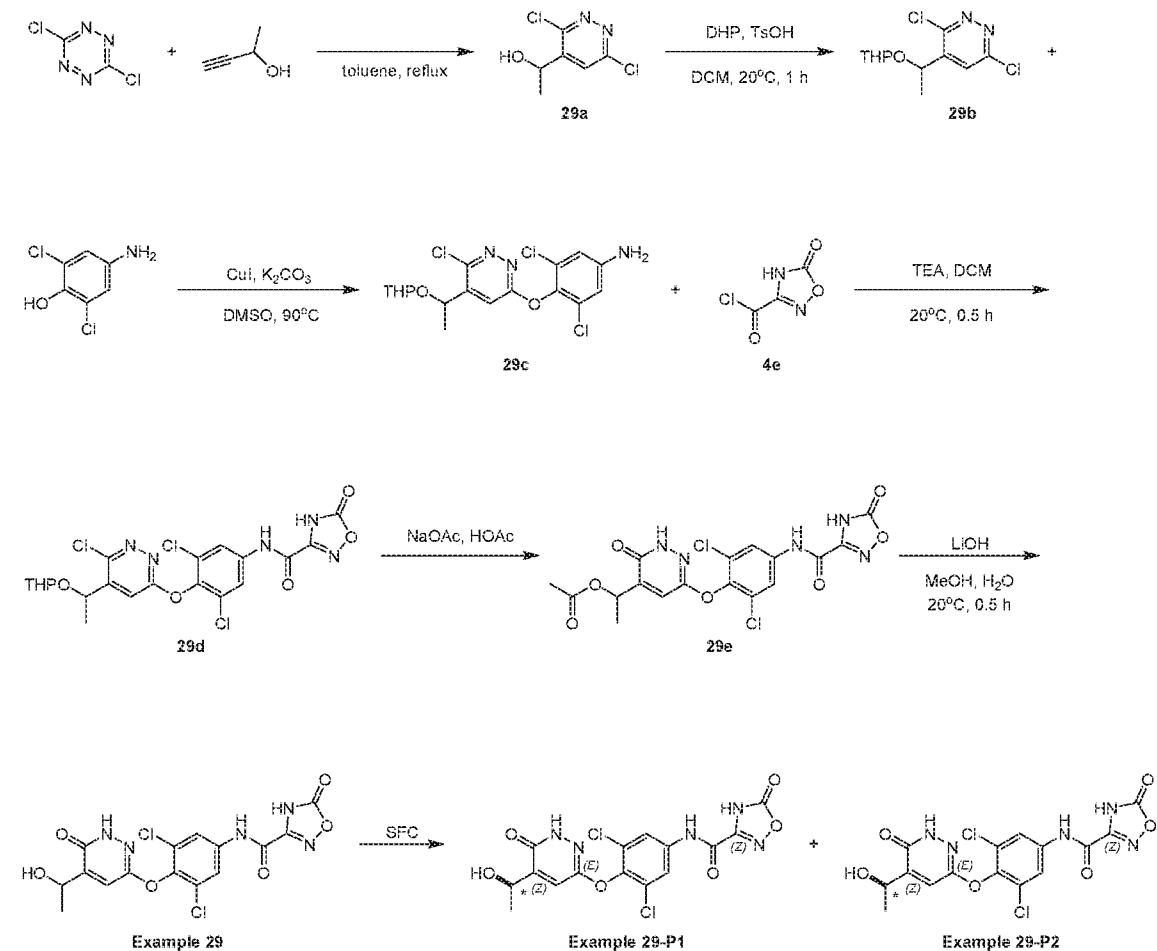

[0370] **tert-butyl (cyanomethyl)(3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)carbamate (27b).** To a solution of 2-((3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)amino)acetonitrile (27a) (20 mg, 51.92 umol) in THF (3 mL) was added DMAP (6.34 mg, 51.92 umol) and Boc₂O (33.99 mg, 155.76 umol, 35.78 uL) at 20°C. The mixture was stirred at 20°C for 20 minutes. The mixture was concentrated in vacuum to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate = 2:1) to give 27b. MS mass calculated for [M+1]⁺ (C₂₁H₂₃Cl₂FN₄O₄) required *m/z* 485.3, LCMS found *m/z* 485.2; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (br s, 1H) 7.07 (s, 1H) 4.52 (br s, 2H) 3.52 (s, 3H) 3.26 (dt, *J* = 13.66, 6.92 Hz, 1H) 1.25 - 1.47 (m, 15H).

[0371] **(Z)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)carbamate (27c).** To a solution of tert-butyl (cyanomethyl)(3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)carbamate (27b) (20 mg, 41.21 umol) in DMF (2 mL) was added NH₂OH.HCl (22.91 mg, 329.67 umol) and NaOAc (27.04 mg, 329.67 umol) at 20°C. The mixture was stirred at 80°C for 1 hour. The reaction mixture was concentrated under reduced pressure to remove DMF. The residue was partitioned between ethyl acetate 10 mL and H₂O 5 mL twice. The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate = 1:1) to give 27c. MS mass calculated for [M+1]⁺ (C₂₁H₂₆Cl₂FN₅O₅) required *m/z* 518.4, LCMS found *m/z* 518.0.

[0372] **tert-butyl (3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (27d).** To a solution of (Z)-tert-butyl (2-amino-2-(hydroxyimino)ethyl)(3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)carbamate (27c) (20 mg, 38.58 umol) in THF (3 mL) was added DSC (12.85 mg, 50.16 umol) and TEA (7.81 mg, 77.17 umol, 10.74 uL). The mixture was stirred at 60°C for 16 hours. The mixture was concentrated in vacuum to give a residue. The residue was purified by prep-TLC (SiO₂, DCM: MeOH = 10:1, PI: R_f = 0.3) to give 27d. MS mass calculated for [M+1]⁺ (C₂₂H₂₄Cl₂FN₅O₆) required *m/z* 544.4, LCMS found *m/z* 544.0.

[0373] 3-(((3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)amino)methyl)-1,2,4-oxadiazol-5(4H)-one (Example 27). A solution of tert-butyl (3,5-dichloro-2-fluoro-4-((5-isopropyl-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)((5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)methyl)carbamate (27d) (8 mg, 14.70 μmol) in HCl/EtOAc (2 mL) was stirred at 20°C for 1.5 hours. The mixture was concentrated in vacuum to give a residue. The residue was purified by Prep-HPLC (column: Luna C18 100*30 5u; mobile phase: [water (0.04%HCl)-ACN]; B%: 30%-60%, 12 min) to give Example 27. MS mass calculated for [M+1]⁺ (C₁₇H₁₆Cl₂FN₅O₄) required *m/z* 444.2, LCMS found *m/z* 444.0; ¹H NMR (400 MHz, CD₃OD) δ 7.27 (s, 1H) 6.91 (d, *J* = 8.33 Hz, 1H) 4.38 (s, 2H) 3.49 (s, 3H) 3.13 - 3.21 (m, 1H) 1.26 (d, *J* = 7.02 Hz, 6H).

Example 28: N-(4-((5-(tert-butyl)-6-oxo-1,6-dihdropyridazin-3-yl)oxy)-3,5-dichlorophenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide


[0374] **4-((5-(tert-butyl)-6-chloropyridazin-3-yl)oxy)-3,5-dichloroaniline (28a).** To a solution of 4-(tert-butyl)-3,6-dichloropyridazine (200 mg, 0.975 mmol) in DMSO (5 mL) was added 4-amino-2,6-dichlorophenol (173.61 mg, 0.975 mmol), K_2CO_3 (404.34 mg, 2.93 mmol) and CuI (111.44 mg, 0.585 mmol), the mixture was stirred at 90°C for 16 hours under N_2 atmosphere. The solvent was diluted with EtOAc (10 mL) and H_2O (10 mL), extracted with EA (10 mL*2), the organic layer was washed with brine (20 mL*2), dried over with Na_2SO_4 , the organic layer was dried over with Na_2SO_4 , concentrated in vacuo to get crude. The crude was purified with Prep-TLC (petroleum ether : ethyl acetate=5:1) to give **28a**. MS mass calculated for $[M+1]^+$ ($C_{14}H_{14}Cl_3N_3O$) required m/z 346.6, LCMS found m/z 346.6; 1H NMR (400 MHz, $CDCl_3$) δ 1.51 (s, 9H), 6.67 (s, 2H), 7.24(s, 1H).

[0375] N-(4-((5-(tert-butyl)-6-chloropyridazin-3-yl)oxy)-3,5-dichlorophenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (28b). To a mixture of 4-((5-(tert-butyl)-6-chloropyridazin-3-yl)oxy)-3,5-dichloroaniline (28a) (100 mg, 288.48 mmol) in THF (2 mL),

was added TEA (87.58 mg, 865.45 umol), 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carbonyl chloride (**4e**) (64.26 mg, 432.73 umol) in DCM (2 mL) was added under N₂ atmosphere. The mixture was stirred at 20°C under N₂ for 0.5 hours. The mixture was poured into H₂O (10 mL) and the resulting mixture was extracted with EtOAc (10 mL*3), the organic layer was washed with brine (20 mL*2), dried over with Na₂SO₄, filtrated, concentrated in vacuo to get crude **28c**. The crude product was used for the next step without further purification. MS mass calculated for [M+1]⁺ (C₁₇H₁₄Cl₃N₅O₄) required *m/z* 458.1, LCMS found *m/z* 458.1.

[0376] **N-(4-((5-(tert-butyl)-6-oxo-1,6-dihdropyridazin-3-yl)oxy)-3,5-dichlorophenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 28).** To a mixture of N-(4-((5-(tert-butyl)-6-chloropyridazin-3-yl)oxy)-3,5-dichlorophenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (140 mg, 305.2 ummol) in HOAc (10 mL), was added NaOAc (125.19 mg, 1.53 mmol). Then the mixture was stirred at 120°C for 16 hours. The solvent was removed in vacuo to get crude. The crude was purified with prep-HPLC (CH₃CN in H₂O, 40%). To get **Example 28** (9.9 mg, 7.4% yield). MS mass calculated for [M+1]⁺ (C₁₇H₁₅Cl₂N₅O₅) required *m/z* 440.2, LCMS found *m/z* 440.2; ¹H NMR (400 MHz, CD₃OD) δ 1.44 (s, 9H), 7.32 (s, 1H), 7.92 (s, 2H).

Example 29 (P1 and P2): N-(3,5-dichloro-4-((5-(1-hydroxyethyl)-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0377] **1-(3,6-dichloropyridazin-4-yl)ethanol (29a).** To a solution of 3,6-dichloro-1,2,4,5-tetrazine (500 mg, 3.31 mmol) in Tol. (3 mL) was added but-3-yn-2-ol (278.59 mg, 3.97 mmol). The mixture was stirred at 110°C for 16 hours under sealed tube. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate = 1:1, TLC) to give **29a**. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 1.0 Hz, 1H), 5.14 (dq, J = 4.2, 6.3 Hz, 1H), 2.38 (d, J = 3.4 Hz, 1H), 1.56 (d, J = 6.4 Hz, 3H).

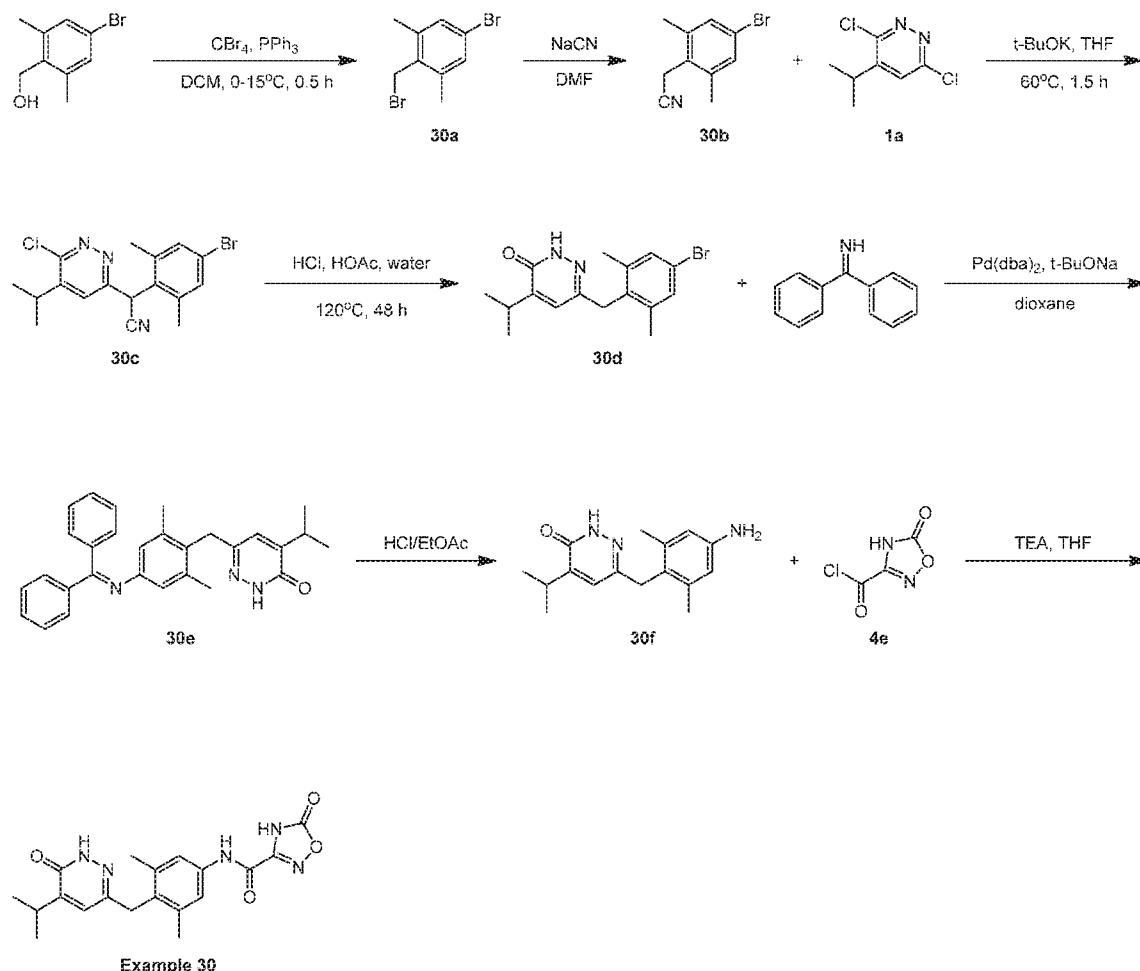
[0378] 3,6-dichloro-4-((1-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)pyridazine (29b). To a solution of 1-(3,6-dichloropyridazin-4-yl)ethanol (29a) (300 mg, 1.55 mmol) and DHP (653.68 mg, 7.77 mmol, 710.52 μ L) in DCM (10 mL) was added TsOH (13.38 mg, 77.71 μ mol). The mixture was stirred at 20°C for 1 hour. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether /ethyl acetate=5:1, according TLC) to give 29b. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.63 (s, 1H), 5.10 (q, *J* = 6.5 Hz, 1H), 4.98 (q, *J* = 6.6 Hz, 1H), 4.81 (br d, *J* = 4.6 Hz, 1H), 4.47 (br s,

1H), 3.99 - 3.90 (m, 1H), 3.67 - 3.53 (m, 2H), 3.47 - 3.40 (m, 1H), 1.95 - 1.55 (m, 12H), 1.53 (d, J = 6.4 Hz, 3H), 1.46 (d, J = 6.4 Hz, 3H).

[0379] **3,5-dichloro-4-((6-chloro-5-(1-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)pyridazin-3-yl)oxy)aniline (29c).** To a solution of 4-amino-2,6-dichloro-phenol (167.00 mg, 938.13 umol) and 3,6-dichloro-4-(1-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)pyridazine (29b) (200 mg, 721.64 umol) in DMSO (5 mL) was added K₂CO₃ (299.21 mg, 2.16 mmol) and CuI (82.46 mg, 432.98 umol) was degassed and purged with N₂ for 3 times, and then the mixture was stirred at 90°C for 2 hours under N₂ atmosphere. LCMS detected one main peak with desired MS. The reaction mixture was diluted with H₂O 5 mL and extracted with ethylacetate 30 mL (10 mL * 3). The combined organic layers were washed with brine 10 mL, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate = 1:1, TLC) to give 29c. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.37 (s, 1H), 6.68 (s, 4H), 5.10 (q, J = 6.6 Hz, 1H), 5.00 (q, J = 6.4 Hz, 1H), 4.90 - 4.85 (m, 1H), 4.52 (t, J = 3.6 Hz, 1H), 3.96 (ddd, J = 3.8, 7.5, 11.2 Hz, 1H), 3.81 (br d, J = 2.4 Hz, 4H), 3.65 (ddd, J = 3.2, 8.0, 11.3 Hz, 1H), 3.61 - 3.54 (m, 1H), 3.47 - 3.40 (m, 1H), 1.96 - 1.60 (m, 12H), 1.55 (d, J = 6.5 Hz, 3H), 1.49 (d, J = 6.4 Hz, 3H).

[0380] **N-(3,5-dichloro-4-((6-chloro-5-(1-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (29d).** To a solution of 3,5-dichloro-4-((6-chloro-5-(1-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)pyridazin-3-yl)oxy)aniline (29c) (250 mg, 597.08 umol) in DCM (5 mL) was added TEA (181.26 mg, 1.79 mmol, 249.32 uL) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (4e) (133.00 mg, 895.63 umol). The mixture was stirred at 25°C for 0.5 hours. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, DCM: MeOH = 10:1, according TLC) to give 29d. MS mass calculated for [M+1]⁺ (C₂₀H₁₈Cl₃N₅O₆) required m/z 530.0, LCMS found m/z 529.9.

[0381] **1-(6-(2,6-dichloro-4-(5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamido)phenoxy)-3-oxo-2,3-dihydropyridazin-4-yl)ethyl acetate (29e).** To a solution of N-(3,5-dichloro-4-((6-chloro-5-(1-((tetrahydro-2H-pyran-2-yl)oxy)ethyl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (29d) (60 mg, 90.44 umol) in AcOH (3 mL) was added NaOAc (37.09 mg, 452.19 umol). The mixture was stirred at 120°C for 16 hours. The reaction mixture was concentrated under reduced pressure to remove AcOH and then to give 29e was used into the next step without further purification. MS mass calculated for [M+1]⁺ (C₁₇H₁₃Cl₂N₅O₇) required m/z 470.0, LCMS found m/z 470.0.


[0382] **N-(3,5-dichloro-4-((5-(1-hydroxyethyl)-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide** (Example 29). To a solution of 1-(6-(2,6-dichloro-4-(5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamido)phenoxy)-3-oxo-2,3-dihdropyridazin-4-yl)ethyl acetate (29 e) (105 mg, 223.30 umol) in MeOH (3 mL) and H₂O (0.5 mL) was added LiOH·H₂O (18.74 mg, 446.60 umol). The mixture was stirred at 25°C for 1 hour. LCMS detected the desired MS. The reaction mixture was concentrated under reduced pressure to remove MeOH. The residue was diluted with 6 M HCl to modified pH = 6-8 and extracted with EtOAc (5 mL * 4), dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Luna C18 100*30 5u; mobile phase: [water (10mM NH₄HCO₃)-ACN]; B%: 1%-40%, 12min) to give **Example 29** MS mass calculated for [M+1]⁺(C₁₅H₁₁Cl₂N₅O₆) required *m/z* 428.0, LCMS found *m/z* 428.0; ¹H NMR (400 MHz, DMSO-d₆) δ 12.28 (s, 1H), 11.31 (s, 1H), 7.99 (s, 2H), 7.40 (d, *J* = 1.1 Hz, 1H), 5.49 (br s, 1H), 4.70 (q, *J* = 6.1 Hz, 1H), 1.33 (d, *J* = 6.4 Hz, 3H).

[0383] **(R)-N-(3,5-dichloro-4-((5-(1-hydroxyethyl)-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide** (Example 29-P1) and **(S)-N-(3,5-dichloro-4-((5-(1-hydroxyethyl)-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide** (Example 29-P2). The N-(3,5-dichloro-4-((5-(1-hydroxyethyl)-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (**Example 29**) was checked and purified by Chiral SFC (column: DAICEL CHIRALPAK AD (250mm*30mm, 10um); mobile phase: [0.1%NH₃*H₂O MeOH]; B%: 40%-40%, 10min) to give **Example 29-P1** and **Example 29-P2**.

[0384] **Example 29-P1:** MS mass calculated for [M+1]⁺(C₁₅H₁₁Cl₂N₅O₆) required *m/z* 428.0, LCMS found *m/z* 428.0; ¹H NMR (400 MHz, DMSO-d₆) δ 12.26 (s, 1H), 10.71 (br s, 1H), 8.06 (s, 2H), 7.39 (d, *J* = 1.3 Hz, 1H), 5.49 (br d, *J* = 4.4 Hz, 1H), 4.74 - 4.66 (m, 1H), 1.33 (d, *J* = 6.6 Hz, 3H).

[0385] **Example 29-P2:** MS mass calculated for [M+1]⁺(C₁₅H₁₁Cl₂N₅O₆) required *m/z* 428.0, LCMS found *m/z* 427.9; ¹H NMR (400 MHz, DMSO-d₆) δ 12.26 (s, 1H), 10.74 (br s, 1H), 8.05 (s, 2H), 7.39 (d, *J* = 1.3 Hz, 1H), 5.49 (br d, *J* = 4.4 Hz, 1H), 4.75 - 4.66 (m, 1H), 1.33 (d, *J* = 6.4 Hz, 3H).

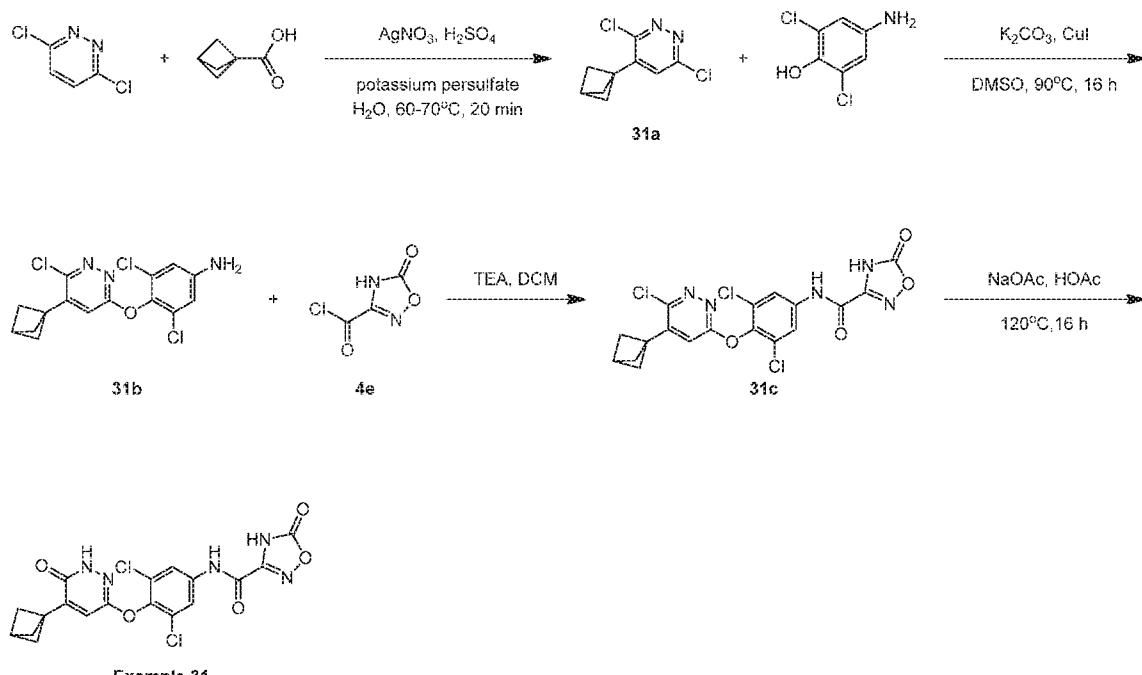
Example 30: N-(4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)methyl)-3,5-dimethylphenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0386] **5-bromo-2-(bromomethyl)-1,3-dimethylbenzene (30a).** To a solution of (4-bromo-2,6-dimethylphenyl)methanol in DCM (30 mL) was added PPh_3 (1.83 g, 6.97 mmol). Then the mixture was cooled to $0-5^\circ\text{C}$. Then CBr_4 (2.31 g, 6.97 mmol) was added in the mixture by portions. Then the mixture was stirred at 15°C for 0.5 hours under N_2 . The mixture was concentrated in vacuum to give a residue. The residue was purified by column chromatography (SiO_2 , petroleum ether /ethyl acetate = 1/0 to 10:1, TLC) to give **30a**. $^1\text{H NMR}$ (400 MHz, CDCl_3) δ 7.21 (s, 2H) 4.50 (s, 2H) 2.39 (s, 6H).

[0387] **2-(4-bromo-2,6-dimethylphenyl)acetonitrile (30b).** To a solution of 5-bromo-2-(bromomethyl)-1,3-dimethylbenzene (**30a**) (1.26 g, 4.53 mmol) in DMF (30 mL) was added NaCN (244.35 mg, 4.99 mmol) at 15°C . Then the mixture was stirred at 15°C for 16 hours. The mixture was partitioned between Ethyl acetate (50 mL) and NH_4Cl aqueous solution (20 mL) twice. The combined organic phase was washed with brine (20 mL*3), dried with anhydrous Na_2SO_4 , filtered and concentrated in vacuum to give a residue. The residue was

purified by column chromatography (SiO₂, petroleum ether : ethyl acetate = 10: 1 to 3: 1, TLC) to give 30b. ¹H NMR (400 MHz, CD₃OD) δ 7.28 (s, 2H) 3.79 (s, 2H) 2.38 (s, 6H).

[0388] **2-(4-bromo-2,6-dimethylphenyl)-2-(6-chloro-5-isopropylpyridazin-3-yl)acetonitrile (30c).** To a solution of 2-(4-bromo-2,6-dimethylphenyl)acetonitrile (30b) (800 mg, 3.57 mmol) and 3,6-dichloro-4-isopropylpyridazine (1a) (682.05 mg, 3.57 mmol) in THF (10 mL) was added t-BuOK (1 M, 7.14 mL, 2 eq) dropwise at 60°C, the resulting mixture was heated to 60°C for 1 hour. The mixture was diluted with water (20 mL) and extracted with ethyl acetate (50 mL, 2x). The combined organic phase were washed with brine (10 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography (SiO₂, petroleum ether : ethyl acetate = 10: 1 to 3: 1, TLC) to give 30c. MS mass calculated for [M+1]⁺ (C₁₇H₁₇BrClN₃) required *m/z* 378.0, LCMS found *m/z* 378.2; ¹H NMR (400 MHz, CD₃OD) δ 7.34 (s, 3H) 7.21 (s, 1H) 6.28 (s, 1H) 3.01 (dt, *J* = 13.54, 6.74 Hz, 1H) 2.89 (dt, *J* = 13.72, 6.89 Hz, 1H) 2.27 (s, 6H) 1.27 - 1.30 (m, 6H).


[0389] **6-(4-bromo-2,6-dimethylbenzyl)-4-isopropylpyridazin-3(2H)-one (30d).** A solution of 2-(4-bromo-2,6-dimethylphenyl)-2-(6-chloro-5-isopropylpyridazin-3-yl)acetonitrile (30c) (1 g, 2.78 mmol) in AcOH (10 mL), H₂O (10 mL) and HCl (40 mL) was heated to 120°C for 48 hours. LCMS showed the starting material was consumed and desired MS was detected. The mixture was adjusted to pH~7 with 3M NaOH at 15°C, the solid was filtered and dried to give 30d. The product was used directly for the next step without further purification. MS mass calculated for [M+1]⁺ (C₁₆H₁₉BrN₂O) required *m/z* 335.1, LCMS found *m/z* 335.2; ¹H NMR (400 MHz, DMSO) δ 12.56 (s, 1H) 7.24 (s, 2H) 7.11 (s, 1H) 3.90 (s, 2H) 2.97 (quin, *J* = 6.82 Hz, 1H) 2.21 (s, 6H) 1.11 (d, *J* = 6.85 Hz, 6H).

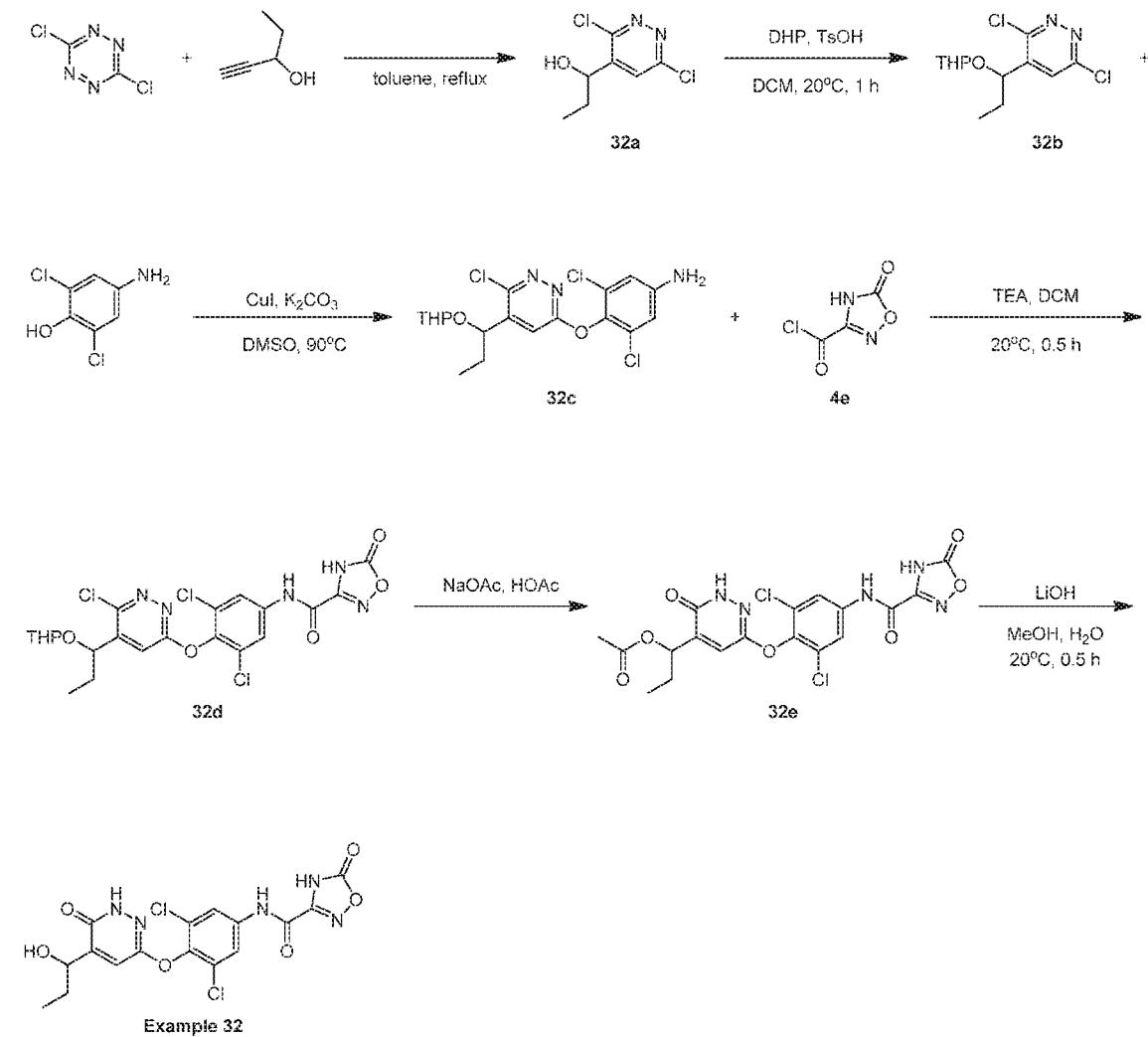
[0390] **6-(4-((diphenylmethylene)amino)-2,6-dimethylbenzyl)-4-isopropylpyridazin-3(2H)-one (30e).** To a solution of 6-(4-bromo-2,6-dimethylbenzyl)-4-isopropylpyridazin-3(2H)-one (30d) (100 mg, 298.30 umol) and benzophenone imine (54.06 mg, 298.30 umol, 50.06 uL) in dioxane (5 mL) was added t-BuONa (43.00 mg, 447.44 umol), Pd₂(dba)₃ (27.32 mg, 29.83 umol) and Xantphos (17.26 mg, 29.83 umol). The mixture was degassed and purged with N₂ for 3 times and stirred at 80°C for 16 hours. The mixture was partitioned between DCM (20 mL) and sat. aq. NH₄Cl solution (10 mL) and extracted with DCM a second time. The combined organic layers was washed with brine (10 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give 30e. MS mass calculated for [M+1]⁺ (C₂₉H₂₉N₃O) required *m/z* 436.2, LCMS found *m/z* 436.4. The residue was used directly for the next step without further purification.

[0391] **6-(4-amino-2,6-dimethylbenzyl)-4-isopropylpyridazin-3(2H)-one (30f).** A solution of 6-(4-((diphenylmethylene)amino)-2,6-dimethylbenzyl)-4-isopropylpyridazin-3(2H)-one (30e) (100 mg, 229.59 umol) in HCl/EtOAc (5 mL) was stirred at 15°C for 16 hr. LCMS showed desired MS was detected. The mixture was diluted with water 5 mL and added saturated aqueous of NaHCO₃ to modified pH = 9~10. The suspension was extracted with EtOAc (15 mL*3), the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate) to give 30f. MS mass calculated for [M+1]⁺ (C₁₆H₂₁N₃O) required *m/z* 272.2, LCMS found *m/z* 272.3; ¹H NMR (400 MHz, CD₃OD) δ 6.89 (s, 1H) 6.48 (s, 2H) 3.89 (s, 2H) 3.04 (dt, *J* = 13.69, 6.72 Hz, 1H) 2.18 (s, 5H) 1.11 (d, *J* = 6.97 Hz, 6H).

[0392] **N-(4-((5-isopropyl-6-oxo-1,6-dihydropyridazin-3-yl)methyl)-3,5-dimethylphenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 30).** To a mixture of 6-(4-amino-2,6-dimethylbenzyl)-4-isopropylpyridazin-3(2H)-one (30f) (10 mg, 36.85 umol) in THF (1 mL) was added TEA (14.92 mg, 147.41 umol, 20.52 uL) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (4e) (10.95 mg, 73.70 umol) at 15°C. The mixture was stirred at 15°C for 0.5 hours. The mixture was concentrated in vacuum to give a residue. The residue was purified by Prep-HPLC (column: Nano-micro Kromasil C18 100*30mm 5um; mobile phase: [water (0.225%FA)-ACN]; B%: 30%-50%, 12min) to give Example 30. MS mass calculated for [M+1]⁺ (C₁₉H₂₁N₅O₄) required *m/z* 384.2, LCMS found *m/z* 384.2; ¹H NMR (400 MHz, CD₃OD) δ 7.41 (s, 2H) 7.02 (s, 1H) 4.86 (s, 19H) 4.02 (s, 2H) 3.07 (dt, *J* = 13.72, 6.77 Hz, 1H) 2.30 (s, 6H) 1.15 (d, *J* = 6.85 Hz, 6H).

Example 31: N-(4-((5-(bicyclo[1.1.1]pentan-1-yl)-6-oxo-1,6-dihydropyridazin-3-yl)oxy)-3,5-dichlorophenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0393] **4-(bicyclo[1.1.1]pentan-1-yl)-3,6-dichloropyridazine (31a).** To a mixture of 3,6-dichloropyridazine (170 mg, 1.14 mmol) and bicyclo[1.1.1]pentane-1-carboxylic acid (134.35 mg, 1.20 mmol) in H₂O (5 mL) was added AgNO₃ (193.84 mg, 1.14 mmol) and ammonium persulphate (286.44 mg, 1.26 mmol) and H₂SO₄ (335.75 mg, 3.42 mmol, 182.48 uL in H₂O (2.5 mL) in one portion at 60°C under N₂. The mixture was stirred at 70°C for 20 minutes. After cooling the mixture was extracted with ethyl acetate (5 mL*2), the organic phases were washed with NaHCO₃ (2 mL), brine (5 mL), then dried over Na₂SO₄, filtered and concentrated. The residue was purified by column chromatography (SiO₂, petroleum ether : ethyl acetate= 5: 1) to give 31a. ¹H NMR (400 MHz, CD₃OD) δ 7.62 (s, 1H), 2.66 (s, 1H), 2.34 (s, 6H).


[0394] **4-((5-(bicyclo[1.1.1]pentan-1-yl)-6-chloropyridazin-3-yl)oxy)-3,5-dichloroaniline (31b).** 4-(bicyclo[1.1.1]pentan-1-yl)-3,6-dichloropyridazine (31a) (150 mg, 697.42 umol) and 4-amino-2,6-dichlorophenol (124.15 mg, 697.42 umol) in DMSO (9 mL) was added K₂CO₃ (385.55 mg, 2.79 mmol) and CuI (79.69 mg, 418.45 umol) in one portion at 25°C under N₂. The mixture was stirred at 90°C for 16 hours. The residue was partitioned between ethyl acetate (20 mL) and H₂O (5 mL*2). The combined organic phase was washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The solid was purified by prep-TLC (petroleum ether : ethyl acetate= 3: 1) to give 31b. MS mass calculated for [M+1]⁺ (C₁₅H₁₂Cl₃N₃O) required m/z 356.0, LCMS found m/z 355.9.

[0395] **N-(4-((5-(bicyclo[1.1.1]pentan-1-yl)-6-chloropyridazin-3-yl)oxy)-3,5-dichlorophenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (31c).** To a mixture of

4-((5-(bicyclo[1.1.1]pentan-1-yl)-6-chloropyridazin-3-yl)oxy)-3,5-dichloroaniline (**31b**) (30 mg, 84.12 umol) in DCM (5 mL) was added TEA (25.54 mg, 252.36 umol, 35.13 uL) and 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carbonyl chloride (**4e**) (18.74 mg, 126.18 umol) in one portion at 0°C under N₂, and the reaction was stirred at 0°C for 30 minutes. The residue was diluted with water (5 mL) and extracted with DCM (10 mL, 2x). The combined organic layers were washed with brine (5 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The solid was purified by prep-TLC (petroleum ether : ethyl acetate = 1:1) to give **31c**.

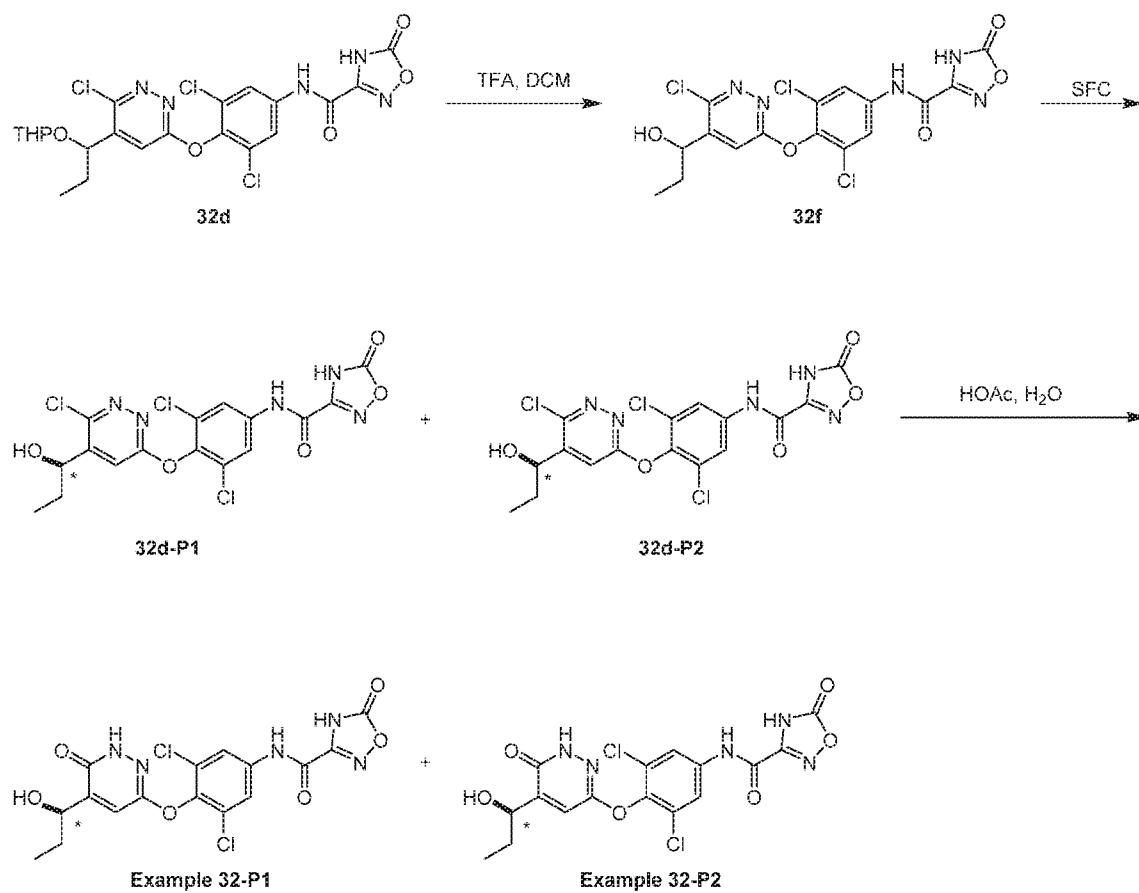
[0396] **N-(4-((5-(bicyclo[1.1.1]pentan-1-yl)-6-chloropyridazin-3-yl)oxy)-3,5-dichlorophenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide** (Example 31). To a mixture of **N-(4-((5-(bicyclo[1.1.1]pentan-1-yl)-6-chloropyridazin-3-yl)oxy)-3,5-dichlorophenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide** (**31c**) (18 mg, 38.41 umol) in AcOH (3 mL) was added NaOAc (15.75 mg, 192.03 umol) in one portion. Then the mixture was stirred at 120°C under N₂ for 16 hours. The mixture was concentrated. The residue was purified by prep-HPLC (column: Phenomenex Luna C18 100*30mm*5um; mobile phase: [water (0.225% FA)-ACN]; B%: 45%-75%, 10 min) to give **Example 31**. MS mass calculated for [M+1]⁺ (C₁₈H₁₃Cl₂N₅O₃) required *m/z* 450.0, LCMS found *m/z* 450.0; ¹H NMR (400 MHz, CD₃OD) δ 7.91 (s, 2H), 7.19 (s, 1H), 2.60 (s, 1H), 2.25 (s, 6H).

Example 32: N-(3,5-dichloro-4-((5-(1-hydroxypropyl)-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0397] **1-(3,6-dichloropyridazin-4-yl)propan-1-ol (32a).** To a solution of 3,6-dichloro-1,2,4,5-tetrazine (1 g, 6.62 mmol) in Tol. (10 mL) was added pent-1-yn-3-ol (1.11 g, 13.25 mmol, 1.14 mL) at 20°C. The mixture was stirred at 110°C for 16 hours under sealed tube. LCMS showed desired MS. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate = 1:1) to give 32a. MS mass calculated for [M+1]⁺ (C₇H₈Cl₂N₂O) required *m/z* 207.1, LCMS found *m/z* 207.0; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H) 4.94 (dt, *J* = 7.73, 3.77 Hz, 1H) 2.72 (d, *J* = 4.03 Hz, 1H) 1.94 (dqd, *J* = 14.52, 7.39, 7.39, 3.55 Hz, 1H) 1.60 - 1.72 (m, 1H) 1.06 (t, *J* = 7.34 Hz, 3H).

[0398] **3,6-dichloro-4-(1-((tetrahydro-2H-pyran-2-yl)oxy)propyl)pyridazine (32b).** To a solution of 1-(3,6-dichloropyridazin-4-yl)propan-1-ol (32a) (140 mg, 676.14 umol) and DHP (284.37 mg, 3.38 mmol, 309.10 uL) in DCM (5 mL) was added TsOH (5.82 mg, 33.81 umol). The mixture was stirred at 20°C for 1 hour. LCMS showed desired MS. The reaction mixture

was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether /ethyl acetate=2:1, TLC) to give 32b. MS mass calculated for [M+1]⁺ (C₁₂H₁₆Cl₂N₂O₂) required *m/z* 291.2, LCMS found *m/z* 291.1; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (s, 1H) 7.56 (s, 1H) 4.95 - 5.00 (m, 1H) 4.78 (dd, *J* = 7.06, 3.97 Hz, 1H) 4.69 (dd, *J* = 5.40, 2.09 Hz, 1H) 4.40 (t, *J* = 3.42 Hz, 1H) 3.85 - 4.03 (m, 2H) 3.54 - 3.55 (m, 1H) 3.45 - 3.62 (m, 2H) 3.33 - 3.41 (m, 1H) 2.04 - 2.10 (m, 1H) 1.47 - 1.94 (m, 24H) 1.05 (t, *J* = 7.39 Hz, 3H) 0.95 (t, *J* = 7.39 Hz, 3H).


[0399] **3,5-dichloro-4-((6-chloro-5-(1-((tetrahydro-2H-pyran-2-yl)oxy)propyl)pyridazin-3-yl)oxy)aniline (32c).** To a solution of 3,6-dichloro-4-(1-((tetrahydro-2H-pyran-2-yl)oxy)propyl)pyridazine (32b) (130 mg, 446.47 umol) and 4-amino-2,6-dichlorophenol (79.48 mg, 446.47 umol) in DMSO (5 mL) was added K₂CO₃ (246.83 mg, 1.79 mmol) and CuI (51.02 mg, 267.88 umol) was degassed and purged with N₂ for 3 times, and then the mixture was stirred at 90°C for 16 hours under N₂ atmosphere. LCMS showed desired MS. The mixture was diluted in EtOAc (5 mL) and filtrated, and the filtration was partitioned between Ethyl acetate (5 mL) and H₂O 3 mL. The organic phase was separated, and the aqueous phase was extracted with EtOAc (5 mL). The combined organic phase was washed with brine (10 mL*2), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by Prep-TLC (petroleum ether : ethyl acetate=2:1) to give 32c. MS mass calculated for [M+1]⁺ (C₁₈H₂₀Cl₃N₃O₃) required *m/z* 432.7, LCMS found *m/z* 432.1; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H) 7.29 (s, 1H) 6.68 (s, 2H) 4.97 (dd, *J* = 7.46, 3.79 Hz, 1H) 4.76 - 4.83 (m, 1H) 4.46 (t, *J* = 3.30 Hz, 1H) 3.93 - 4.02 (m, 1H) 3.80 (br s, 2H) 3.54 - 3.62 (m, 1H) 3.33 - 3.41 (m, 1H) 1.85 - 1.99 (m, 2H) 1.66 - 1.83 (m, 4H) 1.06 (t, *J* = 7.34 Hz, 2H) 0.96 (t, *J* = 7.34 Hz, 2H).

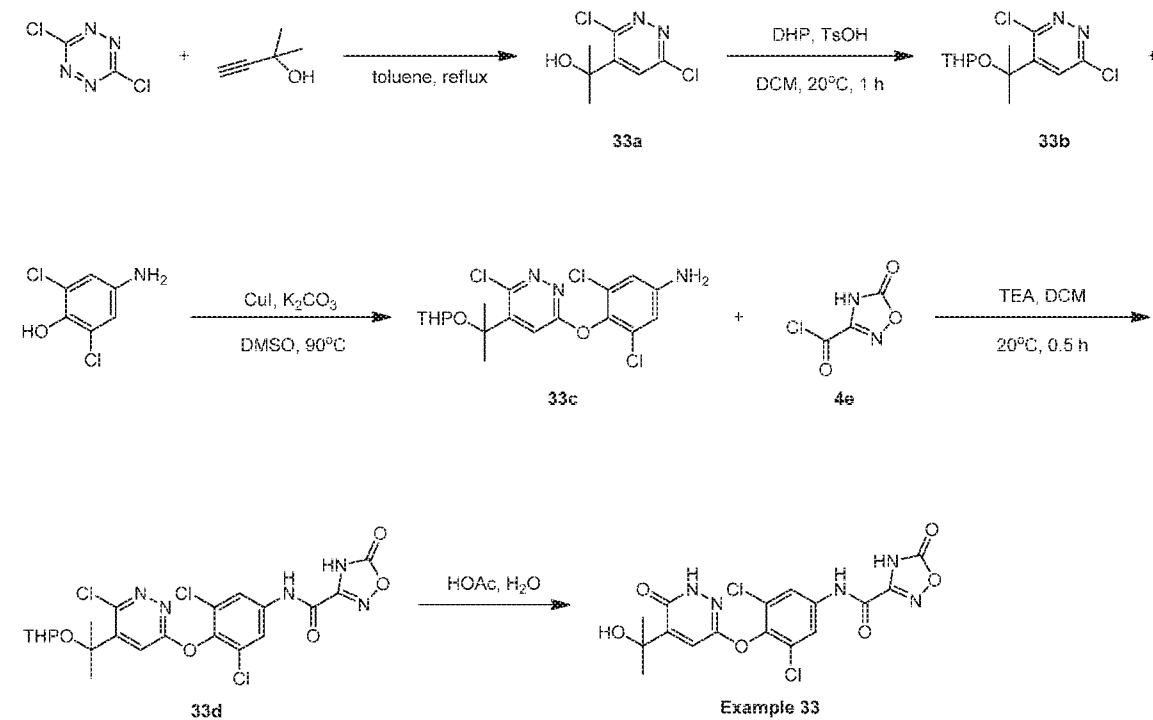
[0400] **N-(3,5-dichloro-4-((6-chloro-5-(1-((tetrahydro-2H-pyran-2-yl)oxy)propyl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (32d).** To a solution of 3,5-dichloro-4-((6-chloro-5-(1-((tetrahydro-2H-pyran-2-yl)oxy)propyl)pyridazin-3-yl)oxy)aniline (32c) (110 mg, 254.20 umol) in DCM (5 mL) was added TEA (77.17 mg, 762.60 umol, 106.15 uL) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (56.63 mg, 381.30 umol). The mixture was stirred at 20°C for 0.5 hours. LCMS showed desired MS. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate = 1:1) to give 32d. MS mass calculated for [M+1]⁺ (C₂₁H₂₀Cl₃N₅O₆) required *m/z* 544.8, LCMS found *m/z* 544.6; ¹H NMR (400 MHz, CD₃OD) δ 7.97 (s, 2H) 7.64 (s, 1H) 4.83 (dd, *J* = 8.05, 3.20 Hz, 1H) 3.92 (s, 1H) 1.87 - 1.97 (m, 2H) 1.59 - 1.69 (m, 1H) 1.06 (t, *J* = 7.28 Hz, 3H).

[0401] 1-(6-(2,6-dichloro-4-(5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamido)phenoxy)-3-oxo-2,3-dihydropyridazin-4-yl)propyl acetate (32e). To a solution of N-(3,5-dichloro-4-((6-chloro-5-(1-((tetrahydro-2H-pyran-2-yl)oxy)propyl) pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (32d) (130 mg, 238.63 umol, 1 *eq*) in HOAc (5 mL) was added NaOAc (97.88 mg, 1.19 mmol). The mixture was stirred at 120°C for 16 hours. The reaction mixture was concentrated under reduced pressure to remove AcOH to give 32e. MS mass calculated for [M+1]⁺ (C₁₈H₁₅Cl₂N₅O₇) required *m/z* 484.2, LCMS found *m/z* 484.1. The crude product was used into the next step without further purification.

[0402] N-(3,5-dichloro-4-((5-(1-hydroxypropyl)-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 32). To a solution of 1-(6-(2,6-dichloro-4-(5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamido)phenoxy)-3-oxo-2,3-dihydropyridazin-4-yl)propyl acetate (32e) (115 mg, 237.48 umol) in MeOH (3 mL) and H₂O (0.5 mL) was added LiOH.H₂O (1 M, 474.97 *u*L). The mixture was stirred at 25°C for 1 hour. The reaction mixture was concentrated under reduced pressure to remove AcOH. The residue was diluted with water 5 mL. The suspension was extracted with EtOAc (30 mL*3), the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by Prep-HPLC (column: Phenomenex Luna C18 100*30mm*5um; mobile phase: [water (0.225%FA)-ACN]; B%: 30%-60%, 10min) to give Example 32. MS mass calculated for [M+1]⁺ (C₁₆H₁₃Cl₂N₅O₆) required *m/z* 442.2, LCMS found *m/z* 442.0; ¹H NMR (400 MHz, CD₃OD) δ 7.92 (s, 2H) 7.47 (s, 1H) 4.85 (s, 2H) 4.74 (br d, *J* = 4.77 Hz, 1H) 1.88 - 2.02 (m, 1H) 1.51 - 1.64 (m, 1H) 1.02 (t, *J* = 7.40 Hz, 3H).

Example 32 P1 and P2: N-(3,5-dichloro-4-((5-(1-hydroxypropyl)-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0403] **N-(3,5-dichloro-4-((6-chloro-5-(1-hydroxypropyl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (32f).** A solution of N-(3,5-dichloro-4-((6-chloro-5-(1-hydroxypropyl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (32d) (160 mg, 293.70 umol) in TFA (1 mL) and DCM (3 mL) was stirred at 20°C for 2 hours. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by Prep-HPLC (column: Phenomenex Luna C18 100*30mm*5um; mobile phase: [water (0.2%FA)-ACN]; B%: 35%-65%,10min) to give 32f. MS mass calculated for [M+1]⁺ (C₁₆H₁₂Cl₃N₅O₅) required *m/z* 460.0, LCMS found *m/z* 460.1.


[0404] **SFC separation.** N-(3,5-dichloro-4-((6-chloro-5-(1-hydroxypropyl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (32f) (95 mg, 206.23 umol) was separated by SFC (column: DAICEL CHIRALCEL OJ (250mm*30mm,10um); mobile phase: [0.1%NH₃*H₂O MeOH]; B%: 30%-30%,5min) to give 32f-P1 and 32f-P2.

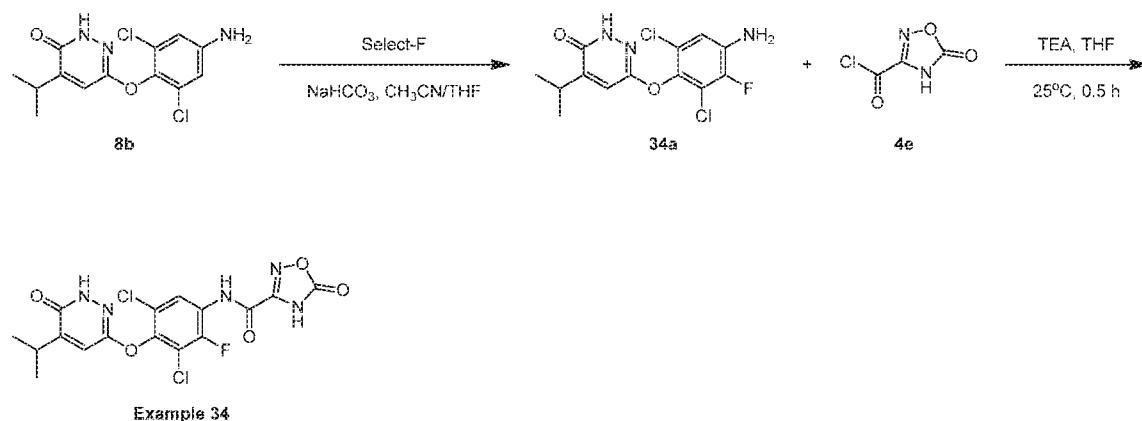
[0405] **(R)-N-(3,5-dichloro-4-((5-(1-hydroxypropyl)-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 32-P1).** A solution of (R)-N-(3,5-dichloro-4-((6-chloro-5-(1-hydroxypropyl)pyridazin-3-yl)oxy)phenyl)-5-

oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (**32f-P1**) (10.00 mg, 21.71 umol) in HOAc (2 mL) and H₂O (0.1 mL) was stirred at 120°C for 16 hours. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by Prep-HPLC (column: Phenomenex Luna C18 200*40mm*10um; mobile phase: [water (0.225%FA)-ACN]; B%: 20%-50%, 12min) to give **Example 32-P1**. MS mass calculated for [M+1]⁺ ($C_{16}H_{13}Cl_2N_5O_6$) required *m/z* 442.0, LCMS found *m/z* 442.0; ¹H NMR (400 MHz, CD₃OD) δ 7.92 (s, 2H) 7.47 (d, *J* = 0.98 Hz, 1H) 4.87 (s, 40H) 4.73 (br d, *J* = 4.03 Hz, 1H) 1.90 - 1.98 (m, 1H) 1.58 (dt, *J* = 14.15, 7.29 Hz, 1H) 1.02 (t, *J* = 7.40 Hz, 3H).

[0406] (*S*)-N-(3,5-dichloro-4-((5-(1-hydroxypropyl)-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (**Example 32-P2**). A solution of (*S*)-N-(3,5-dichloro-4-((6-chloro-5-(1-hydroxypropyl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (**32f-P2**) (10.00 mg, 21.71 umol) in HOAc (2 mL) and H₂O (0.1 mL) was stirred at 120°C for 16hr. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by Prep-HPLC (column: Phenomenex Luna C18 100*30mm*5um; mobile phase: [water (0.2%FA)-ACN]; B%: 20%-50%, 10min to give **Example 32-P2**. MS mass calculated for [M+1]⁺ ($C_{16}H_{13}Cl_2N_5O_6$) required *m/z* 442.0, LCMS found *m/z* 442.0; ¹H NMR (400 MHz, CD₃OD) δ 7.91 (s, 2H) 7.47 (d, *J* = 1.10 Hz, 1H) 4.87 (s, 19H) 4.73 (dd, *J* = 7.09, 3.06 Hz, 1H) 1.95 (ddd, *J* = 13.91, 7.43, 3.48 Hz, 1H) 1.52 - 1.63 (m, 1H) 1.02 (t, *J* = 7.34 Hz, 3H).

Example 33: N-(3,5-dichloro-4-((5-(2-hydroxypropan-2-yl)-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0407] 2-(3,6-dichloropyridazin-4-yl)propan-2-ol (33a). To a solution of 3,6-dichloro-1,2,4,5-tetrazine (500 mg, 3.31 mmol) in Tol. (5 mL) was added 2-methylbut-3-yn-2-ol at 20°C. The mixture was stirred at 115°C for 16 hours under sealed tube. LCMS showed desired MS. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO₂, petroleum ether : ethyl acetate= 10: 1 to 4:1 ,TLC) to give 33a. MS mass calculated for [M+1]⁺ (C₇H₈Cl₂N₂O) required *m/z* 207.0, LCMS found *m/z* 207.0; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H) 2.17 (s, 1H) 1.77 (s, 6H).

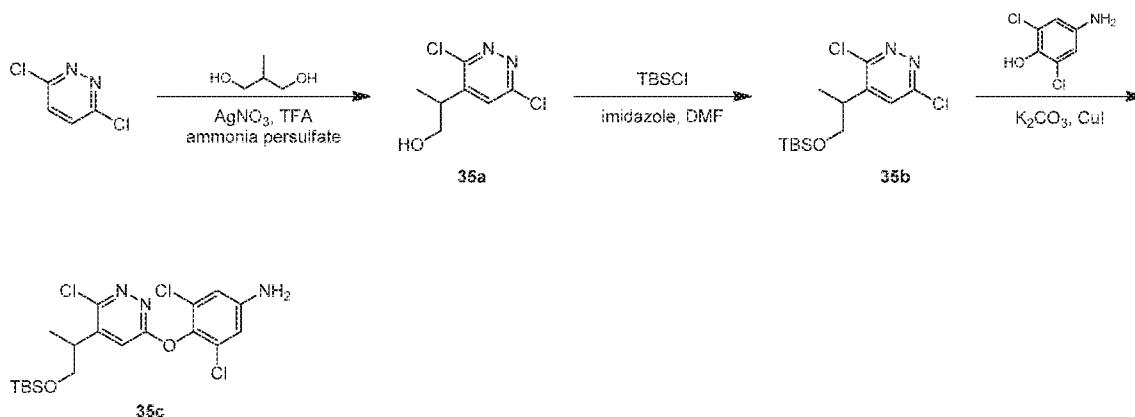

[0408] 3,6-dichloro-4-(2-((tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)pyridazine (33b). To a solution of 2-(3,6-dichloropyridazin-4-yl)propan-2-ol (33a) (70 mg, 338.07 umol) in DCM (5 mL) was added DHP (142.19 mg, 1.69 mmol, 154.56 uL) and PPTS (16.99 mg, 67.61 umol). The mixture was stirred at 20°C for 16 hours. The mixture was diluted with water (5 mL) and extracted with ethyl acetate (15 mL, 2x). The combined organic layers were washed with brine (10 mL*3), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate= 5: 1, TLC) to give 33b. MS mass calculated for [M+1]⁺ (C₁₂H₁₆Cl₂N₂O₂) required *m/z* 291.1, LCMS found *m/z* 291.1; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H) 4.84 (dd, *J* = 5.62, 2.81 Hz, 1H) 4.01 - 4.08 (m, 1H) 3.88 - 3.95 (m, 1H) 3.57 (dt, *J* = 11.13, 5.44 Hz, 1H) 3.47 (dt, *J* = 11.37, 5.69 Hz, 1H) 1.83 - 1.96 (m, 2H) 1.78 (s, 3H) 1.75 (s, 3H) 1.56 - 1.73 (m, 6H).

[0409] **3,5-dichloro-4-((6-chloro-5-(2-((tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)pyridazin-3-yl)oxy)aniline (33c).** To a solution of 3,6-dichloro-4-(2-((tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)pyridazine (33b) (40 mg, 137.38 umol) and 4-amino-2,6-dichlorophenol (24.45 mg, 137.38 umol) in DMSO (4 mL) was added K₂CO₃ (75.94 mg, 549.50 umol) and CuI (15.70 mg, 82.43 umol) was degassed and purged with N₂ for 3 times, and then the mixture was stirred at 90°C for 16 hours under N₂ atmosphere LCMS showed desired MS. The mixture was diluted in EtOAc (5 mL) and filtered. The filtrate was partitioned between ethyl acetate (5 mL) and H₂O (3 mL). The organic phase was separated, and the aqueous phase was extracted with EtOAc (5 mL). The combined organic phase was washed with brine (10 mL*2), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The mixture was purified by Prep-TLC (petroleum ether : ethyl acetate= 3: 1) to give 33c. MS mass calculated for [M+1]⁺ (C₁₈H₂₀Cl₃N₃O₃) required m/z 432.1, LCMS found m/z 432.1.

[0410] **N-(3,5-dichloro-4-((6-chloro-5-(2-((tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (33d).** To a solution of 3,5-dichloro-4-((6-chloro-5-(2-((tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)pyridazin-3-yl)oxy)aniline (33c) (25 mg, 57.77 umol) in DCM (1.5 mL) was added TEA (17.54 mg, 173.32 umol, 24.12 uL and 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carbonyl chloride (4e) (12.87 mg, 86.66 umol). The mixture was stirred at 20°C for 0.5 hours. LCMS showed desired MS. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate) to give 33d. MS mass calculated for [M+1]⁺ (C₂₁H₂₀Cl₃N₅O₆) required m/z 544.0, LCMS found m/z 544.1; ¹H NMR (400 MHz, CD₃OD) δ 7.98 (s, 2H) 7.76 (s, 1H) 4.36 - 4.41 (m, 6H) 3.93 (s, 3H) 3.83 - 3.89 (m, 1H) 3.62 - 3.65 (m, 2H) 3.59 (t, J = 6.60 Hz, 5H) 3.48 (dt, J = 7.73, 6.22 Hz, 9H) 1.92 (dt, J = 6.14, 3.10 Hz, 4H) 1.78 - 1.88 (m, 16H) 1.66 - 1.75 (m, 9H).

[0411] **N-(3,5-dichloro-4-((5-(2-hydroxypropan-2-yl)-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 33).** A solution of N-(3,5-dichloro-4-((6-chloro-5-(2-((tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (33d) (25 mg, 45.89 umol) in HOAc (2 mL) and H₂O (0.1 mL) was stirred at 120°C for 16 hours. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by Prep-HPLC (column: Phenomenex Luna C18 200*40mm*10um; mobile phase: [water (0.225%FA)-ACN]; B%: 20%-55%,12min) to give Example 33. MS mass calculated for [M+1]⁺ (C₁₆H₁₃Cl₂N₅O₆) required m/z 442.0, LCMS found m/z 441.9; ¹H NMR (400 MHz, CD₃OD) δ 7.91 (s, 2H) 7.58 (s, 1H) 4.85 (br s, 12H) 1.62 (s, 6H).

Example 34: N-(3,5-dichloro-2-fluoro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

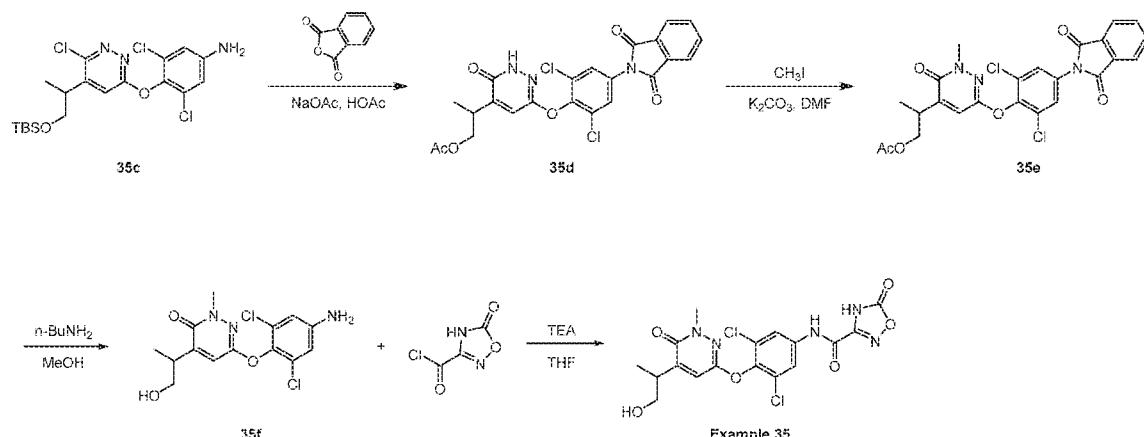


[0412] **6-(4-amino-2,6-dichloro-3-fluorophenoxy)-4-isopropylpyridazin-3(2H)-one (34a).**

To a solution of 6-(4-amino-2,6-dichlorophenoxy)-4-isopropylpyridazin-3(2H)-one (**8b**) (300 mg, 954.91 umol) in CH₃CN (10 mL) and THF (10 mL) was added NaHCO₃ (240.66 mg, 2.86 mmol, 111.41 uL). Then Select F (372.11 mg, 1.05 mmol) was added to the mixture in portions at 20°C. Then the mixture was stirred at 20°C for 2 hours. The mixture was diluted with EtOAc (30 mL) and H₂O (30 mL). The organic layer was washed with brine (10 mL), dried in vacuum. The residue was purified by Prep-TLC (petroleum ether : ethyl acetate=1:1) to give **34a**. ¹H NMR (400 MHz, CD₃OD) δ 7.29 (d, J = 0.86 Hz, 1H) 6.89 (d, J = 8.44 Hz, 1H) 3.10 - 3.23 (m, 1H) 1.25 - 1.33 (m, 6H).

[0413] **N-(3,5-dichloro-2-fluoro-4-((5-isopropyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 34).** To a solution of 6-(4-amino-2,6-dichloro-3-fluorophenoxy)-4-isopropylpyridazin-3(2H)-one (**34a**) (100 mg, 301.06 umol) in DCM (4 mL) was added TEA (91.39 mg, 903.19 umol, 125.71 uL) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (**4e**) (67.06 mg, 451.59 umol). The mixture was stirred at 20°C for 0.5 hours. LCMS showed desired MS. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether : ethyl acetate) to give the desired material. The desired compound was re-purified by Prep-HPLC (column: Phenomenex Luna C18 200*40mm*10um; mobile phase: [water (0.225%FA)-ACN], B%: 20%-60%, 12min) to give **Example 34**. MS mass calculated for [M+1]⁺ (C₁₆H₁₂Cl₂FN₅O₅) required *m/z* 444.0, LCMS found *m/z* 443.9; ¹H NMR (400 MHz, CD₃OD) δ 7.97 (br d, J = 6.72 Hz, 1H) 7.37 (s, 1H) 4.87 (br s, 13H) 3.12 - 3.22 (m, 1H) 1.28 (br d, J = 6.60 Hz, 6H).

Scheme F: 4-((5-(1-((tert-butyldimethylsilyl)oxy)propan-2-yl)-6-chloropyridazin-3-yl)oxy)-3,5-dichloroaniline (Compound 35c)


[0414] 2-(3,6-dichloropyridazin-4-yl)propan-1-ol (35a). To H₂O (25 mL) was added TFA (4.97 g, 43.63 mmol, 3.23 mL) at 50 °C, then 2-methylpropane-1,3-diol (6.65 g, 73.8 mmol, 6.59 mL) was added in the mixture, followed by addition of 3,6-dichloropyridazine (5 g, 33.6 mmol) and AgNO₃ (7.70 g, 45.3 mmol). Then a solution of ammonia hydrogen thiosulfate (15.3 g, 67.1 mmol, 14.6 mL) in H₂O (15 mL) was added in the mixture in portions at 50 °C, and the resulting mixture was stirred at 50 °C for 0.5 hours. The reaction mixture was partitioned between H₂O (45 mL) and EtOAc (50 mL). The organic phase was separated, washed with H₂O (50 mL* 3), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO₂, petroleum ether/ethyl acetate) to give 35a. MS mass calculated for [M+1]⁺ (C₇H₈Cl₂N₂O) requires *m/z* 207.0, LCMS found *m/z* 207.0; ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 3.93 - 3.84 (m, 2H), 3.45 - 3.30 (m, 1H), 1.35 (d, *J* = 7.2 Hz, 3H).

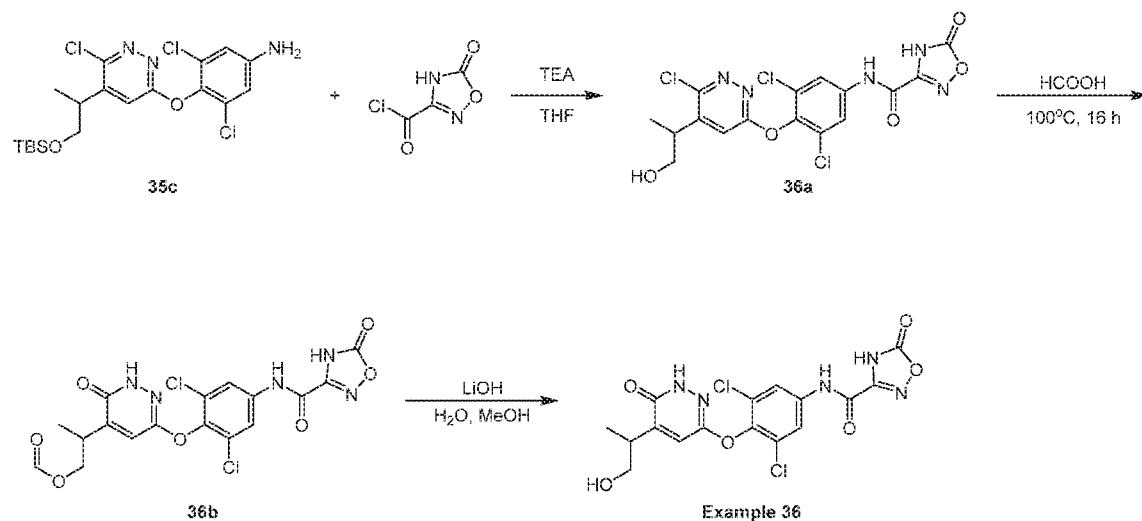
[0415] 4-(1-((tert-butyldimethylsilyl)oxy)propan-2-yl)-3,6-dichloropyridazine (35b). To a solution of 2-(3,6-dichloropyridazin-4-yl)propan-1-ol (35a) (3.4 g, 16.4 mmol) and tert-butyldimethylsilane (2.47 g, 16.4 mmol, 2.01 mL) in DMF (25 mL) was added imidazole (1.34 g, 19.7 mmol). The mixture was stirred at 25 °C for 1 hr under N₂ atmosphere. The reaction mixture was diluted with water (100 mL) and extracted with EtOAc (100 mL* 3). The combined organic phase was washed with brine (50 mL* 2), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum to give 35b. The product was used directly in the next step without further purification. MS mass calculated for [M+1]⁺ (C₁₃H₂₂Cl₂N₂O₂Si) requires *m/z* 321.1, LCMS found *m/z* 321.0; ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 3.77 (d, *J* = 4.4 Hz,

2H), 3.38 - 3.29 (m, 1H), 1.32 (d, J = 6.8 Hz, 3H), 0.88 - 0.79 (m, 9H), 0.04 - 0.02 (m, 3H), 0.02 - 0.08 (m, 3H).

[0416] **4-((5-(1-((tert-butyldimethylsilyl)oxy)propan-2-yl)-6-chloropyridazin-3-yl)oxy)-3,5-dichloroaniline (35c).** To a solution of 4-((1-((tert-butyldimethylsilyl)oxy)propan-2-yl)-3,6-dichloropyridazine (35b) (1 g, 3.11 mmol) in DMSO (15 mL) was added 4-amino-2,6-dichlorophenol (752.84 mg, 3.11 mmol), K_2CO_3 (1.29 g, 9.34 mmol) and CuI (355.63 mg, 1.87 mmol). The mixture was stirred at 90 °C under N_2 atmosphere for 5 hours. The suspension was filtered through a pad of Celite and the pad cake was washed with EtOAc (50 mL). The reaction mixture was quenched by addition H_2O (30 mL), and then extracted with ethyl acetate (50 mL) and extracted with EtOAc (50 mL * 5). The combined organic layers were washed with brine (50 mL * 2), dried over Na_2SO_4 , filtered and concentrated under reduced pressure. The residue was purified by column chromatography (SiO_2 , petroleum ether: ethyl acetate) to give 35c. MS mass calculated for $[M+1]^+$ ($C_{19}H_{26}Cl_3N_3O_2Si$) requires m/z 462.1, LCMS found m/z 462.1.

Example 35: N-(3,5-dichloro-4-((5-(1-hydroxypropan-2-yl)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0417] **2-(6-(2,6-dichloro-4-(1,3-dioxoisoindolin-2-yl)phenoxy)-3-oxo-2,3-dihydropyridazin-4-yl)propyl acetate (35d).** To a solution of 4-((5-(1-((tert-butyldimethylsilyl)oxy)propan-2-yl)-6-chloropyridazin-3-yl)oxy)-3,5-dichloroaniline (35c) (510 mg, 1.10 mmol) in HOAc (8 mL) was added isobenzofuran-1, 3-dione (244.8 mg, 1.65 mmol) and NaOAc (271.2 mg, 3.31 mmol). The mixture was stirred at 120°C for 16 hours. The reaction mixture was concentrated under reduced pressure to remove HOAc. The residue was diluted with H_2O (30 mL) and extracted with EtOAc (30 mL * 3). The combined organic layers were washed with brine (30 mL), dried over Na_2SO_4 , filtered and concentrated under reduced pressure to give a residue. The residue was purified by column chromatography (SiO_2 ,


petroleum ether: ethyl acetate) to give **35d**. MS mass calculated for $[M+1]^+$ ($C_{23}H_{17}Cl_2N_3O_6$) requires m/z 502.0, LCMS found m/z 502.1.

[0418] **2-(6-(2,6-dichloro-4-(1,3-dioxoisooindolin-2-yl)phenoxy)-2-methyl-3-oxo-2,3-dihdropyridazin-4-yl)propyl acetate (35e)**. To a solution of 2-(6-(2,6-dichloro-4-(1,3-dioxoisooindolin-2-yl)phenoxy)-3-oxo-2,3-dihdropyridazin-4-yl)propyl acetate (**35d**) (230 mg, 457.9 umol) in DMF (3 mL) was added K_2CO_3 (107.6 mg, 778.4 umol) and MeI (130.0 mg, 915.8 umol, 57.0 μ L). The mixture was stirred at 25 °C for 3 hours. The reaction mixture was quenched by addition H_2O (15 mL) at 25 °C, and then extracted with $EtOAc$ (15 mL * 3). The combined organic layers were washed with brine (30 mL), dried over Na_2SO_4 , filtered and concentrated under reduced pressure to give **35e**. The mixture was used into the next step without further purification. MS mass calculated for $[M+1]^+$ ($C_{24}H_{19}Cl_2N_3O_6$) requires m/z 516.1, LCMS found m/z 516.1.

[0419] **6-(4-amino-2,6-dichlorophenoxy)-4-(1-hydroxypropan-2-yl)-2-methylpyridazin-3(2H)-one (35f)**. To a solution of 2-(6-(2,6-dichloro-4-(1,3-dioxoisooindolin-2-yl)phenoxy)-2-methyl-3-oxo-2,3-dihdropyridazin-4-yl)propyl acetate (**35e**) (223 mg, 431.89 umol) in $MeOH$ (5 mL) was added butan-1-amine (1.11 g, 15.2 mmol, 1.5 mL). The mixture was stirred at 70 °C for 1 hr. The reaction mixture was concentrated under reduced pressure to remove $MeOH$. The residue was purified by prep-TLC (SiO_2 , petroleum ether: ethyl acetate) to give **35f**. MS mass calculated for $[M+1]^+$ ($C_{14}H_{15}Cl_2N_3O_3$) requires m/z 344.0, LCMS found m/z 344.0.

[0420] **N-(3,5-dichloro-4-((5-(1-hydroxypropan-2-yl)-1-methyl-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 35)**. To a solution of 6-(4-amino-2,6-dichlorophenoxy)-4-(1-hydroxypropan-2-yl)-2-methylpyridazin-3(2H)-one (**35f**) (50 mg, 145.3 umol) in THF (3 mL) was added TEA (44.1 mg, 435.8 umol, 60.7 μ L) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (32.4 mg, 217.9 umol). The mixture was stirred at 25 °C for 5 minutes. TLC and LCMS showed **35f** was consumed completely and desired mass + Ac was detected. The reaction mixture was quenched by addition of $MeOH$ (5 mL) at 25°C. Then the pH was adjusted to 10~12 with $LiOH/H_2O$, and the resulting mixture was stirred at 25 °C for 1 hour. LCMS showed the desired MS was found in the major peak. Then the mixture was concentrated in vacuum, and the residue was purified by prep-HPLC (column: Waters Xbridge Prep OBD C18 150*40mm*10um; mobile phase: [water (10mM NH_4HCO_3)- $MeCN$]) to give **Example 35**. MS mass calculated for $[M+1]^+$ ($C_{17}H_{15}Cl_2N_5O_6$) requires m/z 456.0, LCMS found m/z 456.1; 1H NMR (400 MHz, CD_3OD) δ 7.93 (s, 2H), 7.34 (s, 1H), 3.80 (dd, J = 6.0, 10.6 Hz, 1H), 3.73 - 3.66 (m, 1H), 3.51 (s, 3H), 3.29 - 3.23 (m, 1H), 1.29 (d, J = 7.0 Hz, 3H).

Example 36: N-(3,5-dichloro-4-((5-(1-hydroxypropan-2-yl)-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0421] **N-(3,5-dichloro-4-((6-chloro-5-(1-hydroxypropan-2-yl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (36a).** To a solution of 4-((5-((tert-butyldimethylsilyl)oxy)propan-2-yl)-6-chloropyridazin-3-yl)oxy)-3,5-dichloroaniline (35c) (50 mg, 108.0 umol) in THF (2 mL) was added TEA (32.8 mg, 324.0 umol, 45.1 uL) and 5-oxo-4H-1,2,4-oxadiazole-3-carbonyl chloride (24.1 mg, 162.0 umol). The mixture was stirred at 25 °C for 5 minutes. The reaction mixture was quenched by addition of MeOH (25 mL) at 25 °C, and the reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether: ethyl acetate) to give 36a. MS mass calculated for [M+1]⁺ (C₁₆H₁₂Cl₃N₅O₅) requires m/z 460.0, LCMS found m/z 460.0.

[0422] **2-(6-(2,6-dichloro-4-(5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamido)phenoxy)-3-oxo-2,3-dihdropyridazin-4-yl)propyl formate (36b).** To a solution of N-(3,5-dichloro-4-((6-chloro-5-(1-hydroxypropan-2-yl)pyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (36a) (40 mg, 86.8 umol) in HCOOH (5 mL) was stirred at 100 °C for 16 hours. The reaction mixture was concentrated under reduced pressure to remove HCOOH. The residue was purified by prep-TLC (SiO₂, ethyl acetate: petroleum ether) to give 36b. MS mass calculated for [M+1]⁺ (C₁₇H₁₃Cl₂N₅O₇) requires m/z 470.0, LCMS found m/z 470.0.

[0423] **N-(3,5-dichloro-4-((5-(1-hydroxypropan-2-yl)-6-oxo-1,6-dihdropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 36).** To a solution of 2-(6-(2,6-dichloro-4-(5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamido)phenoxy)-3-oxo-2,3-dihdropyridazin-4-yl)propyl formate (36b) (35 mg, 74.4 umol) in MeOH (4 mL) was

added LiOH·H₂O (3.8 mg, 89.3 umol) in H₂O (1 mL). The mixture was stirred at 25 °C for 1 hour. The reaction mixture was concentrated under reduced pressure to remove MeOH. The residue was purified by prep-HPLC (column: Waters Xbridge BEH C18 100*30mm*10um; mobile phase: [water (10mM NH₄HCO₃)-MeCN]) to give **Example 36**. MS mass calculated for [M+1]⁺(C₁₆H₁₃Cl₂N₅O₆) requires m/z 442.0, LCMS found m/z 442.1, ¹H NMR (400 MHz, CD₃OD) δ 7.91 (s, 1H), 7.36 (s, 1H), 3.84 - 3.78 (m, 1H), 3.73 - 3.67 (m, 1H), 3.26 - 3.20 (m, 1H), 1.30 (d, *J* = 7.0 Hz, 3H).

Example 37: N-(3,5-dichloro-4-((5-(2-hydroxypropan-2-yl)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide

[0424] **2-(3,5-dichloro-4-((5-(2-hydroxypropan-2-yl)-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)isoindoline-1,3-dione (37a).** To a mixture of 3,5-dichloro-4-((6-chloro-5-((tetrahydro-2H-pyran-2-yl)oxy)propan-2-yl)pyridazin-3-yl)oxy)aniline (**33c**) (100 mg, 231.1 umol) and isobenzofuran-1,3-dione (37.7 mg, 254.2 umol) in HOAc (2 mL) was added NaOAc (94.8 mg, 1.16 mmol) under N₂. The mixture was stirred at 120 °C for 16 hours. The residue was poured into water (5 mL). The aqueous phase was extracted with ethyl acetate (10 mL*3). The combined organic phase was washed with brine (10 mL*2), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by prep-TLC (SiO₂, petroleum ether/ethyl acetate) to give **37a**. MS mass calculated for [M+1]⁺(C₂₁H₁₅Cl₂N₃O₅) requires m/z 460.0, MS mass found m/z 460.0; ¹H NMR (400 MHz, CDCl₃) δ 9.91 (br s, 2H), 8.11 - 7.93 (m, 2H), 7.92 - 7.74 (m, 3H), 7.61 (d, *J* = 1.6 Hz, 3H), 7.30 - 7.28 (m, 1H), 2.16 - 2.00 (m, 3H), 1.90 - 1.84 (m, 2H), 1.68 (br d, *J* = 6.0 Hz, 1H), 1.67 - 1.65 (m, 1H), 1.67 - 1.65 (m, 1H), 1.66 (s, 1H).

[0425] **2-(3,5-dichloro-4-((5-(2-hydroxypropan-2-yl)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)isoindoline-1,3-dione (37b).** To a mixture of 2-(3,5-dichloro-4-((5-(2-hydroxypropan-2-yl)-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)isoindoline-1,3-dione (37a) (50 mg, 108.6 umol) in DMF (3 mL) was added K₂CO₃ (30.0 mg, 217.3 umol) and MeI (30.8 mg, 217.3 umol, 13.53 uL) under N₂. The mixture was stirred at 20 °C for 1 hour. The reaction was poured into water (5 mL). The aqueous phase was extracted with EtOAc (15 mL* 2). The combined organic phase was washed with brine (10 mL* 2), dried with anhydrous Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by prep-TLC (SiO₂, petroleum ether: ethyl acetate) to give 37b. MS mass calculated for [M+1]⁺ (C₂₂H₁₇Cl₂N₃O₅) requires *m/z* 474.1, MS mass found *m/z* 474.1.

[0426] **6-(4-amino-2,6-dichlorophenoxy)-4-(2-hydroxypropan-2-yl)-2-methylpyridazin-3(2H)-one (37c).** To a mixture of 2-(3,5-dichloro-4-((5-(2-hydroxypropan-2-yl)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)isoindoline-1,3-dione (37b) (30 mg, 63.3 umol) in MeOH (1.5 mL) was added n-butylamine (11.6 mg, 158.1 umol, 15.63 uL) under N₂. The mixture was stirred at 70 °C for 1.5 hours. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-TLC (SiO₂, petroleum ether: ethyl acetate) and the obtained crude product was re-purified by prep-HPLC (column: Waters Xbridge BEH C18 100*30mm*10um; mobile phase: [water (10mM NH₄HCO₃)-MeCN]) to give 37c. ¹H NMR (400 MHz, CDCl₃) δ 7.20 - 7.08 (m, 1H), 6.75 - 6.62 (m, 2H), 5.68 - 5.51 (m, 1H), 3.85 - 3.71 (m, 2H), 3.63 - 3.50 (m, 3H), 1.62 (s, 6H).

[0427] **N-(3,5-dichloro-4-((5-(2-hydroxypropan-2-yl)-1-methyl-6-oxo-1,6-dihydropyridazin-3-yl)oxy)phenyl)-5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carboxamide (Example 37).** To a mixture of 6-(4-amino-2,6-dichlorophenoxy)-4-(2-hydroxypropan-2-yl)-2-methylpyridazin-3(2H)-one (37c) (10 mg, 29.05 umol) in THF (2 mL) was added TEA (8.82 mg, 87.12umol, 12.1 uL) and 5-oxo-4,5-dihydro-1,2,4-oxadiazole-3-carbonyl chloride (12.9 mg, 87.2 umol) under N₂. The mixture was stirred at 20 °C for 2 hours. The reaction mixture was concentrated under reduced pressure to give a residue. The residue was purified by prep-HPLC (column: Welch Ultimate AQ-C18 150*30mm*5um; mobile phase: [water (0.1%TFA)-MeCN]) to give Example 37. MS mass calculated for [M+1]⁺ (C₁₇H₁₅Cl₂N₅O₆) requires *m/z* 456.0, MS mass found *m/z* 456.0; ¹H NMR (400 MHz, CD₃OD) δ 7.96 - 7.88 (m, 2H), 7.60 - 7.52 (m, 1H), 4.46 - 4.37 (m, 1H), 3.68 - 3.59 (m, 1H), 3.53 - 3.47 (m, 1H), 3.50 - 3.47 (m, 1H), 3.49 (s, 1H), 1.94 - 1.84 (m, 1H), 1.66 - 1.54 (m, 6H).

*Biological Example: Biological Screening***Example B1: Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) Assay for Thyroid Hormone Receptor Agonist Screening**

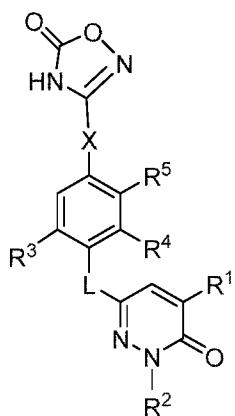
[0428] LanthaScreen™ TR-FRET Thyroid Receptor alpha Coactivator Assay kit (ThermoFisher) and LanthaScreen™ TR-FRET Thyroid Receptor beta Coactivator Assay kit (ThermoFisher) were used for agonist compound screening. Compounds in DMSO were diluted using ECHO Liquid Handler (Labcyte Inc.) into 384 plates in 10-point 3-fold series in duplicate (5 micro M final top concentration). Buffer C (ThermoFisher) was added to each well before the 4x mixture of fluorescein-SCR2-2 coactivator (200nM final concentration), Terbium-labeled anti-GST antibody (2nM final concentration), and TR alpha-LBD (0.4nM final concentration) or TR beta-LBD (1.0nM final concentration) was added. After 2 hour incubation at room temperature in dark, the TR-FRET signal was measured on an EnVision plate reader (PerkinElmer) with excitation at 340 nm and dual emission readout at 495 and 520 nm with the delay time of 100 micro second and the integration time of 200 micro second. The ratio of emission signal at 520 and at 495 was used to calculate EC₅₀ using GraphPad Prism (GraphPad Software). In every batch of compound screening, T3 (L-3,3',5-Triiodothyronine sodium salt, >95%) (Calbiochem) was used as reference compound. The EC₅₀ of T3 measured were within 3-fold of the reference value provided by the assay kit manufacturer (ThermoFisher Scientific). The Z' factors measured in every batch of screening using T3 as high percent effect (HPE) control and 0.5% DMSO as zero percent effect (ZPE) control were in the range of 0.5 to 0.8. Compounds' THR-beta selectivity values are derived from T3-selectivity normalized data. Data obtained using the TR-FRET assay for certain compounds disclosed herein are listed in Table 2.

Table 2.

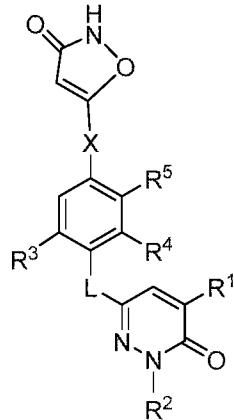
Example	EC ₅₀ THR β -FRET [nM] ^a	EC ₅₀ THR α -FRET [nM] ^a	THR β -Selectivity
1	7.6	49.5	17.2
2	>5000	>5000	n.a.
3-P1	276.6	75.9	1.0
3-P2	732.1	817.4	4.2
4	27.1	313.8	31.7
5	74.2	469.3	27.8
6	58.1	78.0	3.6

Example	EC ₅₀ THR β -FRET [nM] ^a	EC ₅₀ THR α -FRET [nM] ^a	THR β -Selectivity
7	60.9	472.6	13.1
8	896.1	2298	7
9	290.2	125.5	0.7
11	115.8	192.4	4.8
12	71.2	151.8	6.2
13	53.6	1632	86.5
14	46.6	548.7	48
15	31.5	102	11.7
16	44.2	82.4	6.7
17	2112	>5000	>7.2
18	271.2	550	6.1
19	>5000	1926	n. a.
20	>5000	>5000	n.a.
21	180	>5000	>113
22	180.8	897.7	19.5
23	87.3	1323	67.3
24	188.2	2049	39.5
25	230.6	2419	42.1
26	58.1	699.1	44.6
27	26.8	143.8	21.5
28	286.1	4265	67
29	234.9	4339	88.9
29P1	2642	>5000	>10.4
29P2	91.3	1761	80.8
30	821.4	3109	14.3
31	600.5	>5000	>34.8
32	86.4	1546	77.9
32P1	450.5	4231	27.9
32P2	43.3	1154	81
33	212.2	>5000	>84.3
34	165.9	577	10.9
35	761.8	2601	15.8

Example	EC ₅₀ THR β -FRET [nM] ^a	EC ₅₀ THR α -FRET [nM] ^a	THR β -Selectivity
36	468.5	>5000	>15.7
37	34.5	212.4	15.5


n.a. denotes not applicable; ^a all compounds were run in duplicate multiple times, and the average data is reported

[0429] All publications, including patents, patent applications, and scientific articles, mentioned in this specification are herein incorporated by reference in their entirety for all purposes to the same extent as if each individual publication, including patent, patent application, or scientific article, were specifically and individually indicated to be incorporated by reference.


[0430] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is apparent to those skilled in the art that certain minor changes and modifications will be practiced in light of the above teaching. Therefore, the description and examples should not be construed as limiting the scope of the invention.

Claims

Claim 1. A compound of formula (IIA) or (IIB):

(IIA)

(IIB)

or a pharmaceutically acceptable salt thereof, wherein:

*R*¹ is C₁-C₄ alkyl optionally substituted with 1-5 halo or hydroxyl groups, C₃-C₅ cycloalkyl, CON(R¹⁰)₂, or NR¹⁰COR¹⁰;

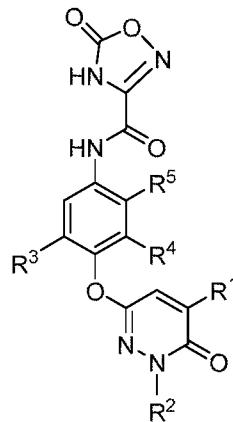
*R*² is H or C₁-C₃ alkyl;

L is O, CH₂, S, SO, SO₂, CO, CHF, CF₂, C(R¹¹)CN, CHR¹¹, or C(R¹¹)R¹¹;

*R*³ and *R*⁴ are independently Cl, Br, methyl, or ethyl;

*R*⁵ is H, halo, C₁-C₄ alkyl, or C₃-C₄ cycloalkyl;

or *R*⁵ together with *R*⁴ and the intervening atoms form a 5-7 membered cycloalkyl or a 5-7 membered heterocycle containing 1-2 ring heteroatoms;


X is absent, O, NR¹², C(O)NR¹², NR¹²C(O), CR¹²R¹², OCR¹²R¹², CR¹²R¹²O, NR¹²CR¹²R¹², CR¹²R¹²NR¹², SO₂NR¹², or NR¹²SO₂;

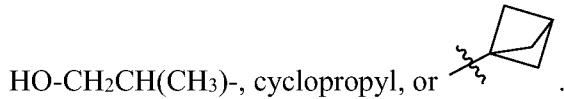
each *R*¹⁰ is independently C₁-C₃ alkyl or H;

each *R*¹¹ is independently C₁-C₂ alkyl optionally substituted with 1-5 halo, or two *R*¹¹ groups together with the carbon atom to which they are attached form a cyclopropyl or cyclobutyl ring; and

each R¹² is independently H or methyl.

Claim 2. The compound of claim 1, or a pharmaceutically acceptable salt thereof, which is of formula (VD):

(VD)


wherein R¹, R², R³, R⁴, and R⁵ are as defined in claim 1.

Claim 3. The compound of claim 1 or 2, or a pharmaceutically acceptable salt thereof, wherein:

R¹ is C₁-C₄ alkyl optionally substituted with 1-2 halo or hydroxyl groups, or C₃-C₅ cycloalkyl.

Claim 4. The compound of claim 3, or a pharmaceutically acceptable salt thereof, wherein:

R¹ is isopropyl, t-butyl, HO-CH(CH₃)-, HO-CH(CH₂CH₃)-, HO-C(CH₃)₂-,

Claim 5. The compound of any one of claims 1-4, or a pharmaceutically acceptable salt thereof, wherein:

R² is H or -CH₃.

Claim 6. The compound of any one of claims 1-5, or a pharmaceutically acceptable salt thereof, wherein:

R³ is chloro or -CH₃.

Claim 7. The compound of any one of claims 1-6, or a pharmaceutically acceptable salt thereof, wherein:

R^4 is chloro or $-CH_3$;

or R^5 together with R^4 and the intervening atoms form a 5-6 membered cycloalkyl.

Claim 8. The compound of claim 7, or a pharmaceutically acceptable salt thereof, wherein:

R^5 together with R^4 and the intervening atoms form cyclopentyl.

Claim 9. The compound of any one of claims 1-7, or a pharmaceutically acceptable salt thereof, wherein:

R^5 is H or fluoro.

Claim 10. The compound of any one of claims 1 and 3-9, or a pharmaceutically acceptable salt thereof, wherein:

X is a bond.

Claim 11. The compound of any one of claims 1 and 3-9, or a pharmaceutically acceptable salt thereof, wherein:

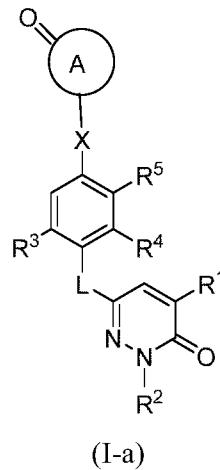
X is $NR^{12}C(O)$, $OCR^{12}R^{12}$, or $NR^{12}CR^{12}R^{12}$; and

each R^{12} is independently H or methyl.

Claim 12. The compound of claim 11, or a pharmaceutically acceptable salt thereof, wherein:

X is $-OCH_2-$, $-NHCH_2-$, $-NHC(O)-$, $-N(CH_3)CH_2-$, or $-N(H)CH(CH_3)-$.

Claim 13. The compound of any one of claims 1-12, or a pharmaceutically acceptable salt thereof, wherein:


L is O, CH_2 , SO_2 , CO, CHR^{11} , or $C(R^{11})R^{11}$; and

each R^{11} is independently methyl or ethyl.

Claim 14. The compound of claim 13, or a pharmaceutically acceptable salt thereof, wherein:

L is O, CH_2 , SO_2 , or CO.

Claim 15. A compound of formula (I-a):

or a tautomer or an N-oxide thereof, or an isotopomer of each thereof, or a prodrug of each of the above, or a stereoisomer of the aforesaid, or a pharmaceutically acceptable salt of each of the foregoing, or a solvate of each of the preceding, wherein:

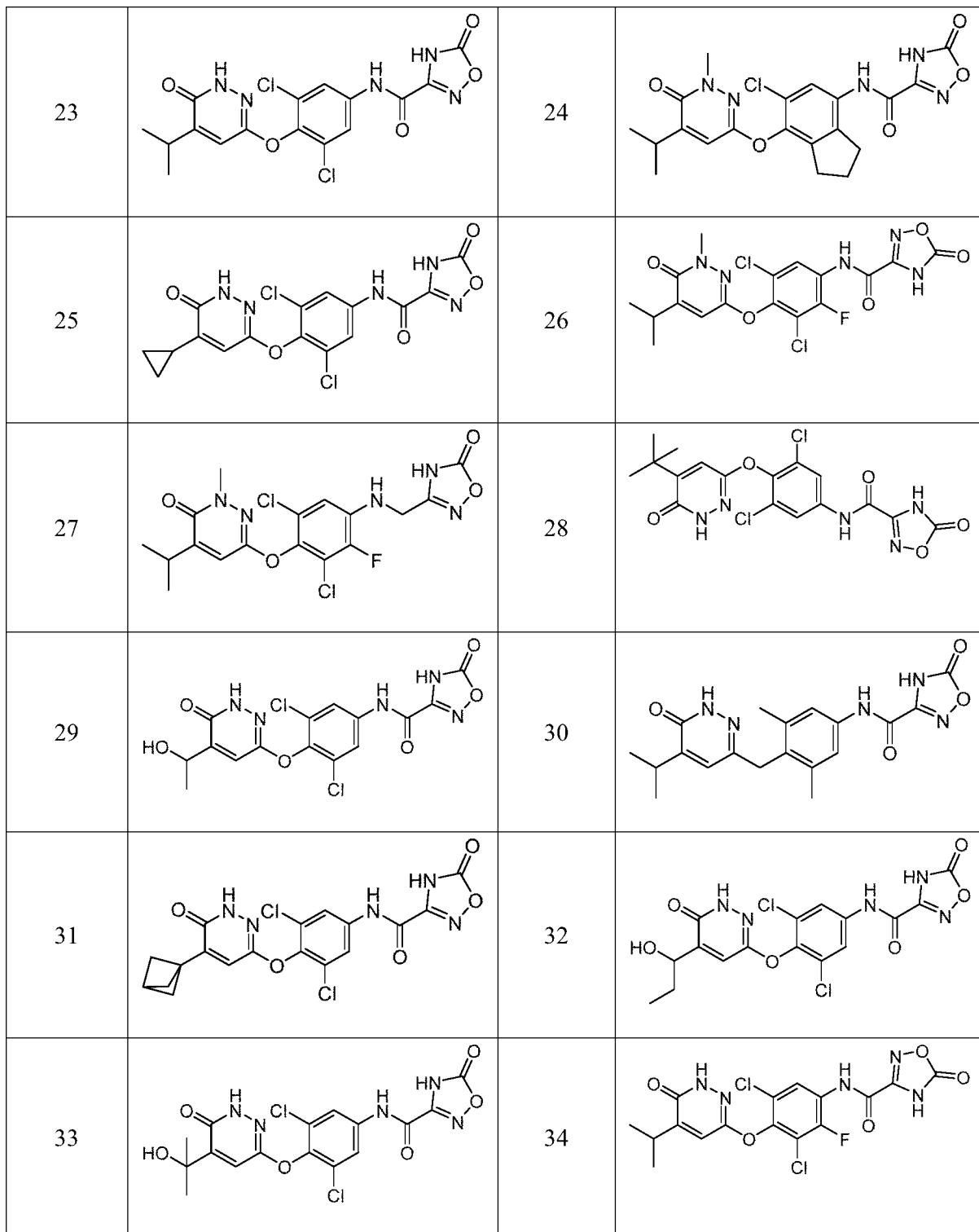
ring A together with the carbonyl (keto) group within the ring form a 5 membered heterocycle containing 1-3 ring heteroatoms selected from the group consisting of N, O, and S, wherein the heterocycle is optionally substituted with 1-2 C₁-C₃ alkyl or C₃-C₄ cycloalkyl, and wherein the carbonyl (keto) group is not adjacent to the atom attached to X;

R¹ is C₁-C₄ alkyl; C₁-C₄ alkyl optionally substituted with 1-5 halo; C₃-C₅ cycloalkyl, CON(R¹⁰)₂, or NR¹⁰COR¹⁰, wherein each R¹⁰ is independently C₁-C₃ alkyl or H;

R² is H or C₁-C₃ alkyl;

L is O, CH₂, S, SO, SO₂, CO, CHF, CF₂, C(R¹¹)CN, CHR¹¹, or C(R¹¹)R¹¹, wherein each R¹¹ is C₁-C₂ alkyl optionally substituted with 1-5 halo, or the 2 R¹¹ groups together with the carbon atom they are attached to form a cyclopropyl or cyclobutyl ring;

each of R³ and R⁴ is independently Cl, Br, methyl, or ethyl;


R⁵ is H, halo, C₁-C₄ alkyl, or C₃-C₄ cycloalkyl, or R⁵ together with R⁴ and the intervening atoms form a 5-7 membered cycloalkyl or a 5-7 membered heterocycle containing 1-2 ring heteroatoms;

X is absent, or is O, NR¹², C(O)NR¹², NR¹²C(O), CR¹²R¹², OCR¹²R¹², CR¹²R¹²O, NR¹²CR¹²R¹², CR¹²R¹²NR¹², SO₂NR¹², or NR¹²SO₂, wherein each R¹² is independently H or methyl.

Claim 16. A compound selected from the compounds shown below, or a pharmaceutically acceptable salt thereof

Example	Structure	Example	Structure
1		2	
3		4	
5		6	
7		8	
9		10	

11		12	
13		14	
15		16	
17		18	
19		20	
21		22	

35		36	
37			

Claim 17. A pharmaceutical composition comprising a compound of any one of claims 1-16, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable excipient.

Claim 18. A method of agonizing thyroid hormone receptor beta (THR beta) comprising contacting either an effective amount of a compound of any one of claims 1-16, or a pharmaceutically acceptable salt thereof, or an effective amount of the pharmaceutical composition of claim 17, with the THR beta.

Claim 19. A method of treating a disorder which is mediated by THR beta in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of a compound of any one of claims 1-16, or a pharmaceutically acceptable salt thereof, or a therapeutically effective amount of the pharmaceutical composition of claim 17.

Claim 20. The method of claim 19, wherein the disorder is non-alcoholic steatohepatitis (NASH).

Claim 21. Use of a compound of any one of claims 1-16, or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for agonizing thyroid hormone receptor beta (THR beta).

Claim 22. Use of a compound of any one of claims 1-16, or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating a disorder which is mediated by THR beta.

Claim 23. The use of claim 22 wherein the disorder is non-alcoholic steatohepatitis (NASH).