wo 20207242521 A1 |0 0000 KO0 0 OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
03 December 2020 (03.12.2020)

(10) International Publication Number

WO 2020/242521 Al

WIPO I PCT

(51) International Patent Classification:
Ho04L 29/08 (2006.01) Ho041 29/06 (2006.01)

(21) International Application Number:
PCT/US2019/063428

(22) International Filing Date:
26 November 2019 (26.11.2019)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

16/425 415 29 May 2019 (29.05.2019) UsS
(71) Applicant: CLOUDFLARE, INC. [US/US]; 101

Townsend St., San Francisco, California 94107 (US).

(72) Inventors: VARDA, Kenton Taylor; 101 Townsend St.,
San Francisco, California 94107 (US). KLOEPPER, Kyle;
101 Townsend St., San Francisco, California 94107 (US).

Agent: NICHOLSON, Matthew N.; NICHOLSON DE
VOS WEBSTER & ELLIOTT LLP, 99 Almaden Blvd.,
Suite 710, San Jose, California 95113 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: STATE MANAGEMENT AND OBJECT STORAGE IN A DISTRIBUTED CLOUD COMPUTING NETWORK

(%EE{EEQTT B OBJECT WORKER 150 DATA STORE
CUENT | (MREQUEST | woRKER oot o WORKER 160
DEVICE CONTROL INSTANGE | OBYECT OBJECT
1104 (5) RESPONSE 140A 165 170 170
(LOOKUP 4 peocess y
REGISTER
DIRECTORY REQUEST ORIGIN
REQUEST |
SERVICE RESPONGE™" SERVER
130 180
(10) OBJECT WORKER
LOCATION
OBJECT WORKER ~ THIRD-
{9 LOOKUP CONTROL | conFIGURATION . PARTY
SERVER DEVICE
185 190
(6, 14) REPLICATE WRITE
H
(11) REQUEST FOLLOWER OBJECT
CLIENT | (7)REQUEST WORKER WORKER 195
DEVICE 5 CONTROL | (13)REPLY 5
1108 1408 WORKER
— RESPONSE INSTANCE OB1J7EOCT
(8) IDENTIFY REQUEST 165 -
IS TO BE HANDLED BY
AN OBJECT WORKER
COMPUTE SERVER 120 COMPUTE SERVER 120N FIG. 1

(57) Abstract: A first compute server of a distributed cloud computing network receives a request from a first client device for an
object to be handled by an object worker that includes a single instantiation of a piece of code that solely controls reading and writing
access to the first object. A determination is made that the object worker is instantiated for the object and is currently running in the
first compute server, and the piece of code processes the first request. The first compute server receives a message to be processed by
the first object worker from a second compute server. The message includes a second request for the object from a second client device
connected to the second compute server. The piece of code processes the message and transmits a reply to the second compute server.

[Continued on next page]

WO 20207242521 AT [I 0000000000 0 O 0

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2020/242521 PCT/US2019/063428

State Management and Object Storage in a Distributed Cloud Computing Network

FIELD

[0001] Embodiments of the invention relate to the field of computing; and more specifically,

to state management and object storage in a distributed cloud computing network.

BACKGROUND

[0002] There are several different ways to store data. A common approach is to use a
monolithic database model that is fundamentally centralized. These databases are sometimes
claimed to be distributed, but they either are based on a global synchronization procedure (e.g.,
consistent and partition tolerant) or eventual consistency through merging changes (e.g., highly
available and partition tolerant). Global synchronization can be slow especially as the
distributed database and the number of nodes grows. Eventual consistency is difficult to do

correctly and is error prone.

SUMMARY

[0003] A first compute server of a distributed cloud computing network receives a request
from a first client device for an object to be handled by an object worker that includes a single
instantiation of a piece of code that solely controls reading and writing access to the first object.
A determination is made that the object worker is instantiated for the object and is currently
running in the first compute server, and the piece of code processes the first request. The first
compute server receives a message to be processed by the first object worker from a second
compute server. The message includes a second request for the object from a second client
device connected to the second compute server. The piece of code processes the message and
transmits a reply to the second compute server. Processing, with the piece of code, may include
reading and/or writing to the first object. Processing, with the piece of code, may include

retrieving the object from a remote object storage.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The invention may best be understood by referring to the following description and
accompanying drawings that are used to illustrate embodiments of the invention. In the

drawings:

WO 2020/242521 PCT/US2019/063428

[0005] Figure 1 illustrates an exemplary embodiment for state management and object storage
in a distributed cloud computing network according to an embodiment.

[0006] Figure 2 is a flow diagram that illustrates exemplary operations for object worker
processing according to an embodiment.

[0007] Figure 3 illustrates a first time period showing an object worker being automatically
migrated according to an embodiment.

[0008] Figure 4 illustrates a second time period showing an object worker being automatically
migrated according to an embodiment.

[0009] Figure 5 illustrates a third time period showing an object worker being automatically
migrated according to an embodiment.

[0010] Figure 6 is a block diagram illustrating a data processing system that can be used in an

embodiment.

DESCRIPTION OF EMBODIMENTS

[0011] A method and apparatus for state management and object storage in a distributed cloud
computing network is described. Data is separated into one or more units referred herein as
objects. For instance, objects may be created in a way that they tend to be accessed by the same
set or set of clients. By way of example, each document of a collaborative document editing
system may be a separate object. In an embodiment, a developer splits their data into objects in a
way that they choose. A single object is owned by a single instantiation of a piece of code that
can read and/or modify the object while the single piece of code is executing. Other entities that
wish to read and/or modify the object communicate with the single instantiation of the piece of
code that owns the object.

[0012] The single instantiation of the piece of code and/or the object are automatically
migrated to be close to the clients that are accessing the object. For instance, if not currently
running, the single piece of code may be instantiated at a first server of the distributed cloud
computing network that is close to the client that is requesting access to the object. When access
to that object is complete, the single piece of code may be instantiated at a second server of the
distributed cloud computing network that is close to a subsequent client that is requesting access
to the object.

[0013] As referred herein, an object worker includes a combination of the single instantiation
of a piece of code and the object that belongs to the single instantiation of the piece of code.
Each instance of an object worker has its own private and persistent data that the object worker

can read and/or modify and which no other object worker can directly access. Thus, the single

WO 2020/242521 PCT/US2019/063428

instantiation of the piece of code solely controls reading and/or writing access to the object in
which it controls. The piece of code can be, for example, a piece of JavaScript or other
interpreted language, a WebAssembly (WASM) compiled piece of code, or other compiled
code. In an embodiment, the piece of code is written against standard Web Platform APIs such
as the W3C standard ServiceWorker API for receiving HTTP requests. For purposes of this
description, each piece of code is referred to as an object worker script, and each single
instantiation of the piece of code is referred to as an instantiated object worker script. The
object of an object worker may be persistently located in storage (e.g., object storage). An
object worker locks the data such that it is the sole owner of the data while it is being executed.
Other entities that wish to interact with the data send messages to the object worker that owns
the data.

[0014] Object workers may be executed in a distributed cloud computing network. The
distributed cloud computing network includes multiple compute servers that are geographically
distributed (e.g., in different locations throughout the world). There may be hundreds of
compute servers that are geographically distributed in different points-of-presences (PoPs). An
object worker may migrate between different compute servers. For instance, an object worker
may migrate to a particular compute server because that compute server is the one physically
closest to the user that is interacting with the data of the object worker.

[0015] Control over an object may be transferred. For instance, a compute server may wish to
take ownership over an object. To do so, the new compute server may transmit a message
requesting ownership over the object. The compute server that has ownership over the object
may agree to the transfer or may not agree to the transfer. In an embodiment, transfer of
ownership may be automatically determined based on the amount of time with which the object
was last interacted through the owner, the number of interactions of the object over a period of
time, and/or an expected amount of interactions of the object.

[0016] Figure 1 illustrates an exemplary embodiment for state management and object storage
in a distributed cloud computing network according to an embodiment. The system 100
includes the client devices 110A-B, the compute servers 120A-N, the data store 160, the origin
server 180, the control server 185, and the third-party device 190.

[0017] Each client device is a computing device (e.g., laptop, workstation, smartphone, mobile
phone, tablet, gaming system, set top box, wearable device, Internet of Things (IoT) device, etc.)
that is capable of transmitting and/or receiving network traffic. Each client device may execute
a client network application such as a web browser, native application, or other application that
can access network resources (e.g., web pages, images, word processing documents, PDF files,

movie files, music files, or other computer files).

WO 2020/242521 PCT/US2019/063428
[0018] The compute servers 120A-N are part of the distributed cloud computing network. The

compute servers 120A-N are geographically distributed (e.g., in different locations throughout
the world). There may be hundreds or more compute servers 120. Each compute server 120
may include one or more physical servers that are part of the same PoP. Although not illustrated
in Figure 1, the compute servers 120A-N may be part of PoPs that may include other physical
servers (e.g., one or more compute servers, one or more control servers, one or more DNS
servers (e.g., one or more authoritative name servers, one or more proxy DNS servers), and one
or more other pieces of network equipment such as router(s), switch(es), and/or hub(s)). Each
PoP (and each compute server) may be part of a different data center and/or colocation site.
Although not illustrated in Figure 1, there are other physical devices between the compute
servers 120A-N such as routers, switches, etc.

[0019] Since the compute servers 120A-N are geographically distributed, the distance between
requesting client devices and the compute servers is decreased which decreases the time
necessary to respond to a request. The compute servers 120A-N may operate as a reverse proxy
and receive request for network resources (e.g., HTTP requests) of a domain of the origin server
180. The particular compute server 120 that receives a request from a client device may be
determined by the network infrastructure according to an Anycast implementation or by a
geographical load balancer. For instance, the compute servers 120A-N may have a same anycast
IP address for a domain of the origin server 180. If the origin server 180 handles the domain
“example.com”, a DNS request for “example.com” returns an address record having the anycast
IP address of the compute servers 120A-N. Which one of the compute servers 120A-N receives
a request from a client device depends on which compute server 120 is closest to the client
device in terms of routing protocol configuration (e.g., Border Gateway Protocol (BGP)
configuration) according to an anycast implementation as determined by the network
infrastructure (e.g., router(s), switch(es), and/or other network equipment between the requesting
client and the compute servers 120A-N. By way of example, the client device 110A is closest to
the compute server 120A of the compute servers 120A-N and the client device 110B is closest to
the compute server 120B of the compute servers 120A-N. Accordingly, requests from the client
device 110A are received at the compute server 120A and requests from the client device 110B
are received at the compute server 120B. In some embodiments, instead of using an anycast
mechanism, a geographical load balancer is used to route traffic to the nearest compute server.
The number of client devices and compute servers illustrated in Figure 1 is exemplary. The
distributed cloud computing network 105 may include hundreds to thousands (or more) compute

servers and each compute server may receive requests from thousands or more client devices.

WO 2020/242521 PCT/US2019/063428

[0020] Each compute server may execute an object worker. As described above, each object
worker includes a combination of an instantiation of a piece of code and an object that belongs
to the instantiation of the piece of code. Each instance of an object worker has its own private
and persistent data that the object worker can read and/or modify and which no other object
worker can directly access. The piece of code can be, for example, a piece of JavaScript or other
interpreted language, a WebAssembly (WASM) compiled piece of code, or other compiled
code. In an embodiment, the piece of code is written against standard Web Platform APIs such
as compliant with the W3C standard ServiceWorker API for receiving HTTP requests. An
object worker locks the data such that it is the sole owner of the data while it is being executed.
Other entities that wish to interact with the data send messages to the object worker that owns
the data. In an embodiment, each instantiated object worker script is run in an isolated
execution environment, such as run in an isolate of the V8 JavaScript engine. The isolated
execution environment can be run within a single process. In an embodiment, the instantiated
object worker scripts are not executed using a virtual machine or a container. In an
embodiment, a particular object worker script is loaded and executed on-demand (when and
only if it is needed) at a particular compute server of the distributed cloud computing network.
[0021] The origin server 180, which may be owned or operated directly or indirectly by a
customer of the cloud computing platform, is a computing device on which a network resource
resides and/or originates (e.g., web pages, images, word processing documents, PDF files movie
files, music files, or other computer files). In an embodiment, the origin server 180 is not
required such that a compute server can respond to a request without querying an origin server.
[0022] The control server 185 is operated by the cloud computing platform and provides a set
of tools and interfaces for a customer to, among other things, configure object workers to be run
in the cloud computing platform. The third-party device 190 is a computing device (e.g., laptop,
workstation, smartphone, mobile phone, tablet, etc.) that is used by third-parties such as a
customer, among other things, interact with the control server 185. For instance, the control
server 185 may allow the customer to indicate how the data is to be split into one or more units.
[0023] The customer can split the data into units that tend to be accessed by the same client or
sets of client. This allows the object to naturally migrate to near where the client(s) are
accessing the data thereby providing fast, low-latency access. The following are examples in
how the data can be split. If the customer is providing a collaborative document editing system,
each document of the system may be a separate object. If the customer is providing an online
gaming service, each game session may be a separate object. For an online email service, each
user’s mailbox may be a separate object. For a calendar service, each user’s calendar may be a

separate object. For a team chat product, each channel may be a separate object.

WO 2020/242521 PCT/US2019/063428

[0024] The control server 185 may allow the customer to upload one or more object worker
scripts and specify when the object worker script(s) are to be run. For instance, the customer
may associate a rule that indicates when an object worker script is to be run. By way of
example, the control server 185 may allow the customer to configure a URL matching pattern
that indicates the URL(s) for which the object worker script is to run. The control server 185
may allow the customer to delete and update previously uploaded object worker script(s).
[0025] In an embodiment, the control server 185 deploys each object worker script to each of
the compute servers 120A-N automatically (without the customer selecting which of the
compute servers 120A-N in which to deploy the object worker script). In another embodiment,
the control server 185 allows the customer to indicate which of the compute servers 120A-N are
to be deployed a particular worker script. The control server 185 creates an identifier for each
unique object worker script. In an embodiment, the identifier is created by hashing the content
of the object worker script (e.g., using a cryptographic hash function such as SHA-256), where
two scripts with identical content will have the same identifier even if uploaded by different
customers and even if applied to different zones.

[0026] In an embodiment, the control server 185 allows a customer to provision the service to
the cloud computing platform through DNS. For example, DNS record(s) of a customer are
changed such that DNS records of hostnames point to an IP address of a compute server instead
of the origin server. In some embodiments, the authoritative name server of the customer’s
domain is changed to an authoritative name server of the service and/or individual DNS records
are changed to point to the compute server (or point to other domain(s) that point to a compute
server of the service). For example, the customers may change their DNS records to point to a
CNAME record that points to a compute server of the service. In one embodiment, customers
may use the control server 185 to change their authoritative name server to an authoritative
name server of the cloud computing platform and/or change their zone file records to have their
domain point to the compute servers.

[0027] At an operation 1, the compute server 120A receives a request from the client device
110A for an identified object. The request may be an HTTP request, HTTPS request, or other
protocol request. In an embodiment, the compute server 120A receives this request because it is
the closest one of the compute servers 120A-N to the client device 110A in terms of routing
protocol configuration (e.g., BGP configuration) according to an anycast implementation as
determined by the network. As an example, the request is an HTTP/S request for an object
located at “example.com/object/1234”. The origin server 180 may be the origin server for the

domain “example.com.”

WO 2020/242521 PCT/US2019/063428
[0028] The compute server 120A determines that the request is to be handled by an object

worker. This determination may be made by the worker control 140A being executed by the
compute server 120A. The worker control 140A may be a script that determines that the request
is to be handled by an object worker. For instance, the script may determine an object ID for the
requested object worker and forward the request to the appropriate instance of the object worker
script. In another embodiment, the worker control 140A may analyze the request URL against a
URL matching pattern configured for the zone to determine if an object worker is to handle the
request. For instance, the request URL of “example.com/object/1234”” may match a predefined
matching pattern for determining that an object worker is to handle the request.

[0029] An object worker to handle the requested object may or may not be currently running
and/or previously instantiated at the time the request is received at the compute server 120A. In
an embodiment, a single instantiated object worker becomes the sole owner of the object for
which it is handling while that object worker is executing. All requests are processed by that
object worker. The worker control 140A checks the directory service 130 to determine if an
object worker has been instantiated for the requested object and if so, the state of the object
worker. The directory service 130 may store information that indicates whether the object
worker is running, the location (e.g., which compute server) is running the object worker, and
optionally the last region in which the requested object was running. A region is a group of
compute servers that may be geographically near each other. A network partition may occur
between regions (e.g., complete failure of communication between regions or very slow
communication between regions).

[0030] If an object worker has not been previously instantiated for the requested object, a new
object worker is instantiated for the requested object. If an object worker is currently running on
the compute server that received the request, that object worker processes the request. If an
object worker is currently running on a different compute server than the one that received the
request, the request may be transmitted to that different compute server for processing the object
worker. If an object worker for the requested object is not currently running and last was run in
the same region as the compute server that received the request (and thus there is a low chance
of a network partition), that compute server can instantiate the object worker for the requested
object. If an object worker for the requested object is not currently running and was last running
in a different region as the compute server that received the request (and thus is an increased
chance of a network partition), then the compute server that received the request may request
that ownership of the object be transferred from that different region.

[0031] In the example of Figure 1, the worker control 140A accesses the directory service 130

at operation 2 and determines that an object worker for the requested object has not been

WO 2020/242521 PCT/US2019/063428

previously instantiated. The worker control 140A registers with the directory service 130 and
instantiates an object worker 150 at operation 3. Registering may include generating an
identifier for the object worker (if one does not exist) and associating the identifier with the
location in which the object worker will execute. For instance, the worker control 140A
associates an identifier for the object worker 150 with an identifier of the compute server 120A.
The object worker 150 includes an object worker script instance 165 that is an instantiated object
worker script and the object 170. The object 170 corresponds to the requested object identified
in the request in operation 1. The object worker script instance 165 can read and/or modify the
object 170 and no other object worker can directly access the object 170.

[0032] Instantiating an object worker may include retrieving the object worker script that
handles processing of the object and/or retrieving the object itself from the data store 160. In an
embodiment, creation of the object worker may also include determining a leader and one or
more followers to form a consensus group for the object. The object leader actually executes the
instance of the object worker. The object leader replicates writes to the object follower(s). If,
for instance, the object leader becomes unreachable (e.g., due to a hardware or software failure),
the follower(s) may elect a new object leader. In the example of Figure 1, the compute server
120B includes a follower object worker 195.

[0033] After the object worker 150 has been instantiated, it processes the request received
from the client device 110A at operation 4. Processing the request may include reading and/or
writing to the object 170. Processing the request may also include accessing the origin server
180 and/or other origin servers depending on the request. After processing the request, the
compute server 120A transmits a response to the request to the requesting client device 110A at
operation 5. In an embodiment, if processing the request includes writing to the object 170, the
write(s) are replicated to the object followers. Thus, at operation 6, which is optional in some
embodiments, a write is replicated to the follower object worker 195 of the compute server
120B.

[0034] The compute server 120B receives a request from the client device 110B at operation 7
for the object 170. In an embodiment, the compute server 120B receives this request because it
is the closest one of the compute servers 120A-N to the client device 110B in terms of routing
protocol configuration (e.g., BGP configuration) according to an anycast implementation as
determined by the network. As an example, the request is an HTTP/S request for the object
located at “example.com/object/1234”. At operation 8, the worker control 140B determines that
the request is to be handled by an object worker. For instance, the worker control 140B may
analyze the request URL against a URL matching pattern configured for the zone to determine if

an object worker is to handle the request.

WO 2020/242521 PCT/US2019/063428
[0035] At operation 9, the worker control 140B accesses the directory service 130 to

determine if an object worker has been instantiated for the requested object and if so, the state of
the object worker. In this example, the object worker 150 is being executed by the compute
server 120A at the time of the request in operation 7. Accordingly, the directory service 130
returns the location of where the object worker for the requested object is currently running
(e.g., an identifier of the compute server 120A) to the worker control 140B at operation 10.
[0036] Since the object worker is not running on the compute server 120B, the worker control
140B transmits a message to the compute server 120A for the object worker 150 to process at
operation 11. For instance, the worker control 140B may forward the request it received from
the client device 110B in operation 6 to the compute server 120A for processing. The object
worker 150 processes the request at operation 12, which may include reading and/or writing to
the object 170. At operation 13, a reply to the request at operation 11 transmitted from the
compute server 120A to the compute server 120B. If processing the request includes writing to
the object 170, in an embodiment the write(s) are replicated to the follower object worker 195 at
operation 14. At operation 15, the compute server 120A transmits a response to the request to
the requesting client device 110A.

[0037] In an embodiment, the message for the object worker to process (e.g., the request) may
be sent with the lookup request. In such an embodiment, instead of returning the location of the
object worker, the directory service 130 forwards the message directly to the object worker for
processing.

[0038] The object data is stored back to the data store 160. The object data may be periodically
stored back to the data store 160. Alternatively, the object data is stored back to the data store
160 only after the object worker 150 has been idle for a predetermined period of time (e.g., has
not received a request to process over that predetermined period of time) or when the compute
server determines to abdicate ownership over the object (e.g., if the object worker 150 has not
received a request to process over a predetermined period of time).

[0039] Although not illustrated in Figure 1, the compute server 120A may stop the execution
of the object worker 150 thereby abdicating ownership over the object 170. For instance, the
compute server 120 may stop the object worker 150 if the object worker 150 has been idle for a
predetermined period of time (e.g., if the object worker 150 has not received a request to process
for the predetermined period of time). The compute server 120A may receive a request to
transfer ownership over the object 170.

[0040] Figure 2 is a flow diagram that illustrates exemplary operations for object worker

processing according to an embodiment. The operations of Figure 2 will be described with

WO 2020/242521 PCT/US2019/063428

respect to HTTP/S request and responses. But, the operations of Figure 2 can be performed with
different types of requests and responses.

[0041] At operation 210, a first one of multiple compute servers of a distributed cloud
computing network receives a request for an object that is to be handled by an object worker.
Referring to Figure 1, the request is received by the compute server 120A from the client device
110A. The request may be an HTTP request, HTTPS request, or other protocol request. The
compute server determines that the request is to be handled by an object worker. In an
embodiment, this determination is made by a script that determines an object ID for the
requested object and forwards the request to the appropriate instance of the object worker script.
In another embodiment, this determination is made by analyzing the request URL against a URL
matching pattern configured for the zone to determine if an object worker is to handle the
request. To provide an example, the HTTP request is an HTTP GET method for
“example.com/object/1234”, which matches a predefined matching pattern for determining that
an object worker is to handle the request.

[0042] The distributed cloud computing network includes multiple compute servers including
the first compute server. The compute servers are geographically distributed, and there may be
hundreds or more compute servers. In an embodiment, the compute servers are anycasted to a
same IP address, and the first compute server receives the request in operation 210 because the
first compute server is the closest one of the compute servers to the client device making the
request as determined by an anycast implementation. For instance, a DNS request for an address
record of the zone “example.com” returns an anycasted IP address of the compute servers.
Alternatively, the first compute server may receive the request as a result of a geographical load
balancer routing the request to it.

[0043] Next, at operation 215, the first compute server determines whether an object worker
has been instantiated for the requested object and if so, the state of the object worker. For
example, the first compute server may use a directory service to look up whether an object
worker has been instantiated for the requested object and if so, its state. The state information
may indicate the location, if any, in which the object worker is running. For instance, the
directory service may indicate an identifier of the compute server that is running the object
worker for the requested object. The directory service may also indicate the last region in which
the requested object was running. A region is a group of compute servers that may be
geographically near each other.

[0044] The directory service may use a distributed hash table. As another example, a
replicated service using eventual consistency may be used. As yet another example, a

hierarchical directory where the directory service for any given object is another object worker

10

WO 2020/242521 PCT/US2019/063428
that is identified from the object’s ID may be used. As yet another example, the backing object

store itself may be used as the directory service by storing a file adjacent to the object and
performing optimistic-concurrency transactions.

[0045] If an object worker has not been instantiated for the requested object, then operation
220 is performed. At operation 220, the first compute server instantiates an object worker for
the requested object. Instantiating the object worker for the requested object may include
determining what entity is going to execute the object worker and may include determining the
entities that will object worker followers. In an embodiment, the first compute server is
determined to execute the object worker because it is the one that received the request in
operation 210. A set of one or more object worker followers may be determined. The first
compute server may select other compute server(s) to be object worker followers. In an
embodiment, the set of object worker followers are each located in a different data center than
the first compute server. The set of object worker followers are typically located in the same
region as the first compute server. Instantiating the object worker may also include retrieving
the object from object storage or from its origin server, and/or retrieving the object worker script
from object storage or from its origin server. Instantiating the object worker includes registering
the object worker with the directory service (e.g., indicating that the object worker is executing
on the first compute server).

[0046] Next, at operation 225, the object worker for the requested object processes the request.
Processing the request may include reading and/or writing to the object. Next, at operation 230,
the first compute server transmits a response to the request to the requesting client device. In an
embodiment, if processing the request includes writing to the object, the write(s) are replicated
to the object follower(s).

[0047] If an object worker has been instantiated for the requested object, at operation 235 the
first compute server determines, from the state information of the object worker, whether the
object worker for the requested object is currently running. If the object worker is not currently
running, then operation 255 is performed. If the object worker is currently running, then at
operation 240 the first compute server determines, from the state information of the object
worker, whether the object worker is running on a different compute server. If the object worker
is not running on a different compute server (meaning it is running on the first compute server),
then operation 225 is performed. If the object worker is running on a different compute server,
then operation 245 is performed.

[0048] At operation 245, the first compute server sends a message to the different compute
server for the object worker to process. This message may be the request that is received in

operation 210, for example. The different compute server processes the request, which may

11

WO 2020/242521 PCT/US2019/063428

include reading and/or writing to the object. At operation 250, the first compute server receives
a reply from the object worker on the different compute server in response to the request. Then,
at operation 230, the first compute server transmits a response to the request to the requesting
client device.

[0049] The compute servers may be logically separated into regions. A network partition may
exist or come into existence between regions that affects communication between regions (e.g.,
a complete communication block or very slow communication). In an embodiment, an object
worker can run in only a single region at a time. In an embodiment, because a controlling object
worker is to run in only a single location, a determination is made whether the object worker
was last running in a different region as the compute server and if it was, a transfer of ownership
must occur. This prevents a compute server in one region from running the object worker
concurrently with a compute server in a different region. Thus, at operation 255, the first
compute server determines, from the state information of the object worker, if the object worker
was last running in the same region as the first compute server. If the object worker was last
running in the same region as the first compute server, then operation 220 is performed where
the first compute server instantiates the object worker for the requested object. If, however, the
object worker was last was last running in a different region as the first compute server, then
operation 260 is performed where the first compute server requests a transfer of ownership of
the object from that different region to the region of the first compute server. The first compute
server may transmit a message to the compute server that is currently listed in the directory
service as owning the object requesting transfer of ownership of the object.

[0050] In an embodiment, the transfer of ownership may be denied. In such a case, the other
compute server may instantiate the object worker for the object. The first compute server may
then transmit a message to that compute server for the object worker to process like in operation
245.

[0051] In an embodiment, if the first compute server does not receive a response to the
requested transfer (e.g., a network partition has prevented communication between the regions),
then the first compute server does not instantiate the object worker and process the request. In
such a case, the first compute server may transmit an error message to the requesting client
device.

[0052] If transfer of ownership to the first compute server is agreed upon, then the first
compute server receives a message indicating transfer of ownership at operation 265. The first
compute server then instantiates an object worker for the requested object at operation 220.
[0053] In an embodiment, the object worker is automatically migrated to be close to the

objects with which it commonly communicates. This automatic migration may be a natural

12

WO 2020/242521 PCT/US2019/063428

consequence of a compute server receiving a request that is to be handled by an object worker
and that object worker is not currently instantiated (even if it was last running on a different
compute server). As another example, the object worker may be automatically migrated based
on a set of one or more parameters.

[0054] For instance, the system may track the origination of the requests (e.g., compute server
and/or region) over a period of time and automatically migrate the object worker to the
originator with the highest number of requests. To track the origination of the requests, a
compute server that receives a request that is to be handled by an object worker causes a request
received number to be incremented. The request received number may be stored in the directory
service 130, for example. A number for the particular compute server and/or an aggregate
number for the region may be incremented.

[0055] As another example, the system may determine the location of the object worker (e.g.,
which compute server or region) that has the minimum total latency and automatically migrate
the object worker to that location. The minimum total latency may be determined by analyzing
the latency to process each request (which may be determined with network probes). For
instance, statistics may be gathered on the locations where requests are originating and a
determination of the optimal location in which to serve the traffic is made based on the statistics.
In an embodiment, this determination is performed by measuring the latency from each compute
server or region to each client, computing the average latency weighted by the amount of traffic
(e.g., the number of requests) each of those clients sent, and selecting the compute server or
region that has the lowest average. In another embodiment, this determination is made by
plotting the clients location on a map, computing the average latency weighted by the amount of
traffic (e.g., the number of requests) between the locations, and then selecting the closest
compute server or region to that average. As another example, the system may determine the
location of the object worker (e.g., the location of the compute server or region) that has the
minimum total of the squares of the latency.

[0056] As another example, the system may automatically migrate the object worker based on
historical and/or predicted requests to be handled by the object worker. As another example, the
system may automatically migrate the object worker based on which compute server or region
ingresses the most total traffic for that object worker.

[0057] Figures 3-5 illustrate an object worker being automatically migrated according to an
embodiment. Figures 3-5 include the compute servers 120A-C of the distributed cloud
computing network. Figure 3 illustrates a time 1 where the object worker 150 is instantiated and
running on the compute server 120A. The object worker 150 may be instantiated as a result of a

request from the client device 110A for the object 170. The compute server 120A may receive

13

WO 2020/242521 PCT/US2019/063428

the request from the client device 110A because it is the closest one of the compute servers
120A-N to the client device 110A in terms of routing protocol configuration (e.g., BGP
configuration) according to an anycast implementation as determined by the network.

[0058] The worker control 140A accesses the directory service 130 and determines that an
object worker for the object 170 has not been instantiated and then registers an object worker
with the directory service 130. Registering the object worker for the object 170 may include
generating an identifier for the requested object and associating the identifier with the location in
which the object worker will execute. The generated object identifier is made with sufficient
entropy that there will not be collisions. In an embodiment, the generated object identifier
encodes an identifier of the initial consensus group or the server that is executing the object
worker such that requests addressed to the object can be routed even if the directory has not yet
been updated.

[0059] As illustrated in Figure 3, the directory service 130 includes an object identifier field
315, a server identifier field 320, and a region identifier field 325. The object identifier field
315 indicates the identifier of the object. In this case, the identified object corresponds to the
object 170. The server identifier field 320 indicates the server that is executing the object
worker that owns the object 170. In this case, the server identifier corresponds to the compute
server 120A. The region identifier field 325 indicates the region in which the object worker for
the object was last instantiated. In this example, the region identifier field indicates the region
330 (which includes the compute server 120A).. Although not illustrated in Figure 3, the
directory service 130 may include an identifier of the leader and identifier(s) of the follower(s).
The form of the directory service 130 as illustrated in Figure 3 is exemplary, and the directory
service may take other forms and/or structure.

[0060] At the time 1, the client device 110A is the only client device that is interacting with
the object 170. At a time 2, illustrated in Figure 4, the client device 110B is requesting to
interact with the object 170 while the object worker 150 is still instantiated on the compute
server 120. The compute server 120B receives the request for the object 170 from the client
device 110B. The compute server 120B may receive the request for the object 170 from the
client device 110B (as opposed to, for example, the compute server 120A) because it is the
closest one of the compute servers 120A-N to the client device 110B in terms of routing
protocol configuration (e.g., BGP configuration) according to an anycast implementation as
determined by the network. The worker control 140B accesses the directory service 130 for the
requested object and determines that an object worker for object 170 is instantiated on the
compute server 120A. The worker control 140B transmits a message to the compute server

120A (received by the worker control 140A) for the object worker 150 to process. The message

14

WO 2020/242521 PCT/US2019/063428

may be similar to the request received from the client device 110B. The object worker 150
processes the request which may include reading and/or writing to the object 170. The worker
control 140A transmits a reply to the request that is received by the worker control 140B. The
worker control 140B generates a response based on the reply from the worker control 140A and
transmits the response to the client device 110B.

[0061] Sometime after time 2, the access to the object 170 for the client device 110A ends.
That is, the client device 110A is no longer interacting with the object 170. For instance, the
browser of the client device 110A may have closed or navigated away from a page that includes
the object 170. If no other client devices are interacting with the object 170, the object worker
150 may be subject for migration to another compute server. At a time 3, illustrated in Figure 5,
access to the object 170 has ended for the client device 110A and the object worker 150 has
migrated to the compute server 120B. The client device 110B is interacting with the object 170
at the time 3. The directory service 130 is modified to specify that the compute server 120B has
control of the object 170. The object 170 may be pushed backed to the data store 160.

[0062] In an embodiment, if the compute server that controls the object determines to abdicate
ownership (e.g., if the object has been idle for a predetermined period of time), it removes itself
as owner of the object from the directory service 130 (after processing any requests that may be
pending for the object). The compute server may also push the object back to long-term object
storage. This allows for another compute server to take ownership of the object. For instance,
the compute server 120A may push the object 170 back to the data store 160 and cause the
directory service 130 to specify that it is not the owner of the object 170.

[0063] In an embodiment, the compute server that controls the object maintains a list of other
compute server(s) that request interactions with the object. For instance, the compute server
120A may maintain a list that indicates that the compute server 120B has requested an
interaction with the object 170 (through the client device 110B). If the compute server that
controls the object determines to abdicate ownership (e.g., if access to the object from locally
connected client devices has been idle for some time), the compute server may transmit a
message to one or more of the compute servers on the list, where the message indicates that the
compute server is abdicating ownership. The other compute server(s) may respond to this
message and request ownership of the object (e.g., if a client device is accessing the object).
[0064] It may be possible that a previous object owner may receive a request for the object
worker before the directory service 130 has finished updating. In such a case, the previous
object owner may redirect the request to the new object owner.

[0065] Figure 5 also illustrates that a client device 110C that is located in a first region 332

may interact with an object 170 that is located in a second region 330. The compute server

15

WO 2020/242521 PCT/US2019/063428
120C, of the region 332, receives the request for the object 170 from the client device 110C.

The compute server 120C may receive the request for the object 170 from the client device
110C (as opposed to, for example, the compute servers 120A or 120B) because it is the closest
one of the compute servers 120A-N to the client device 110C in terms of routing protocol
configuration (e.g., BGP configuration) according to an anycast implementation as determined
by the network. The worker control 140C accesses the directory service 130 for the requested
object and determines that an object worker for object 170 is instantiated on the compute server
120B. The worker control 140C transmits a message to the compute server 120B (received by
the worker control 140B) for the object worker 150 to process. The message may be similar to
the request received from the client device 110C. The object worker 150 processes the request
which may include reading and/or writing to the object 170. The worker control 140B transmits
a reply to the request that is received by the worker control 140C. The worker control 140C
generates a response based on the reply from the worker control 140B and transmits the
response to the client device 110C.

[0066] Figure 6 illustrates a block diagram for an exemplary data processing system 600 that
may be used in some embodiments. One or more such data processing systems 600 may be
utilized to implement the embodiments and operations described with respect to the compute
servers and/or client devices. Data processing system 600 includes a processing system 620
(e.g., one or more processors and connected system components such as multiple connected
chips).

[0067] The data processing system 600 is an electronic device that stores and transmits
(internally and/or with other electronic devices over a network) code (which is composed of
software instructions and which is sometimes referred to as computer program code or a
computer program) and/or data using machine-readable media (also called computer-readable
media), such as machine-readable storage media 610 (e.g., magnetic disks, optical disks, read
only memory (ROM), flash memory devices, phase change memory) and machine-readable
transmission media (also called a carrier) (e.g., electrical, optical, radio, acoustical or other form
of propagated signals — such as carrier waves, infrared signals), which is coupled to the
processing system 620. For example, the depicted machine-readable storage media 610 may
store program code 630 that, when executed by the processor(s) 620, causes the data processing
system 600 to execute the worker control 140A, the object worker 150, and/or any of the
operations described herein.

[0068] The data processing system 600 also includes one or more network interfaces 640 (e.g.,
a wired and/or wireless interfaces) that allows the data processing system 600 to transmit data

and receive data from other computing devices, typically across one or more networks (e.g.,

16

WO 2020/242521 PCT/US2019/063428
Local Area Networks (LANSs), the Internet, etc.). The data processing system 600 may also

include one or more input or output (“I/O”) components 650 such as a mouse, keypad, keyboard,
a touch panel or a multi-touch input panel, camera, frame grabber, optical scanner, an audio
input/output subsystem (which may include a microphone and/or a speaker), other known I/O
devices or a combination of such I/O devices. Additional components, not shown, may also be
part of the system 600, and, in certain embodiments, fewer components than that shown in One
or more buses may be used to interconnect the various components shown in Figure 6.

[0069] The techniques shown in the figures can be implemented using code and data stored
and executed on one or more computing devices (e.g., client devices, servers, etc.). Such
computing devices store and communicate (internally and/or with other computing devices over
a network) code and data using machine-readable media, such as machine-readable storage
media (e.g., magnetic disks; optical disks; random access memory; read only memory; flash
memory devices; phase-change memory) and machine-readable communication media (e.g.,
electrical, optical, acoustical or other form of propagated signals — such as carrier waves,
infrared signals, digital signals, etc.). In addition, such computing devices typically include a set
of one or more processors coupled to one or more other components, such as one or more
storage devices, user input/output devices (e.g., a keyboard, a touchscreen, and/or a display), and
network connections. The coupling of the set of processors and other components is typically
through one or more busses and bridges (also termed as bus controllers). The storage device and
signals carrying the network traffic respectively represent one or more machine-readable storage
media and machine-readable communication media. Thus, the storage device of a given
computing device typically stores code and/or data for execution on the set of one or more
processors of that computing device. Of course, one or more parts of an embodiment of the
invention may be implemented using different combinations of software, firmware, and/or
hardware.

[0070] In the preceding description, numerous specific details are set forth. However, it is
understood that embodiments of the invention may be practiced without these specific details.

In other instances, well-known circuits, structures and techniques have not been shown in detail
in order not to obscure the understanding of this description. Those of ordinary skill in the art,
with the included descriptions, will be able to implement appropriate functionality without

undue experimentation.

b3 EEINT3

[0071] References in the specification to “one embodiment,” “an embodiment,” “an example
embodiment,” etc., indicate that the embodiment described may include a particular feature,
structure, or characteristic, but every embodiment may not necessarily include the particular

feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the

17

WO 2020/242521 PCT/US2019/063428

same embodiment. Further, when a particular feature, structure, or characteristic is described in
connection with an embodiment, it is submitted that it is within the knowledge of one skilled in
the art to effect such feature, structure, or characteristic in connection with other embodiments
whether or not explicitly described.

[0072] In the preceding description and the claims, the terms “coupled” and “connected,”
along with their derivatives, may be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” is used to indicate that two or more elements,
which may or may not be in direct physical or electrical contact with each other, co-operate or
interact with each other. “Connected” is used to indicate the establishment of communication
between two or more elements that are coupled with each other.

[0073] While the flow diagrams in the figures show a particular order of operations performed
by certain embodiments of the invention, it should be understood that such order is exemplary
(e.g., alternative embodiments may perform the operations in a different order, combine certain
operations, overlap certain operations, etc.).

[0074] While the invention has been described in terms of several embodiments, those skilled
in the art will recognize that the invention is not limited to the embodiments described, can be
practiced with modification and alteration within the spirit and scope of the appended claims.

The description is thus to be regarded as illustrative instead of limiting.

18

WO 2020/242521 PCT/US2019/063428
CLAIMS

What is claimed is:

1. A method, comprising:

receiving, at a first one of a plurality of compute servers of a distributed cloud computing
network, a first request for a first object that is to be handled by a first object
worker, the first request being received from a client device, wherein the first
object worker includes a single instantiation of a first piece of code that solely
controls reading and writing access to the first object;

determining that the first object worker is instantiated for the first object and is currently
running on the first one of the plurality of compute servers of the distributed
cloud computing network;

processing, with the first piece of code, the first request;

transmitting a first response to the client device based on the processed first request;

receiving, at the first one of the plurality of compute servers from a second one of the
plurality of compute servers, a first message to be processed by the first object
worker, wherein the first message includes a second request for the first object
from a second client device that is connected with the second one of the plurality
of compute servers and not the first one of the plurality of compute servers;

processing, with the first piece of code, the first message received from the second one of
the plurality of compute servers; and

transmitting a first reply to the second one of the plurality of compute servers based on

the processed first message.

2. The method of claim 1, further comprising:

receiving, at the first one of the plurality of compute servers of the distributed cloud
computing network, a third request for a second object that is to be handled by a
second object worker, the third request being received from the client device,
wherein the second object worker includes a single instantiation of a second piece
of code that controls reading and writing access to the second object;

determining that the second object worker has been instantiated for the requested second
object and is currently running on the second one of the plurality of compute

servers of the distributed cloud computing network;

19

WO 2020/242521 PCT/US2019/063428

transmitting a second message to the second one of the plurality of compute servers of
the distributed cloud computing network for the second object worker to process;

receiving a second reply from the second one of the plurality of compute servers to the
transmitted second message; and

transmitting a second response to the client device based on the received second reply.

3. The method of claim 1, further comprising:
wherein the first one of the plurality of compute servers is a leader of a consensus group
for the first object, and wherein the second one of the plurality of compute
servers is a follower of the consensus group;
wherein processing, with the first piece of code, the first request includes writing to the
first object; and
replicating the writing of the first object to the second one of the plurality of compute

SErvers.

4. The method of claim 1, further comprising:

receiving, at the first one of the plurality of compute servers, a third request for a second
object that is to be handled by a second object worker, the third request being
received from the client device, wherein the second object worker includes a
single instantiation of a second piece of code that controls reading and writing
access to the second object;

determining that the second object worker has been previously instantiated on a different
one of the plurality of compute servers and is not currently running;

instantiating the second object worker at the first one of the plurality of compute servers,
wherein all requests for the second object are to be processed by the second
object worker;

causing a directory service to be updated to indicate that the second object worker is
instantiated at the first one of the plurality of compute servers;

processing, with the second piece of code, the third request; and

transmitting a second response to the client device based on the processed third request.

5. The method of claim 1, wherein the first request is received at the first one of the
plurality of compute servers out of the plurality of compute servers as a result of the first one of
the plurality of compute servers being closest to the client device in terms of an anycast

implementation.

20

WO 2020/242521 PCT/US2019/063428

6. The method of claim 1, wherein processing, with the first piece of code, the first request

includes reading and writing to the first object.

7. The method of claim 1, wherein processing, with the first piece of code, the first request

includes retrieving the object from a remote object storage.

8. A non-transitory machine-readable storage medium that provides instructions that, when
executed by a processor, cause the processor to perform operations comprising:

receiving, at a first one of a plurality of compute servers of a distributed cloud computing
network, a first request for a first object that is to be handled by a first object
worker, the first request being received from a client device, wherein the first
object worker includes a single instantiation of a first piece of code that solely
controls reading and writing access to the first object;

determining that the first object worker is instantiated for the first object and is currently
running on the first one of the plurality of compute servers of the distributed
cloud computing network;

processing, with the first piece of code, the first request;

transmitting a first response to the client device based on the processed first request;

receiving, at the first one of the plurality of compute servers from a second one of the
plurality of compute servers, a first message to be processed by the first object
worker, wherein the first message includes a second request for the first object
from a second client device that is connected with the second one of the plurality
of compute servers and not the first one of the plurality of compute servers;

processing, with the first piece of code, the first message received from the second one of
the plurality of compute servers; and

transmitting a first reply to the second one of the plurality of compute servers based on

the processed first message.

9. The non-transitory machine-readable storage medium of claim 8, wherein the operations
further comprise:
receiving, at the first one of the plurality of compute servers of the distributed cloud
computing network, a third request for a second object that is to be handled by a
second object worker, the third request being received from the client device,
wherein the second object worker includes a single instantiation of a second piece

of code that controls reading and writing access to the second object;

21

WO 2020/242521 PCT/US2019/063428

determining that the second object worker has been instantiated for the requested second
object and is currently running on the second one of the plurality of compute
servers of the distributed cloud computing network;

transmitting a second message to the second one of the plurality of compute servers of
the distributed cloud computing network for the second object worker to process;

receiving a second reply from the second one of the plurality of compute servers to the
transmitted second message; and

transmitting a second response to the client device based on the received second reply.

10. The non-transitory machine-readable storage medium of claim 8, wherein the operations
further comprise:
wherein the first one of the plurality of compute servers is a leader of a consensus group
for the first object, and wherein the second one of the plurality of compute
servers is a follower of the consensus group;
wherein processing, with the first piece of code, the first request includes writing to the
first object; and
replicating the writing of the first object to the second one of the plurality of compute

SErvers.

11. The non-transitory machine-readable storage medium of claim 8, wherein the operations
further comprise:
receiving, at the first one of the plurality of compute servers, a third request for a second
object that is to be handled by a second object worker, the third request being
received from the client device, wherein the second object worker includes a
single instantiation of a second piece of code that controls reading and writing
access to the second object;
determining that the second object worker has been previously instantiated on a different
one of the plurality of compute servers and is not currently running;
instantiating the second object worker at the first one of the plurality of compute servers,
wherein all requests for the second object are to be processed by the second
object worker;
causing a directory service to be updated to indicate that the second object worker is
instantiated at the first one of the plurality of compute servers;
processing, with the second piece of code, the third request; and

transmitting a second response to the client device based on the processed third request.

22

WO 2020/242521 PCT/US2019/063428

12. The non-transitory machine-readable storage medium of claim 8, wherein the first
request is received at the first one of the plurality of compute servers out of the plurality of
compute servers as a result of the first one of the plurality of compute servers being closest to

the client device in terms of an anycast implementation.

13. The non-transitory machine-readable storage medium of claim 8, wherein processing,

with the first piece of code, the first request includes reading and writing to the first object.

14. The non-transitory machine-readable storage medium of claim 8, wherein processing,
with the first piece of code, the first request includes retrieving the object from a remote object

storage.

15. An apparatus, comprising:
a processor;
a non-transitory machine-readable storage medium coupled with the processor and that
provides instructions that, if executed by the processor, cause the apparatus to
perform operations including:
receive, at a first one of a plurality of compute servers of a distributed cloud
computing network, a first request for a first object that is to be handled
by a first object worker, the first request to be received from a client
device, wherein the first object worker is to include a single instantiation
of a first piece of code that solely controls reading and writing access to
the first object;

determine that the first object worker is instantiated for the first object and is
currently running on the first one of the plurality of compute servers of
the distributed cloud computing network;

process, with the first piece of code, the first request;

transmit a first response to the client device based on the processed first request;

receive, at the first one of the plurality of compute servers from a second one of
the plurality of compute servers, a first message to be processed by the
first object worker, wherein the first message is to include a second
request for the first object from a second client device that is connected
with the second one of the plurality of compute servers and not the first
one of the plurality of compute servers;

process, with the first piece of code, the first message received from the second

one of the plurality of compute servers; and

23

WO 2020/242521 PCT/US2019/063428

transmit a first reply to the second one of the plurality of compute servers based

on the processed first message.

16. The apparatus of claim 15, wherein the operations further include:

receive, at the first one of the plurality of compute servers of the distributed cloud
computing network, a third request for a second object that is to be handled by a
second object worker, the third request is to be received from the client device,
wherein the second object worker is to include a second piece of code that
controls reading and writing access to the second object;

determine that the second object worker has been instantiated for the requested second
object and is currently running on the second one of the plurality of compute
servers of the distributed cloud computing network;

transmit a second message to the second one of the plurality of compute servers of the
distributed cloud computing network for the second object worker to process;

receive a second reply from the second one of the plurality of compute servers to the
transmitted second message; and

transmit a second response to the client device based on the received second reply.

17. The apparatus of claim 15, wherein the operations further include:
wherein the first one of the plurality of compute servers is to be a leader of a consensus
group for the first object, and wherein the second one of the plurality of compute
servers is to be a follower of the consensus group;
wherein the operation to process, with the first piece of code, the first request is to
include writing to the first object; and
replicate the writing of the first object to the second one of the plurality of compute

SErvers.

18. The apparatus of claim 15, wherein the operations further include:
receive, at the first one of the plurality of compute servers, a third request for a second
object that is to be handled by a second object worker, the third request to be
received from the client device, wherein the second object worker is to include a
second piece of code that controls reading and writing access to the second
object;
determine that the second object worker has been previously instantiated on a different

one of the plurality of compute servers and is not currently running;

24

WO 2020/242521 PCT/US2019/063428

instantiate the second object worker at the first one of the plurality of compute servers,
wherein all requests for the second object are to be processed by the second
object worker;

cause a directory service to be updated to indicate that the second object worker is
instantiated at the first one of the plurality of compute servers;

process, with the second piece of code, the third request; and

transmit a second response to the client device based on the processed third request.

19. The apparatus of claim 15, wherein the first request is to be received at the first one of
the plurality of compute servers out of the plurality of compute servers as a result of the first one
of the plurality of compute servers being closest to the client device in terms of an anycast

implementation.

20. The apparatus of claim 15, wherein the operation to process, with the first piece of code,

the first request is to include reading and writing to the first object.

21. The apparatus of claim 15, wherein the operation to process, with the first piece of code,

the first request is to include retrieving the object from a remote object storage.

25

PCT/US2019/063428

1/6

WO 2020/242521

| Ol

06}
30I1A3d
Aldvd
-ddIHL

NOZT ¥3AY3S 31NdINOD g0¢1 ¥3AY3S 3LNdNOD
HINYOM 123rg0 NV
A9 Q3TANVYH 39 OL S
oI (o7 1S3N03Y A41IN3al (8)
JONVLSNI _ 3ISNOJSIY —
. d3HHON A1d3ad (€1) , JOmmﬂoo < 51) > m%\mo
G61 YINIOM HANHOM 153no3y () IN3MO
103rd0o ¥43amo1104 1S3no3y (L1)
JLIMM 31YOI1d3Y (71 9)
agr
~ NOILYHNOIINOD ~ Mw\%_wmo - dNX001 (6)
YINYOM 123rdo -
NOILYOOT
YINYOM 103rgo (01) i
03T <1
HIAYIS -« MHMMmemmmm 1l J0INY3S
NIDIHO 1S3N03Y AdOLO3dId
$S300ud () L83
1dNY001 (2)
e il
— _ R — \ —
0Z7 v 00 Sonvisn L Vol ISNOdSaY (§) VOl
153rg0 103rgo SDEOM | | dIdOM TOYINQOD < » 30IA3d
8 - 193r90 HINHOM 1S3No03y (1) IN3IMO
34018 Y1va 02} d3XHOM 103r80 J1v3y0 (€)
e ——— S

WO 2020/242521

2/6

PCT/US2019/063428

RECEIVE REQUEST FOR AN OBJECT THAT IS TO BE
HANDLED BY AN OBJECT WORKER

210

DETERMINE IF AN OBJECT WORKER HAS BEEN
INSTANTIATED FOR THE REQUESTED OBJECT AND IF SO ITS

STATE 215

OBJECT
N@gs}ggg WORKER HAS
BEEN
i INSTANTIATED
INSTANTIATE AN
|OBJECT WORKER FOR | VES IS THE OBJECT
 THE REQUESTED WORKER CUF’{?RENTLY
OBJECT 220 RUNNING? 235
NO 1
PROCESS THE W&E&E&%ﬁ\% . WAS THE OBJECT
REQUEST USING THE | NO R WORKER LAST
INSTANTIATED ot/ ye\ RUNNING INTHE
OBJECT WORKER 225 I ' SAME REGION? 255
YES NO
SEND MESSAGE TO THE
TRANSMIT RESPONSE DIFFERENT COMPUTE RE&%EQQ&’QN&F EEEOF
TO THE REQUEST SERVER FOR THE OBJECT ECT
230 WORKER TO PROCESS
260
245
RECEIVE MESSAGE
RECEIVE REPLY FROM INDICATING TRANSFER OF
THE OBJECT WORKER 250 OWNERSHIP
265

FIG. 2

PCT/US2019/063428

3/6

WO 2020/242521

o071
1O41INOD
HINHOM

A

[4%%
NOIO3d

0¢e Yoc¢l 0Ll
GE 0¢¢ [d0vl
p| uoibay | p| Janses | p|108lq0 TOHINOD
0T HIANHOM
JOINY3S AHOLO3HIa a0z
A
Yoyl YOl
» JOHINOD » J0IA3d
1918169 021 39900
ISIVEN] mm_v_moi 159nboy IN3ITO
A —— e, \ 4
01 STT Qo1
123rd0 | |, JONVLSNI
091 103re0 HIANHOM
FH0LS V.1vd 05T ¥3INYOM 103rd0
Y0¢l ¥3aAY3S 3LNdNOD
e A~ | swi|

NOIO3d

PCT/US2019/063428

4/6

WO 2020/242521

0ge Yozl 0.1
[543 0c¢ G
p| uoibay | p| Jenias | p|198l0
0cT
JOINYTS AHOLD3HIA
(v0z1) uoneson
JayIopn 193[q0 dnyoo]
\ 4
0T qovT osuodssy | gorT
JOYLINOD TOHINQD [« > 30IA3A
HINHOM YANHOM stz%.aov IN3MD
= Son
021 1 g 159Nbad
(021
Ajday 109[00)
1senbay
Yovl
JOYLNOD YOIT
HIANHOM » 30IA3d
A IN3ID
S —— e A 4
01 o7 5oL
103rd0 | |, JONVLSNI
091 103re0 HINHOM
34015 v1vd 05T "3INYOM 103rd0
\ V021 43AY3S 31N
[A%% 06E diNOD Z swi

NOIO3d NOI93Y

PCT/US2019/063428

5/6

WO 2020/242521

o011
J0IA3d
IN3IT0

0ee a0zl 0Ll G mu_n_
43 0¢¢ GlE
(90z1) » | pjuoibay _o_w\%m pI1slao | <«
Uones07 JOYIOM 0¢l
198[q0 dny007 A0IAY3S AH0L03dId 2
qort qort
> JOYINOD [«— » 30IA3Q
HINHOM IN3MO
A
asuodsay T Y
) , v | fidox — =
< > JOYINOD < N 57T 91
(021 18lq0) | | YINYOM (021 10sla0) - 153780 |FONVASNI
1senbay 07T Jsenbay Homm_,w_o YINHOM
— < 057 ¥INYOM 103rdo
091 ¥
OLS V1Va |)
e _
i\ VOur
| TOYINOD - Vol
| YINIOM === T g5~ F0INIA
! $5999Y N3O |
sajelbIy . 2
IO IR0 |} -mm - mmmoooeg
] COl 1
o mmomﬂmz_m “
[| H) 1
1380 ymyuom |
| Soom--=- Sdininiluiniie !
\ | 05T ¥IRIOM 103180 |
453 .
OO 0% VOZI ¥3AY3S 3LNdINOD ¢ owi]

NOIO3d

PCT/US2019/063428

6/6

WO 2020/242521

009

059
(S)ININOJINOD O/l

99Ol

_ 029

l—t (40SS300HdOHIIN
_ "9'3) WILSAS

_ ONISSID0Yd

079
(S)30V443UNI
YHOMLAN

i

0 7
CMDROM | TOYINOD
103r60 | u3N¥OM

0€9
3000 NYHO0Hd

019
(013 ‘I9OVHOLS SSYIN ‘WYY ‘WOY “©'3)
VIQ3aN 39VHOLS 319vavIy-INIHOVIN

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2019/063428

A. CLASSIFICATION OF SUBJECT MATTER
HO04L 29/08(2006.01)i, HO4L 29/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
HO04L 29/08; GO6F 11/07; GO6F 17/30; GO6F 7/04; GO6N 99/00; GO6T 7/70;, HO4L 12/24; HO4L 29/06

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: distributed cloud, storage, piece of code, processing, instantiation

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2018-0114334 A1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 1-21
26 April 2018
paragraphs [0037]-[0043]; and figure 6

A US 2018-0146069 A1 (SAP SE) 24 May 2018 1-21
paragraphs [0007]-[0042]; and figure 2

A US 9411671 B1 (ROBERT CARLTON JOHNSON et al.) 09 August 2016 1-21
claims 1-8; and figure 3

A US 2013-0117252 A1 (GOOGLE INC.) 09 May 2013 1-21
paragraphs [0026]-[0027]; and figure 3

A KR 10-2018-0032524 A (SKRUMBLE TECHNOLOGIES INC.) 30 March 2018 1-21
paragraphs [0029]-[0038]; and figure 1

A JUAN A. CABRERA et al., “Softwarization and Network Coding in the Mobile 1-21
Edge Cloud for the Tactile Internet™, In: Proceedings of the IEEE
(Volume: 107, Issue: 2, Feb. 2019), pp. 350-363, IEEE, 26 September 2018
pages 350-362

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"D" document cited by the applicant in the international application

"E" eatlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later

than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'

myn

ngn

Date of the actual completion of the international search
27 March 2020 (27.03.2020)

Date of mailing of the international search report

27 March 2020 (27.03.2020)

Name and mailing address of the [SA/KR

International Application Division

Korean Intellectual Property Office

189 Cheongsa-ro, Seo-gu, Dagjeon, 35208, Republic of Korea

Facsimile No, 182-42-481-8578

S

Authorized officer

s il

Nvae\
Sad ity
R .
KIM, Sung Hee R R
LIS ey
SRS R 1 R
&
Telephone No. +82-42-481-3516 Mt

Form PCT/ISA/210 (second sheet) (July 2019)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2019/063428

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2018-0114334 Al 26/04/2018 US 2018-0114098 Al 26/04/2018
US 2018-0114099 A1l 26/04/2018
US 2018-0114100 Al 26/04/2018
US 2018-0114101 A1 26/04/2018
US 2018-0114332 Al 26/04/2018

US 2018-0146069 Al 24/05/2018 US 10237118 B2 19/03/2019

US 9411671 B1 09/08/2016 US 10140469 B2 27/11/2018
US 2016-0342808 Al 24/11/2016
US 2018-0196957 Al 12/07/2018
US 9934403 B2 03/04/2018

US 2013-0117252 Al 09/05/2013 None

KR 10-2018-0032524 A 30/03/2018 CA 2968425 Al 15/09/2016
CN 108028763 A 11/05/2018
EP 3269085 Al 17/01/2018
US 2018-0234550 Al 16/08/2018
WO 2016-141459 Al 15/09/2016

Form PCT/ISA/210 (patent family annex) (July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - wo-search-report
	Page 35 - wo-search-report

