(51) Internationale Patentklassifikation 7:
G11B 5/00, H01F 10/00

(21) Internationales Aktenzeichen: PCT/DE99/02840
(22) Internationales Anmeldedatum: 8. September 1999 (08.09.99)

(71) Anmelder (für alle Bestimmungsstaaten ausser US):
FORSCHUNGSZENTRUM JÜLICH GMBH [DE/DE];
Wilhelm-Johnen-Strasse, D-52425 Jülich (DE).

(72) Erfindung; und
(75) Erfinder/Anmelder (nur für US): BLÜGEL, Stefan [DE/DE];
Wildbacher Mühle 15, D-52074 Aachen (DE). NIE, Xiliang
[CN/DE]; An der Vogelstange 41, D-52428 Jülich (DE).

(74) Gemeinsamer Vertreter:
FORSCHUNGSZENTRUM JÜLICH GMBH; Personal und Recht – Patente – (PR-PT),
D-52425 Jülich (DE).

(54) Title: ELECTRIC FIELD FOR MAGNETIC REVERSAL OF A THIN FILM

(54) Bezeichnung: ELEKTRISCHES FELD FÜR UMMAGNETISIERUNG EINES DÜNNEN FILMS

(57) Abstract
The invention relates to a method for modifying the magnetizing direction (M) of a thin film. An electric field (H) with a field component that is perpendicular to the surface of the field is produced. A magnetizing direction is produced by applying a magnetic field. The invention also relates to a device for carrying out the inventive method, comprising a thin, magnetizable film, means for producing an electric field perpendicular to the surface of the film and means for producing a magnetic field required for magnetic reversal. The application of a magnetic field enables a magnetizing direction to be produced in the film without having to heat the film in a relatively slow manner.

(57) Zusammenfassung
Die Erfindung betrifft ein Verfahren zur Änderung einer Magnetisierungsrichtung (M) eines dünnen Films. Ein elektrisches Feld wird erzeugt, welches eine zur Filmoberfläche senkrechte Feldkomponente aufweist. Durch Anlegen eines magnetischen Feldes wird dann eine Magnetisierungsrichtung im Film erzeugt. Die Erfindung betrifft ferner eine Vorrichtung zur Durchführung des Verfahrens mit einem dünnen, magnetisierbaren Film, mit Mitteln zur Erzeugung eines zur Oberfläche des Films senkrechten elektrischen Feldes (H) sowie mit Mitteln, mit denen das für die Ummagnetisierung benötigte magnetische Feld erzeugbar ist. Das Anlegen des elektrischen Feldes bewirkt, dass eine Magnetisierungsrichtung im Film erzeugt werden kann, ohne hierfür zunächst vergleichsweise langsam den Film aufzehren zu müssen.
<table>
<thead>
<tr>
<th>Code</th>
<th>Land</th>
<th>Abkürzung</th>
<th>Land</th>
<th>Abkürzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albanien</td>
<td>ES</td>
<td>Spanien</td>
<td>LS</td>
</tr>
<tr>
<td>AM</td>
<td>Armenien</td>
<td>FI</td>
<td>Finnland</td>
<td>LT</td>
</tr>
<tr>
<td>AT</td>
<td>Österreich</td>
<td>FR</td>
<td>Frankreich</td>
<td>LU</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
<td>GA</td>
<td>Gaben</td>
<td>LV</td>
</tr>
<tr>
<td>AZ</td>
<td>Aserbaidschan</td>
<td>GB</td>
<td>Vereinigtes Königreich</td>
<td>MC</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnien-Herzegowina</td>
<td>GE</td>
<td>Georgien</td>
<td>MD</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Griechenland</td>
<td>Republic of Macedonia</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
<td>HU</td>
<td>Ungarn</td>
<td>ML</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Irland</td>
<td>MN</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
<td>IL</td>
<td>Israel</td>
<td>MR</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Island</td>
<td>MW</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
<td>IT</td>
<td>Italien</td>
<td>MX</td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
<td>JP</td>
<td>Japan</td>
<td>NE</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
<td>KE</td>
<td>Kenia</td>
<td>NL</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
<td>KG</td>
<td>Kirgisistan</td>
<td>NO</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Demokratische Volksrepublik</td>
<td>NZ</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
<td>KR</td>
<td>Korea</td>
<td>PL</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>LC</td>
<td>St. Lucia</td>
<td>PT</td>
</tr>
<tr>
<td>CU</td>
<td>Kuba</td>
<td>LZ</td>
<td>Kasachstan</td>
<td>PP</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>RO</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>RU</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
<td>LR</td>
<td>Liberia</td>
<td>SD</td>
</tr>
<tr>
<td>EE</td>
<td>Estland</td>
<td>DA</td>
<td>Singapur</td>
<td>SE</td>
</tr>
<tr>
<td>SI</td>
<td>Slowenien</td>
<td>SR</td>
<td>Senegal</td>
<td>SG</td>
</tr>
<tr>
<td>SK</td>
<td>Slowakei</td>
<td>SN</td>
<td>Swasiland</td>
<td>SZ</td>
</tr>
<tr>
<td>TG</td>
<td>Tadschikistan</td>
<td>TR</td>
<td>Tschad</td>
<td>TD</td>
</tr>
<tr>
<td>TJ</td>
<td>Tadschikistan</td>
<td>TW</td>
<td>Turkmenistan</td>
<td>TG</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad und Tobago</td>
<td>UA</td>
<td>Ukraine</td>
<td>UA</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
<td>UZ</td>
<td>Usbekistan</td>
<td>UZ</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
<td>YU</td>
<td>Jugoslawien</td>
<td>YU</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Beschreibung

Elektrisches Feld für Ummagnetisierung eines dünnen Films

Die Erfindung betrifft ein Verfahren zur Änderung einer Magnetisierungsrichtung eines dünnen Films sowie eine zugehörige Vorrichtung.

Es ist aus der Druckschrift „P. Hansen, Journal of Magnetism and Magnetic Materials, Vol. 83“ bekannt, die Ausrichtung einer Domäne folgendermaßen vorzugeben oder zu ändern: Mit einem Laserstrahl wird der dünne Film erwärmt. Dann wird eine Magnetisierungsrichtung durch eine kleine Spule aufgeprägt. Das Material kühlt ab und die Information ist in Form eines Bits gespeichert. Das Verfahren wird bei sogenannten magnetooptischen Harddisks angewendet.
Das bekannte Verfahren weist den Nachteil auf, daß langsame thermische Aufwärmen- und Abkühlprozesse erforderlich sind. Entsprechend langsam werden Informationen gespeichert.

Aufgabe der Erfindung ist die Schaffung eines Verfahrens sowie einer Vorrichtung, mit der schneller Informationen auf dünnen Filmen gespeichert werden können.

Anspruchsgemäß wird vor einer Aufprägung einer Magnetisierungsrichtung ein elektrisches Feld angelegt, das eine Feldkomponente senkrecht zur Oberfläche des Films aufweist. Durch Aufprägung einer Magnetisierungsrichtung kann eine bereits vorhandene Magnetisierungsrichtung geändert (umagnetisiert) worden sein.

Durch Anlegen des elektrischen Feldes wird die Temperatur reduziert, die für die Änderung bzw. Aufprägung der Magnetisierungsrichtung einer Domäne erforderlich ist.

Mit größer werdenen elektrischen Feld sinkt die für die Ummagnetisierung erforderliche Aufheizung des dünnen Films. Entsprechend verkürzen sich die Aufheiz- und Abkühlzeiten. Im Vergleich zum eingangs genannten Stand der Technik können Informationen schneller abgespeichert werden.

Statt die für die Ummagnetisierung erforderliche Temperatur zu erniedrigen, kann alternativ die für die Umma-
gnetisierung erforderliche magnetische Feldstärke ver-
ringert werden.

In einer vorteilhaften Ausgestaltung des Verfahrens be-
trägt die anspruchsgemäß senkrechte Komponente des
elektrischen Feldes größenordnungsmäßig 0,01 V/Å. Bei
viele Filmmaterialien ist diese elektrische Feldstärke
der senkrechten Komponente ausreichend, um auch ohne
Aufheizen die Magnetisierungsrichtung ändern zu können.
Ein Bit kann entsprechend schneller geschrieben bzw.
gespeichert werden.

Als Material des dünnen Films ist Eisen zu bevorzugen.
Geeignet sind ferner zum Beispiel Kobalt, Nickel oder
Legierungen aus den genannten Metallen. Legierungen mit
einigen seltenen Erdmetallen wie z.B. Gd oder Tb können
ebenfalls eingesetzt werden. Der Film kann aus mehreren
Schichten bestehen.

Das verfahrensgemäß angelegte elektrische Feld darf ei-
ne obere Grenze nicht überschreiten. Das Überschreiten
der Obergrenze hat zum Beispiel die Beschädigung des
dünnen Films zur Folge. Durch ein zu starkes elektri-
sches Feld können sich Atome von der Oberfläche eines
Substrates mit einem darauf befindlichen dünnen Film
ablösen. Ein Fachmann kann die materialabhängige Ober-
grenze durch einige wenige Versuche ermitteln.

In einer vorteilhaften Ausgestaltung der Erfindung wird
ein elektrisches Feld ausschließlich senkrecht ange-
legt. So wird erreicht, daß elektrische Feldkomponenten
parallel zum Film vermieden werden. Das elektrische
Feld wird so aus energetischer Sicht optimal einge-
setzt. Ferner kann bei parallelen elektrischen Feldkom-
ponenten ein elektrischer Strom fließen, der unerwünscht sein kann.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung beträgt der dünne Film 1-13 Atomlagen, wobei als Material insbesondere Eisen vorgesehen ist. Es wurde festgestellt, daß das erfindungsgemäße Verfahren auf 1-13 Atomlagen dicke Atomschichten anwendbar ist. Hieraus folgt jedoch nicht, daß dickere Filme nicht möglich sind.

Ein Film ist nicht mehr dünn im Sinne des Anspruchs, wenn die Lehre der Erfindung aufgrund zu großer Schichtdicke nicht mehr ausführbar ist.

In einer vorteilhaften Ausgestaltung des Verfahrens wird das elektrische Feld abgeschaltet, wenn nicht unmagnetisiert werden soll. Es wird so Energie eingespart. Auch wird die Stabilität der Magnetisierungsrichtung sichergestellt.

In einer weiteren vorteilhaften Ausgestaltung des Verfahrens wird ein Substrat verwendet, welches aus einem Isolator, so zum Beispiel aus einer Elektrokeramik besteht. An den Isolator wird eine Spannung angelegt und so an der Grenzfläche ein geeignetes inneres elektrisches Feld erzeugt. Durch Abschalten der Spannung wird das an der Grenzfläche geeignet anliegende innere elektrische Feld abgeschaltet.

Das Substrat kann selbsttragend sein und so die mechanische Stabilität des Aufbaus sicherstellen. Es kann als nicht selbsttragende dünne Schicht vorliegen. Ist das Substrat nicht selbsttragend, so ist es bevorzugt auf einem selbsttragenden Bauteil aufgebracht. Durch
das Bauteil wird dann die mechanische Stabilität des Aufbaus gewährleistet.

Ein geeigneter Isolator ist zum Beispiel die Elektrokeramik BaTiO_3. Das BaTiO_3-Substrat kann 30 nm und dünner sein.

SiO_2 oder Al_2O_3 sind weitere Beispiele für Materialien, aus denen das aus einem Isolator bestehende Material beschaffen sein kann.

Elektrokeramiken verfügen über ein eigenes inneres elektrisches Feld. Sie eignen sich daher in besonderer Weise zur Erzeugung eines an der Grenzfläche geeignet anliegenden inneren elektrischen Feldes.

Eine Vorrichtung zur Durchführung des Verfahrens weist ein Substrat mit einem dünnen metallischen Film auf. Das Metall ist so gewählt, daß es Magnetisierungsrichtungen im metallischen Film erzeugt und geändert werden können. Geeignet sind insbesondere die bereits genannten Metalle Co, Ni, Fe sowie die genannten Legierungen. Der Film kann aus mehreren Schichten bestehen. Die Schichten unterscheiden sich dann durch das Material, aus dem sie bestehen.

Es sind Mittel zum Anlegen eines senkrechten elektrischen Feldes relativ zur Oberfläche des Films vorgesehen. Die Mittel zum Anlegen eines senkrechten elektrischen Feldes umfassen zum Beispiel Elektroden. In einer
einfachen Ausgestaltung der Erfindung stellt das Substrat zugleich die Elektrode dar.

Ferner weist die Vorrichtung Mittel wie zum Beispiel eine oder mehrere Spulen auf, mit denen das für die Ummagnetisierung benötigte magnetische Feld erzeugt werden kann.

In einer vorteilhaften Ausgestaltung der Vorrichtung ist ein Isolator als Substrat vorgesehen. Die Vorrichtung umfaßt Mittel zur Anlegung einer Spannung an den Isolator. Auf das Substrat ist der metallische Film aufgebracht.

Mit Hilfe des Isolator kann in der bereits genannten Weise das erfindungsgemäße elektrische Feld erzeugt werden.

Die Figur zeigt eine Vorrichtung zur Aufprägung einer Magnetisierungsrichtung in einem dünnen Film.

Ein elektrisches Feld der Größenordnung 0,01 V/Å wird senkrecht zur Oberfläche des Films erzeugt. Als Elektroden, mit denen das elektrische Feld erzeugt wird, dient die Metallspitze sowie das Substrat. Anschließend oder gleichzeitig wird ein magnetisches Feld H mit Hil-
fe einer Spule erzeugt. Es wird Umschaltfeld genannt. Es steht senkrecht zur Oberfläche des Films. Es ist gemäß der zu erzeugenden Magnetisierungsrichtung der neuen magnetischen Domäne der neuen magnetischen Magnetisierungsrichtung ausgerichtet. Es wird mit Hilfe einer Spule erzeugt. Die Spule erzeugt ein magnetisches Feld der Größenordnung 30 kA/m (kilo-Ampere/Meter). Im Anschluß weist die betroffene Domäne im metallischen Film ggf. eine um 180° gedrehte Richtung auf, die als neue Darstellung der Information verwendet wird. Anschließend wird das elektrische Feld und danach das Umschaltfeld abgeschaltet. Die Einheit Metallspitze und Magnetspule wird relativ zum Film an einen Neuen Ort bewegt.

Die erfindungsgemäße Lehre basiert auf der Modifikation des Spin-Bahn-Wechselwirkungsanteil der magnetischen Anisotropie durch ein elektrisches Feld. Der Spin-Bahn-Wechselwirkungsanteil der magnetischen Anisotropie ist besonders groß an Oberflächen und dominiert die magne-
Paten
tanspruche

1. Verfahren zur Änderung einer Magnetisierungsrichtung eines dünnen Films, indem der dünne Film einem elektrischen Feld ausgesetzt wird, das eine zur Filmoberfläche senkrechte Feldkomponente aufweist und durch Anlegen eines magnetischen Feldes eine Magnetisierungsrichtung im Film erzeugt wird.

2. Verfahren nach vorhergehendem Anspruch, bei dem die senkrechte Komponente des elektrischen Feldes größenordnungsmäßig 0,01 V/A beträgt.

3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der dünne Film aus Eisen besteht.

4. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das elektrische Feld abgeschaltet wird, wenn die Magnetisierungsrichtung durch Anlegen des Magnetfeldes im Film erzeugt worden ist.

5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem der Film auf einem aus einem Isolator bestehenden Substrat aufgebracht ist.

6. Vorrichtung zur Durchführung des Verfahrens mit einem dünnen, magnetisierbaren Film, mit Mitteln zur Erzeugung eines zur Oberfläche des Films senkrechten elektrischen Feldes sowie mit Mitteln, mit denen das für die Ummagnetisierung benötigte magnetische Feld erzeugbar ist.