<table>
<thead>
<tr>
<th>(51) Clasificación Internacional de Patentes</th>
<th>(11) Número de publicación internacional:</th>
<th>(43) Fecha de publicación internacional:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C08B 30/12</td>
<td>WO 97/38017</td>
<td>16 de Octubre de 1997 (16.10.97)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PCT/MX97/00009</td>
<td>Publicada</td>
</tr>
<tr>
<td>(22) Fecha de la presentación internacional:</td>
<td>Con informe de búsqueda internacional.</td>
</tr>
<tr>
<td>8 de Abril de 1997 (08.04.97)</td>
<td>Antes de la expiración del plazo previsto para la modificación de las reivindicaciones, será publicada nuevamente si se reciben tales modificaciones.</td>
</tr>
<tr>
<td>(30) Datos relativos a la prioridad:</td>
<td></td>
</tr>
<tr>
<td>9601323</td>
<td></td>
</tr>
<tr>
<td>8 de Abril de 1996 (08.04.96)</td>
<td></td>
</tr>
<tr>
<td>MX</td>
<td></td>
</tr>
</tbody>
</table>

| (71) Solicitante (para todos los Estados designados salvo US): | |
| SUGAR TECHNOLOGIES S.A. DE C.V. (MX/MX); Av. Insurgentes Sur 469-203, Col. Hipódromo Condesa, Delegación Cuauhtémoc, México, D.F. 06170 (MX). |
| (72) Inventores; e |

| (74) Mandatario: CAMACHO CORONA, Eduardo; H. Escuela Naval Militar #17-10, Col. Paseos de Tasqueña, Mexico, D.F. 04250 (MX). |

| (54) Title: | (54) Título: |
| PROCESS AND PRODUCT FOR STABILIZING THE SACCHAROSE CONTAINED IN SUGAR CANE | PRODUCTO PARA ESTABILIZAR LA SACAROSA CONTENIDA EN LA CAÑA DE AZUCAR Y METODO DE APLICACION |

<table>
<thead>
<tr>
<th>(57) Abstract</th>
<th>(57) Resumen</th>
</tr>
</thead>
<tbody>
<tr>
<td>The present invention relates to a product for stabilizing the saccharose contained in sugar cane and the application process. The product is characterized in that it has a pH stabilizing activity, a biochemical activity, a bactericide activity, an enzymatic activity and detergent and sanitizing properties. It comprises an aqueous solution which includes an active agent, a carboxylic acid or a salt thereof, a short chain alcohol, terpene, a surfactant and a buffer solution which is substantially intended to avoid the reversion of the saccharose.</td>
<td>La presente invención se refiere a un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación que tiene actividad estabilizante de pH, bioquímica, bactericida, enzimática, detergente y sanitizante que consiste de una solución acuosa que comprende un agente activo, un ácido carboxílico o sal derivada, un alcohol de cadena corta, terpeno, surfactante y una solución amortiguadora cuyo propósito es principalmente evitar la inversión de sacarosa.</td>
</tr>
<tr>
<td>AL</td>
<td>Albania</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaiyán</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia y Herzegovina</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Bélgica</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
</tr>
<tr>
<td>BJ</td>
<td>Benín</td>
</tr>
<tr>
<td>BR</td>
<td>Brasil</td>
</tr>
<tr>
<td>BY</td>
<td>Belarús</td>
</tr>
<tr>
<td>CA</td>
<td>Canadá</td>
</tr>
<tr>
<td>CF</td>
<td>República Centroafricana</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
</tr>
<tr>
<td>CH</td>
<td>Suiza</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Camerún</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
</tr>
<tr>
<td>CZ</td>
<td>República Checa</td>
</tr>
<tr>
<td>DE</td>
<td>Alemania</td>
</tr>
<tr>
<td>DK</td>
<td>Dinamarca</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
</tr>
<tr>
<td>SI</td>
<td>Eslovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Eslovaquia</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swazilandia</td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tayikistán</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistán</td>
</tr>
<tr>
<td>TR</td>
<td>Turquía</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad y Tabago</td>
</tr>
<tr>
<td>UA</td>
<td>Ucrania</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
</tr>
<tr>
<td>US</td>
<td>Estados Unidos de América</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistán</td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabue</td>
</tr>
</tbody>
</table>
PRODUCTO PARA ESTABLIZAR LA SACAROSA CONTENIDA EN LA CAÑA DE AZÚCAR
Y MÉTODO DE APLICACIÓN.

ANTECEDENTES.

El proceso de obtención de sacarosa, también conocida como azúcar a partir de caña de azúcar es un proceso industrial de gran importancia económica, debido a que zonas geográficas completas de diversos países dependen fuertemente en esa industria.

Es por lo tanto de gran relevancia las invenciones en dicho campo para mantener su operación rentable. Es por eso que se han desarrollado innovaciones en diferentes partes del proceso productivo integral, que van desde la siembra, cultivo y cosecha hasta los equipos de procesamiento para obtener el producto final.

En términos generales el rendimiento del proceso de producción de azúcar es del 9.2 al 12.8% en relación con la caña de azúcar que llega para procesamiento en un ingenio azucarero.
Este rendimiento varía según la región, la variedad de la caña de azúcar los equipos utilizados en el proceso de producción, las condiciones de operación, etc.

La fábrica de azúcar tiene como finalidad separar de la caña todos sus componentes que no son sacarosa, para aislar ésta en forma de cristales. De hecho la caña queda fraccionada en sus diferentes componentes básicos: fibra, agua, no azúcar y sacarosa.

La caña al ingresar en la fábrica, es sometida a un proceso de fragmentación y compresiones sucesivas en molinos, separándose el jugo de la fibra. Para lograr la mayor separación posible se aplica agua para diluir el jugo retenido por la fibra, lo que aumenta la cantidad de sacarosa recuperada de la caña de azúcar en esta operación.

El jugo extraído de la caña de azúcar (denominada comúnmente como jugo de caña de azúcar) tiene alrededor de 15 grados Brix con una pureza que fluctúa entre 80 y 90%. Por tanto, 100 ton. de jugo contendrán 15 ton. de sólidos totales y entre 12 y 13% de polarización (pol.: La cantidad de no azúcares (impurezas) en 100 ton. de jugo pueden entonces variar entre 2 y 3 ton.

El jugo de la caña de azúcar es ácido, opaco y turbio. Mediante tratamiento químico con lechada de cal y calentamiento se neutraliza la acidez a la para que, por razón del cambio de pH y temperatura, se logra insolubilizar y precipitar ciertos no azúcares, principalmente de naturaleza coloidal, que son separados por sedimentación.
De este modo el jugo se torna neutro, transparente y limpio (jugo clarificado), pero sólo se separan entre 15 y 20% del total de los no azúcares.

El producto residual de este proceso es la cachaza (75% de humedad), que representa aproximadamente 3 ó 4% del peso de la caña y contiene entre 1 y 2% de pol.

En la concentración del jugo -proceso de evaporación a múltiple efecto- se elimina una cantidad de agua equivalente a 75 ó 78% del peso del jugo y se obtiene meladura con una concentración de 65 a 70 brix.

Alrededor del 80% del agua evaporada es recondensada en los diferentes cuerpos del evaporador y se utiliza en los procesos de fabricación, principalmente en el de la molienda de la caña.

La meladura obtenida por concentración del jugo clarificado, es sometida a evaporación en tachos al vacío, hasta un grado apropiado de sobresaturación para que cristalice la sacarosa; se obtiene como producto una masa cocida (A) de pureza prácticamente igual a la de la meladura, la cual contiene una cantidad de cristales equivalente a 50 ó 60% del total de sólidos. La separación del azúcar es la centrífuga arroja como producto residual un licor madre (miel A) cuya pureza es 18 puntos inferior a la de la masa cocida. Si la pureza de ésta es 85% la de la miel estará en torno a 67%. El tiempo de cocción de una masa cocida de 40 m³ es de unas 2 horas.

A la miel (A) se le incorpora determinada cantidad de meladura para fabricar una masa cocida (B) con 73 ó 75 de pureza. En esta
masa los cristales representan del 45 al 50% del total de sólidos solubles presentes. En la centrifugación se separa el azúcar de calidad ligeramente inferior a la (A), y como residuo miel (B), con una pureza aproximada de 55%. La mayor proporción de impurezas en esta masa disminuye la velocidad de cristalización y el tiempo de cocción en el tacho toma alrededor de 3 horas.

A partir de la miel (B), enriquecida con meladura y/o miel (A), se fabrica la masa cocida (C) de pureza en torno a 60%. El rendimiento en cristales con respecto al total de sólidos no excede de 35 a 40% y el tiempo de cocción en el tacho puede fluctuar entre 4 y 8 horas. La alta concentración de no azúcares, que incluyen sustancias capaz de impartir alta viscosidad al licor madre, hace de esta masa cocida una operación difícil y de resultados muy variables.

Para posibilitar la mayor cristalización posible de sacarosa, la masa cocida es sometida a enfriamiento moderado y lento en cristalizadores, donde permanece entre 18 y 36 horas.

De la centrifugación se obtiene miel fina con pureza aparente entre 32 y 40% y azúcar (C) de cristales pequeños -unas 300 micras- y calidad inapropiada para la comercialización. Una parte de este azúcar, mezclado con suficiente meladura para formar un magma manejable con un fluido, sirve de núcleo cristalino (semilla) para las masas cocidas (A) y (B), donde su tamaño aumenta hasta unas 800 micras. El resto es disuelto e incorporado a la meladura.
Durante el proceso de producción existen pérdidas de la sacarosa contenida en la caña de azúcar por la acidez del jugo, por la temperatura del jugo y por la presencia de enzimas en el jugo.

Estas pérdidas, conocidas como inversión de sacarosa, son originadas por una reacción de hidrólisis que se efectúa por una acción enzimática o por el potencial de hidrógeno (pH) ácido del jugo de la caña de azúcar y la temperatura del jugo.

El jugo de la caña tiene una acidez natural la cual oscila entre 5.0 y 5.70 unidades, lo cual es un medio propicio para la reacción de hidrólisis de la sacarosa.

El resultado de la inversión de sacarosa es glucosa y fructuosa en cantidades iguales, los cuales son azúcares menores con características diferentes a la sacarosa.

Este tipo de azúcares menores no tienen mayor interés económico para los ingenios. La mezcla de estos azúcares se le conoce también con el nombre de "azúcar invertida".

La fructuosa mantiene su estado líquido en el proceso de obtención de la sacarosa, por lo que también se le conoce como azúcares no cristalizables.

El otro producto de la degradación de la sacarosa ya sea por deterioro en campo o en la fábrica es la glucosa o también llamada dextrosa, la cual tiene la característica de dar lecturas altas de sacarosa, que conduce a registrar mas sacarosa de la que realmente es cristalizable, provocándose así pérdidas económicas para el ingenio, por pagar por sacarosa que no podrá ser recuperada.
La temperatura normal del jugo de caña inicialmente extraído es suficientemente baja, por lo que la inversión causada por el calor es mínima. Sin embargo la temperatura del jugo es aumentada en etapas subsecuentes del proceso, lo cual favorece la inversión de la sacarosa.

En la etapa inicial el efecto de enzimas es el principal factor que provoca la inversión de la sacarosa.

Las enzimas se presentan por el crecimiento y proliferación de bacterias, las cuales son prácticamente inevitable al ser la caña de azúcar una materia que arrastra una gran cantidad de agentes extraños hacia la etapa de molienda, pudiendo ser desde sales naturales de la tierra hasta materia orgánica y microorganismos.

Algunos ingenios azucareros utilizan bactericidas para eliminar las bacterias contenidas en el jugo de caña de azúcar. Sin embargo los productos bactericidas no actúan sobre las enzimas ni sobre los azúcares menores.

El contenido microbiano de la caña de azúcar sin cortar es variable estando influenciada principalmente por la temperatura, la humedad y las condiciones climáticas.

Los microorganismos se pueden desarrollar en la superficie o en las uniones de las hojas con el tallo, invadir erosiones de la epidermis o de tejidos sanos y originar enfermedades en la planta.
Las hojas y los troncos de la planta contienen bacterias, levaduras y hongos. Las poblaciones microbianas de las hojas de caña infectadas por bacterias, hongo y virus son mayores que las de las cañas sanas.

Las especies bacterianas que con mayor frecuencia se encuentran en las hojas y tallos normales son *flavobacterium*, *xanthomonas*, *enterobacter*, *pseudomonas*, *erwinia*, *leuconostoc mesenteroides*, *bacillus* y *corynebacterium*, levaduras y hongos. Algunas de éstas son especies potencialmente patógenas para las plantas.

La corteza de la caña puede encontrarse lesionada por la acción de los insectos o agrietarse debido al crecimiento, congelación o quemadura de las hojas, los exudados que aparecen en la superficie, o los tejidos que son invadidos a través de esas erosiones, ofrecen ecosistemas idóneos para el crecimiento de diferentes bacterias, levaduras y hongos. Sin embargo, para que se desarrollen han de concurrir a otros factores como la amplitud del daño físico, la temperatura existente y el tiempo que transcurre entre la lesión y la recolección de la caña.

Esta comprobado por experimentos en campo que la quema de las hojas de la caña de azúcar no logra destruir las bacterias presentes en la caña.

Las enzimas son generadas por las bacterias, microorganismos e incluso por la propia planta.

Estas enzimas actúan como cristalizador que acelera la reacción de la inversión de la sacarosa.
Las levaduras de rápido crecimiento, mohos y las bacterias segregan la enzima invertasa para obtener el suministro de alimento requerido para su crecimiento y reproducción, debido a que éstos microorganismos no pueden metabolizar en forma directa la sacarosa. Por lo que la acción de la enzima invertasa se forma glucosa y fructuosa, las cuales si pueden ser usadas como suministro de carbón y de la energía requerida por los microorganismos.

La enzima invertasa no se consume durante el tiempo de la inversión sino que permanece en el jugo provocando destrucción de sacarosa adicional.

Para desactivar las enzimas se requiere someterlas a temperaturas del orden de los 60-70 °C por un período aproximado a una hora, pero de cualquier forma solamente llega a eliminarse el 50% de su actividad.

El jugo de la caña normalmente es un medio de condiciones ideales para el crecimiento y desarrollo de microorganismos, los cuales al entrar en contacto con los equipos y los sólidos suspendidos forman lamas que se adhieren a las paredes metálicas dando origen a colonias de billones de microorganismos, lo que en algunos casos tienen capacidad de duplicar su población cada 20 minutos, con la consecuente destrucción de sacarosa presente en el jugo de la caña.

Otra pérdida de sacarosa de proporciones significativas sucede cuando la bacteria *Leuconostoc mesenteroides*, que tiene la propiedad de reproducirse sumamente rápido en las condiciones normales del jugo extraído de la caña por molienda y sin
calentamiento; es capaz de producir grandes cantidades de dextrana a partir de glucosa y fructuosa.

Cuando la presencia de *Leuconostoc mesenteroides* en los jugos de caña es en conteos mayores de 1000 mg/kg (sólidos), la formación de dichas dextranas -polisacáridos de alto peso molecular-incrementa considerablemente la viscosidad de las soluciones de azúcar; y durante la evaporación la concentración de dextranas aumenta reflejándose posteriormente en la etapa de cristalización donde ocasiona que se obtengan masas cocidas de baja pureza dando origen a trastornos en la cristalización produciendo cristales de azúcar amorfos, que dan una mal aspecto desde el punto de vista comercial.

Para eliminar las bacterias se aplican los bactericidas comúnmente conocidos, pero aún así existe una pérdida de pureza que oscila entre 4 y 8 % del contenido de sacarosa.

Este y los demás efectos descritos anteriormente influyen enormemente en los resultados económicos de la zafra de los ingenios.

Estas pérdidas de sacarosa se consideraban normales al no existir hasta este momento ninguna forma para impedirlas.

Es por lo tanto el objeto de la presente invención el proporcionar un producto que permita conservar la pureza del jugo de caña de azúcar y estabilizador de la sacarosa contenida en la caña de azúcar a través del proceso de separación y purificación.
Un objeto más de la presente invención es el aplicar un producto en cualquier etapa del proceso de producción de azúcar a partir de la caña de azúcar para evitar que la sacarosa se degrade.

Aún otro objeto más de la presente invención es el proporcionar un producto que reduzca los problemas de incrustaciones de material en las tuberías de conducción y en los equipos de proceso en un ingenio azucarero.

Otro objeto de la presente invención es el proporcionar un producto que elimine el uso de agentes bactericidas.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN.

El solicitante ha desarrollado un producto y el método de aplicación que estabiliza la sacarosa contenida en la caña de azúcar y que conserva las propiedades del jugo de caña similares a la de jugo fresco en tanto es procesado, que evita la degradación de la sacarosa contenida en la caña de azúcar durante su proceso de separación del resto de los materiales de la caña por sus efectos bactericidas de estabilización del pH y de su actividad sobre las enzimas causantes del proceso de degradación de la sacarosa.

El producto consiste de una solución de aldehído en un rango de 35-40% de concentración en peso, a la cual se le adiciona por mezclado un ácido carboxílico de uno a ocho carbones o alguna de sus sales hasta tener una proporción máxima de 15 % en peso, adicionalmente se le puede agregar un alcohol de hasta ocho carbones en una proporción entre 5 a 15 % en peso y opcionalmente de 1 a 2 % en peso de terpeno con un surfactante para solubilizar
el terpeno de entre 0.2 y 2% en peso y hasta un 2% de una solución amortiguadora.

El aldehído se puede elegir entre el grupo consistente de formol, formaldehído, acetaldehído, propionaldehído, butiraldehído y benzaldehído.

El ácido carboxílico es preferentemente ácido propiónico o alguno de los siguientes ácidos: fórmico, acético, propiónico, butanoico, benzoico, sórbico o láctico, o algunas de sus sales correspondientes, preferentemente de los iones sodio, potasio, calcio, magnesio y amonio.

El producto contiene preferentemente un alcohol seleccionado de entre los siguientes: metanol, etanol, propanol, butanol, pentanol, hexanol, heptanol, octanol o fenol.

El terpeno es un compuesto de origen vegetal, extraído a partir de semillas de girasol, uva, limón o algún otro cítrico.

La solución amortiguadora consiste básicamente de un medio de cultivo de bacterias tales como la salmonella.

El producto obtenido se aplica en un rango del 25 al 75 ppm por tonelada de caña de azúcar en proceso en cualquier etapa de proceso de producción mediante un dosificador de flujo continuo.

El producto se puede aplicar en diferentes etapas del proceso, por ejemplo puede ser directamente por aspersión u otro método a la caña desde que es cosechada o cuando llega al ingenio para su
procesamiento, o por medio de dosificadores a los jugos de la primera extracción, a los jugos mezclados o al jugo clarificado.

Para aprovechar mejor sus diversos efectos preferentemente se aplica en los jugos de la primera extracción, aunque dependiendo de las condiciones específicas del ingenio también se puede aplicar en otros puntos del proceso, e incluso en varios puntos simultáneamente en caso necesario.

El producto ejerce un efecto sanitizante en los posibles focos de infección del sistema general. Esto se refleja directamente en el incremento en el porcentaje de recuperación y facilita las labores de mantenimiento.

La efectividad del producto se evaluó en el laboratorio de un ingenio azucarero. Para ello se preparó el siguiente experimento: se tomaron tres muestras del jugo de caña obtenido por la molienda de la caña de azúcar en ocho diferentes tiempos de operación del ingenio. Para cada caso se determinaron la pureza del jugo de caña y el porcentaje de azucares reductores de acuerdo a las prácticas comunmente utilizadas.

Se dejó una muestra como testigo, a otra se le agregó el equivalente a 35-40 ppm del producto estabilizador por tonelada de caña de azúcar, y a la tercera se le agregaron 50-65 ppm del producto estabilizador por tonelada de caña.

Posteriormente se determinaron las dos variables nuevamente a las tres muestras a las cuatro y a las ocho horas. En las siguientes dos tablas se resumen los resultados del experimento.
Los primeros resultados corresponden a la determinación de la pureza, es decir la cantidad de sacarosa que es preservada para su recuperación en etapas subsecuentes.

<table>
<thead>
<tr>
<th>MUESTRA No.</th>
<th>CONCENTRACIÓN APLICADA</th>
<th>DETERMINACIÓN DE PUREZA DEL JUGO DE CAÑA DE AZÚCAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 ppm</td>
<td>4 hrs.</td>
</tr>
<tr>
<td>1</td>
<td>40-45 ppm</td>
<td>82.13</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>82.13</td>
</tr>
<tr>
<td>2</td>
<td>0 ppm</td>
<td>40-45 ppm</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>86.61</td>
</tr>
<tr>
<td>3</td>
<td>0 ppm</td>
<td>40-45 ppm</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>83.04</td>
</tr>
<tr>
<td>4</td>
<td>0 ppm</td>
<td>40-45 ppm</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>81.06</td>
</tr>
<tr>
<td>5</td>
<td>0 ppm</td>
<td>40-45 ppm</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>89.18</td>
</tr>
<tr>
<td>6</td>
<td>0 ppm</td>
<td>40-45 ppm</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>89.53</td>
</tr>
<tr>
<td>7</td>
<td>0 ppm</td>
<td>40-45 ppm</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>95.76</td>
</tr>
<tr>
<td>8</td>
<td>0 ppm</td>
<td>40-45 ppm</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>97.39</td>
</tr>
</tbody>
</table>
Se puede apreciar que los valores de la pureza de las muestras en las que se aplicó el producto estabilizante de sacarosa, en términos generales, son mayores a la de la muestra testigo.

Con respecto a la determinación de los azúcares reductores, que son residuos o contaminantes poco deseados, se obtuvieron los siguientes resultados.

<table>
<thead>
<tr>
<th>MUESTRA No.</th>
<th>CONCENTRACIÓN APLICADA</th>
<th>% DE AZUCARES REDUCTORES EN EL JUGO DE CAÑA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 hrs.</td>
</tr>
<tr>
<td>1</td>
<td>0 ppm</td>
<td>0.744</td>
</tr>
<tr>
<td></td>
<td>40-45 ppm</td>
<td>0.744</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>0.744</td>
</tr>
<tr>
<td>2</td>
<td>0 ppm</td>
<td>1.188</td>
</tr>
<tr>
<td></td>
<td>40-45 ppm</td>
<td>1.188</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>1.188</td>
</tr>
<tr>
<td>3</td>
<td>0 ppm</td>
<td>1.098</td>
</tr>
<tr>
<td></td>
<td>40-45 ppm</td>
<td>1.098</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>1.098</td>
</tr>
<tr>
<td>4</td>
<td>0 ppm</td>
<td>1.167</td>
</tr>
<tr>
<td></td>
<td>40-45 ppm</td>
<td>1.167</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>1.167</td>
</tr>
<tr>
<td>5</td>
<td>0 ppm</td>
<td>0.798</td>
</tr>
<tr>
<td></td>
<td>40-45 ppm</td>
<td>0.798</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>0.798</td>
</tr>
<tr>
<td>6</td>
<td>0 ppm</td>
<td>0.813</td>
</tr>
<tr>
<td></td>
<td>40-45 ppm</td>
<td>0.813</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>0.813</td>
</tr>
<tr>
<td>7</td>
<td>0 ppm</td>
<td>0.466</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>40-45 ppm</td>
<td>0.466</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>0.466</td>
</tr>
<tr>
<td>8</td>
<td>0 ppm</td>
<td>0.889</td>
</tr>
<tr>
<td></td>
<td>40-45 ppm</td>
<td>0.889</td>
</tr>
<tr>
<td></td>
<td>50-65 ppm</td>
<td>0.889</td>
</tr>
</tbody>
</table>

En estos casos también se observa que de manera general la cantidad de azucares reductores que se producen en las muestras a las que se les agregó el producto estabilizador de la sacarosa es menor a la de la muestra testigo.

Para comprobar los resultados del producto estabilizador de pureza a nivel industrial, se realizó una prueba de aplicación durante ocho días en un ingenio azucarero con capacidad para procesar 204 ton. por día y con un porcentaje de recuperación de la sacarosa del 93%.

Se utilizó un dosificador de flujo continuo para suministrar el producto en una proporción del 40-60 ppm por tonelada de caña equivalente.

Se observó y constato en diversas pruebas químicas y bioquímicas que el producto actúo como agente bioquímico en un rango de amplio espectro y en lapsos de hasta 18 horas, inhibió eficientemente la destrucción de la sacarosa, manteniendo su mayor efectividad dentro de un rango de temperatura de 50 a 95 °C.
Con la aplicación del producto estabilizador y conservador se mantiene adecuadamente la pureza de los jugos, es decir, que la sacarosa no se degradó.

También pudo observarse que el producto actúa bioquímicamente sobre los azúcares no cristalizables que contiene el jugo de la caña, mismos que pueden originarse mayormente cuando existe rezago, deterioro y/o asepsia deficiente en los equipos de las áreas de batey y molienda.

El producto también mostró un efecto inhibidor de la bacteria *Leuconostoc mesenteroides* presente en los jugos de la caña de azúcar. Además de interactuar con los azúcares menores producidos por la acción de la bacteria *Leuconostoc mesenteroides*, reduciendo la viscosidad de las masas cocidas al transformar dichas gomas, ceras, resinas y almidones en materiales manejables.

Se mostró una acción detergente que facilita el manejo de los materiales en proceso y evita interferencias negativas en la etapa de la cristalización lográndose una buena formación del grano de azúcar. Estos efectos representan una reducción en las labores y por lo tanto en los costos de mantenimiento y limpieza de los equipos de proceso.

La preservación de la sacarosa del jugo de la caña como consecuencia de la inhibición que sufre la actividad bactericida del *Leuconostoc mesenteroides*, de la estabilización del potencial de hidrógeno (pH) en el jugo, así como la actividad enzimática de la dextranasa sobre la dextrana presente en los jugos, hace que la relación de la cantidad de sacarosa preservada con respecto a
la totalidad de sólidos disueltos en el jugo se mantenga más o menos estable dentro de un rango que depende de la cantidad de sacarosa y la población bacteriana presentes en el medio de que se trate.

5

El producto desarrolla un efecto sanitizante en los focos de infección del ingenio, que permite lograr un incremento adicional en la recuperación de azúcar por tonelada de caña molida, facilitando además un mejor manejo de los materiales en el proceso de producción, reduciendo los tiempos muertos al actuar en lugares poco accesibles a las acciones de limpieza rutinarias.

En este ingenio en particular se obtuvieron de 21 a 25 toneladas de sacarosa adicionales a los que se producen en forma tradicional.

la pérdida de sacarosa en el jugo residual pasó de 5.88 a 3.63% y en bagazo de 3.66 a 3.25% con la plicación del producto y proceso objeto de la presente invención. Con la aplicación del producto estabilizador la pérdida de sacarosa fué solamente del 4% es decir 4 puntos menos a lo actual.

Habiendo descrito la invención, se considera una novedad y por lo tanto se reclama lo contenido en las siguientes:
REIVINDICACIONES

1. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación que tiene actividad estabilizante de pH, bioquímica, bactericida, enzimática, detergente y sanitizante que consiste de una solución acuosa que comprende de 15 a 40% de un agente activo, 5 a 15% de un ácido carboxílico o sal derivada, 5 a 15% de un alcohol de cadena corta, 1 a 2% de terpeno, y hasta un 2% de una solución amortiguadora.

2. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación, de conformidad con la cláusula 1, donde dicho agente activo consiste de formol, formaldehído, acetaldehído, propionaldehído, butiraldehído o benzaldehído o una mezcla de alguno de ellos.

3. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación, de conformidad con las cláusulas 1 y 2, donde el agente activo es preferentemente formaldehído en una proporción de 35 a 40%.

4. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación, de conformidad con la cláusula 1, donde el ácido carboxílico consiste de ácido fórmico, acético, propiónico, butanoico, benzoico, sórbico o láctico.

5. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación, de conformidad con las cláusulas 1 y 4, donde el ácido carboxílico puede ser substituido
por una sal correspondiente, preferentemente de los iones sodio, potasio, calcio y amonio.

6. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación, de conformidad con la cláusula 1, donde el alcohol de cadena corta consiste de metanol, etanol, propanol, butanol, pentanol, hexanol, heptanol, octanol o fenol.

7. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación, de conformidad con la cláusula 1, donde la solución amortiguadora consiste de un medio de cultivo de bacterias.

8. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación, de conformidad con las cláusulas 1 a 7, caracterizado porque el producto se puede aplicar al material en proceso en un ingenio azucarero en cualquier etapa.

9. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación, de conformidad con las cláusulas 1 a 8, caracterizado porque el producto se aplica preferentemente al jugo de la primera extracción.

10. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación, de conformidad con las cláusulas 1 a 9, caracterizado porque el producto se aplica preferentemente en una proporción de 25 a 75 ppm por tonelada de caña de azúcar que entra a proceso en un ingenio azucarero.
11. Un producto para estabilizar la sacarosa contenida en la caña de azúcar y método de aplicación, de conformidad con las cláusulas 1, donde opcionalmente se aplica 0.2 a 2% de surfactante adecuado para solubilizar el terpeno
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) : C08B 30/12
US CL : 127/32
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 127/32, 42, 43, 46.1, 46.2, 48, 55; 514, 423; 435/52; 549/37; 558/246; 430/138

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS
search terms: sugar cane, formol, aldehydes, alcohols, terpene(s), buffer, alkanolic acids

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 3,624,257 A (SAKAI et al) 30 November 1971, col. 1, line 8 to col. 24, line 69</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>US 4,904,562 A (YUSA et al) 27 February 1990, col. 3, line 60 to col. 30, line 48</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>US 3,666,785 A (SAKAI et al) 30 May 1972, col. 1, line 3 to col. 24, line 68</td>
<td>1-11</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is considered in combination with one or more other such documents, such combination being obvious to a person skilled in the art

* Special categories of cited documents:
*"A" document defining the general state of the art which is not considered to be of particular relevance
*"E" earlier document published on or after the international filing date
*"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
*"O" document referring to an oral disclosure, use, exhibition or other means
*"P" document published prior to the international filing date but later than the priority data claimed

Date of the actual completion of the international search
18 AUGUST 1997

Date of mailing of the international search report
03 SEP 1997

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
LYNN HAILEY
Telephone No. (703) 308-0661

Form PCT/ISA/210 (second sheet) (July 1992)*
INFORME DE BUSQUEDA INTERNACIONAL

Solicitud internacional N°
PCT/ MX 97/00009

A. CLASIFICACION DE LA INVENCIÓN

CIP6 : C08B 30/12 US CL : 127/32

Según la Clasificación Internacional de Patentes (IPC) o la clasificación nacional y la IPC

B. SECTORES COMPRENDIDOS POR LA BUSQUEDA

Documentación mínima consultada (sistema de clasificación seguido de los símbolos de clasificación)

U.S. : 127/32, 42, 43, 46.1, 46.2, 48, 55; 514, 423; 435/52; 549/37; 558/246; 430/138

Otra documentación consultada además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Base de datos electrónica consultada durante la búsqueda internacional (nombre de la base de datos y, cuando sea aplicable, términos de búsqueda utilizados)

APS

search terms: sugar cane, formol, aldehydes, alcohols, terpene(s), buffer, aikanoic acids

C. DOCUMENTOS CONSIDERADOS PERTINENTES

<table>
<thead>
<tr>
<th>Categoría*</th>
<th>Identificación del documento, con indicación, cuando sea adecuado, de los pasajes pertinentes</th>
<th>Nº de las reivindicaciones pertinentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 3,624,257 A(SAKAI et al) 30 Noviembre 1971 (30.11.71) column 1, línea 8 hasta columna 24, línea 69</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>US 4,904,562 A(YUSA et al) 27 Febrero 1990 (27.02.90) column 3, línea 60 hasta columna 30, línea 48</td>
<td>1-11</td>
</tr>
<tr>
<td>A</td>
<td>US 3,666,785 A (SAKAI et al) 30 Mayo 1972 (30.05.72) column 1, línea 3 hasta columna 24, línea 68</td>
<td>1-11</td>
</tr>
</tbody>
</table>

☐ En la continuación del Recuadro C se relacionan documentos adicionales.

☐ Véase el Anexo de la familia de patentes.

* Categorías especiales de documentos citados:

"A" documento que define el estado general de la técnica que no se considera como particularmente pertinente

"E" documento anterior, publicado en la fecha de presentación internacional o con posterioridad a la misma

"L" documento que puede plantear dudas sobre reivindicación(es) de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la especificada)

"O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio

"P" documento publicado antes de la fecha de presentación internacional, pero con posterioridad a la fecha de prioridad reivindicada

"T" documento ulterior publicado con posterioridad a la fecha de presentación internacional o de prioridad y que no está en conflicto con la solicitud, pero que se cita para comprender el principio o la teoría que constituye la base de la invención

"X" documento de particular importancia, la invención reivindicada no puede considerarse nueva o no puede considerarse que implique actividad inventiva cuando se considera el documento unidimensionalmente

"Y" documento de especial importancia, no puede considerarse que la invención reivindicada implique actividad inventiva cuando el documento esté combinado con otro u otros documentos, cuya combinación sea evidente para un experto en la materia

"&" documento que forma parte de la misma familia de patentes

Fecha en la que se ha concluido efectivamente la búsqueda internacional

18 Agosto 1997 (18.08.97)

Fecha de expedición del informe de búsqueda internacional

3 Septiembre 1997 (03.09.97)

Nombre y dirección postal de la Administración encargada de la búsqueda internacional

US

Facsimil N°

Funcionario autorizado

Teléfono N°

Formulario PCT/ISA/210 (segunda hoja) (julio de 1992)