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METAL DEPOSITS , COMPOSITIONS , AND 
METHODS FOR MAKING THE SAME 

TECHNICAL FIELD 
[ 0001 ] Aspects of the present disclosure involve metal 
deposits and methods for making the same . In particular , the 
present disclosure relates to iron deposits and ionic liquid 
electrolytes used in metal deposition processes . 

BACKGROUND 
[ 0002 ] Conventional metal deposition , such as iron depo 
sition , relies upon caustic aqueous solutions , such as FeSO4 
H2SO4 or FeCl2 / FeCl3 . Large amounts of hydrogen gas 
evolve at the surface , pitting the substrate and causing the 
metal deposit to become brittle . The aqueous electrolyte has 
a narrow stability window of only 1 . 2 V and a maximum 
operating temperature between about 80° C . and about 100° 
C . Conventionally , many metals , such Fe ' , cannot be depos 
ited without also decomposing the solvent because of the 
necessary voltages . Higher temperatures are desired to drive 
off the hydrogen , but higher temperature lead to unfavorably 
large crystal grain sizes , which are already a problem 
because of iron ' s high intrinsic crystallinity . Moreover , in 
water , Fe3 + forms at the anode . If low concentrations of Fe3 + 
migrate to the cathode , then the deposit quality is signifi 
cantly compromised . 
[ 0003 ] It is with these issues in mind , among others , that 
aspects of the present disclosure were conceived . 

have an average grain size between about 0 . 2 um and about 
3 um and contains less than about 1 mol % of each oxygen , 
carbon , and chlorine . 
[ 0009 ] Also provided herein is a composition for forming 
an iron deposit on a substrate . The composition consists 
essentially of a carboxamide , trialkylamine chloride , and a 
metal salt . The carboxamide may be selected from the group 
consisting of urea , biuret , triuret , tetrauret , pentauret , hexau 
ret , cyanuric acid , ammelide , ammeline , and combinations 
thereof . The trialkylamine chloride and the carboxamide 
may be in molar ratio between 1 : 1 and 1 : 30 to form an ionic 
liquid , wherein the trialkylamine chloride is trimethylamine 
chloride ( TMACI ) , triethylamine chloride ( TEACI ) , or com 
binations of the two . The metal salt may have the formula 
MX , wherein M is a metal , X is a halide , and y is an 
oxidation number of M . The metal salt may be in a concen 
tration between about 0 . 2 and about 1 . 5 moles per liter of the 
ionic liquid . The iron deposit may have an average grain size 
between about 0 . 2 um and about 3 um and contains less than 
about 1 mol % of each oxygen , carbon , and chlorine . 
[ 0010 ] The present disclosure provides a metal deposit 
formed from any composition described herein . For 
example , an iron deposit may have an average grain size 
between about 0 . 2 um and about 3 um and may contain less 
than about 1 mol % of each oxygen , carbon , and chlorine . 
This iron deposit may be formed on a substrate by inducing 
a potential between an iron salt and the substrate through an 
electrolyte to cause a metal - metal bond to form between the 
iron salt and metal on the substrate . The electrolyte may 
comprise trialkylamine halide , urea , and an iron salt . The 
trialkylamine halide and carboxamide may be in molar ratio 
between about 1 : 1 and about 1 : 30 to form an ionic liquid , 
such at about 1 : 1 ( mol / mol ) or about 1 : 30 ( mol / mol ) . The 
iron salt , such as FeC1z , may be at a concentration between 
about 0 . 2 and about 1 . 5 moles per liter of the ionic liquid . 
[ 0011 ] . Also provided herein a method comprising , induc 
ing a potential between a metal salt and a substrate through 
an electrolyte to deposit metal onto the substrate by causing 
a metal - metal bond to form between the metal salt and metal 
on the substrate . In this method , the potential may have a 
current density between about 10 mA / cm3 and about 300 
mA / cm and a reduction potential of between about - 0 . 6 V 
and about - 2 . 2 V . The electrolyte may comprise trialkylam 
ine chloride , a metal salt , and a carboxamide of Formula ( I ) : 

SUMMARY 
[ 0004 ] Following the compositions provided herein , a 
metal deposit on a substrate . The composition consist essen 
tially of a carboxamide , trialkylamine chloride , and a metal 
salt . The carboxamide may comprise Formula ( I ) : 

RI 
IN 

- 

[ 0005 ] wherein n is 1 to 6 ; 
[ 0006 ] each Q is independently chosen from O or 
NR + R ; 

[ 0007 ] Rl is independently chosen from H or alkyl , and 
R? is NR + R ” ; or R1 and R3 are taken together to form 
a ring ; and 

[ 0008 ] each R ? , R4 , and RS is independently chosen 
from H or alkyl ; 

The trialkylamine chloride and the carboxamide may be in 
molar ratio between 1 : 1 and 1 : 30 to form an ionic liquid , 
wherein the trialkylamine chloride is trimethylamine chlo 
ride ( TMAC1 ) , triethylamine chloride ( TEAC1 ) , trietha 
nolamine chloride , or combinations thereof . The metal salt 
may have the formula MX , wherein M is a metal , X is a 
halide , and y is an oxidation number of M . The metal salt 
may be in a concentration between about 0 . 2 and about 1 . 5 
moles per liter of the ionic liquid . The metal deposit may 

[ 0012 ] wherein n is 1 to 6 ; 
[ 0013 ] each Q is independently chosen from O or 
NR4R ; 

[ 0014 ] R is independently chosen from H or alkyl , and 
R ’ is NR * R * ; or R1 and R3 are taken together to form 
a ring ; and 

[ 0015 ] each R ? , R4 , and RS is independently chosen 
from H or alkyl . 

[ 0016 ) The trialkylamine chloride and carboxamide may 
be in molar ratio between 1 : 1 and 1 : 30 to form an ionic 
liquid . The trialkylamine chloride may be trimethylamine 
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chloride ( TMACI ) , triethylamine chloride ( TEACI ) , or com 
binations of the two . The metal salt has the formula MX , 
wherein M is a metal , X is a halide , and y is an oxidation 
number of M . The metal salt may be in a concentration 
between about 0 . 2 and about 1 . 0 moles per liter of the ionic 
liquid ( that is , 0 . 2 - 1 . 0 M ) . The deposited metal produced 
from this method may have an average grain size between 
about 0 . 2 um and about 3 um , such as between about 0 . 5 um 
and about 2 um , and contains less than about 1 mol % of 
each oxygen , carbon , and chlorine , as verified through 
electron microscopy and energy - dispersive spectroscopy . 
[ 0017 ] The present disclosure provides a metal deposit 
formed by any method described herein . For example , an 
iron deposit may have an average grain size between about 
0 . 2 um and about 3 um and may contain less than about 1 
mol % of each oxygen , carbon , and chlorine . This iron 
deposit may be formed on a substrate by inducing a potential 
between an iron salt and the substrate through an electrolyte 
to cause a metal - metal bond to form between the iron salt 
and metal on the substrate . The electrolyte may comprise 
trialkylamine halide , carboxamide , and an iron salt . The 
trialkylamine halide and carboxamide may be in molar ratio 
between about 1 : 1 and about 1 : 30 to form an ionic liquid , 
such at about 1 : 2 ( mol / mol ) or about 1 : 10 ( mol / mol ) . The 
iron salt , such as FeCl2 , may be at a concentration between 
about 0 . 2 and about 1 . 5 moles per liter of the ionic liquid . 
[ 0018 ] Additional embodiments and features are set forth 
in part in the description that follows , and in part will 
become apparent to those skilled in the art upon examination 
of the specification , or may be learned by the practice of the 
embodiments discussed herein . A further understanding of 
the nature and advantages of certain embodiments may be 
realized by reference to the remaining portions of the 
specification and the drawings , which forms a part of this 
disclosure . 

[ 0023 ] FIG . 2 shows a cyclic voltammogram for 1 : 2 
( mol / mol ) triethylamine chloride ( TEAC1 ) / urea ( solid line ) 
and 1 : 2 ( mol / mol ) trimethylamine chloride ( TMACI ) / urea 
( dashed line ) ionic liquids on a glassy carbon electrode in the 
absence of ferric chloride ( FeC1z ) . 
10024 ] . FIG . 3 shows a cyclic voltammogram for 1 : 2 
( mol / mol ) TEACl / urea ( dashed line ) and 1 : 2 ( mol / mol ) 
TMACl / urea ( solid line ) with 0 . 3 M FeClz . 
100251 . FIG . 4 shows a cyclic voltammogram for 1 : 2 
( mol / mol ) TEAC / FeClz in the absence of urea . 
[ 0026 ] FIG . 5A shows the current efficiency versus vary 
ing the concentrations of FeCl2 in 1 : 2 ( mol / mol ) TEAC1 / 
urea ionic liquid at a constant current of 20 mA . FIG . 5B 
shows the effect of varying potentials , and FIG . 5C shows 
the effect of varying current densities with 0 . 3 M FeCl , in 
1 : 2 ( mol / mol ) TEAC1 / urea ionic liquid . 
[ 0027 ] FIG . 6 shows the current efficiency versus varying 
potentials in 1 : 2 ( mol / mol ) TMAC1 / urea ionic liquid with 
0 . 3 M FeCiz . 
[ 0028 ] FIGS . 7A - F shows photos ( FIGS . 7A , C , and E ) 
and scanning electromicrographs ( FIGS . 7B , D , and F ) of 
Feº deposits at differing current densities in 1 : 2 ( mol / mol ) 
TEACl / urea ionic liquid with 0 . 3 M FeCiz , including current 
densities of 10 mA / cm3 ( FIGS . 7A & B ) , 20 mA / cm ( FIGS . 
7C & D ) , and 40 mA / cm3 ( FIGS . 7E & F ) . Deposition 
occurred on the substrate below the dashed line . 
[ 0029 ] FIGS . 8A - H show photos ( FIGS . 8A , C , E , and G ) 
and scanning electromicrographs ( FIGS . 8B , D , F , and H ) of 
Feº deposits at differing concentrations of FeCl2 in 1 : 2 
( mol / mol ) TEACl / urea ionic liquid . The concentrations of 
FeCl2 were 0 . 2 M ( FIGS . 8A & B ) , 0 . 3 M ( FIGS . 8C & D ) , 0 . 4 
M ( FIGS . 8E & F ) , and 0 . 53 M ( FIGS . 8G & H ) . Deposition 
occurred on the substrate below the dashed line . 
[ 0030 ] FIGS . 9A - J show photos ( FIGS . 9A , C , E , G , and 
I ) and scanning electromicrographs ( FIGS . 9B , D , F , H , and 
J ) of potentials tested in 1 : 2 ( mol / mol ) TEACl / urea ionic 
liquid with a concentration of 0 . 3 M FeCl2 . The potentials 
were - 0 . 6 V ( FIGS . 9A & B ) , - 1 . 0 V ( FIGS . 9C & D ) , - 1 . 4 V 
( FIGS . 9E & F ) , - 1 . 8 V ( FIGS . 9G & H ) , and - 2 . 2 V ( FIGS . 
91 & J ) . Deposition occurred on the substrate below the 
dashed line . 
[ 0031 ] FIGS . 10A - J show photos ( FIGS . 10A , C , E , G , 
and I ) and scanning electromicrographs ( FIGS . 10B , D , F , H , 
and J ) of potentials tested in 1 : 2 ( mol / mol ) TMACl / urea 
ionic liquid with a concentration of 0 . 3 M FeClz . The 
potentials measured were the same as those tested above for 
TEAC1 / urea ionic liquid at FIG . 8 : - 0 . 6 V ( FIGS . 10A & B ) , 
- 1 . 0 V ( FIGS . 10C & D ) , - 1 . 4 V ( FIGS . 10E & F ) , - 1 . 8 V 
( FIGS . 10G & H ) , and - 2 . 2 V ( FIGS . 101 & J ) . Deposition 
occurred on the substrate below the dashed line . 
[ 0032 ] FIGS . 11A & B provide image mapping ( FIG . 11A ) 
and energy - dispersive spectrometric ( EDS ) data ( FIG . 11B ) 
of an iron deposit formed under a potential of - 1 . 2 V from 
1 : 2 ( mol / mol ) TEACl / urea ionic liquid . Deposition occurred 
on the substrate below the dashed line . 
[ 0033 ] FIGS . 12A & B show grayscale ( FIG . 12A ) and 
color - coded ( FIG . 12B ) cross - sections of iron deposits pre 
pared at - 2 . 0 V ( reference electrode is iron ) from in 1 : 2 
( mol / mol ) TEACl / urea ionic liquid with 0 . 3 M FeCiz . 
[ 0034 ] FIGS . 13A & B show grayscale ( FIG . 13A ) and 
color - coded ( FIG . 13B ) cross - sections of iron deposits pre 
pared at - 1 . 8 V ( reference electrode is iron ) from in 1 : 2 
( mol / mol ) TMACl / urea ionic liquid with 0 . 3 M FeCl3 . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0019 ] The patent or application file contains at least one 
drawing executed in color . Copies of this patent or patent 
application publication with color drawing ( s ) will be pro 
vided by the Office upon request and payment of the 
necessary fee . 
[ 0020 ] Example embodiments are illustrated in referenced 
figures of the drawings . It is intended that the embodiments 
and figures disclosed herein are to be considered illustrative 
rather than limiting . 
[ 0021 ] FIG . 1A depicts a device 100 which may be used 
in the disclosed methods . The device comprises a source of 
a countercharge 120 , and a substrate 110 in electrical com 
munication with the source of a countercharge 120 through 
an electrolyte 140 . A potential 130 is induced through the 
electrolyte 140 between the source of a countercharge 120 
and the substrate 110 , having a surface 111 . The device also 
comprises a power supply 160 in electrical communication 
161 with the source for a countercharge 120 and in electrical 
communication 163 with the substrate 110 . 
[ 0022 ] FIG . 1B is an inset of FIG . 1A , showing an 
embodiment where the source of countercharge 120 is a 
corroding electrode . When the potential 130 is induced 
between the corroding electrode 120 and the substrate 110 
through the electrolyte 140 , metal 122 from the corroding 
electrode 120 is released as metal species ( M + ) 124 into the 
electrolyte 140 . 
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anode , ( FIGS . 26E & F ) , Cu Fe pressed anode , ( FIGS . 
26G & H ) Cu pressed anode , and ( FIGS . 261 & J ) Cu — Sn 
pressed anode . 
[ 0048 ] FIG . 27 shows the cyclic voltammogram of 1 : 2 . 5 
( mol / mol ) TEACH / biuret ( C2H3N302 ) ionic liquid . Without 
FeClz , the melting point is 150° C . With FeCl2 , the melting 
point is 100° C . 
100491 . FIG . 28 shows the cyclic voltammogram of 1 : 2 . 6 
( mol / mol ) triethanolamine chloride / urea ( 1 : 2 . 6 ) With FeClz 
the melting point is 80° C . 

[ 0035 ] FIGS . 14A & B show grayscale ( FIG . 14A ) and 
color - coded ( FIG . 14B ) cross - sections of iron deposit after 
electropolishing at - 2 . 0 V ( reference electrode is iron ) in 1 : 2 
( mol / mol ) TEACl / urea ionic liquid . 
[ 0036 ] FIG . 15 shows a cyclic voltammogram of 1 : 2 
( mol / mol ) TMACl / urea ionic liquid without FeCl2 on glassy 
carbon electrode after stripping an iron plate ( solid line ) and 
with FeCl3 ( dashed line ) . 
[ 0037 ] FIGS . 16A & B are scanning electromicrographs of 
iron deposits in ( FIG . 16A ) 1 : 2 ( mol / mol ) TEACl / urea ionic 
liquid at - 1 . 8 V without FeCl3 , and ( FIG . 16B ) 1 : 2 ( mol / 
mol ) TMACl / urea ionic liquid at - 1 . 4 V without FeClz . 
Stripping this iron plate provided the iron source in the 
electrolyte . FIG . 16C shows the EDS data for FIG . 16A , and 
FIG . 16D shows the EDS data for FIG . 16B . 
[ 0038 ] FIG . 17 shows a cyclic voltammogram of different 
molar ratios TEACl / urea ionic liquid at ( a ) 1 : 1 , ( b ) 1 : 2 , ( c ) 
1 : 3 . 5 , ( d ) 1 : 7 and ( e ) 1 : 10 , each with a concentration of 0 . 3 
moles of FeCl3 per liter of ionic liquid . 
10039 ] FIGS . 18A - C show photographs ( FIGS . 18A & B ) 
and scanning electromicrographs ( FIGS . 18C & D ) of iron 
deposits formed from different molar ratios TEACl / urea 
ionic liquid with 0 . 3 M FeCl3 — 1 : 5 molar ratio at - 1 . 0 V 
( FIGS . 18A & C ) , and 1 : 10 molar ratio at - 1 . 4 V ( FIGS . 
18B & D ) . 
[ 0040 ] FIG . 19 shows a scanning electromicrograph of an 
iron deposit on steel formed from 1 : 10 ( mol / mol ) TEAC1 / 
urea with 0 . 3 M FeCl2 at potential of - 1 . 0 V . 
[ 0041 ] FIGS . 20A - J show photos ( FIGS . 20A , C , E , G , 
and I ) and scanning electromicrographs ( FIGS . 20B , D , F , H , 
and J ) of potentials tested in 1 : 10 ( mol / mol ) TEACI / urea 
ionic liquid with a concentration of 0 . 3 M FeClz : - 1 . 2 V 
( FIGS . 20A & B ) , - 1 . 4 V ( FIGS . 20C & D ) , - 1 . 6 V ( FIGS . 
20E & F ) , - 1 . 8 V ( FIGS . 20G & H ) , and - 2 . 0 V ( FIGS . 
201 & J ) . 
[ 0042 ] FIG . 21 is a graph reporting the current efficiency 
versus the varying potentials ( V ) tested in 1 : 10 ( mol / mol ) 
TEAC1 / urea ionic liquid with a concentration of 0 . 3 M 
FeCl3 . 
[ 0043 ] FIGS . 22A - E show scanning electromicrographs of 
cross - sections of Fe deposits formed - 1 . 4 V from 1 : 10 
( mol / mol ) TMACl / urea ionic liquid with a concentration of 
0 . 3 M FeCiz . 
[ 0044 ] FIGS . 23A & B show a scanning electromicrograph 
( FIG . 23A ) and energy - dispersive spectrometric ( EDS ) data 
( FIG . 23B ) of an iron deposit formed - 1 . 4 V from 1 : 30 
( mol / mol ) TEACl / urea ionic liquid with a concentration of 
0 . 3 M FeCl2 . 
10045 ) FIG . 24 shows a photo ( FIG . 24A ) , a scanning 
electoromicrograph ( FIG . 24B ) , and energy - dispersive spec 
trometric data ( FIG . 24C ) of an iron deposit in formed in 
1 : 20 ( mol / nol ) TEAC1 / urea with 1 . 5 M FeCl2 at 100° C . with 
a high current density of 100 mA / cm² . 
[ 0046 ] FIG . 25 shows a photo ( FIG . 25A ) , a scanning 
electoromicrograph ( FIG . 25B ) , and energy - dispersive spec 
trometric data ( FIG . 25C ) of an iron deposit in formed in 
1 : 20 ( mol / nol ) TEACl / urea with 1 . 5 M FeCl2 at 100° C . with 
a high current density of 300 mA / cm2 . 
10047 ) FIGS . 26A - J show grayscale ( FIGS . 26A , C , E , G , 
and I ) and color - coded ( FIGS . 26B , D , F , H , and J ) scanning 
electromicrographs of metal deposits formed from 1 : 2 ( mol / 
mol ) TMACl / urea , where the metal source was provided in 
the electrolyzed by stripping pressed metal anodes : ( FIGS . 
26A & B ) Mo pressed anode , ( FIGS . 26C & D ) Sn pressed 

DETAILED DESCRIPTION 
[ 0050 ] Provided herein are methods , devices and compo 
sitions which deposit highly pure , dense metal deposits onto 
substrates from an electrolyte . The electrolyte comprises 
trialkylamine halide , carboxamide , and a metal source , such 
as an iron salt . In another example , the electrolyte comprises 
trialkylamine halide and carboxamide in molar ratio 
between about 1 : 1 and about 1 : 30 to form an ionic liquid , 
such as about 1 : 2 or about 1 : 10 . The metal source is at a 
concentration between about 0 . 2 and about 1 . 5 moles per 
liter of the ionic liquid ( that is , 0 . 2 - 1 . 5 M ) , such as about 0 . 3 
M . A potential is induced between the metal source and a 
substrate through the electrolyte . Metal is thereby deposited 
onto the substrate by causing a metal - metal bond to form 
between the metal source and metal on the substrate . 
Included also in this disclosure are metal deposits formed 
using the methods disclosed herein and compositions 
employed in the method . 
[ 0051 ] Using the disclosed methods , hydrogen is not 
evolved at the substrate during metal deposition and denser 
metal is deposited compared to previously known methods . 
Voltage and temperature operate in wider windows of the 
induced potential relative to conventional aqueous electro 
lytes , and the average grain size of deposited metal is better 
controlled compared to previous deposits . When iron is 
present , Fe3 + is reduced completely to Feº , thus avoiding the 
catastrophic system failures which plague prior methods and 
systems . Moreover , as evinced by the microscopic and 
energy - dispersive spectroscopic data disclosed herein , the 
metal deposits have surprisingly high purity and conformity . 
These deposits are corrosion resistant , substantially free 
from oxygen , carbon , and chlorine , and adhering strongly to 
the substrates upon which the metal deposit is formed . 
[ 0052 ] The present disclosure may be understood by ref 
erence to the following detailed description , taken in con 
junction with the drawings as described above . It is noted 
that , for purposes of illustrative clarity , certain elements in 
various drawings may not be drawn to scale , may be 
represented schematically or conceptually , or otherwise may 
not correspond exactly to certain physical configurations of 
embodiments . 

I . Method 

[ 0053 ] The present disclosure provides a method for 
depositing metal onto a substrate , for example a working 
electrode ( workpiece ) of an electrochemical cell . The sub 
strate may be any electrically conductive surface , including 
metals such as steel or iron , or common electrode materials , 
such as glassy carbon . 
[ 0054 ] The methods according to this disclosure can be 
understood with relation to exemplary devices . Referring to 
FIG . 1 , a device 100 may comprise a source of a counter 
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charge 120 , and a substrate 110 in electrical communication 
with the source of a countercharge 120 through an electro 
lyte 140 . A potential 130 is induced through the electrolyte 
140 between the source of a countercharge 120 and the 
substrate 110 . In some embodiments , the device also com 
prises a power supply 160 in electrical communication 161 
with the source for a countercharge 120 and in electrical 
communication 163 with the substrate 110 . 
0055 . According to the methods of this disclosure , when 

potential between a metal source and a substrate through an 
electrolyte , metal is thereby deposited onto the substrate by 
causing a metal - metal bond to form between the metal 
source and metal on the substrate . In particular embodi 
ments , a potential may be induced between a metal source 
and a substrate through an electrolyte to deposit metal onto 
the substrate by causing a metal - metal bond to form between 
the metal source and metal on the substrate . 
[ 0056 ] Referring to FIG . 1B , a corroding electrode is 
depicted as a possible source of a countercharge . When the 
potential 130 is induced between the corroding electrode 
120 and the substrate 110 through the electrolyte 140 , metal 
122 from the corroding electrode 120 is released as metal 
species ( M + ) 124 into the electrolyte 140 . In another 
example , the electrolyte may comprise trialkylamine halide 
and carboxamide in molar ratio between 1 : 1 and 1 : 30 to 
form an ionic liquid . Alternatively , the methods according to 
this disclosure may be contemplated in the context of a 
device without a corroding electrode , wherein a substrate 
110 has a potential 130 induced in the presence of a chemical 
potential between an electrolyte 140 and the surface 111 . In 
this embodiment , the electrolyte comprises trialkylamine 
halide , carboxamide , and a metal source . The metal source 
may be a metal salt , for example at a concentration between 
about 0 . 2 and about 1 . 5 moles per liter of the ionic liquid 
( that is , 0 . 2 - 1 . 5 M ) . 

mA / cm3 . In particular , the current density may be about 20 
mA / cm3 . Alternatively , the current density may be about 40 
mA / cm . 
[ 0059 ] The potential may have a reduction potential rang 
ing of between about - 0 . 6 V and about - 2 . 2 V . A reduction 
potential of - 2 . 2V is close to the boundary of the electro 
chemical stability window of the electrolytes disclosed 
herein , causing the grain structure of the deposited metals to 
become more varied . Thus , the reduction potential tends to 
be more positive than about - 2 . 2 V . In various embodiments , 
the reduction potential may be between about - 0 . 6 V and 
about - 0 . 7 V , between about - 0 . 7 V and about - 0 . 8 V , 
between about - 0 . 8 V and about - 0 . 9 V , between about - 0 . 9 
V and about - 1 . 0 V , between about - 1 . 0 V and about - 1 . 1 
V , between about - 1 . 1 V and about - 1 . 2 V , between about 
- 1 . 2 V and about - 1 . 3 V , between about - 1 . 3 V and about 
- 1 . 4 V , between about - 1 . 4 V and about - 1 . 5 V , between 
about - 1 . 5 V and about - 1 . 6 V , between about - 1 . 6 V and 
about - 1 . 7 V , between about - 1 . 7 V and about – 1 . 8 V , 
between about - 1 . 8 V and about - 1 . 9 V , between about - 1 . 9 
V and about - 2 . 0 V , between about - 2 . 0 V and about - 2 . 1 
V , or between about - 2 . 1 V and about - 2 . 2 V . The reduction 
potential may be less than about - 0 . 6 V . 

B . Electrolyte 

[ 0060 ] The methods described herein use an electrolyte . 
Generally , the electrolyte comprises an ionic liquid and a 
metal source , which is a source for new material deposited 
at the substrate . In particular , the electrolyte may comprise 
ionic liquid formed from trialkylamine halide and carbox 
amide . The metal source is mixed with or dissolved in the 
ionic liquid . The electrolyte may also comprise one or more 
additives , for example , a silica - providing agent such at 
tetraethoxysilane ( orthosilicate , TEOS ) . 

A . Induced Potential 1 . Ionic Liquid 

[ 0057 ] The methods disclosed herein induce a potential 
between a metal source and a substrate through an electro 
lyte . The potential has features which can be varied to effect 
the outcome of the method and the characteristics of the 
deposited metal . These features include current density and 
a reduction potential . 
[ 0058 ] The potential may have a current density ranging 
between about 0 mA / cm and about 300 mA / cmº . In various 
embodiments , the current density may be between about 0 
mA / cm and about 5 mA / cm " , between about 5 mA / cm ' and 
about 10 mA / cm " , between about 10 mA / cm and about 15 
mA / cm " , between about 15 mA / cm² and about 20 mA / cm " , 
between about 20 mA / cm and about 25 mA / cm " , between 
about 25 mA / cm and about 30 mA / cm " , between about 30 
mA / cm and about 35 mA / cm " , between about 35 mA / cm3 
and about 40 mA / cm " , between about 40 mA / cm and about 
50 mA / cm " , between about 50 mA / cm and about 100 
mA / cm " , between about 100 mA / cm and about 150 
mA / cm " , between about 150 mA / cm and about 200 
mA / cm " , between about 200 mA / cm3 and about 250 
mA / cm " , or between about 250 mA / cm and about 300 
mA / cm " , or any current density therebetween . The current 
density may be less than about 300 mA / cm " , such as less 
than about 100 mA / cm " , or less than about 50 mA / cm " . The 
current density may be more than about 10 mA / cm " , such as 
more than about 50 mA / cm " , or more than about 100 

[ 0061 ] Generally , the electrolyte comprises an ionic liquid 
formed from trialkylamine halide and carboxamide in molar 
ratio between about 1 : 1 and about 1 : 30 , especially at a molar 
ratio of about 1 : 2 or of about 1 : 10 . In another example , the 
electrolyte may only contain a trace amount of water , such 
as that absorbed from the atmosphere . That is , the electrolyte 
may be substantially non - aqueous . 
[ 0062 ] The alkyl groups of the trialkylamine halide may 
be the same or different . The alkyl groups may be lower 
alkyl containing from one to eight carbon atoms in the 
principal chain and up to 20 carbon atoms . The alkyl groups 
may be straight or branched chain or cyclic and include 
methyl , ethyl , propyl , isopropyl , butyl , hexyl and the like . 
The alkyl groups may be optionally substituted with one or 
more hydroxyl groups , such as a methanol , ethanol , or 
propanol substituent . As such , the trialkylamine halide may 
be trimethanolamine halide , triethanolamine halide , or 
tripropanolamine halide . 
[ 0063 ] The halide in the trialkylamine halide may be 
fluoride , chloride , bromide , or iodine . For example , the 
halide may be chloride . In particular , the trialkylamine 
halide may be a trialkylamine chloride , such as trimethyl 
amine chloride ( TMACI ) , triethylamine chloride ( TEACI ) , 
or combinations of the two . That is , the trialkylamine halide 
may be trimethylamine chloride . Alternatively , the trialky 
lamine halide may be triethylamine chloride . 
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[ 0064 ] The carboxamide may comprise Formula ( I ) : [ 0079 ] The carboxamide of Formula ( 1 ) may comprise a 
compound of Formula ( IV ) : 

( IV ) 

[ 0065 ] wherein n is 1 to 6 ; 
[ 0066 ] each is independently chosen from 0 or 
NR + R $ ; 

[ 0067 ] R is independently chosen from H or alkyl , and 
R ’ is NR * R * ; or R1 and R3 are taken together to form 
a ring ; and 

[ 0068 ] each R ? , R4 , and R is independently chosen 
from H or alkyl . 

[ 0069 ] Generally , at least one Q is an O . 
[ 0070 ] The carboxamide of Formula ( 1 ) may comprise a 
compound of Formula ( II ) : 

[ 0080 ] n is 2 to 6 ; 
[ 0081 ] each Q is independently chosen from 0 or 
NR + R " ; and 

[ 0082 ] each R ? , R4 , and Rs is independently chosen 
from H or alkyl . 

[ 0083 ] That is , a carboxamide of Formula ( IV ) is a car 
boxamide of Formula ( I ) , wherein R1 and R3 have been 
taken together to form a ring . 
[ 0084 ] The carboxamide of Formula ( IV ) may comprise a 
compound of Formula ( V ) : 

NR4R5 , 
No 

[ 0071 ] wherein n is 1 to 6 ; 
[ 0072 ] each is independently chosen from O or 
NR4RS ; 

[ 0073 ] R ' , R4 , and RS are independently chosen from H 
or alkyl ; and 

[ 0074 ] each R² is chosen from H or alkyl . 
[ 0075 ] That is , the carboxamide of Formula ( II ) is a 
carboxamide of Formula ( I ) , wherein Q is O , and R3 is 
NR + RS . 
[ 0076 ] The carboxamide of Formula ( II ) may comprise a 
compound of Formula ( III ) : 

( III ) 

[ 0085 ] each Q is independently chosen from O or 
NR4R ; and 

[ 0086 ] each R ? , R4 , and RS is independently chosen 
from H or alkyl . 

10087 ) That is , the carboxamide of Formula ( V ) is a 
carboxamide of Formula ( IV ) , where n is 3 . Viewed another 
way , the carboxamide of Formula ( V ) is a carboxamide of 
Formula ( I ) , wherein Rl and R3 have been taken together to 
form a ring , and n is 3 ; that is , a 6 - membered ring . 
[ 008 ] In some embodiments , the carboxamide of For 
mula ( 1 ) may be selected from the group consisting of urea , 
biuret , triuret , tetrauret , pentauret , hexauret , cyanuric acid , 
ammelide , ammeline , and combinations thereof . The car 
boxamide may be selected from the group consisting of 
cyanuric acid , ammelide , ammeline , and combinations 
thereof , encompassing a compound of Formula ( V ) . The 
carboxamide may be selected from the group consisting of 
urea , biuret , triuret , tetrauret , pentauret , hexauret , and com 
binations thereof , encompassing a compound of Formula 
( III ) . In particular , the carboxamide may be urea or biuret . In 
exemplary embodiments , the carboxamide is urea . 
[ 0089 ] Without wishing to be bound by theory , the car 
boxamide is a proton carrier , which permits the formation of 
the ionic liquid when combined with the trialkylamine 
halide in specific molar ratios . Generally , the trialkylamine 
halide and carboxamide may be in molar ratio between 
about 1 : 1 and 1 : 30 . In various embodiments , the trialkylam 

i ne halide and carboxamide may be in molar ratio between 
about 1 : 1 and about 1 : 2 , between about 1 : 2 and about 1 : 3 , 
between about 1 : 3 and about 1 : 4 , between about 1 : 4 and 
about 1 : 5 , between about 1 : 5 and about 1 : 6 , between about 

NH2 , 

[ 0077 ] wherein n is 1 to 6 . 
[ 0078 ] That is , the carboxamide of Formula ( III ) is a 
carboxamide of Formula ( II ) , wherein R1 , R2 , R4 , and Rs are 
each H . Viewed another way , the carboxamide of Formula 
( III ) is a carboxamide of Formula ( I ) , wherein Q is O , R3 is 
NR + R " , and wherein R ' , R ? , R , and Rare each H . When 
n is 1 , the carboxamide is urea . When n is 2 , the carbox 
amide is biuret . When n is 3 , the carboxamide is triuret 
When n is 4 , the carboxamide is tetrauret . When n is 5 , the 
carboxamide is pentauret . When n is 6 , the carboxamide is 
hexauret . 
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1 : 6 and about 1 : 7 , between about 1 : 7 and about 1 : 8 , between 
about 1 : 8 and about 1 : 9 , between about 1 : 9 and about 1 : 10 , 
between about 1 : 10 and about 1 : 11 , between about 1 : 11 and 
about 1 : 12 , between about 1 : 12 and about 1 : 13 , between 
about 1 : 13 and about 1 : 14 , between about 1 : 14 and about 
1 : 15 , between about 1 : 15 and about 1 : 16 , between about 
1 : 16 and about 1 : 17 , between about 1 : 17 and about 1 : 18 , 
between about 1 : 18 and about 1 : 19 , between about 1 : 19 and 
about 1 : 20 , between about 1 : 20 and about 1 : 21 , between 
about 1 : 21 and about 1 : 22 , between about 1 : 22 and about 
1 : 23 , between about 1 : 23 and about 1 : 24 , between about 
1 : 24 and about 1 : 25 , between about 1 : 25 and about 1 : 26 , 
between about 1 : 26 and about 1 : 27 , between about 1 : 27 and 
about 1 : 28 , between about 1 : 28 and about 1 : 29 , or between 
about 1 : 29 and about 1 : 30 . 
[ 0090 ] The trialkylamine halide and carboxamide may be 
in molar ratio of greater than about 1 : 2 , such as greater than 
about 1 : 5 . The trialkylamine halide and carboxamide may be 
in molar ratio of less than about 1 : 30 , such as less than about 
1 : 20 , or less than about 1 : 10 . In particular , the trialkylamine 
halide and carboxamide may be in molar ratio of about 1 : 2 . 
The trialkylamine halide and carboxamide may be also in 
molar ratio of about 1 : 5 . Alternatively , the trialkylamine 
halide and carboxamide may be in molar ratio between 
about 1 : 10 . 
[ 0091 ] In particular , the carboxamide may be urea , 
wherein the trialkylamine halide and urea may be in molar 
ratio of greater than about 1 : 2 , such as greater than about 
1 : 5 . The trialkylamine halide and urea may be in molar ratio 
of less than about 1 : 30 , such as less than about 1 : 20 , or less 
than about 1 : 10 . In particular , the trialkylamine halide and 
urea may be in molar ratio of about 1 : 2 . The trialkylamine 
halide and urea may be also in molar ratio of about 1 : 5 . 
Alternatively , the trialkylamine halide and urea may be in 
molar ratio between about 1 : 10 . 
10092 ] When the potential is induced , the electrolyte may 
have at a temperature above 50° C . and below about 300° C . , 
such between about 50° C . and about 60° C . , between about 
60° C . and about 70° C . , between about 70° C . and about 80° 
C . , between about 80º C . and about 90° C . , between about 
90° C . and about 100° C . , between about 100° C . and about 
110° C . , between about 110° C . and about 120° C . , between 
about 120° C . and about 130° C . , between about 130° C . and 
about 140° C . , between about 140° C . and about 150° C . , 
between about 150° C . and about 160° C . , between about 
160° C . and about 170° C . , between about 170° C . and about 
180° C . , between about 180° C . and about 190° C . , between 
about 190° C . and about 200° C . , between about 200° C . and 
about 210° C . , between about 210° C . and about 220° C . , 
between about 220° C . and about 230° C . , between about 
230° C . and about 240° C . , between about 240° C . and about 
250° C . , between about 250° C . and about 260° C . , between 
about 260° C . and about 270° C . , between about 270° C . and 
about 280° C . , between about 280° C . and about 290° C . , or 
between about 290° C . and about 300° C . The temperature 
may be less than about 300° C . , such as less than about 150° 
C . The temperature may be more than about 0° C . , such as 
more than about 100° C . In particular , the electrolyte may 
have a temperature between about 80º C . and about 120° C . 
when the potential is induced , such as at about 100° C . 
[ 0093 ] The pH of the electrolyte may vary depending upon 
the embodiment . Different metals and composites typically 
have pH requirements to maintain a stable mixture in 
solution . 

[ 0094 ] 2 . Metal Source 
[ 0095 ] Generally , the electrolyte comprises a metal 
source . The metal source may be metal particles , such as 
dissolved or suspended metallic micro - or nanoparticles , or 
molecular metal ions , such as dissolved metal salts . Refer 
ring to FIG . 1B , the metal source may be provided by 
corroding an electrode , such as a counter or reference 
electrode in contact with the electrolyte . The corroding 
electrodes may comprise an iron plate , or provide a metal 
source to the electrolyte from a pressed anode . Alternatively 
or in addition to the corroding electrode , the metal source 
may be one or more metal salts present in the ionic liquid , 
such as a metal salt MX , 
0096 ] Examples of suitable metals include , but are not 
limited to , zinc , cadmium , copper , nickel chromium , tin , 
gold , silver , platinum , lead , ruthenium , rhodium , palladium , 
osmium , iridium , iron , cobalt , indium , arsenic , antimony , 
bismuth , manganese , rhenium , aluminum , zirconium , tita 
nium , hafnium , vanadium , niobium , tantalum , tungsten , and 
molybdenum . Examples of suitable alloys having two met 
als include , but are not limited to gold - copper - cadmium , 
zinc - cobalt , zinc - iron , zinc - nickel , brass ( an alloy of copper 
and zinc ) , bronze ( copper - tin ) , tin - zinc , tin - nickel , and tin 
cobalt . Especially suitable metals are molybdenum , tine , 
iron , and copper . In particular , the metal may be iron . 
[ 0097 ] In some embodiments , the metal source may be 
provided into the electrolyte by a pressed anode . The pressed 
anode comprises one or more metals selected from the group 
consisting of Mo , Sn , Zn , A1 , Fe , and Cu . The pressed anode 
may also be formed from an alloy such as bronze ( CuSn ) . 
The pressed anode may be produced following the proce 
dure of Example 5 disclosed herein . 
[ 0098 ] Alternatively , or in addition to , the electrolyte may 
comprise a metal salt . Any metal salt known within the 
electrochemical arts is suitable for use in this method . In 
some instances , the metal source may be a metal salt having 
the formula MX , , , wherein M is a metal , X is a halide , and 
y is an oxidation number of M . In particular , the metal salt 
MX , , may be FeCiz . 
[ 0099 ] M may be any suitable metal , such as those listed 
above . In particular , M may be Fe . As such , MX , , may be 
FeX , where X is a halide and y is an oxidation state of Fe . 
In particular , the metal salt FeX , , may be FeCiz . 
[ 0100 ] X may be any halide , such as fluoride , chloride , 
bromide , or iodide . In particular , X may be Cl . As such , MX , 
may be MC1y . Generally , the halide of the salt is selected to 
correspond with the halide of the trialkylamine halide . For 
example , when the trialkylamine halide is a trialkylamine 
chloride , the metal salt MX , is selected to be MC1 , . , wherein 
the halide of the metal salt is chloride as well . In particular , 
the metal salt MCI , may be FeClz . 
[ 0101 ] The number y may be any oxidation number avail 
able to the suitable metals , such as 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 
or 10 . y may be 2 . y may be 2 or 3 . In particular , y may be 
3 . As such , MX , may be MX3 , where M is selected from 
among suitable metals which can have an oxidation state of 
3 + . In particular , the metal salt MXZ may be FeC1z . 
[ 0102 ] Generally , the metal source is at a concentration 
between about 0 . 2 and about 1 . 5 moles per liter of the ionic 
liquid ; that is , between about 0 . 2 M and about 1 . 5 M . In 
various embodiments , the metal source is at a concentration 
between about 0 . 2 M and about 0 . 25 M , between about 0 . 25 
Mand about 0 . 3 M , between about 0 . 3 M and about 0 . 35 M , 
between about 0 . 35 M and about 0 . 4 M , between about 0 . 4 
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M and about 0 . 45 M , between about 0 . 45 M and about 0 . 5 
M , between about 0 . 5 M and about 0 . 55 M , between about 
0 . 55 M and about 0 . 6 M , between about 0 . 6 M and about 
0 . 65 M , between about 0 . 65 M and about 0 . 7 M , between 
about 0 . 7 M and about 0 . 75 M , between about 0 . 75 M and 
about 0 . 8 M , between about 0 . 8 M and about 0 . 85 M , 
between about 0 . 85 M and about 0 . 9 M , between about 0 . 9 
M and about 0 . 95 M , between about 0 . 95 M and about 1 . 0 
M , between about 1 . 0 M and about 1 . 05 M , between about 
1 . 05 M and about 1 . 1 M , between about 1 . 1 M and about 
1 . 15 M , between about 1 . 15 M and about 1 . 2 M , between 
about 1 . 2 M and about 1 . 25 M , between about 1 . 25 M and 
about 1 . 3 M , between about 1 . 3 M and about 1 . 35 M , 
between about 1 . 35 M and about 1 . 4 M , between about 1 . 4 
M and about 1 . 45 M , or between about 1 . 45 M and about 1 . 5 
M . The concentration of metal source may be more than 
about 0 . 2 moles per liter of the ionic liquid . The concentra 
tion of metal source may be less than about 1 . 5 moles per 
liter of the ionic liquid . In particular , the concentration of 
metal source may be about 0 . 3 moles per liter of the ionic 
liquid . 
[ 0103 ] 3 . Additives 
[ 0104 ] The electrolyte may further comprise one or more 
additives , including but not limited to , organic solvents , 
acids , bases , salts , surfactants , thickeners , buffers , ionizable 
organic compounds , and silica - providing agents . In particu 
lar , the electrolyte may comprise thickener to modulate the 
viscosity and increase the mass of particulates stably sus 
pended in the liquid electrolyte . 
[ 0105 ] The electrolyte compositions may include a silica 
providing agent . Examples of silica - providing agents 
include , but are not limited to , silica , silicon dioxide , silicic 
oxide , colloidal silica , silica gel , kieselguhr , quartz , tridym 
ite , cristobalite , keatite , moganite , stishovite , seifertite , mel 
anophlogite , sand , and monomeric silanes . The silica - pro 
viding agent may be hydrated , precipitated , fumed , fused , 
fibrous , mesoporous , and / or micronized . The silica provided 
by the silica - providing agent may be microcrystalline or 
present on the micrometer or nanometer scale . 
[ 0106 ] When the silica - providing agent is a monomeric 
silane , the agent can be hydrolyzed , thermally , or electro 
chemically decomposed to provide microcrystalline silica 
dispersed throughout the metal deposit . The monomeric 
silane may be trialkoxysilane , such as triethoxysilane , or a 
tetraalkoxysilane , such as tetraethoxysilane ( e . g . Wacker® 
TES 28 , tetraethyl orthosilicate ) . Wacker® TES 28 is a 
monomeric silane , which can be hydrolyzed to form silicon 
dioxide ( silica ) . Other suitable examples of trialkoxysilanes 
include trimethoxysilane , tripropoxysilane , and triiso 
propoxysilane . Other suitable examples of tetraalkoxysi 
lanes include tetramethoxysilane , tetrapropoxysilane , and 
tetraisopropoxysilane . In particular , the electrolyte com 
prises tetraethoxysilane . 
[ 0107 ] When present , the organic solvent may be a polar 
protic solvent , a polar aprotic solvent , a non - polar solvent , 
or combinations thereof . Suitable examples of polar protic 
solvents include , but are not limited to alcohols such as 
methanol , ethanol , isopropanol , n - propanol , isobutanol , 
n - butanol , s - butanol , t - butanol , and the like ; diols such as 
propylene glycol ; organic acids such as formic acid , acetic 
acid , and so forth ; amines such as trimethylamine , or trieth 
ylamine , and the like ; amides such as formamide , acetamide , 
and so forth ; and combinations of any of the above . 

[ 0108 ] Non - limiting examples of suitable polar aprotic 
solvents include acetonitrile , dichloromethane ( DCM ) , 
diethoxymethane , N , N - dimethylacetamide ( DMAC ) , N , N 
dimethylformamide ( DMF ) , dimethyl sulfoxide ( DMSO ) , 
N , N - dimethylpropionamide , 1 , 3 - dimethyl - 3 , 4 , 5 , 6 - tetra 
hydro - 2 ( 1H ) - pyrimidinone ( DMPU ) , 1 , 3 - dimethyl - 2 - imida 
zolidinone ( DMI ) , 1 , 2 - dimethoxyethane ( DME ) , dime 
thoxymethane , bis ( 2 - methoxyethyl ) ether , 1 , 4 - dioxane , 
N - methyl - 2 - pyrrolidinone ( NMP ) , ethyl formate , forma 
mide , hexamethylphosphoramide , N - methylacetamide , 
N - methylformamide , methylene chloride , nitrobenzene , 
nitromethane , propionitrile , sulfolane , tetramethylurea , tet 
rahydrofuran ( THF ) , 2 - methyltetrahydrofuran , trichlo 
romethane , and combinations thereof . 
( 0109 ] Suitable examples of non - polar solvents include , 
but are not limited to , alkane and substituted alkane solvents 
( including cycloalkanes ) , aromatic hydrocarbons , esters , 
ethers , combinations thereof , and the like . Specific non 
polar solvents that may be employed include , for example , 
benzene , butyl acetate , t - butyl methylether , chlorobenzene , 
chloroform , chloromethane , cyclohexane , dichloromethane , 
di chloroethane , diethyl ether , ethyl acetate , diethylene gly 
col , fluorobenzene , heptane , hexane , isopropyl acetate , 
methyltetrahydrofuran , pentyl acetate , n - propyl acetate , tet 
rahydrofuran , toluene , and combinations thereof . 
[ 0110 ] An electrolyte comprising organic solutions fre 
quently exhibit greater viscosity , which can cause slower 
molecular diffusion but benefits from increased particle 
suspension capacity . Electrolyte having organic solvent may 
also display much larger electrochemical windows ( 2 V to 6 
V ) , compared to water ( about 1 . 23 V ) . Organic solvents may 
also have greater operating temperature ranges above the 
100° C . limit for aqueous systems . Generally , organic solu 
tions do not codeposit with the metal during deposition . 
[ 0111 ] The range of concentration of additives in the 
electrolyte can and will vary . Generally , the concentration of 
additives in the electrolyte may range between about 10 - 2 
mol / L and about 10 - 3 mol / L , such as between about 10 - 2 
mol / L and about 10 - 3 mol / L , between about 10 - 3 mol / L and 
about 10 - 4 mol / L , or between about 10 - 4 mol / L and about 
10 - 5 mol / L . 
II . Metal Deposits 

[ 0112 ] A metal deposit may be formed by any method 
described herein . In particular , these metal deposits may be 
an iron deposit formed from an iron - containing metal 
source . 
[ 0113 ] Generally , the metal deposit may have an average 
grain size ranging between about 0 . 2 um and about 3 um . In 
various embodiments , the grain size may be between about 
0 . 2 um and about 0 . 5 um , between about 0 . 5 um and about 
1 um , between about 1 um and about 1 . 5 um , between about 
1 . 5 um and about 2 um , between about 2 um and about 2 . 5 
um , or between about 2 . 5 um and about 3 um . The average 
grain size may be between about 0 . 5 um and about 2 um . The 
average grain size may be more than about 0 . 2 um . The grain 
boundary may be less than about 3 um . When the metal is 
iron , the metal deposit may be especially crystalline , where 
the grain boundaries lie between different crystals in the 
metal deposit . 
[ 0114 ] Metal deposits produced using methods disclosed 
herein are surprisingly pure , where atomic elements from the 
electrolyte other than the metal are not substantially incor 
porated into the metal deposit . The metal deposit may 
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contain less than about 5 mol % oxygen , such as less than 
about 4 mol % , less than about 3 mol % , less than about 2 
mol % , less than about 1 mol % , less than about 0 . 5 mol % , 
less than about 0 . 1 mol % . The metal deposit may contain 
less than about 5 mol % carbon , such as less than about 4 
mol % , less than about 3 mol % , less than about 2 mol % , 
less than about 1 mol % , less than about 0 . 5 mol % , less than 
about 0 . 1 mol % . The metal deposit may contain less than 
about 5 mol % chlorine , such as less than about 4 mol % , less 
than about 3 mol % , less than about 2 mol % , less than about 
1 mol % , less than about 0 . 5 mol % , less than about 0 . 1 mol 
% . In particular embodiments , the metal deposit may contain 
less than about 5 mol % of each oxygen , carbon and 
chlorine , such as less than about 4 mol % , less than about 3 
mol % , less than about 2 mol % , less than about 1 mol % , 
less than about 0 . 5 mol % , less than about 0 . 1 mol % . These 
mole percentages may be determined using any method 
known in the art , including for example electron - dispersive 
spectroscopy ( EDS ) . 

III . Compositions 
[ 0115 ] Compositions are disclosed herein which were 
used as electrolytes in the methods . Broadly , these compo 
sitions may comprise a trialkylamine halide , carboxamide , 
and a metal source . In particular embodiments , these com 
positions may consist essentially of trialkylamine chloride , 
carboxamide , and a metal salt . That is , the electrolyte may 
be of a composition where the trialkylamine halide is a 
trialkylamine chloride and the metal source may be a metal 
salt . In another example , the compositions may comprise 
trialkylamine chloride and carboxamide in molar ratio 
between 1 : 1 and 1 : 30 to form an ionic liquid , wherein the 
trialkylamine chloride is trimethylamine chloride ( TMACI ) , 
triethylamine chloride ( TEACI ) , or combinations of the two . 
In various embodiments , the metal salt may have the for 
mula MX , wherein M is a metal , X is a halide , and y is an 
oxidation number of M . The metal salt may be in a concen 
tration between about 0 . 2 and about 1 . 5 moles per liter of the 
ionic liquid . Any metal salt MX , described herein is suitable 
for use in these compositions . Also , any variation of the 
ranges of molar ratios or concentrations described herein are 
suitable for these compositions . These compositions encom 
pass any molar ratio , metal salt , or concentration of metal 
salt described herein . 
[ 0116 ] In particular , the composition may consist essen 
tially of trimethylamine / triethylamine chloride , a carboxam 
ide of Formula ( I ) , and iron chloride . Generally , the trim 
ethylamine / triethylamine chloride and carboxamide may be 
in molar ratio between 1 : 1 and 1 : 30 to form an ionic liquid . 
In various embodiments , the trimethylamine / triethylamine 
halide and carboxamide may be in molar ratio between 
about 1 : 1 and about 1 : 2 , between about 1 : 2 and about 1 : 3 , 
between about 1 : 3 and about 1 : 4 , between about 1 : 4 and 
about 1 : 5 , between about 1 : 5 and about 1 : 6 , between about 
1 : 6 and about 1 : 7 , between about 1 : 7 and about 1 : 8 , between 
about 1 : 8 and about 1 : 9 , between about 1 : 9 and about 1 : 10 , 
between about 1 : 10 and about 1 : 11 , between about 1 : 11 and 
about 1 : 12 , between about 1 : 12 and about 1 : 13 , between 
about 1 : 13 and about 1 : 14 , between about 1 : 14 and about 
1 : 15 , between about 1 : 15 and about 1 : 16 , between about 
1 : 16 and about 1 : 17 , between about 1 : 17 and about 1 : 18 , 
between about 1 : 18 and about 1 : 19 , between about 1 : 19 and 
about 1 : 20 , between about 1 : 20 and about 1 : 21 , between 
about 1 : 21 and about 1 : 22 , between about 1 : 22 and about 

1 : 23 , between about 1 : 23 and about 1 : 24 , between about 
1 : 24 and about 1 : 25 , between about 1 : 25 and about 1 : 26 , 
between about 1 : 26 and about 1 : 27 , between about 1 : 27 and 
about 1 : 28 , between about 1 : 28 and about 1 : 29 , or between 
about 1 : 29 and about 1 : 30 . 
[ 0117 ] The trimethylamine / triethylamine halide and car 
boxamide may be in molar ratio of greater than about 1 : 2 , 
such as greater than about 1 : 5 . The trimethylamine / trieth 
ylamine halide and carboxamide may be in molar ratio of 
less than about 1 : 30 , such as less than about 1 : 20 , or less 
than about 1 : 10 . In particular , the trimethylamine / triethyl 
amine halide and carboxamide may be in molar ratio of 
about 1 : 2 . The trimethylamine / triethylamine halide and car 
boxamide may also be in molar ratio of about 1 : 5 . Alterna 
tively , the trimethylamine / triethylamine halide and carbox 
amide may be in molar ratio of about 1 : 10 . 
[ 0118 ] In particular , the carboxamide may be urea , 
wherein the trimethylamine / triethylamine halide and urea 
may be in molar ratio of greater than about 1 : 2 , such as 
greater than about 1 : 5 . The trimethylamine / triethylamine 
halide and urea may be in molar ratio of less than about 1 : 30 , 
such as less than about 1 : 20 , or less than about 1 : 10 . In 
particular , the trimethylamine / triethylamine halide and urea 
may be in molar ratio of about 1 : 2 . The trimethylaminel 
triethylamine halide and urea may also be in molar ratio of 
about 1 : 5 . Alternatively , the trimethylamine / triethylamine 
halide and urea may be in molar ratio of about 1 . 10 . 
[ 0119 ] Generally , the iron chloride may be in a concen 
tration between about 0 . 2 and about 1 . 5 moles per liter of the 
ionic liquid ; that is , between about 0 . 2 M and about 1 . 5 M . 
In various embodiments , the iron chloride may be at a 
concentration between about 0 . 2 M and about 0 . 25 M , 
between about 0 . 25 M and about 0 . 3 M , between about 0 . 3 
M and about 0 . 35 M , between about 0 . 35 M and about 0 . 4 
M , between about 0 . 4 M and about 0 . 45 M , between about 
0 . 45 M and about 0 . 5 M , between about 0 . 5 M and about 
0 . 55 M , or between about 0 . 55 M and about 0 . 6 M . The 
concentration of iron chloride may be more than about 0 . 2 
moles per liter of the ionic liquid . The concentration of iron 
chloride may be less than about 1 . 5 moles per liter of the 
ionic liquid . In particular , the concentration of iron chloride 
may be about 0 . 3 moles per liter of the ionic liquid . 
[ 0120 ] In some embodiments , the composition may con 
sist of trimethylamine / triethylamine chloride , carboxamide 
and iron chloride . These compositions encompass the molar 
ratios and concentrations of metal salt described herein 
[ 0121 ] The compounds described herein have asymmetric 
centers . Compounds of the present disclosure containing an 
asymmetrically substituted atom may be isolated in optically 
active or racemic form . All chiral , diastereomeric , racemic 
forms and all geometric isomeric forms of a structure are 
intended , unless the specific stereochemistry or isomeric 
form is specifically indicated . 
[ 0122 ] When introducing elements of the present disclo 
sure or the embodiments ( s ) thereof , the articles “ a , " " an , " 
“ the , ” and “ said ” are intended to mean that there are one or 
more of the elements . The terms “ comprising , " " including , ” 
and “ having ” are intended to be inclusive and mean that 
there may be additional elements other than the listed 
elements . 



US 2018 / 0105945 A1 Apr . 19 , 2018 

EXAMPLES 

Example 1 - Metal Deposition from Ionic Liquids 
Under Varying Current Density , Reduction 

Potential , and Concentration of the Metal Source 
[ 0123 ] Two ionic liquids were prepared by mixing trieth 
ylamine hydrochloride or trimethylamine hydrochloride 
with urea in a 1 : 2 molar ratio at 110° C . Iron electrodepo 
sition used of these ionic liquids at different potentials , 
current densities , and varying concentrations of iron chlo 
ride ( FeC1z ) under ambient conditions and variable tempera 
ture . A GamryTM Reference 3000 potentiostat / galvanostat / 
zero - resistance ammeter was employed to conduct the 
electrochemical experiment within a three - electrode electro 
chemical cell . The electrochemistry of ionic liquids with and 
without FeClz were investigated using a glassy carbon 
( geometric area of about 0 . 07 cm ) working electrode , Pt 
wire counter electrode , and a Pt electrode reference elec 
trode . Iron was deposited onto mild steel substrates , which 
were prepared by washing sequentially with 2 - propanol , 6 
M HCl ( aq ) and deionized water . In these measurements , an 
iron plate was used as the counter and reference electrodes . 
[ 0124 ] To examine the surface morphology and elemental 
compositions of the metal deposits , a PhenomTM XL scan 
ning electron microscope ( SEM ) with energy - dispersive 
spectrometer ( EDS ) working at 15 kV was used . The EDS 
detector had a resolution of about + / - 1 % . 
[ 0125 ) Cross - sections of samples were prepared using a 
Buehler low speed saw with 4 " diamond blade , followed by 
sequential polishing with 400 , 800 , 1000 , and 1500 grit 
paper . Current efficiencies were calculated by comparing the 
total charge ( coulomb ) of deposition to the net mass change 
of the substrate . 
[ 0126 ] Referring to FIG . 2 , an electrochemical window 
( potential range of relative stability ) of about 2 . 9 V was 
evinced by the cyclic voltammograms for 1 : 2 ( mol / mol ) 
triethylamine chloride ( TEACI ) / urea ( solid line ) and 1 : 2 
( mol / mol ) trimethylamine chloride ( TMACI ) / urea ( dashed 
line ) ionic liquids on a glassy carbon electrode in the 
absence of iron ( III ) chloride ( FeC1z ) . ( The scan rate was 50 
mv / s at 100° C . ) The oxidation and reduction decomposi 
tions of ionic liquids were observed at 1 . 8 V and - 1 . 1 V 
relative to a Pt reference electrode . This stability window is 
more than double that of previously known , water - based 
iron deposition methods . 
[ 0127 ] Referring to FIG . 3 , the cyclic voltammogram of 
Fe ( III ) for 1 : 2 ( mol / mol ) TEACl / urea ( dashed line ) and 1 : 2 
( mol / mol ) TMACl / urea ( solid line ) with 0 . 3 M FeCl2 
showed two redox couples : c1 / al and c2 / a2 , associated with 
the reductions of Fe ( III ) to Fe ( II ) and Fe ( II ) to Fe ' , as well 
as the oxidations of Fe ( II ) to Fe ( III ) and Feº to Fe ( II ) , 
respectively . The scan rate was 50 mv / s at 100° C . Both 
cyclic voltammograms also exhibited nucleation loop and 
overpotential of the iron electrodeposition at - 1 . 5 V . How 
ever , the reduction peak of Fe ( II ) to Feº in 1 : 2 ( mol / mol ) 
TMAC1 / urea represented a higher electrodeposition rate 
( larger current ) than did 1 : 2 ( mol / mol ) TEACl / urea . 
[ 0128 ] “ Overpotential ” refers to the energy deviation from 
an electrode ' s equilibrium potential necessary to initiate a 
particular reaction . The equilibrium potential accounts for 
the surface reaction at the electrode if no external energy is 
applied and is set to V = 0 . The overpotential is then the 

equilibrium potential plus the change ( V + AV ) , necessary to 
shift the surface reactions away from equilibrium and 
toward iron deposition . 
[ 0129 ] The nucleation loop occurs because of the ener 
getic difference between a bare surface ( initial surface ) and 
a surface on which some Fe atoms have already nucleated . 
As more negative potentials are scanned with an initial , 
smooth surface , the current at X volts past the overpotential 
is low . Once some iron is deposited , the energy barrier to 
deposit even more decreases . As such , when X volts is 
reached in a scan over the other direction , the current is 
higher in magnitude because of that lower energy barrier . 
[ 0130 ] Referring to FIG . 4 , the cyclic voltammogram 
shows that without urea , only one redox couple ( cl / al ) 
associated with the charge transfer from Fe ( III ) to Fe ( II ) is 
observed , and vice versa . ( The scan rate was 50 my / s , 20° 
C . ) No reduction peaks were observed for iron deposition of 
Fe ( II ) to Fe ' . Hence , urea is a necessary component for iron 
electrodeposition . 
[ 0131 ] FIG . 5A shows the current efficiency versus vary 
ing the concentrations of FeCl2 in 1 : 2 ( mol / mol ) TEAC1 / 
urea ionic liquid at a constant current of 20 mA . The current 
efficiency increases little between the concentrations 0 . 6 M 
and 1 . 0 M FeC1z . 
[ 0132 ] FIG . 5B shows the effect of varying potentials , and 
FIG . 5C shows the effect of varying current densities with 
0 . 3 M FeCl2 in 1 : 2 ( mol / mol ) TEAC1 / urea ionic liquid . The 
reference electrode was an iron plate , instead of the platinum 
that is typically used in this type of experiment . At potentials 
more negative than - 2 . 2 V ( the highest current efficiency 
point on FIG . 5B ) , the current efficiency drops due to 
breakdown of the electrolyte . From these data , a potential of 
- 2 . 2V appears to yield the best operational current effi 
ciency . 
[ 0133 ] FIG . 5C showed the potential versus current den 
sity , showing that potential control may not achieve the 
highest current efficiency . If current density is locked 
instead , the actual potential may wander during the deposi 
tion but may potentially benefit the efficiency . 
[ 0134 ] Referring to FIG . 6 , the current efficiency increases 
as the applied potential was increased in 1 : 2 ( mol / mol ) 
TMACl / urea ionic liquid with 0 . 3 M FeClz . This result is 
consistent with the results of FIG . 3 , where the reduction 
peak of Fe ( II ) to Feº was more negative than - 1 . 4 V . 
Although FIG . 3 used a Pt reference electrode and FIG . 6 
used an iron reference electrode , the offset between these 
two electrodes was very low . The upper limit of electro 
chemical window was roughly the same between them . 
Therefore , applying more negative potentials increased cur 
rent efficiency up to the stability boundary of the electro 
chemical window at about 1 . 8 V . 

Example Example 2 — Grain Size is Potential - Dependent 
10135 ] . Through several series of SEM images , the average 
grain size of the deposited metals is shown to depend on the 
characteristics of the electric potential used , including its 
current density and the voltage of the reducing potential . 
FIGS . 7A - F shows photos ( FIGS . 7A , C , and E ) and 
scanning electromicrographs ( FIGS . 7B , D , and F ) of Feº 
deposits at differing current densities in 1 : 2 ( mol / mol ) 
TEACl / urea ionic liquid with 0 . 3 M FeCl2 , including current 
densities of 10 mA / cm ( FIGS . 7A & B ) , 20 mA / cm ( FIGS . 
7C & D ) , and 40 mA / cm ( FIGS . 7E & F ) . The electron micro 
graphs indicated that the grain size of iron deposit at low 
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current density ( 10 mA / cm² ) was between about 500 nm and 
about 1 um . As the current density increased , the grain size 
also increased . For example , the grain size was 1 - 2 um at 40 
mA / cm . 
10136 ) . The effect of iron salt concentration in the electro 
lyte was measured at a constant current density . FIGS . 8A - H 
show photos ( FIGS . 8A , C , E , and G ) and scanning electron 
micrographs ( FIGS . 8B , D , F , and H ) of Feº deposits at 
differing concentrations of FeCl2 in 1 : 2 ( mol / mol ) TEAC1 / 
urea ionic liquid at a current density of 20 mA / cm at 100° 
C . The concentrations of FeCl2 were 0 . 2 M ( FIGS . 8A & B ) , 
0 . 3 M ( FIGS . 8C & D ) , 0 . 4 M ( FIGS . 8E & F ) , and 0 . 53 M 
( FIGS . 8G & H ) . As the concentration of FeCl2 increased , the 
grain size appeared to increase slightly , possibly due to the 
increasing viscosity . Concentrations of greater than or equal 
to 0 . 5 M FeCl , showed the greatest change in surface 
morphology . At lower concentrations , the dependency was 
weak . 
[ 0137 ] Referring to FIG . 9 , this series of figures shows the 
visual trend of how varying potential affected the morphol 
ogy of the iron deposit formed from TEACl / urea ionic 
liquid . FIGS . 9A - J show photos ( FIGS . 9A , C , E , G , and I ) 
scanning electron micrographs ( FIGS . 9B , D , F , H , and J ) of 
potentials tested in 1 : 2 ( mol / mol ) TEACl / urea ionic liquid 
with a concentration of 0 . 3 M FeClz . Scanning electron 
microscopy at the resolution of about 200 nm indicated that 
at lower reduction potential ( - 0 . 6 V , FIGS . 9A & B ) , the iron 
deposits looked very smooth without nucleated particles . As 
the reduction potential increased to - 1 . 0 V ( FIGS . 9C & D ) , 
a nucleation mechanism becomes apparent . Further , increas 
ing the reduction potential to - 1 . 4 V ( FIGS . 9E & F ) , many 
nucleated particles appeared and the average grain size 
average was between about 1 um and about 2 um . Thus , the 
nucleation reduction potential of Fe ( II ) to iron deposit starts 
from about - 1 . 4 V . These data correspond well with the 
features shown in cyclic voltammetric data at FIG . 3 . At 
- 1 . 8 V ( FIGS . 9G & H ) , average particle size was about 2 um . 
The potential - 2 . 2 V ( FIGS . 91 & J ) was close to the boundary 
of the electrochemical stability window of the electrolyte , 
causing the grain structure vary more . 
[ 0138 ] The reduction potential experiment was repeated 
for the 1 : 2 ( mol / mol ) TMACl / urea ionic liquid with a 
concentration of 0 . 3 M FeCl2 . Referring to FIG . 10 , the 
reduction potential of Fe ( II ) to iron deposit appeared earlier 
at smaller potentials ( - 0 . 6V and - 1 . 0V , FIGS . 10A - D ) due 
to its higher deposition rate compared to 1 : 2 ( mol / mol ) 
TEAC1 / urea ionic liquid , a result which is consistent the data 
of FIG . 3 ( cf . FIG . 9 ) . This reduction potential of Fe ( II ) to 
Feº was at - 1 . 4 V ( FIGS . 10E & F ) , very small nucleated 
particles ( about 200 nm ) were obtained . As the reduction 
potential increased to - 1 . 8 V and - 2 . 2 V ( FIGS . 101 & J ) , the 
grain size is increased . 

[ 0140 ] Furthermore , FIGS . 12A & B show grayscale ( FIG . 
12A ) and color - coded ( FIG . 12B ) cross - sections of iron 
deposits prepared at - 2 . 0 V ( reference electrode is iron ) 
from in 1 : 2 ( mol / mol ) TEACl / urea ionic liquid with 0 . 3 M 
FeCl2 . These measurements were repeated at - 1 . 8 V in 
TMACl / urea ionic liquid ( FIGS . 13A & B ) . These cross 
sections show that the iron deposit was dense and adhered 
well to the mild steel substrate . In FIGS . 12B and 13B , the 
carbon - based epoxy remaining cross - sectioning process 
appeared in teal in the top parts of the figures . 
[ 0141 ] The cross - sections of FIG . 12 were electropol 
ished . Referring to FIG . 14 , the electropolished cross - sec 
tion showed significant corrosion and pitting of the mild 
steel substrate but very little corrosion on the iron deposit 
itself . The iron deposit was very pure and dense , with higher 
corrosion resistance than the mild steel substrate . The cor 
roded areas of the substrate indicated that the iron deposit 
penetrated the rough surface features of steel substrate , 
leading to strong adhesion of the iron deposit to the sub 
strate . 
[ 0142 ] Referring to FIG . 15 , iron was provided to the 
electrolyte by stripping / corroding an iron plate into 1 : 2 
( mol / mol ) TMAC1 / urea ionic liquid , instead of including 
FeClz in the electrolyte . The iron ions formed Fe - urea 
complexes in the electrolyte . The cyclic voltammetric data 
indicated that the Fe - urea complex formed from stripped 
iron and the dissolved FeCl2 both exhibited a reduction 
nucleation loop . The overpotential of the iron electrodepo 
sition of the Fe - urea complex was more positive at - 1 . 2 V 
than - 1 . 4 V for FeClz , possibly because additional Cl from 
FeCl2 changed the interfacial energy barriers , or because the 
stripped Fe was more stably reduced ; that is , a higher 
concentration of the active Fe - urea complex was more easily 
reduced than was FeC1z . 
[ 0143 ] FIGS . 16A & B are scanning electron micrographs 
of iron deposits in ( FIG . 16A ) 1 : 2 ( mol / mol ) TEAC1 / urea 
ionic liquid at - 1 . 8 V without FeCl3 , and ( FIG . 16B ) 1 : 2 
( mol / mol ) TMACl / urea ionic liquid at - 1 . 4 V without FeClz . 
The counter and reference electrodes were an iron plate . 
Stripping this iron plate provided the iron source in the 
electrolyte . The electromicrographs ( FIGS . 16A & B ) 
showed that iron deposits from stripping iron plate had 
average grain sizes average both ionic liquids are between 
about 1 um and about 3 um , as previously demonstrated at 
these reduction potentials . 
[ 0144 ] FIG . 16C shows the EDS data for FIG . 16A 
collected with 338 , 848 counts in 67 seconds , revealing 
86 . 5 % Fe , 6 . 9 % 0 , 5 . 8 % C , and 0 . 5 % C1 . FIG . 15D shows 
the EDS data for FIG . 16B collected with 416 , 284 counts in 
67 seconds , revealing 93 . 5 % F , 5 . 9 % 0 , and 0 . 5 % C . The 
concentration of chloride was within the scanning electron 
microscope ' s detectable error . The concentration of carbon 
was very low and potential - dependent for both ionic liquids . 
The concentration of oxygen shown here did not represent 
the ultra - low oxygen concentrations content resulting from 
electrodeposition . The observed concentrations were much 
higher ( 1 ) because flash oxidation occurred once the sample 
was removed from the deposition chamber and exposed to 
air , and ( 2 ) because the higher surface area substrates 
generally yielded proportionately higher oxygen levels not 
represented in bulk concentrations . A bare mild steel sub 
strate usually reflects an oxygen concentration of about 6 % . 
Thus , the present deposition methods using trialkylamine 
chloride / urea ionic liquids yielded highly pure iron deposits . 

Example 3 — Metal Deposit Purity is Surprisingly 
High 

[ 0139 ] The metal deposits formed following Examples 1 
and 2 were exceptionally pure , having very low carbon , 
oxygen , and chlorine contents . FIGS . 11A - B provide image 
mapping ( FIG . 11A ) and energy - dispersive spectrometric 
( EDS ) data ( FIG . 11B ) of an iron deposit formed under a 
potential of - 1 . 2 V from 1 : 2 ( mol / mol ) TEACl / urea ionic 
liquid . The highlighting shows the high iron ( 97 % ) , the low 
carbon ( 3 % ) , and low oxygen ( < 1 % ) content in the deposited 
iron metal deposit . 
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Remarkably , no traces of nitrogen were observed in any of 
the samples prepared and tested . 

Example 4 — Molar Ratios in the Ionic Liquid 
Affect the Properties of the Metal Deposit 

[ 0145 ] The molar ratios of trialkylamine halide and urea 
between 1 : 1 and 1 : 30 were explored . SEM data indicated 
that iron was deposited using any ratio of TEACl / urea or 
TMAC1 / urea tested , but that the properties of the electrolyte 
and the deposit varied . At ratios above 1 TEAC1 to 30 urea , 
components had difficulty solubilizing homogeneously . 
Morphology shifted more toward two - dimensional growth 
across the surface of the substrate when urea ratios 
increased , demonstrating the role of urea in reducing dis 
solved iron . As more urea complexed with Fe from anodic 
stripping or from FeCl3 , the overpotential of Fe ( II ) to the Fe 
deposit decreased . The positive shift of overpotential was 
greater for triethylamine than for trimethylamine ( which had 
a lower overpotential initially ) . 
[ 0146 ] FIG . 17 shows a cyclic voltammogram TEACI / 
urea ionic liquid at molar ratios of ( a ) 1 : 1 , ( b ) 1 : 2 , ( c ) 1 : 3 . 5 , 
( d ) 1 : 7 and ( e ) 1 : 10 , each with a concentration of 0 . 3 moles 
of FeCl2 per liter of ionic liquid . A 1 : 1 molar ratio of 
TEACl / urea had some precipitate in the mixture . The mix 
ture was not completely melted at 100° C . , but the reduction 
peak of Fe ( II ) to Feº was nonetheless seen in the cyclic 
voltammetric data . When the urea concentration was 
increased to a molar ratio of 1 : 2 - 1 : 10 , the solution had no 
precipitates and the reduction potential of Fe ( II ) to Feº 
shifted to more positive . 
10147 ] When the urea concentration was increased to a 
molar ratio of 1 : 10 TEAC1 / urea , the mixture was liquid and 
had lower viscosity than the 1 : 2 ionic liquid . The reduction 
peak of Fe ( II ) to Feº also shifted to more positive ( FIG . 17 , 
trace ( e ) ) . The iron deposits from these 1 : 10 ionic liquids 
were extremely smooth and pure . It is very unusual and 
surprising to see this level of conformity of a deposited 
layer . 
[ 0148 ] FIGS . 18A - D show photographs ( FIGS . 18A & B ) 
and scanning electron micrographs ( FIGS . 18C & D ) of iron 
deposits formed from TEACl / urea ionic liquids with 0 . 3 M 
FeCl3 - 1 : 5 molar ratio at - 1 . 0 V ( FIGS . 18A & C ) , and 1 : 10 
molar ratio at - 1 . 4 V ( FIGS . 18B & D ) . A molar ratio of 1 : 5 
produced a cyclic voltammogram with exceptionally low 
reduction overpotential ( FIG . 17 , trace ( d ) ) , which behavior 
likely depends on the FeClz concentration . Any texture 
visible in the photographs is from the substrate itself , and not 
the deposit . 
10149 ] The potentials used for iron deposition were tested 
from 1 : 10 ( mol / mol ) TEACl / urea with 0 . 3 M FeCl2 on steel 
substrates : - 1 . 0 V ( FIG . 19 ) , - 1 . 2 V ( FIGS . 20A & B ) , - 1 . 4 
V ( FIGS . 20C & D ) , - 1 . 6 V ( FIGS . 20E & F ) , - 1 . 8 V ( FIGS . 
20G & H ) , - 2 . 0V ( FIGS . 201 & J ) . The photos ( FIGS . 20A , C , 
E , G , and I ) and scanning electron micrographs ( FIGS . 19 , 
20B , D , F , H , and J ) indicated that the Feº deposits looked 
very bright , smooth , and dense in TEACl / urea ( 1 : 10 ) . The 
grain size increased as the potential increased , with an 
average between about 500 nm and about 2 um . In each case , 
the surfaces of deposited layers from 1 : 10 molar ratio ionic 
liquid were much smoother and conformed to the substrate 
more than those prepared from the 1 : 2 ionic liquid . Refer 
ring to FIG . 21 , the current efficiency with the tested 
potentials was almost constant , between about 60 % and 
about 70 % . Observed variances were likely due to system 

atic errors . Any texture visible in the photographs is from the 
substrate itself , and not the deposit . 
[ 0150 ] As seen at FIG . 22 , the iron deposits had thick 
nesses between about 40 um and about 70 um , were very 
dense and lacked the dendritic growth seen in the conven 
tional electrodeposition . These iron deposits adhered well to 
mild steel . The morphology of iron deposition was denser in 
TMACl / urea than in TEACl / urea . 
0151 ] Referring to FIGS . 23A & B , an iron deposit was 
formed at - 1 . 4 V from 1 : 30 ( mol / mol ) TEACl / urea ionic 
liquid with a concentration of 0 . 3 M FeCl2 . At this ratio , the 
ionic liquid had a melting point of about 80° C . , but 
significantly more agitation was needed to homogenize the 
ionic liquid . By comparison , a solution of urea with FeCiz 
without TEAC1 yielded a mixture with an impractically high 
melting point . The scanning electron micrograph of the iron 
deposit from 1 : 30 ionic liquid ( FIG . 23A ) showed very 
smooth and dense iron deposit with a small grain size . The 
energy - dispersive spectrometric ( EDS ) data ( FIG . 23B ) 
were collected over 330 , 399 counts in 68 seconds . The EDS 
showed that this deposit was very high purity Fe ( 92 . 2 % ) 
with 2 . 0 % C1 , 2 % C , and 4 . 4 % oxygen , which was likely due 
to the absorption of oxygen on the surface during atmo 
spheric exposure . 
[ 0152 ] FIG . 24 shows a photo ( FIG . 24A ) , a scanning 
electoromicrograph ( FIG . 24B ) , and energy - dispersive spec 
trometric data ( FIG . 24C ) of an iron deposit in formed in 
1 : 20 ( mol / nol ) TEACl / urea with 1 . 5 M FeCl2 at 100° C . with 
a high current density of 100 mA / cm² . The EDS was 
collected over 362 , 433 counts in 76 seconds , showing that 
the metal deposit contained 91 % Fe , 8 % 0 , and 1 % Cl . 
Similarly , FIG . 25 shows a photo ( FIG . 25A ) , a scanning 
electoromicrograph ( FIG . 25B ) , and energy - dispersive spec 
trometric data ( FIG . 25C ) of an iron deposit formed under 
the same conditions but at a current density of 300 mA / cm² . 
The EDS was collected over 279 , 408 counts in 78 seconds , 
showing that the metal deposit contained 92 % Fe and 8 % O . 
Adhesion was reasonable in both samples . Oxygen concen 
tration increased by about 3 % compared to current densities 
at 40 mA / cm - and lower . 
[ 0153 ] Without wishing to be bound by theory , the active 
species for deposition of iron was the urea - FeCl , complex . 
TEA - HCl or TMA - HC1 disrupted the crystallization of this 
complex to allow dissolution at lower temperatures . TEA 
HCl added some conductivity to the solution by supplying 
Cl - ions , but the biggest impact was due to lowering the 
solution viscosity to increase ion mobility . Because the 
conductivity remained high and similar among all ratios 
tested , most of the charge - carrying species originated from 
FeCiz . 
101541 Higher ratios of urea to trialkylamine generally 
resulted in deposits of higher density and better adhesion . 
Again , without wishing to be bound by theory , adhesion 
between a deposited layer and the substrate might fail due to 
impurities at the interface , crystalline differences , and the 
like , resulting in delamination of the deposited material from 
the substrate . In these deposits , however , growth is highly 
epitaxial with a nearly homogenous interface , making 
delamination unlikely . So the next most likely mechanism of 
failure is stored stresses in the high - density deposit itself , 
leading to cracks roughly perpendicular to the substrate ' s 
surface . Crack propagation eventually causes portions of 
material to fall off of the substrate . This stress may be 
relieved while maintaining excellent adhesion ( that is , low 
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delamination probability ) by using an ionic liquid with a 1 : 5 
molar ratio , or by using a conventional ON / OFF pulsing 
program during deposition , where Time - ON > > Time OFF . 

ments of the scope of the present method and system , which , 
as a matter of language , might be said to fall therebetween . 

Exemplary Embodiments 
[ 0162 ] 1 . A method comprising : 

[ 0163 ] inducing a potential between a metal source and 
a substrate through an electrolyte to deposit metal onto 
the substrate by causing a metal - metal bond to form 
between the metal source and metal on the substrate ; 

[ 0164 ] the electrolyte comprising trialkylamine halide , 
the metal source , and a carboxamide of Formula ( I ) : 

NIR 

Example 5 – Pressed Anodes May Provide the 
Metal Source in the Electrolyte 

[ 0155 ] Scanning electron microscopy showed that differ 
ent metals could be deposited from the 1 : 2 ( mol / mol ) 
TMAC1 / urea ionic liquid by stripping different metals from 
a pressed powder anode , the sole provider of metal for these 
experiments . 
[ 0156 ] The pressed anodes were made from metal pow 
ders of varying size distribution were mixed together in a 
vial at selected ratios and then added to a 13 - mm diameter 
pellet die . The interior of the die was evacuated using a 
vacuum line . The entire die is placed into a hand - operated 
press . The die was gradually pressed to a final load of 10 
tons and held for about 30 minutes to allow compaction of 
the powder into a solid shape . Pellets could then be removed 
from the die with final dimensions of about 13 - mm diameter 
and depth between about 3 mm and about 6 mm . 
101571 . These pellets were seated in a custom - built poly 
terfluroroethylene ( PTFE ) electrode holder . The holder con 
tained a seated cover so that , when in operation , exposed 11 
mm of the diameter of the pellet to the electrolyte . A wire ran 
from electrical contact with the pellet through to the top of 
the holder . When assembled , the holder was configured to be 
placed into the electrolyte and operated as an electrode . 
[ 0158 ] FIGS . 26A - J show grayscale ( FIGS . 26A , C , E , G , 
and I ) and color - coded ( FIGS . 26B , D , F , H , and I ) scanning 
electron micrographs of metal deposits formed from 1 : 2 
( mol / mol ) TMACl / urea , where the metal source was pro 
vided in the electrolyte by stripping pressed metal anodes : 
( FIGS . 26A & B ) Mo pressed anode , ( FIGS . 26C & D ) Sn 
pressed anode , ( FIGS . 26E & F ) , Cu - Fe pressed anode , 
( FIGS . 26G & H ) Cu pressed anode , and ( FIGS . 261 & J ) 
Cu - Sn pressed anode . 

[ 0165 ] wherein n is 1 to 6 ; 
[ 0166 ] each Q is independently chosen from O or 
NR + R $ ; 

[ 0167 ] R is independently chosen from H or alkyl , and 
R3 is NR + R " ; or Rl and R3 are taken together to form 
a ring ; and 

[ 0168 ] each R ? , R4 , and R $ is independently chosen 
from H or alkyl ; 

[ 0169 ] the trialkylamine halide and the carboxamide 
being in molar ratio between 1 : 1 and 1 : 30 to form an 
ionic liquid , and the metal source being at a concen 
tration between about 0 . 2 and about 1 . 5 moles per liter 
of the ionic liquid . 

[ 0170 ] 2 . The method of claim 1 , wherein the potential has 
a current density between about 10 mA / cm3 and about 
300 mA / cm3 . 

[ 0171 ] 3 . The method of claim 2 , wherein the current 
density is about 20 mA / cm " . 

[ 0172 ] 4 . The method of claims 1 - 3 , wherein the potential 
has a reducing potential of between about - 0 . 6 V and 
about - 2 . 2 V . 

[ 0173 ] 5 . The method of claims 1 - 4 , wherein the carbox 
amide of Formula ( 1 ) comprises a compound of Formula 
( II ) : 

Example 6 Ionic Liquids Containing Biuret 
[ 0159 ] Besides urea , other carboxamides of Formula ( 1 ) 
described herein may be used for complexing metals , having 
similar solution melting points and performance when com 
bined with a trialkylamine and FeCiz . For example , FIG . 27 
shows the cyclic voltammogram of 1 : 2 . 5 ( mol / mol ) TEAC1 / 
biuret ionic liquid . Without FeCl3 , the melting point is 150° 
C . With FeCl3 , the melting point is 100° C . 

R ! 
Z NR4R5 , 
- 

Example 7 — Ionic Liquids Containing 
Triethanolamine 

[ 0160 ] FIG . 28 shows the cyclic voltammogram of 1 : 2 . 6 
( mol / mol ) triethanolamine chloride / urea ( 1 : 2 . 6 ) With FeCl3 , 
the melting point is 80° C . Triethanolamine chloride forms 
a complex with iron due to its functional groups . Trietha 
nolamine chloride cannot be used with complexing agents 
that bind iron more strongly than urea because the solution 
remains solid . 
[ 0161 ] Those skilled in the art will appreciate that the 
presently disclosed embodiments teach by way of example 
and not by limitation . Therefore , the matter contained in the 
above description or shown in the accompanying drawings 
should be interpreted as illustrative and not in a limiting 
sense . The following claims are intended to cover all generic 
and specific features described herein , as well as all state 

[ 0174 ] wherein n is 1 to 6 ; 
[ 0175 ] each Q is independently chosen from 0 or 
NR + RS ; 

[ 0176 ] R ' , R4 , and R are independently chosen from H 
or alkyl ; and 

[ 0177 ] each R² is chosen from H or alkyl . 
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[ 0178 ] 6 . The method of claim 5 , wherein the carboxamide 
of Formula ( II ) comprises a compound of Formula ( III ) : 

( III ) 

[ 0191 ] 13 . The method of claims 1 - 12 , wherein the tri 
alkylamine halide and the carboxamide are in molar ratio 
of about 1 : 2 . 

[ 0192 ] 14 . The method of claims 1 - 12 , wherein the tri 
alkylamine halide and the carboxamide are in molar ratio 
of about 1 : 10 . 

[ 0193 ] 15 . The method of claims 1 - 14 , wherein the metal 
source provided by a pressed anode . 

[ 0194 ] 16 . The method of claim 15 , wherein the pressed 
anode comprises one or more metals selected from the 
group consisting of Mo , Sn , Fe , and Cu . 

[ 0195 ] 17 . The method of claims 1 - 16 , wherein the metal 
source is a metal salt having the formula MX , , , wherein M 
is a metal , X is a halide , and y is an oxidation number of 

N Z - NH2 , 
I 

[ 0179 ] wherein n is 1 to 6 . 
[ 0180 ] 7 . The method of claims 1 - 4 , wherein the carbox 
amide of Formula ( 1 ) comprises a compound of Formula 
( IV ) : M . 

( IV ) 

[ 0181 ] n is 2 to 6 ; 
[ 0182 ] each is independently chosen from 0 or 
NR + R " ; and 

[ 0183 ] each R ? , R , and RS is independently chosen 
from H or alkyl . 

[ 01841 8 . The method of claim 7 , wherein the carboxamide 
of Formula ( IV ) comprises a compound of Formula ( V ) : 

[ 0196 ] 18 . The method of claim 17 , wherein MX , is FeCiz . 
01971 19 . The method of claims 1 - 18 , wherein the con 
centration of metal source is about 0 . 3 moles per liter of 
the ionic liquid . 

[ 0198 ] 20 . The method of claims 1 - 19 , wherein the elec 
trolyte further comprises tetraethoxysilane . 

01991 21 . The method of claims 1 - 20 , wherein the elec 
trolyte is substantially non - aqueous . 

[ 0200 ] 22 . The method of claims 1 - 21 , wherein the elec 
trolyte has a temperature between about 80° C . and about 
120° C . when the potential is induced . 

10201 ] 23 . The method of claims 1 - 22 , wherein the depos 
ited metal has an average grain size between about 0 . 2 um 
and about 3 um . 

[ 0202 ] 24 . The method of claims 1 - 23 , wherein the depos 
ited metal contains less than about 1 mol % of each 
oxygen , carbon , and chlorine . 

[ 0203 ] 25 . A method comprising : 
[ 0204 ] inducing a potential between a metal salt and a 

substrate through an electrolyte to deposit metal onto 
the substrate by causing a metal - metal bond to form 
between the metal salt and metal on the substrate ; 

10205 ] the potential having a current density between 
about 10 mA / cm and about 300 mA / cm and a reduc 
ing potential of between about - 0 . 6 V and about - 2 . 2 

R NR ? 
V ; 

Q = - Z [ 0206 ] the electrolyte comprising trialkylamine chlo 
ride , the metal salt , and a carboxamide of Formula ( I ) : 

Z N 
- 

7 

[ 0185 ] each is independently chosen from O or 
NR + R " ; and 

[ 0186 ] each R ? , R4 , and R is independently chosen 
from H or alkyl . 

[ 0187 ] 9 . The method of claims 1 - 4 , wherein the carbox 
amide of Formula ( I ) is selected from the group consisting 
of urea , biuret , triuret , tetrauret , pentauret , hexauret , cya 
nuric acid , ammelide , ammeline , and combinations 
thereof . 

[ 0188 ] 10 . The method of claim 9 , wherein the carbox 
amide is urea or biuret . 

10189 ] 11 . The method of claims 1 - 10 , wherein the tri 
alkylamine halide is optionally substituted with one or 
more hydroxy groups . 

[ 0190 ] 12 . The method of claims 1 - 10 , wherein the tri 
alkylamine halide is trimethylamine chloride , triethylam 
ine chloride , triethanolamine , or combinations thereof . 

[ 0207 ] wherein n is 1 to 6 ; 
[ 0208 ] each Q is independently chosen from O or 
NR4RS ; 

[ 0209 ] Rl is independently chosen from H or alkyl , and 
R is NR + R " ; or R1 and R3 are taken together to form 
a ring ; and 

[ 0210 ] each R ? , R4 , and R is independently chosen 
from H or alkyl ; 

[ 0211 ] the trialkylamine chloride and the carboxamide 
being in molar ratio between 1 : 1 and 1 : 30 to form an ionic 
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[ 0232 ] 42 . The iron deposit of claim 41 , wherein MX , is 
FeCl2 . 

[ 0233 ] 43 . The iron deposit of claims 33 - 42 , wherein the 
concentration of iron salt is about 0 . 3 moles per liter of the 
ionic liquid . 

( 0234 ) 44 . The iron deposit of claims 33 - 43 , wherein the 
electrolyte further comprises tetraethoxysilane . 

[ 02351 45 . The iron deposit of claims 33 - 44 , wherein the 
electrolyte is substantially non - aqueous . 

0236 46 . The iron deposit of claims 33 - 45 , wherein the 
electrolyte has a temperature between about 80° C . and 
about 120° C . when the potential is induced . 

[ 0237 ] 47 . A composition for forming an iron deposit on a 
substrate , the composition consisting essentially of a 
carboxamide , trialkylamine chloride , and a metal salt ; 
[ 0238 ] the carboxamide comprising Formula ( I ) : 

- Z 

liquid , wherein the trialkylamine chloride is trimethylamine 
chloride , triethylamine chloride , triethanolamine , or combi 
nations thereof ; and 

[ 0212 ] the metal salt having the formula MX , wherein 
M is a metal , X is a halide , and y is an oxidation number 
of M , the metal salt being in a concentration between 
about 0 . 2 and about 1 . 5 moles per liter of the ionic 
liquid ; 

[ 0213 ] wherein the deposited metal has an average grain 
size between about 0 . 2 um and about 3 um and contains 
less than about 1 mol % of each oxygen , carbon , and 
chlorine . 

[ 0214 ] 26 . The method of claim 25 , wherein the current 
density is about 20 mA / cm " . 

[ 0215 ] 27 . The method of claim 25 or 26 , wherein the 
trialkylamine chloride and the carboxamide are in molar 
ratio of about 1 : 2 . 

[ 0216 ] 28 . The method of claim 25 or 26 , wherein the 
trialkylamine chloride and the carboxamide are in molar 
ratio of about 1 : 10 . 

[ 0217 ] 29 . The method of claims 25 - 28 , wherein M is Fe , 
X is Cl , and y is 3 . 

[ 0218 ] 30 . The method of claims 25 - 29 , wherein the 
concentration of metal salt is about 0 . 3 moles per liter of 
the ionic liquid . 

[ 0219 ] 31 . The method of claims 25 - 30 , wherein the 
electrolyte has a temperature between about 80° C . and 
about 120° C . when the potential is induced . 

[ 0220 ] 32 . A metal deposit formed by a method of one of 
claims 1 - 31 . 

[ 0221 ] 33 . An iron deposit having an average grain size 
between about 0 . 2 um and about 3 um and containing less 
than about 1 mol % of each oxygen , carbon , and chlorine ; 
[ 0222 ] the iron deposit being formed on a substrate by 

inducing a potential between an iron salt and the 
substrate through an electrolyte to cause a metal - metal 
bond to form between the iron salt and metal on the 
substrate ; 

( 0223 ) the electrolyte comprising trialkylamine halide , 
urea , and the iron salt , the trialkylamine halide and urea 
being in molar ratio between 1 : 1 and 1 : 30 to form an 
ionic liquid , and the iron salt being at a concentration 
between about 0 . 2 and about 1 . 5 moles per liter of the 
ionic liquid . 

[ 0224 ] 34 . The iron deposition of claim 33 with an average 
grain size between about 0 . 5 um and about 2 um . 

[ 0225 ] 35 . The iron deposit of claim 33 or 34 , wherein the 
potential has a current density between about 10 mA / cm3 
and about 300 mA / cm3 . 

[ 0226 ] 36 . The iron deposit of claim 35 , wherein the 
current density is about 20 mA / cm ' . 

[ 0227 ] 37 . The iron deposit of claims 33 - 36 , wherein the 
potential has a reducing potential of between about - 0 . 6 
V and about - 2 . 2 V . 

10228 ] 38 . The iron deposit of claims 33 - 37 , wherein the 
trialkylamine halide is trimethylamine chloride ( TMACI ) , 
triethylamine chloride ( TEAC1 ) , or combinations of the 
two . 

02291 39 . The iron deposit of claims 33 - 38 , wherein the 
trialkylamine halide and urea are in molar ratio of about 
1 : 2 . 

10230 ] 40 . The iron deposit of claims 33 - 39 , wherein the 
trialkylamine halide and urea are in molar ratio of about 
1 : 10 . 

10231 ] 41 . The iron deposit of claims 33 - 40 , wherein the 
iron salt has the formula MX , wherein M is Fe , X is a 
halide , and y is an oxidation number of M . 

02391 wherein n is 1 to 6 ; 
[ 0240 ] each Q is independently chosen from O or 
NR4RS ; 

[ 0241 ] Rl is independently chosen from H or alkyl , and 
R? is NR * R " ; or R and R3 are taken together to form 
a ring ; and 

[ 0242 ] each R ? , R4 , and RS is independently chosen 
from H or alkyl ; 

[ 0243 ] the trialkylamine chloride and the carboxamide 
being in molar ratio between 1 : 1 and 1 : 30 to form an 
ionic liquid , wherein the trialkylamine chloride is trim 
ethylamine chloride ( TMACI ) , triethylamine chloride 
( TEACI ) , or combinations of the two ; and 

[ 0244 ] the metal salt having the formula MX , wherein 
Mis a metal , X is a halide , and y is an oxidation number 
of M , the metal salt being in a concentration between 
about 0 . 2 and about 1 . 5 moles per liter of the ionic 
liquid ; 

[ 0245 ] wherein the iron deposit has an average grain 
size between about 0 . 2 um and about 3 um and contains 
less than about 1 mol % of each oxygen , carbon , and 
chlorine . 

[ 0246 ] 48 . The composition of claim 47 , wherein the 
carboxamide of Formula ( 1 ) comprises a compound of 
Formula ( II ) : 

( II ) 

af NR4R5 , 

NIR I 

[ 0247 ] wherein n is 1 to 6 ; 
[ 0248 ] each is independently chosen from 0 or 
NR4R5 : 

[ 0249 ] RP , R4 , and Rare independently chosen from H 
or alkyl ; and 

[ 0250 ] each R2 is chosen from H or alkyl . 
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[ 0251 ] 49 . The composition of claim 48 , wherein the 
carboxamide of Formula ( II ) comprises a compound of 
Formula ( III ) : 

( 111 ) 

[ 0264 ] 56 . The composition of claims 47 - 55 , wherein Mis 
Fe . 

[ 0265 ] 57 . The composition of claims 47 - 56 , wherein X is 
C1 . 

[ 0266 ] 58 . The composition of claims 47 - 57 , wherein y is 
3 . 

[ 0267 ] 59 . The composition of claims 47 - 58 , wherein the 
metal salt is FeC1z . 

10268 ] 60 . The composition of claims 47 - 59 , wherein the 
concentration of metal salt is about 0 . 3 moles per liter of 
the ionic liquid . 
1 . A metal deposit formed on a substrate , 
the metal deposit being formed from a composition com 

prising : a carboxamide , a trialkylamine hydrochloride , 
and a metal salt ; 

the carboxamide comprising Formula ( I ) : 

NH2 , 

[ 0252 ] wherein n is 1 to 6 . 
[ 0253 ] 50 . The composition of claim 47 , wherein the 

carboxamide of Formula ( I ) comprises a compound of 
Formula ( IV ) : 

( IV ) 

- Z 

wherein n is 1 to 6 ; 
each Q is O ; 
Rl is independently chosen from H or alkyl , and R3 is 
NR + R ; or R1 and R are taken together to form a ring ; 
and [ 0254 ] n is 2 to 6 ; 

[ 0255 ] each Q is independently chosen from O or 
NR + R " ; and 

[ 0256 ] each R2 , R4 , and RS is independently chosen 
from H or alkyl . 

[ 0257 ] 51 . The composition of claim 50 , wherein the 
carboxamide of Formula ( IV ) comprises a compound of 
Formula ( V ) : 

each R ? , R4 , and RS is independently chosen from H or 
alkyl ; 

the trialkylamine hydrochloride being selected from the 
group consisting of trimethylamine hydrochloride 
( TMA - HCI ) , triethylamine hydrochloride ( TEA - HCI ) , 
triethanolamine hydrochloride , and combinations 
thereof , and 

the metal salt having the formula MX , wherein M is a 
metal , X is a halide , and y is an oxidation number of M ; 

wherein the trialkylamine hydrochloride and the carbox 
amide are present in the composition in molar ratio 
between 1 : 1 and 1 : 30 to form an ionic liquid , and the 
metal salt is present in the composition in a concen 
tration between about 0 . 2 and about 1 . 5 moles per liter 
of the ionic liquid ; and 

wherein the metal deposit is formed on the substrate from 
the composition such that the metal deposit has an 
average grain size between about 0 . 2 um and about 3 
um and contains less than about 1 mol % of each 
oxygen , carbon , and chlorine . 

2 . The metal deposit of claim 1 , wherein the carboxamide 
of Formula ( I ) comprises a compound of Formula ( II ) : 

R2 NR ? 

Z 

( II ) 

R ! 

[ 0258 ] each Q is independently chosen from O or 
NR4R " ; and 

[ 0259 ] each R2 , R4 , and RS is independently chosen 
from H or alkyl . 

[ 0260 ] 52 . The composition of claim 47 , wherein the 
carboxamide of Formula ( I ) is selected from the group 
consisting of urea , biuret , triuret , tetrauret , pentauret , 
hexauret , cyanuric acid , ammelide , ammeline , and com 
binations thereof . 

[ 0261 ] 53 . The composition of claim 52 , wherein the 
carboxamide is urea or biuret . 

[ 0262 ] 54 . The composition of claims 47 - 53 , wherein the 
trialkylamine chloride and the carboxamide are in molar 
ratio of about 1 : 2 . 

[ 0263 ] 55 . The composition of claims 47 - 53 , wherein the 
trialkylamine chloride and the carboxamide are in molar 
ratio of about 1 : 10 . 

NR4R , ??Z ? 

wherein n is 1 to 6 ; 
R ! , R4 , and Rare independently chosen from H or alkyl ; 

and 
each R2 is chosen from H or alkyl . 
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3 . The metal deposit of claim 2 , wherein the carboxamide 
of Formula ( II ) comprises a compound of Formula ( III ) : 

( III ) 

NH2 , 

wherein n is 1 to 6 . 
4 . The metal deposit of claim 1 , wherein the carboxamide 

of Formula ( I ) comprises a compound of Formula ( IV ) : 

( IV ) 

n is 2 to 6 ; 
each Q is O ; and 
each R ? , R4 , and R5 is independently chosen from H or 

alkyl . 
5 . The metal deposit of claim 4 , wherein the carboxamide 

of Formula ( IV ) comprises a compound of Formula ( V ) : 

14 . The metal deposit of claim 1 , wherein the metal 
deposit is an iron deposit . 

15 . The metal deposit of claim 1 , wherein M is Fe , X is 
C1 , and y is 3 , and the metal deposit is an iron deposit . 

16 . An iron deposit formed on a substrate ; 
the iron deposit formed from a composition comprising a 

carboxamide , trialkylamine hydrochloride , and a metal 
salt ; wherein 

the carboxamide is selected from the group consisting of 
urea , biuret , triuret , tetrauret , pentauret , hexauret , cya 
nuric acid , ammelide , ammeline , and combinations 
thereof ; 

the trialkylamine hydrochloride is trimethylamine hydro 
chloride ( TMA - HCl ) , triethylamine hydrochloride 
( TEA - HCl ) , or combinations of the two ; and 

the metal salt having the formula MX , wherein M is a 
metal , X is a halide , and y is an oxidation number of M , 

wherein the trialkylamine hydrochloride and the carbox 
amide are present in the composition in molar ratio 
between 1 : 1 and 1 : 30 to form an ionic liquid , and the 
metal salt is present in the composition in a concen 
tration between about 0 . 2 and about 1 . 5 moles per liter 
of the ionic liquid ; and 

wherein the iron deposit is formed on the substrate from 
the composition such that the iron deposit has an 
average grain size between about 0 . 2 um and about 3 
um and contains less than about 1 mol % of each 
oxygen , carbon , and chlorine . 

17 . The iron deposit of claim 16 , wherein the carboxamide 
is urea or biuret . 

18 . The iron deposit of claim 16 , wherein the trialkylam 
ine hydrochloride and the carboxamide are in molar ratio of 
about 1 : 2 . 

19 . The iron deposit of claim 16 , wherein the trialkylam 
ine hydrochloride and the carboxamide are in molar ratio of 
about 1 : 10 . 

20 . The iron deposit of claim 16 , wherein the concentra 
tion of metal salt is about 0 . 3 moles per liter of the ionic 
liquid . 

21 . The iron deposit of claim 16 , wherein M is Fe . 
22 . The iron deposit of claim 16 , wherein X is Cl . 
23 . The iron deposit of claim 16 , wherein y is 3 . 
24 . The iron deposit of claim 16 , wherein M is Fe , X is C1 , 

and y is 3 . 
25 . An iron deposit formed on a substrate from an 

electrolyte ; 
the electrolyte comprising trialkylamine hydrohalide , 

urea , and an iron salt 
the iron deposit being formed on the substrate by inducing 

a potential between the iron salt and the substrate 
through the electrolyte to cause a metal - metal bond to 
form between the iron salt and metal on the substrate ; 

the trialkylamine hydrohalide and urea being present in 
the electrolyte in molar ratio between 1 : 1 and 1 : 30 to 
form an ionic liquid , and the iron salt being present in 
the electrolyte at a concentration between about 0 . 2 and 
about 1 . 5 moles per liter of the ionic liquid ; 

wherein the iron deposit is formed on the substrate from 
the electrolyte such that the iron deposit has an average 
grain size between about 0 . 2 um and about 3 um and 
contains less than about 1 mol % of each oxygen , 
carbon , and chlorine . 

26 . The iron deposit of claim 25 with an average grain size 
between about 0 . 5 um and about 2 um . 

2 R 

2 

- 

each Q is O ; and 
each R ? , R4 , and RS is independently chosen from H or 

alkyl . 
6 . The metal deposit of claim 1 , wherein the carboxamide 

of Formula ( I ) is selected from the group consisting of urea , 
biuret , triuret , tetrauret , pentauret , hexauret , cyanuric acid , 
ammelide , ammeline , and combinations thereof . 

7 . The metal deposit of claim 6 , wherein the carboxamide 
is urea or biuret . 

8 . The metal deposit of claim 1 , wherein the trialkylamine 
hydrochloride and the carboxamide are in molar ratio of 
about 1 : 2 . 

9 . The metal deposit of claim 1 , wherein the trialkylamine 
hydrochloride and the carboxamide are in molar ratio of 
about 1 : 10 . 

10 . The metal deposit of claim 1 , wherein the concentra 
tion of metal salt is about 0 . 3 moles per liter of the ionic 
liquid . 

11 . The metal deposit of claim 1 , wherein M is Fe . 
12 . The metal deposit of claim 1 , wherein X is Cl . 
13 . The metal deposit of claim 1 , wherein y is 3 . 
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27 . The iron deposit of claim 25 , wherein the potential has 
a current density between about 10 mA / cm and about 300 
mA / cm . 

28 . The iron deposit of claim 25 , wherein the potential has 
a reducing potential of between about - 0 . 6 V and about - 2 . 2 

29 . The iron deposit of claim 25 , wherein the trialkylam 
ine hydrohalide and the carboxamide are in molar ratio of 
about 1 : 2 . 

30 . The iron deposit of claim 25 , wherein the concentra 
tion of metal salt is about 0 . 3 moles per liter of the ionic 
liquid . 

* * * * * 


