李作成等.一种求解井排井串故障调度问题的自适应EQA算法.《计算机与应用化学》,2013,第30卷(第7期).

何小娟.分布式计算算法及其在生产调度问题中的应用研究.《中国博士学位论文全文数据库(电子期刊)》信息科技辑,2011,第12期)。

审查员:徐锦祥

(54) 发明名称
一种制药化工生产中原料结晶过程的优化调度方法

(57) 摘要
本发明涉及一种制药化工生产中原料结晶过程的优化调度方法,适用于化工生产过程智能优化调度技术领域。本发明通过确定原料结晶过程调度模型和优化目标,并使用基于贝叶斯网络的分布估计算法的优化调度方法对优化目标进行优化;其中调度模型依据每台结晶机器上所加工原料的最大完工时间来建立,优化目标为最小化最大完工时间;本发明的化工生产中原料结晶过程的表达清晰准确,调度方法合理有效;使得算法的寻优能力得到增强。
1. 一种制药化工生产中药材结晶过程的优化调度方法，其特征在于：通过确定药材结晶过程调度模型和优化目标，并使用基于贝叶斯网络的分布随算法的优化调度方法对优化目标进行优化；其中调度模型依据每台结晶机上所加工药材的最大安装时间来建立，优化目标为最小化最大安装时间：

$$C_{max} = \max \left(C_i = F_i + t_i \right) \quad i \in D$$

$$\sum_{i \in D} x_{ijk} = 1 \quad j \in D, (j, k | k = M_i = M_j)$$

$$\sum_{j \in D} x_{ijk} = 1 \quad i \in D, (i, k | k = M_i = M_j)$$

$$F_i + t_i + S_{ij} \leq F_j + B (1 - x_{ijk}) \quad (i, j) \in D, (i, j, k | k = M_i = M_j)$$

$$F_i + t_i \leq F_j \quad i, j \in S_{ij}$$

$$t_{R_k} = 0 \quad k \in M$$

$$S_{R_k} = 0, S_{R_k} = 0 \quad i \in D, (i, k | k = M_j)$$

其中，B表示一个正数且大于模型中的任意一个变量值；D表示所有有效操作序列；M_j表示操作O_j对应的加工机器；x_{ijk}表示是否在机器M_j上的操作O_i在后边是否$K_i = 1$，否则等于0；t_j表示操作O_j的加工时间；F_i表示操作O_i的完成时间；R_k表示在机器M_j上的虚机操作；S_{ij}表示操作O_i在操作O_j加工时机器上的设置时间；u表示待结晶的原料序；操作表示的是第1种原料的第M个结晶阶段在机器M_j上的加工；调度的目标为在所有结晶的原料序的集合中找到一个$S*,S*$表示的是对应最小化最大安装时间的一个序列。

2. 根据权利要求1所述的制药化工生产中药材结晶过程的优化调度方法，其特征在于：所述基于贝叶斯网络的分布随算法的优化调度方法的具体步骤如下：

Step1、编码方式：以待加工原料序为进行编码$\pi = [\pi_1, \pi_2, \ldots, \pi_{TS}]$；其中$TS$表示所有产品的总序数；

Step2、种群的初始化：利用步骤Step1中的编码方式，采用随机方法产生初始化种群，直至初始解的数量达到种群规模的要求，同时选择当代中种群中的“最优个体”作为第一代的“历史最优个体”；其中，$gen = 1, gen$表示的是迭代次数；

Step3、邻域生成：利用insert的方法生成当前种群中“最优个体”的邻域；

Step4、条件概率矩阵的更新机制：将精英个体描绘在贝叶斯网络上，每出现一次节点$N_a, B (a \in 1, \ldots, TS, B \in 1, \ldots, n)$到节点$N_{a-1, B'} \ (a \in 1, \ldots, TS, B' \in 1, \ldots, n)$的情况，便有向弧的权重上加一；接着根据之前选择的精英个体构造的网络，生成条件概率矩阵；其中用于构建条件概率矩阵的精英个体是由从对应代种群及“最优个体”的邻域中适配值最好的前$c%$个优质个体构成，n表示原料数，$c%$表示精英个体所占种群的比例；

Step5、产生新种群：根据轮盘赌的方法对条件概率矩阵采样形成新种群$\text{pop}\text{and}\text{ti}(gen)$中的个体；

Step6、更新“历史最优个体”：对“历史最优个体”与新种群中的“最优个体”的适配值，选择适配值较小的个体更新“历史最优个体”；

Step7、终止条件：设定终止条件的最大迭代次数为200，如果满足，则输出“历史最优个体”；否则转至步骤Step3，反复迭代，直到满足终止条件；
所述种群规模设置为50，e% = 0.6，交叉概率为0.7。
说明 书

一种制药化工生产中原料结晶过程的优化调度方法

技术领域
[0001] 本发明涉及一种制药化工生产中原料结晶过程的优化调度方法，属于化工生产过程智能优化调度技术领域。

背景技术
[0002] 随着全球经济的持续快速增长，流程工业的发展程度已成为衡量国家工业化水平的重要指标。化工生产是流程工业最重要的组成部分之一，化工生产通过对原材料进行相应的物理和化学加工，进而实现原材料价值的升值。在化工生产中，主要包含过滤、萃取、结晶和蒸发等基本操作，其中结晶操作应用的场合相当广。结晶过程常用于原料的初步处理和最终产品的输出，原料的处理的速度和质量将直接影响到后续的深加工产生重要影响，对整个系统结构的优化升级具有重要意义。因此，化工生产中原料结晶过程的优化调度具有重要的研究价值。
[0003] 对原材料进行结晶是常见的化工操作，由于原材料的理化性质存在差异，有些原材料经过一次结晶即可完成加工，而有些原材料需要进行二次或多次结晶操作才能完成加工；同时，为了防止产品间的交叉污染，每台机器在加工完一种原材料后，需要一定的设置时间进行清洗和调整，才能继续加工另外一种原材料，而设置时间取决于原材料之间的加工顺序；此外，实际结晶操作的加工（机器）单元往往由多台异构的并行机器组成，这些机器的加工能力不尽相同，原材料需根据自身的理化性质、体积、质量等因素选择合适的机器进行加工。该过程就是典型的异构并行机调度问题。与其他生产调度问题相同，异构并行机调度问题的优化指标主要包括最大完工时间、拖延产品数、平均流经时间等，其中以最大完工时间（makespan或Cmax）使用最为广泛。异构并行机调度问题属于NP-Complete问题，其解空间随问题规模的增大呈指数增长。因此，对异构并行机调度问题求解算法的研究具有较高的实际和理论价值，可为相关化工生产优化系统的设计提供切实指导。
[0004] 由于原料结晶过程调度问题属于NP完全问题，传统的数学规划方法和启发式构造性方法无法保证解的优化质量。因此，本发明设计了一种基于贝叶斯网络的分布估计算法（Bayesian statistical inference-based estimation of distribution algorithm，BEDA）的优化调度方法对优化目标进行优化，可在较短时间内获得制药化工生产中原料结晶过程的优化调度方法的近似最优解。

发明内容
[0005] 本发明所要解决的技术问题是在较短时间内获得制药化工生产中原料结晶过程调度问题的近似最优解的问题，提供了一种制药化工生产中原料结晶过程的优化调度方法。
[0006] 本发明的技术方案是：一种制药化工生产中原料结晶过程的优化调度方法，通过确定原料结晶过程调度模型和优化目标，并使用基于贝叶斯网络的分布估计算法的优化调度方法对优化目标进行优化；其中调度模型依据每台结晶机器上所加工原料的最大完工时
间来建立，优化目标为最小化最大完工时间：

\[C_{\text{max}} = \max (C_i = F_i + t_i) \quad i \in D \]

\[\sum_{i \in D} x_{i,j,k} = 1 \quad j \in D, (j,k \mid M_i = M_j) \]

\[\sum_{j \in D} x_{i,j,k} = 1 \quad i \in D, (i,k \mid M_i = M_k) \]

\[F_i + t_i + S_{i,j} \leq F_j + B (1 - x_{i,j,k}) \quad (i,j) \in D, (i,j,k \mid M_i = M_j) \]

\[F_i + t_i \leq F_j \quad i,j \in S_{i,j} \]

\[t_{R_k} = 0 \quad k \in M \]

\[S_{R_k} = 0, S_{R_k} = 0 \quad i \in D, (i,k \mid M_i) \]

其中，B表示一个正数且大于模型中的任意一个变量值；D表示所有有效的操作序列；M_j表示操作j对应的加工机器；x_{i,j,k}表示是在机器k上的操作j正好在操作i后边时x_{i,j,k} = 1，否则等于0；t_i表示操作j对应的加工时间；F_j表示操作j的开始时间；C_i表示操作j的完成时间；R_k表示在机器k上的虚拟操作；S_{i,j}表示操作i在操作j之后加工时机器上的设置时间；π为待结晶的原料序；操作表示的是第1种原料的第m个结晶阶段在机器k上的加工；调度的目标为在所有待结晶的原料序的集合Y中找到一个π^*,使得最大完工时间最小。

所述基于贝叶斯网络的分布估计算法的优化调度方法的具体步骤如下：

Step1、编码方式：以待加工原料序进行编码π = [π_1, π_2, ..., π_{TS}]；其中TS表示所有产品的总工数序；

Step2、种群的初始化：利用步骤Step1中的编码方式，采用随机方法产生初始化种群，直至初始解的数量达到种群规模的要求，同时选择当代中种群中的“最优个体”作为第一代的“历史最优个体”中的gen=1；

Step3、邻域生成：利用Insert的方法生成当前种群中“最优个体”的邻域；

Step4、条件概率矩阵的更新机制：将精英个体描绘在贝叶斯网络上，每出现一次节点（a，b）（a ∈ 1, ..., TS, b ∈ 1, ..., n）到节点（a，b'）（a ∈ 1, ..., TS, b' ∈ 1, ..., n）的情况，便在该有向弧的权重上加一；接着根据之前选择的精英个体构造的网络，生成条件概率矩阵；其中用于构建条件概率矩阵的精英个体是由从该代种群中“最优个体”的邻域中适配值最好的前ε个优质个体构成，n表示原料数；

Step5、产生新种群：根据轮盘赌的方法对条件概率矩阵采样形成新种群popcandi(gen)中的个体；

Step6、更新“历史最优个体”：对“历史最优个体”与新种群中的“最优个体”的适配值，选择适配值较小的个体更新“历史最优个体”；

Step7、终止条件：设定终止条件的最大迭代次数为200，如果满足，则输出“历史最优个体”；否则转至步骤Step3，反复迭代，直到满足终止条件。

Step8、所述种群规模设置为50，ε%=0.6，交叉概率为0.7。

Step9、本发明的工作原理是：

Step10、步骤11建立结晶过程调度模型和优化目标。

Step11、调度模型依据每台结晶机器上加工原料的最大完工时间来建立，优化目标为最小化最大完工时间C_{max}：

\[C_{\text{max}} = \max (C_i = F_i + t_i) \quad i \in D \]
$\Sigma_{i \in \mathbb{D}} x_{ijk} = 1, j \in \mathbb{D}, (j, k | k = M_i = M_j)$

$\Sigma_{j \in \mathbb{D}} x_{ijk} = 1, i \in \mathbb{D}, (i, k | k = M_i = M_j)$

$F_i + t_i + S_{ij} \leq F_j + B (1 - x_{ijk}) (i, j) \in \mathbb{D}, (i, j, k | k = M_i = M_j)$

$F_i + t_i \leq F_j, i, j \in S_{ij}$

$t_{R_k} = 0, k \in \mathbb{M}$

$S_{R_k} = 0, S_{R_k} = 0, i \in \mathbb{D}, (i, k | k = M_i)$

式中：B表示一个很大的正数；D表示所有有效的操作序列；M_i表示操作j对应的加工机器；x_{ijk}表示是在机器k上的操作j正好在操作i之后时$x_{ijk} = 1$，否则等于0；t_i表示操作j对应的加工时间；F_j表示操作j的开始时间；C_j表示操作j的完成时间；R_k表示在机器k上的虚拟操作；S_{ij}表示操作i在操作j加工时机器上的设置时间；操作表示的是第n种原料的第m个结晶阶段在机器k上的加工。设n为待结晶的原料排序；调度的目标为在所有待结晶的原料排序的集合中找到一个n^*，使得最大完工时间最小。

步骤2：表达。

步骤3：编码的构建。

步骤4：种群的初始化。

令$\text{gen} = 1$，利用步骤2中的编码方式，采用随机方法产生初始化种群，直至初始解的数量达到种群规模的要求。选择当代中种群中的“最优个体”作为第一代的“历史最优个体”。

步骤4：邻域生成：

利用Insert的方法生成当前种群中“最优个体”的邻域。

步骤5：条件概率矩阵的更新机制。

将精英个体描绘在贝叶斯网络上，每次出现一次节点$N_\alpha, \beta (\alpha \in 1, \ldots, TS, \beta \in 1, \ldots, n)$到节点$N_{\alpha, \beta} (\alpha \in 1, \ldots, TS, \beta' \in 1, \ldots, n)$的情况，便在该有向弧的权重上加一，接着根据之前选择的精英个体构造的网络，生成条件概率矩阵；其参数用于构建概率矩阵的精英个体是由从该代种群及“最优个体”的邻域中适配值最好的前5%个优质个体构成，n表示原料数。

步骤6：产生新种群。

新种群$\text{pop}. \alpha, \beta (\text{gen})$中的个体根据轮盘赌的方法对条件概率矩阵采样形成。

步骤7：更新历史最优个体。

对比“历史最优个体”与新种群中的“最优个体”的适配值，更新“历史最优个体”。

步骤8：设定终止条件的最大迭代次数为200。如达到设定的最大迭代次数200，就
输出"历史最优个体";否则,令gen=gen+1,返回步骤4。

【0049】本发明的有益效果是:
【0050】1.提出了最小化最大完工指标下的制药化工生产中原料结晶过程的优化调度方法,使得化工生产中原料结晶过程的表达清晰准确,调度方法合理有效;
【0051】2.通过贝叶斯与EDA的结合,使得BEDA具有全局与局部搜索能力,使得BEDA可以有效克服局部搜索上的不足;有利于充分利用优秀个体的信息来指导搜索方向,进而使得算法的搜索宽度和深度得到合理平衡,使得算法的寻优能力得到增强。
【0052】3.提出的基于BEDA的优化调度方法可以有效解决制药化工生产中原料结晶过程调度问题。

附图说明
【0053】图1为本发明的整体流程图;
【0054】图2为本发明中"Insert"操作示意图;
【0055】图3为本发明中贝叶斯网络示意图。

具体实施方式
【0056】实施例1:如图1-3所示,一种制药化工生产中原料结晶过程的优化调度方法,通过确定原料结晶过程调度模型和优化目标,并使用基于贝叶斯网络的分布估计算法的优化调度方法对优化目标进行优化;其中调度模型依据每台结晶机器上所加工原料的最大完工时间来建立,优化目标为最小化最大完工时间:
【0057】C_{max}= \max \sum_{i \in D}(C_i = F_{i} + t_{i})
【0058】\sum_{j \in D} x_{i,j} \geq 1 \quad j \in D, (i, k | k = M_i = M_j)
【0059】\sum_{j \in D} x_{i,j} \geq 1 \quad i \in D, (i, k | k = M_i = M_j)
【0060】F_{i} + t_{i} + S_{i,j} \leq F_{j} + B \quad (1 - x_{i,j}) \quad (i, j) \in D, (i, j, k | k = M_i = M_j)
【0061】F_{i} + t_{i} \leq F_{j} \quad i, j \in S_{i,j}
【0062】t_{R_k} = 0 \quad k \in M
【0063】S_{R_k} = 0, S_{R_k} = 0 \quad k \in D, (i, k | k = M_i)

其中,\(B \)表示一个正数且大于模型中的任意一个变量值;\(D \)表示所有有效的操作序列;\(M_i \)表示操作j对应的加工机器;\(x_{i,j,k} \)表示是在机器k上的操作j正在操作i后边时\(x_{i,j,k} = 1 \),否则等于0;\(t_{i,j,k} \)表示操作j对应的加工时间;\(F_{i,j} \)表示操作j的开始时间;\(C_i \)表示操作j的完成时间;\(R_k \)表示在机器k上的虚拟操作;\(S_{i,j,k} \)表示操作i在操作j后加工时机器k上的设置时间;\(k \)为待结晶的原料序号;操作表示的是第1种原料的第m个结晶阶段在机器k上的加工;调度的目标为在所有待结晶的原料序列的集合中找到一个\(\pi^* \),使得最大完工时间最小。

【0065】所述基于贝叶斯网络的分布估计算法的优化调度方法的具体步骤如下:
【0066】Step1.编码方式:以待加工原料序列为编码\(\pi = \pi_1, \pi_2, \ldots, \pi_{TS} \);其中TS表示所有产品的总工序数;
【0067】Step2.种群的初始化:利用步骤Step1中的编码方式,采用随机方法产生初始化种群,直至初始解的数量达到种群规模的要求,同时选择当代种群中的"最优个体"作为第
一代的“历史最优个体”，其中，gen=1；
[0068] Step3、邻域生成：利用Insert的方法生成当前种群中“最优个体”的邻域；
[0069] Step4、条件概率矩阵的更新机制：将精英个体描绘在贝叶斯网络上，每出现一次
节点Ne,b(α∈{1,...,TS},β∈{1,...,n})到节点Ne,b′(α∈{1,...,TS},β′∈{1,...,n})的情况，便
在该有向弧的权重上加一；接着根据之前选择的精英个体构造的网络，生成条件概率矩阵；
其中用于构建条件概率矩阵的精英个体是由从该代种群“最优个体”的邻域中随机选取前e个
优质个体构成，n表示原始数据；
[0070] Step5、产生新种群：根据轮盘赌方法对条件概率矩阵采样形成新种群popcandi
(gen)中的个体；
[0071] Step6、更新“历史最优个体”：对比“历史最优个体”与新种群中的“最优个体”的适
配值，选择适配值较小的个体更新“历史最优个体”；
[0072] Step7、终止条件：设定终止条件的最大迭代次数为200，如果满足，则输出“历史最
优个体”；否则转至步骤Step3，反复迭代，直到满足终止条件。
[0073] 实施例2：图1-3所示，一种制药化工生产中原料结晶过程的优化调度方法，通过
确定原料结晶过程调度模型和优化目标，并使用基于贝叶斯网络的分布估计算法的优化调
度方法对优化目标进行优化；其中调度模型依据每台结晶机器上所加工原料的最大完工时
间来建立，优化目标为最小化最大完工时间；
[0074] Cmax=max(Ci=Fj+tj) i∈D
[0075] Σj∈D xi,jk=1 j∈D, (j,k) \in M1=Mj
[0076] Σj∈E xi,jk=1 j∈D, (i,k) \in M1=Mj
[0077] Fj+tj+Sij ≤ Fj+B(1-xi,jk) (i,j) \in D, (i,j,k) \in M1=Mj
[0078] Fj+tj ≤ Fj (i,j) \in Sij
[0079] tRk = 0 k∈M
[0080] S_{Rk} = 0, S_{Rk} = 0 \quad i∈D, (i,k) \in M1
[0081] 其中，B表示一个正数且大于模型中的任意一个变量值；D表示所有有效的操作序
列；M1表示操作j对应的加工机器；xi,jk表示是在机器k上的操作j正好在操作i后边时
x_{i,j} = 1，否则等于0；tj表示操作j对应的加工时间；Fj表示操作j的开始时间；Ci表示操作
j的完成时间；Rk表示在机器k上的虚拟操作；Sij表示操作j在操作i后加工时机器上的设置
时间；为待结晶的原料排序；操作表示的是第1种原料的第m个结晶阶段在机器k上的加工；调度的目
标为在所有待结晶的原料排序的集合I中找到一个I*，使得最大完工时间最小。
[0082] 所述基于贝叶斯网络的分布估计算法的优化调度方法的具体步骤如下：
[0083] Step1、编码方式：以待加工原料排序进行编码π=[π1,π2,...,πTS]；其中TS表示所
有产品的总工序数；
[0084] Step2、种群的初始化：利用步骤Step1中的编码方式，采用随机方法产生初始化种
群，直至初始解的数量达到种群规模的要求，同时选择当代中种群中的“最优个体”作为第
一代的“历史最优个体”；其中，gen=1；
[0085] Step3、邻域生成：利用Insert的方法生成当前种群中“最优个体”的邻域；
[0086] Step4、条件概率矩阵的更新机制：将精英个体描绘在贝叶斯网络上，每出现一次
节点\(N_{n,\beta}(\alpha \in 1, \ldots, TS, \beta \in 1, \ldots, n)\) 到节点\(N_{n+1,\beta'}(\alpha \in 1, \ldots, TS, \beta' \in 1, \ldots, n)\) 的情况，便可在该有向弧的权重上加一; 接着根据之前选择的精英个体构造的网络，生成条件概率矩阵；其中用于构建条件概率矩阵的精英个体是由从该代种群及“最优个体” 的邻域中适配值最好的前\(e\%\) 个优质个体构成，\(n\) 表示原料数；

[0087] Step5. 产生新种群：根据轮盘赌的方法对条件概率矩阵采样形成新种群popcandi (gen) 中的个体；

[0089] Step7. 终止条件：设定终止条件的最大迭代次数为 200，如果满足，则输出“历史最优个体”；否则转至步骤 Step3，反复迭代，直到满足终止条件。

[0090] 所述种群规模设置为 50，\(e = 0.6\)，交叉概率为 0.7，B 取值为 10000，

[0091] 具体的对比实验如下：

[0092] 采用国内某制药化工企业生产中结晶过程的实际生产数据，进一步对 BEDA (如图 1) 的性能进行了验证。该企业在生产中药剂通过结晶的方式来提取纯化，现有 6 种组合不同的原料 (即纯度、杂质类型等不同)，4 台不同类型的结晶机器 (即容量、结晶方式等不同)，用于生产 5 个批次的药品。在对 5 种原料进行结晶操作时，需考虑如下因素：(1)、五种原料的纯度和杂质类型不同，使得每种原料所需的结晶提纯次数不同；(2)、不同原料的体积不同，故需根据机器容量选取机器；(3)、在结晶过程中，原料产品的纯度不断提高，使得同种原料在不同结晶阶段的溶剂选择、结晶温度、搅拌方式都有所不同，所以对于同种产品的不同结晶阶段所需的机器不同；(4)、为了防止原料批次间污染，每台机器在加工完一种原材料后，需要一定的设置时间进行清洗和调整，才能继续加工另外一种原材料；(5)、原料的加工时间\(t_{kj}(k)\) (表示第 \(k\) 种原料(表中“产品”)) 的第 \(j\) 个结晶阶段(表中“阶段”) 在机器 \(k\) (表中“\(M_{1}/M_{2}/M_{3}/M_{4}\)”上的加工时间) 取决于原料所得的结晶阶段和所选择的机器，因此每种原料在各个结晶阶段所需的加工时间不同。5 种原料的工序数集合 \(\pi = [1, 2, 5, 3, 4, 5, 2, 3, 5, 4, 3, 5]\)，原料的加工约束如表 1 所示：

<table>
<thead>
<tr>
<th>产品</th>
<th>机器阶段</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>阶段 1</td>
</tr>
<tr>
<td>1</td>
<td>(M_{1}/M_{2}/M_{3})</td>
</tr>
<tr>
<td>2</td>
<td>(M_{2}/M_{3})</td>
</tr>
<tr>
<td>3</td>
<td>(M_{2}/M_{4})</td>
</tr>
<tr>
<td>4</td>
<td>(M_{1}/M_{2}/M_{3})</td>
</tr>
<tr>
<td>5</td>
<td>(M_{1})</td>
</tr>
</tbody>
</table>

[0095] 在表 1 的工序加工约束下，各工序在相应机器上的加工时间 (单位为小时)，以及不同产品间的设置时间 (单位为小时) 如表 2 和表 3 所示。
表2 实例的设置时间

<table>
<thead>
<tr>
<th>产品</th>
<th>设置时间</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>1</td>
<td>0 1 1 2 2</td>
</tr>
<tr>
<td>2</td>
<td>2 0 3 4 1</td>
</tr>
<tr>
<td>3</td>
<td>2 2 0 1 3</td>
</tr>
<tr>
<td>4</td>
<td>4 2 3 0 3</td>
</tr>
<tr>
<td>5</td>
<td>1 1 2 2 0</td>
</tr>
</tbody>
</table>

表3 实例的工序加工时间

<table>
<thead>
<tr>
<th>产品</th>
<th>阶段1</th>
<th>阶段2</th>
<th>阶段3</th>
<th>阶段4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_1</td>
<td>M_2</td>
<td>M_3</td>
<td>M_4</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

对于上述实例，使用BEDA对该实例进行求解。运行200代，独立运行20次，每次的运行结果如表4所示。

表4 实例仿真结果

<table>
<thead>
<tr>
<th>运行代数</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEDA</td>
<td>33</td>
<td>31</td>
<td>32</td>
<td>31</td>
<td>31</td>
<td>33</td>
<td>31</td>
<td>34</td>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>运行代数</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>BEDA</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>32</td>
<td>31</td>
<td>33</td>
<td>31</td>
<td>35</td>
<td>31</td>
</tr>
</tbody>
</table>

表4的实例仿真结果可知，对于本发明所考虑的C_{max}指标，该BEDA算法在求解化工企业生产结晶过程优化时具有有效性与鲁棒性。

实施例3：如图1-3所示，一种制药化工生产中原料结晶过程的优化调度方法，通过确定原料结晶过程调度模型和优化目标，并使用基于贝叶斯网络的分布估计算法的优化调度方法对优化目标进行优化；其中调度模型依据每台结晶机器上所加工原料的最大完工时间来建立，优化目标为最小化最大完工时间：

$$C_{\text{max}} = \max (C_i = F_i + t_i) \quad i \in D$$

$$\Sigma_{i \in D} x_{i,j,k} = 1 \quad j \in D, (j, k | k = M_i = M_j)$$

$$\Sigma_{i \in D} x_{i,j,k} = 1 \quad i \in D, (i, k | k = M_i = M_j)$$

$$F_i + t_i + S_{i,j} \leq F_j + B (1-x_{i,j}) \quad (i, j) \in D, (i, j, k | k = M_i = M_j)$$
[0109] \[F_{i} + t_{i} \leq F_{j} \quad i, j \in S_{ij} \]

[0110] \[t_{Rk} = 0 \quad k \in M \]

[0111] \[S_{Rk} = 0, S_{ik} = 0 \quad i \in D, (i, k | k = M) \]

其中，B表示一个正数且大于模型中的任意一个变量值；D表示所有有效的操作序列；M\(i\)表示操作j对应的加工机器；x_{i,j,k}表示是机器k上的操作j正好在操作i后边时x_{i,j,k} = 1，否则等于0；t_{j}表示操作j对应的加工时间；F_{i}表示操作j的开始时间；C_{i}表示操作j的完成时间；R_{k}表示在机器k上的虚拟操作；S_{ij}表示操作i在操作j后加工时机器上的设置时间；x为待结晶的原料序列；操作表示的是第1种原料的第m个结晶阶段在机器k上的加工；调度的目标为在所有待结晶的原料排序的集合\(D\)中找到一个\(x^*\)，使得最大完工时间最小。

[0113] 上面结合附图对本发明的具体实施方式作了详细说明，但是本发明并不限于上述实施方式，在本领域普通技术人员所具备的知识范围内，还可以在不脱离本发明宗旨的前提下作出各种变化。
令gen=1，得到初始候选种群，得到当代种群“最优个体”

gen是否大于最大进化代数genMAX

否

生成当代“最优个体”的领域，并从该领域及当代种群中选出优质个体进行贝叶斯概率模型更新

采样贝叶斯概率模型，产生候选种群

评价该种群，得到当代种群的“最优个体”

如果新种群中的“最优个体”的评价值小于“历史最优个体”，更新“历史最优个体”

gen=gen+1

输出“历史最优个体”
Insert

\[\begin{array}{cccccc}
2 & 1 & 2 & 3 & 2 & 3 & 2 \\
\end{array}\]

\[\begin{array}{cccc}
2 & 3 & 1 & 2 & 3 & 2 & 2 \\
\end{array}\]

图2

图3