

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-517899
(P2004-517899A)

(43) 公表日 平成16年6月17日(2004.6.17)

(51) Int.C1.⁷

C07F 19/00

C07F 7/10

C07F 7/28

F 1

C07F 19/00

C07F 7/10

C07F 7/28

テーマコード(参考)

4 H 04 9

4 H 05 0

審査請求 未請求 予備審査請求 未請求 (全 39 頁)

(21) 出願番号	特願2002-557949 (P2002-557949)	(71) 出願人	500052141 ボウルダー・サイエンティフィック・カン パニー アメリカ合衆国コロラド州80542, ミ ード, サード・ストリート 598, ピー ・オー・ボックス 548
(86) (22) 出願日	平成14年1月16日 (2002.1.16)	(74) 代理人	100089705 弁理士 松本 一夫
(85) 翻訳文提出日	平成14年10月24日 (2002.10.24)	(74) 代理人	100076691 弁理士 増井 忠式
(86) 國際出願番号	PCT/US2002/001421	(74) 代理人	100075270 弁理士 小林 泰
(87) 國際公開番号	W02002/057272	(74) 代理人	100080137 弁理士 千葉 昭男
(87) 國際公開日	平成14年7月25日 (2002.7.25)		
(31) 優先権主張番号	09/761,151		
(32) 優先日	平成13年1月17日 (2001.1.17)		
(33) 優先権主張國	米国(US)		
(81) 指定国	EP(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), AU, CA, JP, NZ, US		

最終頁に続く

(54) 【発明の名称】幾何拘束型配位子およびそれらに由来する錯体

(57) 【要約】

新規の幾何拘束型チタン(II)ジエン錯体及び該錯体のリガンドを記載する。新規錯体のオレフィン重合活性は、従来技術の幾何拘束型ジエン錯体類縁体で規定される標準活性を、実質的に上回る。新規で高活性な錯体の合成方法を記載する。

【特許請求の範囲】

【請求項 1】

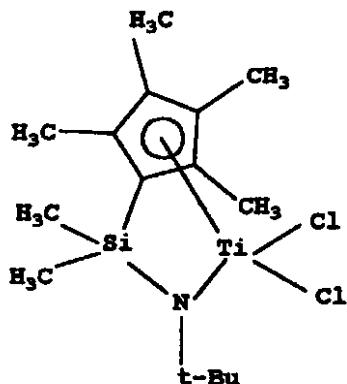
クレーム 1 の化合物の製造方法であって：

(i) シクロペンタジエニルシリルアミンとアルキルアルカリ金属との反応生成物を含有する第一の反応器を準備し、

(i i) 式 $M X_4 \cdot D M E$

(M は 4 族元素であり、 X はハロゲンであり、 D M E はジメトキシエタンである)

のアダクトを含有する第二の反応器を準備し、


(i i i) 該第一の反応器及び該第二の反応器の各々の容器温度を、約 20 - 30 の範囲内に調整し、

(i v) その後、第一の反応器の内容物を第二の反応器の内容物に混合し；

反応混合物が該第二の反応器で生成され；

該第二の反応器で生成された該反応混合物が式

【化 1】

10

20

の化合物を含有し；

(v) 該第二の反応器中の該化合物を含有する該反応混合物から溶媒を蒸留し、

(v i) 該工程 (i v) の化合物をクレーム 1 で述べた化合物へ転換し；

クレーム 1 で述べた工程 (i v) で生成する該化合物のオレフィン重合活性が、標準活性である 100 % を実質的に上回る；

工程を含む上記方法。

【発明の詳細な説明】

【0001】

本出願は、2001年1月17日に出願された米国特許出願シリアル No. 09/761,151 の継続出願である。

【0002】

発明の分野

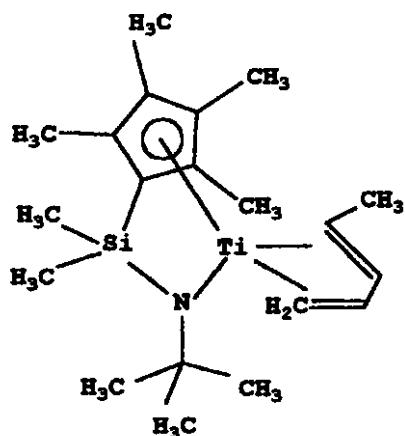
本発明は、高いオレフィン重合活性という特徴を有する 4 族金属及びジエンの幾何拘束型錯体、該錯体の配位子、並びに該錯体及び配位子の製造方法に関する。

【0003】

発明の背景

特許第 5,470,993 号は、4 族金属四水素化物の還元形態と、ジエンと、目的の金属錯体の適当なジアニオン配位子とを接触させることによる、幾何拘束型 4 族金属ジエン錯体の合成を記載する。

【0004】

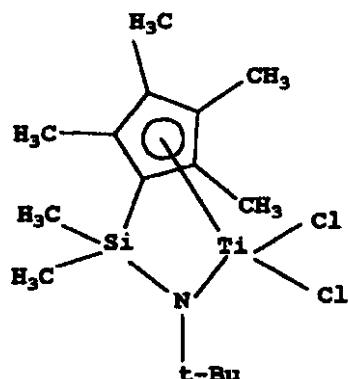

ジエン錯体は、特許第 6,015,916 号 5 欄 20 ~ 34 行に現れる以下の式を有する。

【0005】

【化 2】

40

50


10

【0006】

対応するジハロ配位子も、特許第6,015,916号に述べられている式を有し（請求項1の式IIを参照のこと）。

【0007】

【化3】

20

【0008】

配位子は対応するジハロ化合物の何れであってもよく、塩素置換基が臭素、ヨウ素、またはフッ素で置換され、“t-bu”置換基が任意のアルキル基で置換される。

【0009】

特許第6,015,916号は、メタロセン化合物のジハロ配位子をアルキルアルカリ金属及びジエンで処理することによる、類似した化合物の合成を記載する。特許第6,015,916号明細書は参考してここに取り込み、本明細書の一部とする。

【0010】

ドイツ国特許出願19739946-A1は、適切な配位子を式(I)

のアダクトで処理することによりメタロセンに変換するメタロセン合成方法を記載する。
(M^1 は周期表(PSE)の3, 4, 5若しくは6族金属、またはランタノイド若しくはアクチノイド元素を表し、好ましくはチタン、ジルコニウム、またはハフニウムであり、特に好ましくはジルコニウムである； X は同じであっても異なってもよく、ハロゲン、 C_{1-10} -アルコキシ、 C_{6-10} -アリーロキシ、 C_{1-10} -アルキルスルホネート(例えはメシレート、トリフレート、ノナフレート)、 C_{6-10} -アリールスルホネート(例えはトシレート、ベンゼンスルホネート)、 C_{1-10} -アルキルカルボキシレート(アセテート、ホルメート、オキサレート)、または1,3-ジカルボニレート(例えはアセチルアセトナート)若しくはフッ素化1,3-ジカルボニレートである； n は整数であり、2, 3, 4, 5または6に等しく、金属 M^1 の酸化数に対応する； a は整数または分数であり、 $0 < a \leq 4$ である； D は、直鎖、環状、若しくは分枝の、少なくとも2つ

40

50

の酸素原子を含有するオリゴエーテル若しくはポリエーテル、または、少なくとも2つの硫黄原子を含有するオリゴエーテル若しくはポリエーテルである。)これらの不都合が低減または除去された、高触媒活性の4族(II)ジエン錯体、そしてそのような錯体のジハロ配位子が要望されている。

【0011】

従って、非常に高活性なオレフィン重合触媒を提供する新規シクロペントジエニル4族金属ジエン錯体と該錯体のジハロ配位子とを提供することが、本発明の目的である。

【0012】

シクロペントジエニル4族金属ジエン錯体のシングルサイト重合触媒、及び、シングルサイトの機能が大きく損なわれることのないような低不純物含有量の触媒組成物を提供することが、本発明の関連した目的である。 10

【0013】

マグネシウムのないジクロペントジエニル4族金属ジエン錯体メタロセンを提供することが、本発明の特定の目的である。

定義

以下の表現は、下記の意味を有する：

(1) シクロペントジエニル基は、

シクロペントジエニル、テトラアルキルシクロペントジエニル、インデニル、テトラヒドロインデニル、フルオレニル、テトラヒドロフルオレニル、またはオクタヒドロフルオレニル 20

を意味する。

(2) 4族(II)及び4族(II)という表現は、価数が2(II)または3(II)の4族金属を意味する。

(3) 4族(II)メタロセン化合物は、1以上のシクロペントジエニル基に結合した4族(II)金属を含む化合物である。

(4) 4族(II)メタロセン配位子は、4族(II)メタロセン合成の原料となるシクロペントジエニルまたは置換シクロペントジエニル基を含有する化学的前駆体である。

(5) 幾何拘束型化合物または触媒(CGC)は、中心金属が環構造に拘束されており、非局在化系によって環状基に共有結合し、かつシグマ結合によって別の元素(例えば、炭素、窒素、酸素)へ共有結合している触媒を意味する。小さい環サイズが中心金属元素周辺の拘束を引き起こす。チタン含有CGSでは、取り込まれたチタン元素が+4,+3,または+2の形式酸化状態をとることができる。欧州特許出願番号90309496.9、国際特許出願95/00526号、及び米国特許第5,470,993号を参照のこと。 30

(6) CpSA配位子は、(t-ブチルアミノ)(テトラメチルシクロペントジエニル)ジメチルシランを意味する。

(7) (CpSA)²⁻は、2つ脱プロトン化されたCpSA配位子を意味する。

(8) (CpSA)²⁻TiCl₂は、二塩化[(t-ブチルアミノ)(テトラメチルシクロペントジエニル)ジメチルシラン]チタンを意味する。

(9) 一般に、活性は、標準条件の下で規定された量の触媒により単位時間あたり製造されたポリマーの量を意味する。 40

【0014】

触媒活性の決定

本出願で用いられるように、触媒効率または活性は、温度、溶媒、モノマー量、水素量、モノマー圧、及び運転時間についての標準条件の下で、バッチ反応器中のエチレン消費量に基づく。

【0015】

触媒試料の活性は、標準の活性(“標準活性”)に対する試料の活性のパーセンテージで報告される。本出願の目的のため、“標準”は、Boulder Scientific Companyのバッチ1997年459-0140のCGC 4族(II)ジエン錯

体である。

【0016】

触媒試料の活性を報告するための式は以下の通りである：

【0017】

【式1】

$$\% \text{活性} = \frac{\text{平均試料活性}}{\text{平均標準活性}} \times 100 = \text{試料活性}$$

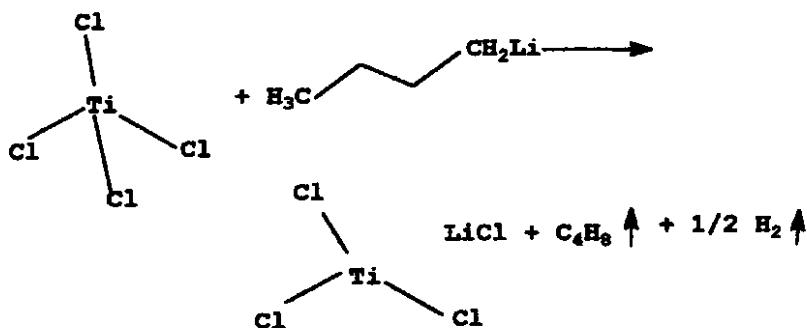
【0018】

10

“平均”は、±5%内で同一の活性である2つの運転の平均を意味する。

1997年2月26日付の“標準”C G C B S C - 1 4 5 9 4 - 0 1 4 0 の“製法の記載”と“反応”

製法の記載


本製法は、別の容器に反応物スラリー1及び2を作成し、最終反応のためこれらのスラリーを混合することを包含する。スラリー1は、トルエンを容器に注ぎ脱酸素することにより生成される。そして四塩化チタンを加え、続いてn-ブチルリチウムを加える。この添加は大きな発熱をともなう。スラリー1を含む生成混合物を1時間攪拌する。この過程は、式1)によって説明される。

【0019】

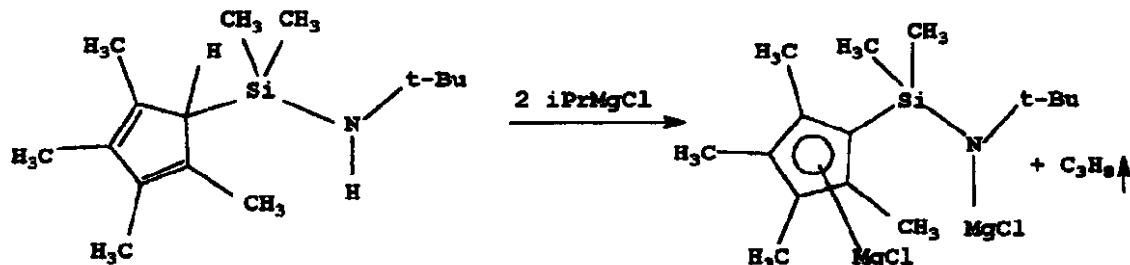
20

【化4】

1)

30

【0020】

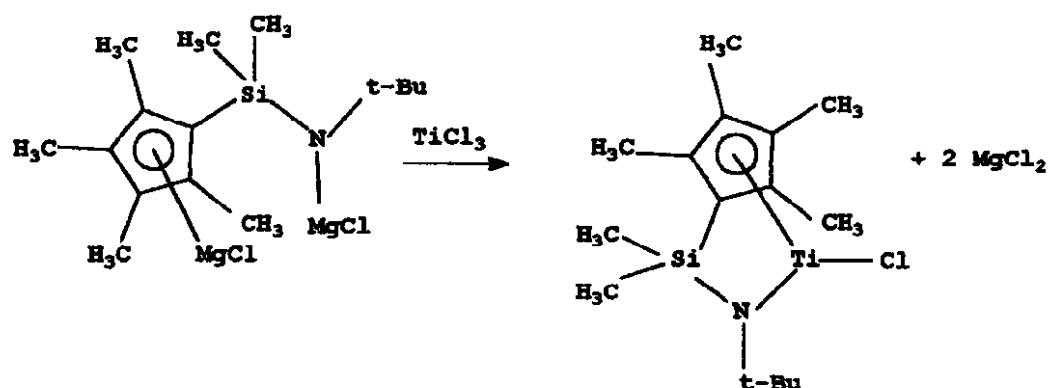

スラリー2は以下の様に作成される：トルエンとCpSA配位子を反応容器に注ぐ。容器温度を45-50に調整した後、塩化イソプロピルマグネシウムのエチルエーテル溶液を反応容器に供給し、その結果ガス発生が生じる。グリニヤール剤の供給の終了時に容器温度が45-50で終えるため、必要に応じて穏やかに加熱する。反応混合物をゆっくり加熱し、ガス発生が増加するにつれて溶媒の蒸留が始まる。反応混合物を85-90に加熱し、この温度を2時間維持する。反応混合物を60-65に冷却した後、THFを反応容器に供給する。そして反応混合物を20-25に冷却する。これがスラリー2とされる。この過程は、式2)及び3)により説明される。

【0021】

40

【化5】

2)


CpSA リガンド
FW = 114.0

10

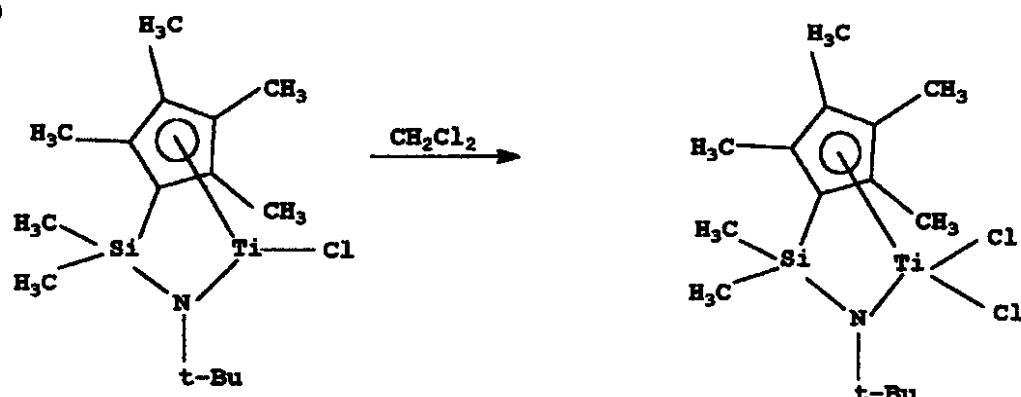
【 0 0 2 2 】

【 化 6 】

3)

20

【 0 0 2 3 】


搅拌したスラリー 1 をできる限り迅速に、搅拌したスラリー 2 を含有する反応器に移し、その結果、温度が約 7 - 15 上昇する。塩化メチレンを反応容器に注ぎ、スラリー 1 を含有する容器をトルエンで洗浄してスラリー 2 の反応容器に注ぎ、この混合物を 2 時間搅拌する。スラリー 1 を入れると直ぐに、反応容器内で暗い赤茶色を呈する。この反応は、式 4) で説明される。

30

【 0 0 2 4 】

【 化 7 】

4)

40

CGC ジクロリド
FW = 368.2

【 0 0 2 5 】

50

ロータリー真空ベーンポンプを用いて、減圧(60 - 80 mmHg)下で出発時の体積の約1/2まで溶媒を除去する。トルエンを再度加え、セライトを加え、混合物を大型のスパークラーフィルターで濾過する。溶媒を蒸留し、生成物を濃縮する。残存粗生成物溶液を、次の工程で直接使用する。

C G C ジクロリドを4族(II)ジエン錯体へ転換するための“製法の記載”と“反応”
製法の記載

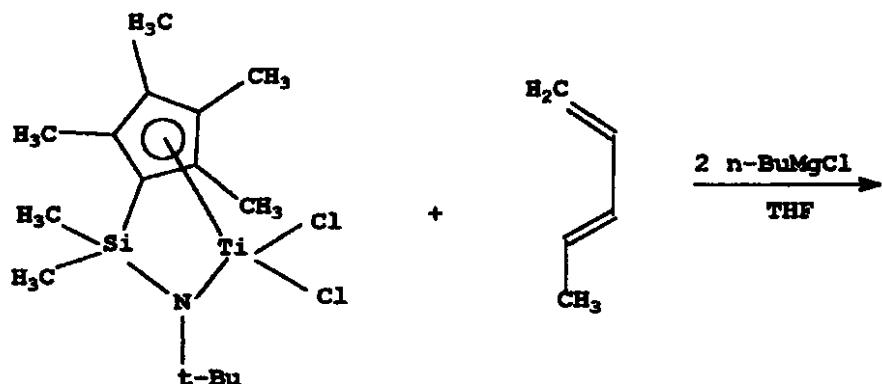
この製法の前の段階、式1)~4)で生じた粗生成物は、まだ使用反応器内にあり、容器温度20 - 25で攪拌し、ピペリレン濃縮物(1,3-ペンタジエン)を加える。

【0026】

塩化ブチルマグネシウムのTHF溶液を反応器に供給する。この反応は発熱をともなう。10
グリニヤール剤の供給を終えると、反応混合物を容器温度35 - 40でさらに1/2時間攪拌する。

【0027】

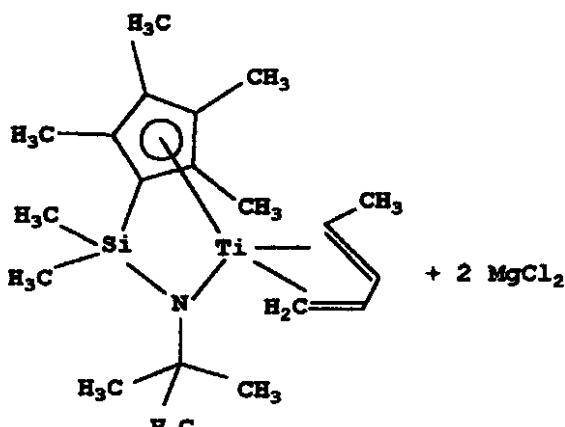
この混合物を容器温度85で常圧下蒸留し、20 - 25に冷却し、65以下で減圧蒸留する。1ドラムの脱酸素炭化水素溶媒とセライトとを20 - 25で加え、生成混合物を大型の33インチのスパークラーで濾過する。この濾別ケーキを加水分解する。生成溶液を65以下で減圧蒸留する。


【0028】

6ドラムの脱酸素アイソパーを、一回に2ドラムずつ反応器に加え、65以下で減圧蒸留してTHF及びトルエンを除去する。溶媒濃縮が適切である場合、1ドラムの脱酸素アイソパー及びセライトを加える。生成溶液を小型のプリコートスパークラーフィルターでシリンドーへ濾過する。濾別ケーキは廃棄しても良い。この反応は、以下の式5)で説明される。

【0029】

【化8】


5)

CGC ジクロリド
FW = 368.2

trans-ピレリレン
trans-1,3-ペンタジエン
FW = 68.1

10

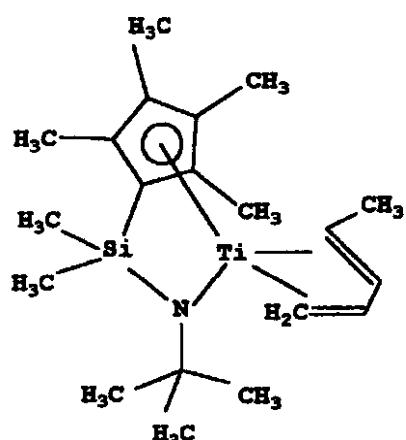
20

幾何拘束型
4族(II)ジエン錯体

【0030】

本発明の要旨

30


本発明は、新規幾何拘束型4族(II)ジエン錯体の配位子と、それによる錯体とを提供し、この錯体のオレフィン重合活性は、既知の同種の錯体が示すのと比べ著しく大きい。

【0031】

特に、本発明は以下の式の錯体を提供する。

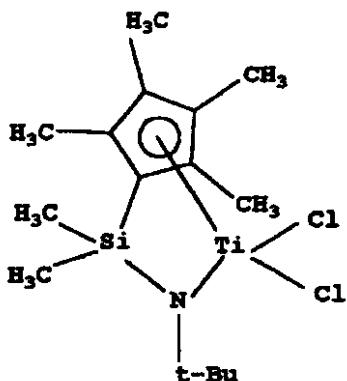
【0032】

【化9】

40

【0033】

50


(この錯体のオレフィン活性は、前記“標準活性”である100%を充分に上回っており、例えば約130%である。)

本発明の1つの観点によれば、シクロペントジエニルシリルアミンをアルキルアルカリ金属で、その後ジアルキルシリルジハライドで処理し、シクロペントジエニルシリルアミン配位子(CpSA配位子)を生成する。この配位子を、4族金属四塩化物と少なくとも2つの酸素原子を有する直鎖エーテルとのアダクト、及び、アルキルアルカリ金属で処理し、以下の式である最終的に目的とする4族(II)錯体のジハライド配位子を生成する。

【0034】

【化10】

10

20

【0035】

ジハライド配位子を、ジエン及びアルキルアルカリ金属を当量より過剰に用いて処理する。本発明で有用なジエンは、米国特許第5,470,993号及び6,015,916号に記載されている。生じた反応混合物中の未反応のアルキルアルカリ金属は、例えば塩化トリメチルシランにより反応停止させる(クエンチする)。このように生成した錯体が、望ましくないゲル形成を生じたりシングルサイトオレフィン重合の機能を損なうことのある不純物を含んでいない、または実質的に含んでいないということは明らかである。

【0036】

本発明の詳細な説明

様々な4族金属四塩化物-エーテルアダクトが知られている。一般的には、特許5,470,993号及び発行されたドイツ国特許出願DE19739946A1を参照のこと。これらの参考文献に記載された各々のアダクトは、本発明で有用である。1,2-ジメトキシエタン(DME)アダクトが好ましい。

【0037】

DME-4族金属四塩化物アダクトを製造する方法の1つが、特許第6,015,916号4欄61-66行に記載されている。より一般的に用いられるアダクトは、式X-OY-O-OXである任意の化合物で処理することにより製造される(XはC₁からC₁₀のアルキル基であり、YはC₂からC₁₀のアルケンである。)

任意の4族四塩化物-エーテルアダクトを使用しうる。四塩化チタン-DMEアダクトが好ましい。アダクトは、好ましくは炭化水素溶媒中で製造される。反応物のモル比は、約1:1でエーテル反応物が少し過剰であることが好ましい。

【0038】

式A-R(Aは任意のアルキル金属でよく、好ましくはリチウムであり、Rは任意のアルキル基でよく、好ましくはC₁からC₁₀のアルキル基である)を有する任意のアルキルアルカリ金属を用いうる。N-ブチルリチウムが好ましい。

【0039】

ジハロメタロセン配位子の合成は、反応の障害とならない媒体(非干渉性の媒体:non-interfering media)中で行われる。適当な媒体は、炭化水素、好ましくはC₅からC₈のアルカン、及びアルカンとエチルエーテルの混合物を包含する。合成は、任意の効果的な反応温度で行いうる。好ましい温度範囲は-20から0である

30

40

50

。反応混合物は、非干渉性の媒体中にジハロ配位子を含有する。冷却中に、ジハロ配位子を反応混合物から結晶化した固体として分離し、不活性雰囲気下、好ましくは窒素下の濾過により取り出しうる。分離したジハロ配位子を、不純物含有量をさらに低減するために再結晶しうる。

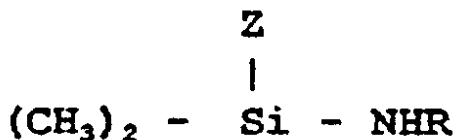
【0040】

アルキルアルカリ金属は当量より過剰に用いられ、実質的に全ての4族(IV)ジハロ配位子が、最終的な4族(II)触媒へ還元される。そして反応混合物中に存在しうる他の任意の4族(IV)化合物は、4族(II)化合物またはその他の化合物に還元され、これらの化合物が最終的な触媒の活性またはシングルサイトの機能に与える悪影響は最小限に留まる。過剰量のアルキルアルカリ金属を、例えば塩化トリメチルシランにより、反応停止させる(クエンチする)。生成物はシングルサイト触媒組成物を含み、その組成物には、4族(IV)または4族(II)化合物、及びシングルサイトの重合活性に悪影響を与えるその他の不純物が、本質的に含まれていないことが理解される。

10

【0041】

本発明の実施


1. シクロペニタジエニルシリルアミン配位子の合成

定義されたシクロペニタジエニル化合物を容器に注ぐ。THFを、好ましくは約-20から-10の範囲で、用いるシクロペニタジエニル化合物に応じて加える。ジメチルジクロロシランを約-10から0の低温で供給する。容器を攪拌し、含有物を室温に加熱し、その後、溶出させる。選択したアルキルアミン、好ましくはC₁からC₁₀のアルキルアミンを、低温(例えば約-10)で容器に供給する。攪拌及び室温への加熱後、容器を加熱しTHFと未反応のアミンを除去する。スラリーを形成しうる。その場合は、ヘプタンまたは同等の炭化水素媒体を加えうる。スラリーを濾過する。濾液は、以下の式のシクロペニタジエニルシリルアミン配位子(CpSA配位子) :

20

【0042】

【化11】

30

(Zはシクロペニタジエニル基であり、Rはアルキルアミン反応物由来のアルキル基である。)

を含有する。

【0043】

2. ジハロ配位子の製造

ジハロ配位子を、特許6,015,916号3欄60行の(2)に記載された方式で合成しうる。一般に、シクロペニタジエニルシリルアミンを未還元の4族四塩化物(好ましくは炭化水素溶媒中にDMEのアダクトまたは同等のアダクトの形態にある)で処理しうる。ジハロ中間体のTi(IV)を、記載したアルキルアルカリ金属、好ましくはブチルリチウムと、ジエンとで、反応の障害とならない溶媒、好ましくは炭化水素溶媒中で-10から0の好ましい温度において処理することにより、最終的な錯体中のTi(II)に転換する。アルキルアルカリ金属を当量より過剰に用い、4族(IV)配位子をの最終的な4族(II)触媒に還元し、反応混合物中に存在しうる何れの4族(IV)化合物も還元される。過剰のアルキルアルカリ金属を、好ましくは塩化トリメチルシランにより、反応停止する。

40

【0044】

重合活性の向上を示す実施例

実施例1

本実施例で用いられる全ての装置は清浄で、乾燥され、窒素バージされた。THFは存在

50

しないように排除された。

【0045】

21.2 kg のエチルエーテルと、6.5 kg のCpSA配位子（純度95%と推定）を第一の反応器に注いだ。容器温度を-20に下げた。

容器温度を-20から-10の間に維持しながら、21.2 kg のn-ブチルリチウム-ヘキサン溶液（15%）をゆっくり加えた。供給が終了すると、容器温度を1時間以上かけて20に上げ、容器の内容物を20-25で4時間攪拌した。CpSAジリチオ塩を含有する反応混合物が生成した。

【0046】

34.2 kg の脱酸素ヘプタンと2.6 kg のジメトキシエタンとを第二の反応器に注いだ。容器温度を約10-15に調整した。

4.8 kg の四塩化チタンを、第二の反応器に15から30の容器温度で注いだ。供給が終了すると、第二の反応器の内容物を攪拌する速度を上げた。攪拌は、20-25の容器温度で約3時間続けた。

【0047】

第一及び第二の反応器各々の容器温度を15-20に調整した。その後、第二の反応器の温度を20-25に維持しながら、第一の反応器の内容物を第二の反応器に移した。第二の反応器の内容物を25-28で約12時間攪拌した。

【0048】

「本発明の要旨」の最後に示した式を有するジクロリド配位子を含有する反応混合物を、第二の反応器で生成した。溶媒を除去した後、47.0 kg の脱酸素ヘプタンを第二の反応器に加えた。第二の反応器の容器温度を-15に調整した。その後、6 kg のピペリレンを第二の反応器に注いだ。23.3 kg のブチルリチウムのヘキサン溶液（6M）を第二の反応器に供給した。この供給の間、容器温度を-15から-10の間に維持した。供給が終了すると、1時間以上にわたり容器温度を20-25に維持した。反応混合物を約3時間、20-25で攪拌した。

【0049】

1.5 kg の塩化トリメチルケイ素（TMSCL）を加えた。2時間攪拌しながら、容器温度を40-45に調整した。その後、容器温度を20-25に調整し、反応混合物を濾過した。ケーキを脱酸素ヘプタンで洗浄した。

【0050】

理論収量 - 9.1 kg 含有

実際の収量 - 7.454 kg 含有

活性（上記の通り決定） - 170%

【0051】

実施例2

本実施例で用いられる全ての装置は清浄で、乾燥され、窒素バージされた。THFは存在しないように排除された。

【0052】

8.5 kg のエチルエーテルと2.6 kg のCpSA配位子（推定純度95%）とを、清浄で、アイソパーで洗浄し、窒素バージした第一の反応器に注いだ。容器温度は-20であった。

【0053】

13.7 kg の脱酸素アイソパーEと1.0 kg のジメトキシメタンとを、乾燥し窒素バージした第二の反応器に注いだ。容器温度を10-15に調整した。

【0054】

反応器の内容物をゆっくり攪拌し、温度を15から30に維持しながら、1.9 kg の四塩化チタンを第二の反応器に供給した。供給が終了すると、攪拌を速め、第二の反応器の内容物を20-25で約3時間攪拌した。

【0055】

20

30

40

50

第一及び第二の反応器各々の容器温度を 15 - 20 に調整した。第二の反応器の容器温度を 20 - 25 に維持しながら、第一の反応器の攪拌した内容物を第二の反応器に移した。第二の反応器の内容物を約 12 時間、 20 - 28 で攪拌した。第二の反応器の反応混合物は、「本発明の要旨」に示したジクロリド配位子を含有した。溶媒を反応混合物から除去した。

【 0056 】

第二の反応器の容器温度を 15 に調整した。 2.0 kg のピペリレンを反応器に注いだ。 8.5 kg のブチルリチウム - ヘキサン溶液 (15%) をゆっくり第二の反応器に供給し、温度を -15 から -10 に維持した。供給が終了すると、容器温度を 1 時間以上 20 - 25 に調整した。反応混合物を 3 時間、 20 - 25 で攪拌した。

10

【 0057 】

600 g の T M S C 1 を加え、反応混合物を 1 時間攪拌した。目的の 4 族 (II) ジエン錯体を含有する反応混合物を濾過し、ケーキを脱酸素アイソパーで洗浄した。

【 0058 】

理論収量 (含有量)	-	3.65 kg
実際の収量 (含有量)	-	2.59 kg (71% 収量)
活性 (上記の方式で決定)	-	140%

【 0059 】

実施例 3 及び 4

実質的に実施例 1 及び 2 について記載した通りの合成手順によって、4 (II) ジエン錯体生成物が得られ、その活性は、上記の通りに決定した場合、165% 及び 130% であった。

20

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
25 July 2002 (25.07.2002)

PCT

(10) International Publication Number
WO 02/057272 A2

(51) International Patent Classification: C07F

(72) Inventors; and

(21) International Application Number: PCT/US02/01421

(75) Inventors/Applicants (for US only): SULLIVAN, Jeff

(22) International Filing Date: 16 January 2002 (16.01.2002)

frey, M. [US/US]; 3125 Macey Court, Loveland, CO 80537

(25) Filing Language: English

(US); GATELY, Daniel, A. [US/US], 319 East Iowa Avenue, Berthoud, CO 80513 (US).

(26) Publication Language: English

(74) Agent: IRONS, Edward, S.; 3945 Fifty Second Street, N.W., Washington, DC 20016 (US).

(30) Priority Data:

09/761,151 17 January 2001 (17.01.2001) US

(81) Designated States (national): AU, CA, JP, NZ, US.

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US 09/761,151 (CON)
Filed on 17 January 2001 (17.01.2001)

(84) Designated States (regional): European patent (AT, BE, CII, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(71) Applicant (for all designated States except US): BOLDER SCIENTIFIC COMPANY [US/US]; 598 Third Street, Post Office Box 548, Mead, CO 80542 (US).

Published:
— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/057272 A2

(54) Title: CONSTRAINED GEOMETRY LIGANDS AND COMPLEXES DERIVED THEREFROM

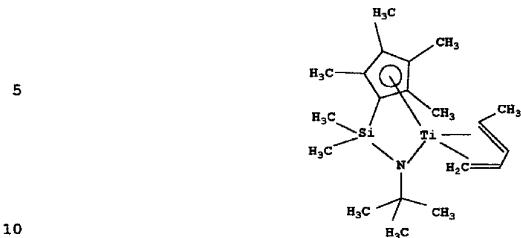
(57) Abstract: A novel constrained geometry titanocene (II) diene complex and ligands of such complexes are described. The novel complex has an olefin polymerization activity substantially in excess of a defined activity standard characteristic of analogous prior art constrained geometry diene complexes. Methods for the synthesis of the novel, high-activity complexes are described.

-1-

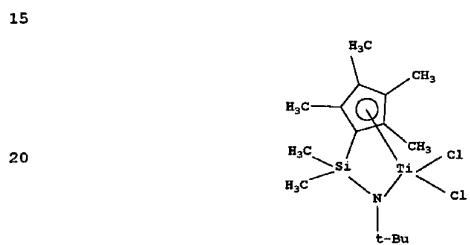
CONSTRANINED GEOMETRY LIGANDS
AND COMPLEXES DERIVED THEREFROM

5 This application is a continuation of United
States application Serial No. 09/761,151 filed 17
January 2001.

FIELD OF THE INVENTION


10 This invention relates to constrained geometry
complexes of group 4 metals and dienes characterized by
high olefin polymerization activity, to ligands of such
complexes and to methods for the production of such
complexes and ligands.

BACKGROUND OF THE INVENTION


15 Patent 5,470,993 describes the synthesis of
constrained geometry group 4 metal diene complexes by
contacting a reduced form of a group 4 metal
tetrahalide, a diene and an appropriate dianion ligand
of the desired metal complex.

20 The diene complexes may have the formula which
appears at lines 20-34 of Column 5 of patent 6,015,916
as follows:

-2-

The corresponding dihalo ligand may have the formula also set forth in patent 6,015,916 (see Formula II of claim 1):

25 The ligand may be any corresponding dihalo compound in which the chlorine substituents are

WO 02/057272

PCT/US02/01421

-3-

replaced by bromine, iodine or fluorine and in which the "t-bu" substituent is replaced by any alkyl group.

Patent 6,015,916 describes the synthesis of similar complexes by treatment of a dihalo ligand of a metallocene compound with an alkali metal alkyl and a diene. The specification of patent 6,015,916 is, by express reference, incorporated herein and made a part of this specification.

German Application DE 197 39 946 A1 describes a metallocene synthesis in which an appropriate ligand is converted to a metallocene by treatment with an adduct of Formula (I)

in which M^a denotes a metal of groups 3, 4, 5 or 6 of the periodic system of elements (PSE) or an element of the group of lanthanides or actinides, preferably titanium, zirconium, or hafnium, by special preference zirconium; X is the same or different, being halogen, a C_{1-10} -alkoxy, C_{6-10} -aryloxy, C_{1-10} -alkylsulfonate such as mesylate, triflate, nonaflate, a C_{6-10} -arylsulfonate such as tosylate, benzene sulfonate, a C_{1-10} -alkylcarboxylate such as acetate, formate, oxalate, or a 1,3-dicarbonylate such as acetylacetone or a fluorinated 1,3-dicarbonylate; n is an integer and equals 2, 3, 4, 5 or 6 and corresponds to the oxidation number of the metal M^a ; a is an integer or a fraction number and $0 < a \leq 4$; and D is a linear, cyclic, or

WO 02/057272

PCT/US02/01421

-4-

branched oligoether or polyether containing at least two oxygen atoms or an oligoether or polyether containing at least two sulfur atoms.

5 There is a need for group 4(II) diene complexes of high catalytic activity in which these disadvantages are reduced or eliminated and for dihalo ligands of such complexes.

10 Accordingly, it is an object of this invention to provide novel cyclopentadienyl group 4 metal diene complexes and dihalo ligands of such complexes which provide uniquely active olefin polymerization catalysts.

15 It is a related object of the invention to provide cyclopentadienyl group 4 metal diene complex single site polymerization catalysts and catalyst compositions of low impurity content such that the single site functionality thereof is not significantly impaired.

20 It is a specific object of the invention to provide a magnesium-free cyclopentadienyl group 4 metal diene complex metallocene.

DEFINITIONS

The following expressions have the meaning set forth:

25 (1) Cyclopentadienyl group means cyclopentadienyl, tetraalkylcyclopentadienyl, indenyl, tetrahydroindenyl, fluorenyl, tetrahydrofluorenyl, or octahydrofluorenyl.

WO 02/057272

PCT/US02/01421

-5-

(2) The expressions group 4(II) and group 4(III) mean a group 4 metal of valence 2(II) or 3(III).

(3) A Group 4(II) metallocene compound is a compound comprised of a group 4(II) metal bonded to one or more cyclopentadienyl groups.

(4) A Group 4(II) metallocene ligand is a chemical precursor which contains a cyclopentadienyl or substituted cyclopentadienyl group from which a group 4(II) metallocene may be synthesized.

(5) Constrained geometry compound or catalyst (CGC) means a catalyst in which the metal center is contained in a ring structure and covalently bonded to a cyclic group via a delocalized π -system and covalently bonded via a sigma-bond to another atom, e.g., carbon, nitrogen, oxygen. A small ring size induces constraint about the metal atom center. For titanium-containing CGCs, the incorporated titanium atom can be in the +4, +3, or +2 formal oxidation state. See EP application 90309496.9, WO 95/00526 and United States patent 5,470,993.

(6) CpSA ligand means (*t*-butylamino)(tetramethylcyclopentadienyl)dimethylsilane.

(7) $(\text{CpSA})^{2-}$ means doubly-deprotonated CpSA ligand.

(8) $(\text{CpSA})^{2-}\text{TiCl}_2$ means [$(\text{CpSA})^{2-}$ (tetramethylcyclopentadienyl)dimethylsilane]titanium dichloride.

-6-

(9) Activity means generally the quantity of polymer produced under standard conditions by a defined amount of catalyst per unit time.

CATALYTIC ACTIVITY DETERMINATION

5 As used in this application, catalyst efficiency or activity is based on ethylene consumption in a batch reactor under standard conditions for temperature, solvent, monomer quantities, hydrogen quantities, monomer pressure and run time.

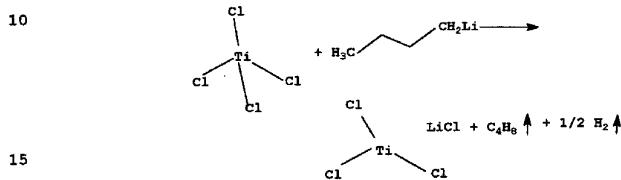
10 The activity of the sample catalyst is reported as the percentage of activity of the sample versus the activity of a standard ("standard activity"). For purposes of this application, the "standard" is the CGC group 4(II) diene complex from Boulder Scientific Company Batch 459-0140 of 1997.

15 The equation for reporting the sample catalyst activity is as follows:

20
$$\frac{\text{Average Sample Activity}}{\text{Sample Activity}} \times 100 = \text{ % Activity}$$

25 "Average" means the average of two runs with activities which are the same within plus or minus 5%.

30 "PROCESS DESCRIPTION" AND "REACTION" FOR "STANDARD"
CGC BSC-1459-4-0140 DATED FEBRUARY 26, 1997

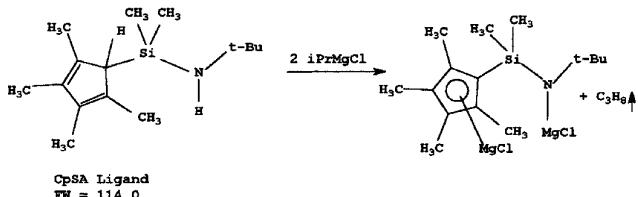

PROCESS DESCRIPTION

This process involves making reactant slurries 1 and 2 in separate vessels and then combining these

-7-

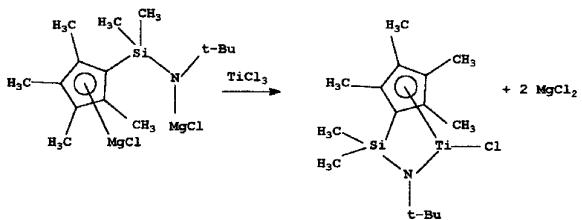
slurries for the final reaction. Slurry 1 is produced by charging toluene into a vessel and deoxygenating. Then titanium tetrachloride is added, followed by adding n-butyllithium. This addition is very exothermic. The resulting mixture comprising slurry 1 is stirred for 1 hour. This process is illustrated by equation 1):

1)



20 Slurry 2 is made up as follows: Toluene and CpSA ligand are charged to a reaction vessel. After adjusting the pot temperature to 45-50°C, a solution of isopropylmagnesium chloride in ethyl ether is fed into the reaction vessel resulting in gas evolution. Gentle heating is used as needed in order to end up with a pot temperature of 45-50°C at the end of the Grignard feed. The reaction mixture is slowly heated and solvents begin to distill along with increased gas evolution.

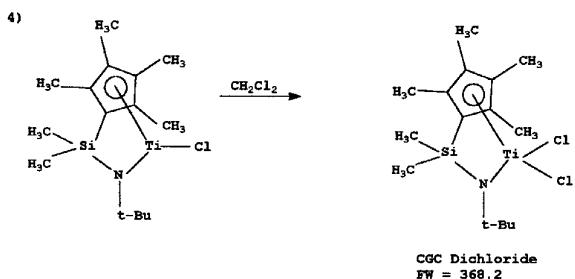
25


-8-

The reaction mixture is heated up to 85-90°C, and this temperature is maintained for 2 hours. After allowing the reaction mixture to cool to 60-65°C, THF is fed into the reaction vessel. The reaction mixture is then cooled to 20-25°C. This becomes known as Slurry 2. This process is illustrated by equations 2) and 3):

5
2)

CpSA Ligand
FW = 114.0


3)

10

-9-

5 The agitated Slurry 1 is transferred into the reactor containing the agitated Slurry 2 as quickly as possible resulting in about a temperature increase of about 7-15°C. Methylene chloride is then charged to the reaction vessel, the vessel containing Slurry 1 is then rinsed out with toluene and charged to the Slurry 2 reaction vessel, and this mixture is then agitated for 2 hours. A dark reddish-brown color is noted in 10 the reaction vessel as soon as Slurry 1 is introduced. This reaction is illustrated by equation 4):

15 Solvents are removed under reduced pressure (60-80 mm Hg) using a rotary vane vacuum pump to about 1/2 of the starting volume. Toluene is added back, Celite is added, and the mixture is filtered through the large

WO 02/057272

PCT/US02/01421

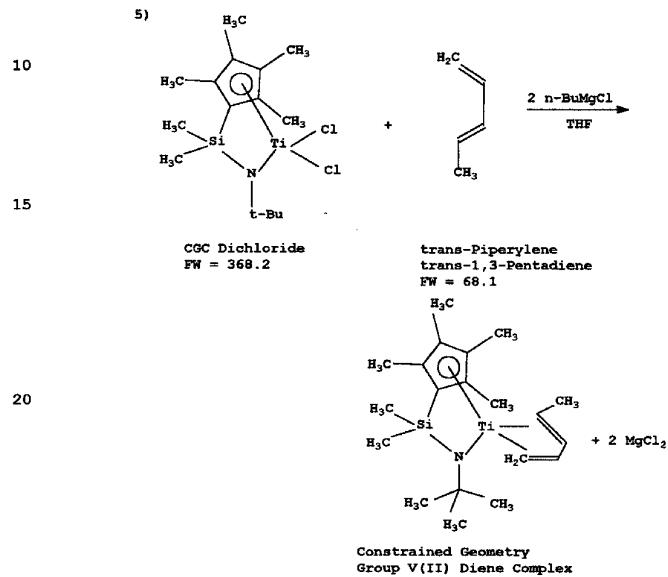
-10-

Sparkler filter. Solvents are then distilled to concentrate the product. The remaining crude product solution is then used directly in the next step.

5 "PROCESS DESCRIPTION" AND "REACTION" FOR CONVERSION
 OF CGC DICHLORIDE TO A GROUP 4(II) DIENE COMPLEX

PROCESS DESCRIPTION

10 The crude product from the previous steps of this process, equations 1) to 4) which is still contained in the reactor used is agitated at a pot temperature of 20-25°C and piperlylene concentrate (1,3-pentadiene) is added.

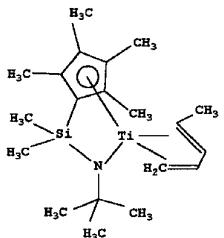

15 Butylmagnesium chloride in THF is fed into the reactor. The reaction is exothermic. When the Grignard feed is done, the reaction mixture is agitated for an additional 1/2 hour at a pot temperature of 35-40°C.

20 This mixture is then distilled atmospherically to a pot temperature of 85°C, cooled to 20-25°C, and then vacuum distilled at $\leq 65^{\circ}\text{C}$. One drum of deoxygenated hydrocarbon solvent and Celite is added at 20-25°C, and the resulting mixture is filtered through the large 33 inch sparkler. The filter cake is hydrolyzed. The resulting solution is then vacuum distilled at $\leq 65^{\circ}\text{C}$.

25 Six drums of deoxygenated Isopar are charged to the reactor, 2 drums at a time, and then vacuum distilled at $\leq 65^{\circ}\text{C}$ to remove THF and toluene. When the

-11-

solvent concentrations are appropriate, 1 drum of deoxygenated Isopar and Celite are added. The resulting solution is filtered through a precoated small sparkler filter into a cylinder. The filter cake may be discarded. The reaction is illustrated by the following equation 5).


-12-

SUMMARY OF THE INVENTION

The invention provides ligands of novel constrained geometry Group 4(II) diene complexes and complexes derived therefrom which have an olefin polymerization activity significantly greater than that demonstrated by known complexes of the same type.

In particular, the invention provides complexes of the formula

10

15

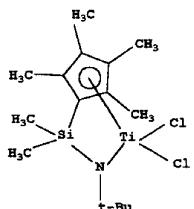
which have an olefin activity substantially in excess of 100%, e.g., at least about 130%, of the aforesaid "standard activity".

20

Pursuant to one aspect of the invention, a cyclopentadienyl silyl amine is treated with an alkali metal alkyl and thereafter with a dialkyl silyl dihalide to produce cyclopentadienyl silyl amine ligand (CpSA ligand). The ligand is treated with a group 4

25

WO 02/057272


PCT/US02/01421

-13-

metal tetrahalide adduct of a linear ether having at least two oxygen atoms and an alkali metal alkyl to produce a dihalide ligand of the ultimately desired group 4(II) complex having the formula:

5

10

15

The dihalide ligand is treated with a diene and an alkali metal alkyl used in stoichiometric excess. Dienes useful in the invention are described in United States patents 5,470,993 and 6,015,916. The unreacted alkali metal alkyl in the consequent reaction mixture is quenched, for example, by chlorotrimethyl silane. The complex so produced is apparently free or substantially so of impurities which may result in undesirable gel formation and impair single site olefin polymerization functionality.

25

WO 02/057272

PCT/US02/01421

-14-

DETAILED DESCRIPTION OF THE INVENTION

Various group 4 metal tetrachloride-ether adducts are known. See, generally, patent 5,470,993 and published German application DE 197 39 946 A1. Each of the adducts described in these references is useful in this invention. The 1,2-dimethoxyethane (DME) adducts are preferred.

One method for preparing a DME group 4 metal tetrahalide adduct is described in patent 6,015,916, Col. 4, 11. 61-66. More generally useful adducts are prepared by treating from any compound of formula $X-O-Y-O-X$ in which X is a C_1 to C_{10} alkyl group, and Y is a C_2 to C_{10} alkane.

Any group 4 tetrahalide-ether adduct may be used. Titanium tetrachloride DME adducts are preferred. The adduct is preferably prepared in a hydrocarbon solvent. The mol ratio of the reactants is preferably about 1:1 with a small excess of the ether reactant.

Any alkali metal alkyl having the formula A-R, in which A may be any alkali metal, preferably lithium, and R is any alkyl group, preferably a C_1 to C_{10} alkyl group, may be used. N-butyllithium is preferred.

The synthesis of the dihalo metallocene ligand is conducted in a non-interfering medium. Suitable media include hydrocarbons, preferably a C_5 to C_8 alkane, and mixtures of an alkane and ethyl ether. The synthesis may be performed at any effective reaction temperature.

WO 02/057272

PCT/US02/01421

-15-

A preferred temperature range is from -20°C to 0°C. The reaction mixture contains the dihalo ligand in the non-interfering medium. Upon cooling, the dihalo ligand separates from the reaction mixture as a crystalline solid which may be removed by filtration under an inert atmosphere, preferably nitrogen. The isolated dihalo ligand may be recrystallized to further reduce impurity content.

5 The alkali metal alkyl is used in stoichiometric excess to reduce substantially all of the group 4(IV) dihalo ligand to the group 4(II) finished catalyst and to reduce any other group 4(IV) compounds which may be present in the reaction mixture to group 4(II) compounds or other compounds of minimal adverse affect 10 on the activity or single site functionality of the finished catalyst. The excess alkali metal alkyl is quenched, for example, with chlorotrimethyl silane. The product is understood to comprise a single site 15 catalyst composite essentially free of group 4(IV) or group 4(III) compounds and other impurities which may 20 adversely affect single site polymerization activity.

EXEMPLIFICATION OF THE INVENTION

1. Synthesis of the Cyclopentadienyl Silyl Amine

Ligand

25 A cyclopentadienyl compound as defined is charged to a vessel. THF is added, preferably at a temperature

WO 02/057272

PCT/US02/01421

-16-

from about -20°C to -10°C, depending upon the cyclopentadienyl compound used. Dimethyldichlorosilane is fed in at a low temperature of about -10°C to 0°C. The vessel is agitated and the contents warmed to room 5 temperature and eluted thereafter. The selected alkylamine, preferably a C₁ to C₁₀ alkyl amine, is fed into the vessel at low temperature, e.g., about -10°C. After agitation and warming to room temperature, the vessel is heated, and THF and unreacted amine are 10 removed. A slurry may form. If so, heptane or equivalent hydrocarbon media may be added. The slurry is filtered. The filtrate contains cyclopentadienyl silyl amine ligand (CpSA ligand) of formula:

in which Z is a cyclopentadienyl group and R is an alkyl group derived from the alkyl amine reactant.

20. Preparation of the Dihalo Ligand

The dihalo ligand may be synthesized in the manner described in patent 6,015,916, Col. 3, l. 60, part (2). In general, the cyclopentadienyl silyl amine may be treated with an unreduced group 4 tetrachloride, 25 preferably in the form of a DME or equivalent adduct in a hydrocarbon solvent. The Ti(IV) of the dihalo intermediate is converted to Ti(II) in the final complex by treatment with an alkali metal alkyl as

WO 02/057272

PCT/US02/01421

-17-

described, preferably butyllithium, and a diene in a non-interfering, preferably hydrocarbon, medium at a preferred temperature of -10°C to 0°C. The alkali metal alkyl is used in stoichiometric excess to reduce the group 4(IV) ligand to the group 4(II) finished catalyst and to reduce any other group 4(IV) compounds which may be present in the reaction mixture. The excess alkali metal alkyl is quenched, preferably with chlorotrimethylsilane.

5

EXAMPLES DEMONSTRATING ENHANCED POLYMERIZATION ACTIVITY

EXAMPLE 1

All apparatus used in this example were clean, dry and nitrogen-purged. Presence of THF was precluded.

21.2 kg of ethyl ether and 6.5 kg of CpSA ligand (assumed 95% purity) were charged into a first reactor. The pot temperature was reduced to -20°C.

21.2 kg of 15% n-butyllithium in hexane was slowly added with the pot temperature maintained between -20°C and -10°C. After the feed was completed, the pot temperature was raised to 20°C over 1 hour, and the pot contents were agitated for 4 hours at 20-25°C. A reaction mixture containing a CpSA dilithio salt was produced.

25 34.2 kg of deoxygenated heptane and 2.6 kg of dimethoxyethane were charged into a second reactor. The pot temperature was adjusted to about 10-15°C.

10

15

20

25

WO 02/057272

PCT/US02/01421

-18-

4.8 kg of titanium tetrachloride were charged to the second reactor at a pot temperature of between 15°C and 30°C. Upon completion of the feed, the speed of agitation of the second reactor contents was increased.

5 Agitation continued for about 3 hours at a pot temperature of 20-25°C.

The pot temperature of each of the first and second reactors was adjusted to 15-20°C. Thereafter, the contents of the first reactor were transferred to 10 the second reactor with the pot temperature of the second reactor maintained at 20-25°C. The second reactor contents were then agitated for about 12 hours at 25-28°C.

15 A reaction mixture containing the dichloride ligand having the formula set forth on page 13 hereof was produced in the second reactor. After solvent stripping, 47.0 kg of deoxygenated heptane was added to the second reactor. The second reactor pot temperature was adjusted to -15°C. Thereafter, 6 kg of piperylene 20 was charged to the second reactor. 23.3 kg of 6M butyllithium in hexane were fed into the second reactor. During this feed, the pot temperature was maintained between -15°C and -10°C. Upon completion of 25 the feed, the pot temperature was adjusted to 20-25°C over 1 hour. The reaction mixture was agitated for about three hours at 20-25°C.

WO 02/057272

PCT/US02/01421

-19-

1.5 kg of trimethylsilicon chloride (TMSCl) was added. The pot temperature was adjusted to 40-45°C with agitation for 2 hours. Thereafter, the pot temperature was adjusted to 20-25°C, and the reaction mixture was filtered. The cake was rinsed with deoxygenated heptane.

5 Theory yield - 9.1 Kg contained

Actual yield - 7.454 Kg contained.

Activity (determined as described above) - 170%.

10

EXAMPLE 2
All apparatus used in this example were clean, dry and nitrogen-purged. Presence of THF was precluded.

15 8.5 kg of ethyl ether and 2.6 kg of CpSA ligand (95% purity assumed) were charged into a clean, Isopar-rinsed, nitrogen-purged first reactor. The pot temperature was -20°C.

13.7 kg of deoxygenated Isopar E and 1.0 kg of dimethoxymethane were charged into a dry, nitrogen-purged second reactor. The pot temperature was 20

20 adjusted to 10-15°C.
1.9 kg of titanium tetrachloride were fed into the second reactor with slow agitation of the reactor contents and with the pot temperature maintained between 15°C and 30°C. Upon completion of the feed, 25 the agitation was increased, and the contents of the second reactor were agitated for about 3 hours at 20-25°C.

WO 02/057272

PCT/US02/01421

-20-

5 The pot temperature of each of the first and second reactors was adjusted to 15-20°C. The agitated contents of the first reactor were transferred to the second reactor with the second reactor pot temperature maintained at 20-25°C. The contents of the second reactor were agitated for about 12 hours at 20-25°C. The reaction mixture in the second reactor contained the dichloride ligand set forth on page 13 hereof. Solvents were stripped from the reaction mixture.

10 The pot temperature of the second reactor was adjusted to 15°C. 2.0 kg of piperylene were charged to the reactor. 8.5 kg of 15% butyllithium in hexane were slowly fed into the second reactor temperature maintained between -15°C and -10°C. After the feed was 15 completed, the pot temperature was adjusted to 20-25°C over a 1 hour time period. The reaction mixture was agitated for 3 hours at 20-25°C.

20 600 g of TMSCl were added, and the reaction mixture was agitated for 1 hour. The reaction mixture which contained the desired group 4(II) diene complex was filtered, and the cake was rinsed with deoxygenated Isopar.

25 Theory yield (contained) - 3.65 kg.
Actual yield (contained) - 2.59 (71% yield)
Activity (as determined in the manner described above) - 140%.

WO 02/057272

PCT/US02/01421

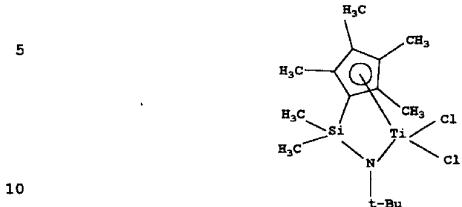
-21-

EXAMPLES 3 AND 4

Synthesis procedures substantially as described in Examples 1 and 2 yielded Group 4(II) diene complex products having activities, when determined as described above, of 165% and 130%.

5

-22-


WE CLAIM:

1. A method for preparing a compound of claim 1 which comprises:
 - 5 (i) providing a first reactor containing the reaction product of a cyclopentadienyl silyl amine and an alkali metal alkyl,
 - (ii) providing a second reactor containing the adduct of formula $MX_4\cdot DME$ wherein M is a group 4 element, X is a halogen, and DME is dimethoxyethane,
 - 10 (iii) adjusting the pot temperature of each of said first reactor and said second reactor to be within the ranges of about 20°C-30°C,
 - (iv) thereafter combining the contents of the first reactor with the contents of the second reactor wherein a reaction mixture is produced in said second reactor, and wherein said reaction mixture produced in said second reactor contains a compound of the formula

20

25

-23-

(v) distilling solvents from said reaction mixture containing said compound in said second reactor,

15 (vi) converting said step (iv) compound to a compound as set forth in claim 1, and wherein said compound as set forth in claim 1 produced in step (iv) has olefin polymerization activity substantially in excess of 100% of the standard activity.

20

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
25 July 2002 (25.07.2002)

PCT

(10) International Publication Number
WO 02/057272 A3(51) International Patent Classification⁵: C07F 17/00, 7/28, B01J 31/00, C08F 4/64

(72) Inventors; and

(21) International Application Number: PCT/US02/01421

(75) Inventors/Applicants (for US only): SULLIVAN, Jeffrey, M. [US/US]; 3125 Money Court, Loveland, CO 80537 (US); GATELY, Daniel, A. [US/US]; 319 East Iowa Avenue, Berthoud, CO 80513 (US).

(22) International Filing Date: 16 January 2002 (16.01.2002)

(74) Agent: IRONS, Edward, S.; 3945 Fifty Second Street, N.W., Washington, DC 20016 (US).

(25) Filing Language: English

(81) Designated States (national): AU, CA, JP, NZ, US.

(26) Publication Language: English

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE; TR).

(30) Priority Data: 09/761,151 17 January 2001 (17.01.2001) US

Published:

with international search report

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

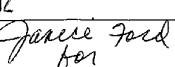
(88) Date of publication of the international search report:
27 February 2003

US 09/761,151 (CON)

Filed on 17 January 2001 (17.01.2001)

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(71) Applicant (for all designated States except US): BOULDER SCIENTIFIC COMPANY [US/US]; 598 Third Street, Post Office Box 548, Mead, CO 80542 (US).



WO 02/057272 A3

(54) Title: CONSTRAINED GEOMETRY LIGANDS AND COMPLEXES DERIVED THEREFROM

(57) Abstract: A novel constrained geometry titanium (II) diene complex and ligands of such complexes are described. The novel complex has an olefin polymerization activity substantially in excess of a defined activity standard characteristic of analogous prior art constrained geometry diene complexes. Methods for the synthesis of the novel, high-activity complexes are described.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International application No. PCT/US02/01421
A. CLASSIFICATION OF SUBJECT MATTER IPC(7) : C07F 17/00, 7/28; B01J 31/00; C08F 4/64 US CL : 556/7, 11, 20, 28, 52; 526/126, 127, 135, 134, 170, 943; 502/103, 117 According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S. : 556/7, 11, 20, 28, 52; 526/126, 127, 133, 134, 170, 943; 502/103, 117		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY and CAPLUS Databases		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5,491,246 A (ROSEN et al.) 13 February 1996 (13.02.1996), column 9, lines 29-42.	1
A	US 5,470,993 A (DEVORE et al.) 28 November 1995 (28.11.1995), see entire document.	1
A	US 5,512,693 A (ROSEN et al.) 30 April 1996 (30.04.1996), see examples.	1
A	US 5,688,880 A (SPENCER et al.) 18 November 1997 (18.11.1997), see entire document.	1
<input type="checkbox"/> Further documents are listed in the continuation of Box C. <input type="checkbox"/> See patent family annex.		
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "B" earlier application or patent published on or after the international filing date "L" document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the <i>priority date claimed</i>		
Date of the actual completion of the international search	Date of mailing of the international search report 12 JUL 2002	
06 May 2002 (04.06.2002)	Authorized officer Porfirio Nazario-Gonzalez Telephone No. 703-308-1235 	
Name and mailing address of the ISA/US U.S. Patent and Trademark Office Box PCT Washington, D.C. 20231 Facsimile No. (703)305-3230		

Form PCT/ISA/210 (second sheet) (July 1998)

フロントページの続き

(74)代理人 100096013

弁理士 富田 博行

(74)代理人 100083747

弁理士 狩野 剛志

(72)発明者 サリヴァン, ジェフリー・エム

アメリカ合衆国コロラド州 80537, ラブランド, モレイ・コート 3125

(72)発明者 ゲイトリー, ダニエル・エイ

アメリカ合衆国コロラド州 80513, バーサウド, イースト・アイオワ・アベニュー 319

F ターム(参考) 4H049 VN01 VP01 VQ80 VR51 VS80 VU14 VW05

4H050 AA02 AB40