
(12) STANDARD PATENT (11) Application No. AU 2017327824 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Data integration job conversion

(51) International Patent Classification(s)
G06F 9/54 (2006.01) G06F 9/48 (2006.0 1)
G06F 8/51 (2018.01)

(21) Application No: 2017327824 (22) Date of Filing: 2017.09.08

(87) WIPO No: W018/052814

(30) Priority Data

(31) Number (32) Date (33) Country
62/402,890 2016.09.30 US
62/395,183 2016.09.15 us
15/400,590 2017.01.06 us

(43) Publication Date: 2018.03.22
(44) Accepted Journal Date: 2021.01.28

(71) Applicant(s)
Talend, Inc.

(72) Inventor(s)
Hirt, Michael Guillaume Maurice;Dynes, Ciaran

(74) Agent / Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
US 20050256892 Al
US 20140281708 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
(1) Organization I~I~~~DDDIIDIIVIIIDDIIDD~~~~DD~I

International Bureau (10) International Publication Number

(43) International Publication Date W O 2018/052814 Al
22 March 2018 (22.03.2018) W IPO I PCT

(51) International Patent Classification: (72) Inventors: HIRT, Micha81 Guillaume Maurice; 4
G06F 9/54 (2006.01) Allee de Chamonix, 78180 Montigny-Le-Bretonneux (FR).

(21) International Application Number: DYNES, Ciaran; Blainroe Lower, Wicklow (IE).

PCT/US2017/050796 (74) Agent: ROBERTS, Steven E.; PATTERSON & SHERI

(22) International Filing Date: DAN, L.L.P., 24 Greenway Plaza, Suite 1600, Houston,

08 September 2017 (08.09.2017) Texas 77046 (US).

(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,

(26) Publication Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
.30) .riority DatCA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

(30)PriorityData: 15 September 2016 (15.09.2016) US DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT, HN,

62/402,890 30 September 2016 (30.09.2016) US HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,

15/400,590 06 January 2017 (06.01.2017) US KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(71) Applicant: TALEND, INC. [US/US]; 800 Bridge Park- OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
way, Suite 200, Redwood City, California 94065 (US). SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: DATA INTEGRATION JOB CONVERSION

Processing Appli

otData Processing System 10
Model l

08

Conversion Tool

jo ao InNetwork
IDE Application j_012

Output Data Stor

Developer Systemn j0

100

FIG. 1

(57) Abstract: Techniques for converting a data integration job from one framework to a target are disclosed herein. A conversion
f4tool receives a data integration job comprising a plurality of components. Each component performs an assigned task. The first data

Wlintegration job is of a given framework. The conversion tool receives a request to convert the data integration job to a data integration
=job of a target framework. i response to the request, the conversion tool converts the data integration job by determining whether,

for each component of the data integration job, a corresponding component in the target framework is available. The conversion tool
converts the components to corresponding components and stored the new data integration job in a data store.

W O 2018/052814 A052814Al||

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
- with international search report (Art. 21(3))

WO 2018/052814 PCT/US2017/050796

DATA INTEGRATION JOB CONVERSION

BACKGROUND

Field

[0001] Embodiments of the present disclosure generally relate to data

processing, and more specifically, to converting a processing job from one

framework to another.

Description of the Related Art

[0002] An organization may process large amounts of data for various

purposes, such as for analytics, inventory, and marketing. Big data can be

statistically analyzed to determine trends that can inform decision-making by

the organization. Typically, the organization may design data integration

workflows (also referred to herein as "jobs") comprising tasks for combine

data from a variety of sources into a unified view of the data. For example, an

extract-transform-and-load (ETL) job generally takes, as input, a set of data

from homogeneous or heterogeneous sources, formats the data for

subsequent analysis, and stores the data in a target data store.

[0003] As data integration technology has progressed, many different

frameworks for processing large amounts of data have become available. For

example, MapReduce is a programming model that processes large data sets

in parallel using a combination of Map and Reduce functions on a given data

set to produce a useful set of data for analysis. As another example, some

cluster computing frameworks may ingest data in mini-batches and perform

resilient distributed dataset (RDD) transformations on those mini-batches.

[0004] A developer may choose a framework that is appropriate for a

desired data integration job, considering factors such as fastest processing

time given the type of data, complexity of the job, and amount of data.

However, given the disparate amount of frameworks available for processing

large amounts of data, a developer might not be immediately certain of which

framework to use. For example, for a given data integration job, a standard

Java framework might yield results faster than if performed using a
1

2

MapReduce framework. Or given a size of the underlying data, a batch streaming job

might best use resources efficiently to process the data.

[0005] Consequently, the developer may desire to experiment with different frameworks for

a given data integration job. However, the developer may be required to manually create

the job for each framework. Further, a developer may want to migrate a data integration

job from one system to another, whether the system executes jobs under a different

framework. Therefore, the developer would need to recode the job using that framework.

Because each framework may have disparate underlying components, a data integration

job in one framework will have different complexities relative to the same data integration

job in another framework. As a result, re-creating a data integration job in another

framework can be a time-intensive and error prone process.

SUMMARY

[0005a] It is an object of the present invention to substantially overcome or at least

ameliorate one or more disadvantages of existing arrangements.

[0005b] In a first aspect, the present invention provides a method for converting a data

integration job from a source framework to a target framework, the method comprising:

receiving a request to convert a first data integration job of a first framework to a second

data integration job of a second framework, the first data integration job comprising a

plurality of components, wherein each component performs an assigned task as part of

the first data integration job; in response to the request, determining that a corresponding

component in the second framework that corresponds to a job component of the plurality

of job components in the first data integration job is not available in a job definition model

for the second framework; flagging the component for review; in response to flagging the

job component for review, receiving a specification of a target component of the second

framework corresponding to the job component; generating a converted component

based on the target component of the second framework; adding the converted

component to the second data integration job; and storing the second data integration job

in a data store.

2a

[0005c] In a second aspect, the present invention provides a computer-readable storage

medium storing instructions, which, when executed on a processor, perform an operation

for converting a data integration job from a source framework to a target framework, the

operation comprising: receiving a request to convert a first data integration job of a first

framework to a second data integration job of a second framework, the first data

integration job comprising a plurality of components, wherein each component performs

an assigned task as part of the first data integration job; in response to the request,

determining that a corresponding component in the second framework that corresponds

to a job component of the plurality of job components in the first data integration job is not

available in a job definition model for the second framework; flagging the component for

review; in response to flagging the job component for review, receiving a specification of

a target component of the second framework corresponding to the job component;

generating a converted component based on the target component of the second

framework; adding the converted component to the second data integration job; and

storing the second data integration job in a data store.

[0005d] In a third aspect, the present invention provides a system, comprising: a

processor; and a memory storing program code, which, when executed on the processor,

performs an operation for converting a data integration job from a source framework to a

target framework, the operation comprising: receiving a request to convert a first data

integration job of a first framework to a second data integration job of a second

framework, the first data integration job comprising a plurality of components, wherein

each component performs an assigned task as part of the first data integration job; in

response to the request, determining that a corresponding component in the second

framework that corresponds to a job component of the plurality of job components in the

first data integration job is not available in a job definition model for the second

framework; flagging the component for review; in response to flagging the job component

for review, receiving a specification of a target component of the second framework

corresponding to the job component; generating a converted component based on the

target component of the second framework; adding the converted component to the

second data integration job; and storing the second data integration job in a data store.

2b

[0006] One embodiment presented herein describes a method for converting a data

integration job from a source framework to a target framework. The method generally

includes receiving a request to convert a first data integration job of a first framework to a

second data integration job of a second framework. The first data integration job comprises

a plurality of components. Each component performs an assigned task as part of the first

data integration job. In response to the request, the method generally performs the

following steps for each component of the first data integration job: determining whether a

component in the second framework that corresponds to the component in the first data

integration job is available. If so, a converted component to include in the second data

integration job is generated. If not, the component is flagged for review. The second data

integration job is stored in a data store.

[0007] Another embodiment presented herein describes a computer-readable storage

medium storing instructions, which, when executed on a processor, performs an

operation for converting a data integration job from a

WO 2018/052814 PCT/US2017/050796

source framework to a target framework. The operation itself generally

includes receiving a request to convert a first data integration job of a first

framework to a second data integration job of a second framework. The first

data integration job comprises a plurality of components. Each component

performs an assigned task as part of the first data integration job. In response

to the request, the operation generally performs the following steps for each

component of the first data integration job: determining whether a component

in the second framework that corresponds to the component in the first data

integration job is available. If so, a converted component to include in the

second data integration job is generated. If not, the component is flagged for

review. The second data integration job is stored in a data store.

[0008] Yet another embodiment presented herein describes a system

having a processor and a memory. The memory stores program code, which,

when executed on the processor, performs an operation for converting a data

integration job from a source framework to a target framework. The operation

itself generally includes receiving a request to convert a first data integration

job of a first framework to a second data integration job of a second

framework. The first data integration job comprises a plurality of components.

Each component performs an assigned task as part of the first data

integration job. In response to the request, the operation generally performs

the following steps for each component of the first data integration job:

determining whether a component in the second framework that corresponds

to the component in the first data integration job is available. If so, a

converted component to include in the second data integration job is

generated. If not, the component is flagged for review. The second data

integration job is stored in a data store.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] So that the manner in which the above recited features of the

present disclosure can be understood in detail, a more particular description

of the disclosure, briefly summarized above, may be had by reference to

embodiments, some of which are illustrated in the appended drawings. It is to

3

WO 2018/052814 PCT/US2017/050796

be noted, however, that the appended drawings illustrate only exemplary

embodiments and are therefore not to be considered limiting of its scope, may

admit to other equally effective embodiments.

[0010] Figure 1 illustrates an example computing environment, according

to one embodiment.

[0011] Figure 2 illustrates a conceptual diagram of the conversion tool

described relative to Figure 1, according to one embodiment.

[0012] Figure 3 illustrates a conceptual diagram of a universal job

definition model, according to one embodiment.

[0013] Figure 4 illustrates a method for converting a data integration job of

a given framework to a data processing job of another framework, according

to one embodiment.

[0014] Figure 5 illustrates an example computing system configured to

convert a data processing job of a given framework to a data integration job of

another framework, according to one embodiment.

[0015] To facilitate understanding, identical reference numerals have been

used, where possible, to designate identical elements that are common to the

figures. It is contemplated that elements and features of one embodiment may

be beneficially incorporated in other embodiments without further recitation.

DETAILED DESCRIPTION

[0016] Embodiments presented herein disclose techniques for converting a

data integration job from one framework (e.g., a standard Java framework, a

MapReduce framework, a batch processing framework, etc.) to another

framework. Embodiments provide an integrated development environment

(IDE) application that allows a developer to design a data integration job

comprising a number of tasks for receiving a set of input data, processing the

data, and generating output based on the processed data.

4

WO 2018/052814 PCT/US2017/050796

[0017] In one embodiment, the IDE application provides a conversion tool

that uses a unified job definition model to translate underlying source code,

graphical flow descriptions, and connection metadata between data

integration jobs of a given framework to jobs of another framework. The

unified job definition model may include definitions for a variety of frameworks,

such as a standard Java, MapReduce, batch processing, and stream

processingframeworks.

[0018] As further described below, the conversion tool may convert data

integration jobs using the job definition model. For example, the conversion

tool may analyze each component of an input job against the job definition

model. The conversion tool identifies a corresponding component of a target

framework. If identified, the conversion tool translates that component to the

corresponding component.

[0019] Figure 1 illustrates a computing environment 100, according to one

embodiment. As shown, the computing environment 100 includes a

developer system 105, a data processing system 110, an input data store

115, and an output data store 120, each interconnected via a network 125,

e.g., the Internet.

[0020] Generally, the data processing system 110 includes a processing

application 112. The processing application 112 performs a data integration

job that includes a variety of tasks to be performed as a workflow for retrieving

data from the input data store 115 (and other sources of data), processing the

data (e.g., transforming the data to be further analyzed), and loading the

processed data into the output data store 120. For example, the data

integration job may be an extract-transform-and-load (ETL) processing job

performed under some data processing framework, such as MapReduce.

[0021] In one embodiment, a developer may design a data integration job

to be performed by the processing application 112. In particular, the

developer system 105 includes an IDE application 106 that allows the

developer to design data integration jobs 109. For instance, the IDE

5

WO 2018/052814 PCT/US2017/050796

application 106 may provide a graphical user interface (GUI) that includes a

canvas for a given data integration job. The developer may drag graphical

representations of design components and connectors onto the canvas to

create a given data integration job 109.

[0022] Each component performs and underlying function associated with

that component. For example, a component for a file input path may include

source code that retrieves a file input path in the data integration job 109. The

developer may link a given component with another component to create a

flow for the data integration job 109. Jobs created under the IDE application

106 are stored under a modeling framework. The modeling framework stores

information relating to a given data integration job 109, such as a graphical

flow description and connection metadata.

[0023] The IDE application 106 supports a variety of data processing

frameworks. Example frameworks include Java, Apache Hadoop, Apache

Spark, and the like. When creating a data processing job 109, the developer

may select one of the frameworks, and in turn, the IDE application 106

retrieves components and connectors that are associated with that

framework. In some cases, a developer may desire to port a given data

integration job 109 of one framework (e.g., MapReduce) to a corresponding

data integration job 109 of another framework (e.g., Apache Spark).

[0024] To do so, the IDE application 106 includes a conversion tool 107

that automatically converts the data integration job 109 to various frameworks.

For example, the developer may access the conversion tool 107 through the

GUI and select the desired data integration job 109 of a particular data

processing framework. The developer may also select a target framework to

which to convert the data integration job 109. In one embodiment, the

conversion tool 107 includes a job definition model 108 that is a unified model

which provides definitions (e.g., class and object definitions) for each

component of all supported frameworks. The job definition model 108 may

map common definitions across frameworks to one another.

6

WO 2018/052814 PCT/US2017/050796

[0025] Figure 2 illustrates a conceptual diagram of the conversion tool 107,

according to one embodiment. As shown, the conversion tool 107 includes a

retrieval component 205, a generation component 210, an evaluation

component 215, a conversion component 220, a storage component 225, and

the job definition model 108

[0026] Generally, the retrieval component 205 receives requests to convert

a data integration job 109 from one framework to another framework. The

retrieval component 205 may retrieve the data integration job 109 itself from a

data store as well as the information relating to the job from the model

framework of the IDE application 109. Such information can include a type of

data integration job, underlying framework, graphical flow descriptions,

connector metadata, and the like. The generation component 210 initializes a

new data processing job 109 file that includes the content provided in the

original data integration job 109. The generation component 210 may update

the properties of the file such that the framework metadata specifies the target

framework.

[0027] The evaluation component 215 may analyze each of the

components of the data integration job 109 to identify parameters, values, and

variables specified in the component. Further, the evaluation component 215

may determine a corresponding component in the target framework for the

purpose of conversion. For example, a tFileinputDelimited component in a

standard data integration framework may correspond to a tFileinputDelimited

component in Apache Spark.

[0028] Further, the evaluation component 215 may evaluate any additional

translation policies to identify whether any special conversions should be

made to the component. For example, a tRedshiftConnection component (for

initiating a Redshift JDBC connection to a server) in a standard data

integration job might not ordinarily have a corresponding component in

Apache Spark. A policy instead may specify that the tRedShiftConnection

should be converted to a tRedshiftConfiguration component in Apache Spark.

7

WO 2018/052814 PCT/US2017/050796

[0029] The evaluation component 215 may also determine that a

corresponding component is not available for a given component in the data

integration job 109.

[0030] The conversion component 220 receives results for a given

analyzed component in the evaluation component 215. The conversion

component 220 may then copy variables, values, and the like from the original

component to the corresponding component. The conversion component 220

may also retrieve a corresponding graphical representation of that component

for presentation in the GUI. In the event that the evaluation component 215 is

unable to identify a corresponding component, the conversion component 220

may flag the underlying component for a review by the developer. In turn, the

developer may determine an appropriate component to use for the target

framework. For example, in response to flagging the underlying component

for review, the IDE application 106 may present the flagged component via a

graphical user interface to the developer. In turn, the developer may evaluate

the flagged component to determine the appropriate component. Once

determined, the developer may specify the corresponding component via the

IDE application 106, which in turn receives the specification and converts the

component to the specified component.

[0031] The storage component 225 saves the resulting data integration job

109 to a data store, e.g., a local disk on the developer system 105, a cloud

storage location, etc. In addition, the developer may view the resulting data

integration job 109 via the GUI of the IDE application 106 and make any

further modifications (e.g., to components flagged by the conversion

component 220).

[0032] Figure 3 illustrates a conceptual diagram of an example universal

job definition model 300, according to one embodiment. The IDE application

106 includes a universal job definition model that can be translated into a

variety of runtimes. For example, this can include a standard job in Java, a

MapReduce job, a Spark Batch job, a Spark streaming job, and a Storm job in

Java.
8

WO 2018/052814 PCT/US2017/050796

[0033] In one embodiment, the IDE application 106 uses a modeling

framework (e.g., an Eclipse Modeling Framework) to store information related

to a given job. Such information includes a graphical flow description,

connection metadata, and the like. The modeling framework allows the IDE

application to save and restore models as jobs. In the modeling framework,

jobs are generally based on a main class called ProcessItem, as illustrated at

305.

[0034] Big Data Batch jobs are based on a modeling framework class

called MapReduceProcessItem, which extends the ProcessItem class. The

definition of the job is contained in the ProcessType object (which is illustrated

at 310). Big Data streaming jobs are based on the modeling framework class

called StormProcessItem, which extends the ProcessItem class. The

definition of the job is contained in the ProcessType object 310.

[0035] Note, when any job is converted, by default, the setup of

components remains the same in that all variables are maintained. Thus, the

main change takes place in the class containing the components. A job is

composed of a sequence of directed acyclic graphs called subjobs. Subjobs

may contain multiple components.

[0036] Figure 4 illustrates a method 400 for converting a data integration

job of a given framework to a data processing job of another framework,

according to one embodiment. As shown, method 400 begins at step 405,

where the retrieval component 205 receives a request to convert a data

integration job from one framework to another. The request may include the

data integration job file, metadata describing the underlying framework of the

data integration job, and a target framework. For example, the request may

specify converting the data integration job from a MapReduce framework to

an Apache Spark framework. The retrieval component 205 may retrieve the

data processing job 109 from storage as well as any metadata associated

with the data processing job 109 stored in the model framework.

9

WO 2018/052814 PCT/US2017/050796

[0037] At step 410, the generation component 210 initializes a new data

integration job file that includes the content (components, connectors, and the

like) of the original data integration job. The generation component 210 may

also specify (e.g., in metadata for the new file) that the data integration job file

is of the target framework.

[0038] At step 415, the method 400 enters a loop for each component of

the new data integration job. At step 420, the evaluation component 215

determines whether the component has a corresponding component in the

target framework. The evaluation component 215 may do so by evaluating

the job definition model 108. At step 425, the evaluation component 215

determines whether the corresponding component is available. The

evaluation component 215 may send the result of the determination to the

conversion component 220. If the corresponding component is available,

then the conversion component 220 converts the original component to the

corresponding component. The conversion component 220 may populate

parameters for the component with variables and values retrieved from the

original component.

[0039] If no corresponding component is available, then at step 430, the

evaluation component 215 evaluates a translation policy to determine whether

there are any special conversion rules available for that particular component.

If so, then at step 435, the conversion component 220 applies the rule to that

component. Otherwise, at step 440, the conversion component 220 may flag

the component for review by the developer.

[0040] At step 445, the storage component 225 saves the new data

integration job to a storage location (e.g., a local disk in the developer system

105, a cloud storage location, file server, etc.).

[0041] Figure 5 illustrates an example computing system 500 configured to

convert a data processing job of a given framework to a data integration job of

another framework, according to one embodiment. As shown, the computing

system 500 includes, without limitation, a central processing unit (CPU) 505, a

10

WO 2018/052814 PCT/US2017/050796

network interface 515, a memory 520, and storage 530, each connected to a

bus 517. The computing system 500 may also include an I/O device interface

510 connecting I/O devices 512 (e.g., keyboard, mouse, and display devices)

to the computing system 500. Further, in context of this disclosure, the

computing elements shown in computing system 500 may correspond to a

physical computing system (e.g., a system in a data center) or may be a

virtual computing instance executing within a computing cloud.

[0042] The CPU 505 retrieves and executes programming instructions

stored in the memory 520 as well as stores and retrieves application data

residing in the memory 520. The interconnect 517 is used to transmit

programming instructions and application data between the CPU 505, I/O

devices interface 510, storage 530, network interface 515, and memory 520.

Note, CPU 505 is included to be representative of a single CPU, multiple

CPUs, a single CPU having multiple processing cores, and the like. And the

memory 520 is generally included to be representative of a random access

memory. The storage 530 may be a disk drive storage device. Although

shown as a single unit, the storage 530 may be a combination of fixed and/or

removable storage devices, such as fixed disc drives, removable memory

cards, or optical storage, network attached storage (NAS), or a storage area

network (SAN).

[0043] Illustratively, the memory 520 includes an IDE application 522. The

storage 530 includes a job definition model 532 and one or more data

integration jobs 534. The IDE application 522 itself includes a conversion tool

523 configured to convert a specified data integration job 534 from one

framework to another. To do so, the conversion tool 523 may analyze

individual components of the data integration job 534 against the job definition

model 532. The job definition model 532 provides unified definitions for

components of each framework. The conversion tool 523 may convert each

component to a corresponding component in the framework or perform a

special conversion according to rules in the event that a corresponding

11

WO 2018/052814 PCT/US2017/050796

component is not present. The resulting data integration job 534 generally

maintains its original flow structure.

[0044] One embodiment of the present disclosure is implemented as a

program product for use with a computer system. The program(s) of the

program product defines functions of the embodiments (including the methods

described herein) and can be contained on a variety of computer-readable

storage media. Examples of computer-readable storage media include (i)

non-writable storage media (e.g., read-only memory devices within a

computer such as CD-ROM or DVD-ROM disks readable by an optical media

drive) on which information is permanently stored; (ii) writable storage media

(e.g., floppy disks within a diskette drive or hard-disk drive) on which alterable

information is stored. Such computer-readable storage media, when carrying

computer-readable instructions that direct the functions of the present

invention, are embodiments of the present disclosure. Other examples media

include communications media through which information is conveyed to a

computer, such as through a computer or telephone network, including

wireless communications networks.

[0045] In general, the routines executed to implement the embodiments of

the present disclosure may be part of an operating system or a specific

application, component, program, module, object, or sequence of instructions.

The computer program of the present disclosure is comprised typically of a

multitude of instructions that will be translated by the native computer into a

machine-readable format and hence executable instructions. Also, programs

are comprised of variables and data structures that either reside locally to the

program or are found in memory or on storage devices. In addition, various

programs described herein may be identified based upon the application for

which they are implemented in a specific embodiment of the present

disclosure. However, it should be appreciated that any particular program

nomenclature that follows is used merely for convenience, and thus the

present disclosure should not be limited to use solely in any specific

application identified and/or implied by such nomenclature.

12

WO 2018/052814 PCT/US2017/050796

[0046] In sum, embodiments presented herein disclose techniques for

converting a data integration job from one framework to another framework.

Advantageously, such conversion allows a developer to port a complex data

integration job to other frameworks with relatively little effort. Doing so

provides the developer with multiple options for determining which framework

to use in deploying a given job without needing to manually recode the same

job in a different framework.

[0047] Additional examples of converting a data integration job of one

framework to a data integration job of another framework are provided in the

attached appendix.

[0048] While the foregoing is directed to embodiments of the present

disclosure, other and further embodiments of the disclosure may be devised

without departing from the basic scope thereof, and the scope thereof is

determined by the claims that follow.

13

14

CLAIMS

1. A method for converting a data integration job from a source framework to a target

framework, the method comprising:

receiving a request to convert a first data integration job of a first framework to a

second data integration job of a second framework, the first data integration job

comprising a plurality of components, wherein each component performs an assigned

task as part of the first data integration job;

in response to the request, determining that a corresponding component in the

second framework that corresponds to a job component of the plurality of job

components in the first data integration job is not available in a job definition model for

the second framework;

flagging the component for review;

in response to flagging the job component for review, receiving a specification of a

target component of the second framework corresponding to the job component;

generating a converted component based on the target component of the second

framework;

adding the converted component to the second data integration job; and

storing the second data integration job in a data store.

2. The method of claim 1, further comprising, upon flagging the job component for

review:

presenting the job component via an application.

3. The method of claim 1, wherein generating the converted component based on

the target component comprises:

identifying one or more conversion rules associated with the corresponding

component; and

applying the identified one or more conversion rules to the corresponding

component.

4. The method of claim 1, wherein the job definition model translates the first

framework to the second framework.

15

5. The method of claim 1, wherein the request includes a file corresponding to the

first data integration job, metadata describing the first framework, and a specification of

the second framework.

6. The method of claim 1, further comprising:

presenting the second data integration job via a graphical user interface;

receiving a selection of one or more modifications to at least a first component in

the second data integration job; and

converting the at least the first component based on the one or more

modifications.

7. The method of claim 1, wherein generating the converted component based on

the target component comprises:

populating parameters from the job component of the first data integration job in

the converted component.

8. A computer-readable storage medium storing instructions, which, when executed

on a processor, perform an operation for converting a data integration job from a source

framework to a target framework, the operation comprising:

receiving a request to convert a first data integration job of a first framework to a

second data integration job of a second framework, the first data integration job

comprising a plurality of components, wherein each component performs an assigned

task as part of the first data integration job;

in response to the request, determining that a corresponding component in the

second framework that corresponds to a job component of the plurality of job

components in the first data integration job is not available in a job definition model for

the second framework;

flagging the component for review;

in response to flagging the job component for review, receiving a specification of a

target component of the second framework corresponding to the job component;

generating a converted component based on the target component of the second

framework;

adding the converted component to the second data integration job; and

16

storing the second data integration job in a data store.

9. The computer-readable storage medium of claim 8, wherein the operation further

comprises, upon flagging the job component for review:

presenting the job component via an application.

10. The computer-readable storage medium of claim 8, wherein generating the

converted component based on the target component comprises:

identifying one or more conversion rules associated with the corresponding

component; and

applying the identified one or more conversion rules to the corresponding

component.

11. The computer-readable storage medium of claim 8, wherein the request includes a

file corresponding to the first data integration job, metadata describing the first

framework, and a specification of the second framework.

12. The computer-readable storage medium of claim 8, wherein the operation further

comprises:

presenting the second data integration job via a graphical user interface;

receiving a selection of one or more modifications to at least a first component in

the second data integration job; and

converting the at least the first component based on the one or more

modifications.

13. The computer-readable storage medium of claim 8, wherein generating the

converted component based on the target component comprises:

populating parameters from the job component of the first data integration job in

the converted component.

14. A system, comprising:

a processor; and

17

a memory storing program code, which, when executed on the processor,

performs an operation for converting a data integration job from a source framework to a

target framework, the operation comprising:

receiving a request to convert a first data integration job of a first framework

to a second data integration job of a second framework, the first data integration

job comprising a plurality of components, wherein each component performs an

assigned task as part of the first data integration job;

in response to the request, determining that a corresponding component in

the second framework that corresponds to a job component of the plurality of job

components in the first data integration job is not available in a job definition model

for the second framework;

flagging the component for review;

in response to flagging the job component for review, receiving a

specification of a target component of the second framework corresponding to the

job component;

generating a converted component based on the target component of the

second framework;

adding the converted component to the second data integration job; and

storing the second data integration job in a data store.

15. The system of claim 14, wherein the operation further comprises, upon flagging

the job component for review:

presenting the job component via an application.

16. The system of claim 14, wherein generating the converted component based on

the target component comprises:

identifying one or more conversion rules associated with the target component;

and

applying the identified one or more conversion rules to the target component.

17. The system of claim 14, wherein the operation further comprises:

presenting the second data integration job via a graphical user interface;

18

receiving a selection of one or more modifications to at least a first component in

the second data integration job; and

converting the at least the first component based on the one or more

modifications.

18. The system of claim 14, wherein generating the converted component based on

the target component comprises:

populating parameters from the job component of the first data integration job in

the converted component.

19. The method of claim 1, further comprising:

determining a policy conversion rule for the second framework applies to the job

component;

identifying, based on the policy conversion rule, an alternate component of the

second framework; and

adding the alternate component to the second data integration job.

20. The method of claim 19, wherein the alternate component maintains parameters

of the job component.

Talend, Inc.

Patent Attorneys for the Applicant/Nominated Person

SPRUSON&FERGUSON

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

