
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2003/0196040 A1

Hosogi et al.

US 2003O196040A1

(43) Pub. Date: Oct. 16, 2003

(54)

(76)

(21)

(22)

(63)

DATA CACHE SYSTEM

Inventors: Koji Hosogi, Tokyo (JP); Gregorio
Gervasio, Sunnyvale, CA (US); Yatin
Mundkur, Sunnyvale, CA (US);
Radhika Thekkath, Palo Alto, CA
(US)

Correspondence Address:
SOFER & HAROUN, L.L.P.
Suite 910
317 Madison Avenue
New York, NY 10173 (US)

Appl. No.: 10/322,846

Filed: Dec. 18, 2002

Related U.S. Application Data

Continuation of application No. 09/172,646, filed on
Oct. 14, 1998, now Pat. No. 6,560,674.

YGA
GRAPHICS 2D
CONTROER

DATA
2 TRANSFER

22YDATA STREAMER

SWITCH EOR
CONTRO

l/0 BUS 132

DISPLAY REFRESH-134 :
TTTTTTT --

Publication Classification

(51) Int. Cl." ... G06F 12/00
(52) U.S. Cl. ... 711/128; 711/118

(57) ABSTRACT

An information processing System has a plurality of mod
ules, including a processor, a main memory and a plurality
of I/O devices. A data cache comprises a cache data memory
which is coupled to the processor which provides data to the
processor in response to a load operation and for writing data
from the processor in response to a Store operation. A refill
controller is coupled to the cache data memory for control
ling the operation of the data cache in accordance with a
Specifiable policy. An external access controller is coupled to
the cache data memory. The external acceSS controller is
coupled to an external memory bus, Such that the contents of
the cache data memory are accessible for read and write
operations in response to read and write requests issued by
the modules in the information processing System.

102-3c. colio:

528
IEU cGill cog DEPH

P TE TIE TLE
(TIF) (IEC) (lf i)

US 2003/0196040 A1

--- .

Oct. 16, 2003 Sheet 1 of 29 Patent Application Publication

l

US 2003/0196040 A1 Oct. 16, 2003 Sheet 2 of 29 Patent Application Publication

109 NÚSI

}|100 Tyd/OSIN

Patent Application Publication Oct. 16, 2003 Sheet 3 of 29

FIG. 1 C
00

USB HOST

2xUART

12C/DDC
236

ISDN GCI INTERFACE f/T
INTERFACE

ANALOG RGB
242

MULTIMEDIA PROCESSOR E - NISC/PAL
NTSC 242

E NTSC/PAl
54 MHz 244
WCXO

TRANSPORT CHANNEL 246
INTERFACE QAM/QPSK

AND F.E.C.
PC 66 3.5W 252

Big M2
258 VIDEO NISC/PAL

DECODER

1594 LINK t
AC-LINK 100' AND PHY 28 394

S-E--- OPIONAL OPTIONAL
ticiadoc : OPTIONAL REDCANALOG RGB

MULTIMEDIA. ------ 254 PROCESSOR: g
AC'97
CODEC

24,576 256
WCXO

ANALOG AUDIO /0
POTS ANALOG

US 2003/0196040 A1

Patent Application Publication Oct. 16, 2003 Sheet 4 of 29 US 2003/0196040 A1

FIC, 1 D
230 232

00 - ... v -

AGP *.ND PCI SOUTH ISA 258
NORTH.
BRIDGE BRIDGE

260 ISA
SOUND BLASTER AND COMM SB/cow/
PORT ON VERSA-PORT APPER

12C/DDC
236 ISDN

NERFACE

ANALOG RGB
MULTIMEDIA ccir 656 is /2.
PROCESSOR ENCODER NTSC/PAL

240
ccir 656 NTSC

m NTSC/PAL

54 MHz - 244
WCXO

TRANSPORT CHANNEL
INTERFACE QAM/QPSK L/ 246

AND F.E.C.
PC166 3.3W /*

100' r-s:- OPTIONAL
N.O.O.A. No

250 E:
:POESR-S:

1394
AC-INK LINK/PHY 394

38 / 248
254 VIDEO NTSC/PAL

DECODER

AC'97 ANALOG AUDIO I/O
CODEC POTS ANAOG

24.576 256
WCXO

Patent Application Publication Oct. 16, 2003 Sheet 5 of 29 US 2003/0196040 A1

FIC 2

-4,8BYTE TRANSLATION

() -4,8BYTE TRANSLATION
RESPONSE PHASE

Patent Application Publication Oct. 16, 2003 Sheet 7 of 29 US 2003/0196040 A1

FIC 5A
A0A1A2

Mrqbird reql L 2
rqb resp_id --SLAYE to

Mrqb-pril
Slrdrdy) N
Dts rqs gntm y
Dts-rqb_rd reqs S.
Rqbladdr
Rqbsz
Rqb brs C.
Rqb trid E
Rqb initid -- ASTER ID

FIG. 6B
A0 A At A2

Mrqb_rd reql
M-?qb_respidl
Mrqb-pril
Srdrdyl
Dts rqs-gntm
E. Y
Rqb ...oddr
Rqbsz
Rqb-brs
Rqb-trid

Rqb initid |- see

SAVE ID

Patent Application Publication Oct. 16, 2003 Sheet 8 of 29 US 2003/0196040 A1

FIC. 5t
'''' - - - -

rqb_Wr reql Life
Mrqb respidl)--SAVE ID
Mrqb-pril
S Wr_rdy
Dts rqbgntm
Dts rqb Wr reqs
Rqbladdr
Rqbsz

Rqb initid
Rqb-trid 1 DRIVEN BY SAVE

- VIERD | |

FIC. 5D

limb req1
limb initid

Dts imb igntm
Dislimb reqs
Imb doto
limb be
Imb trid

Dts limb Sz

|
DEPENDING ONS

Patent Application Publication Oct. 16, 2003 Sheet 10 of 29 US 2003/0196040 A1

FIG. 6A 40 A A.

Vrab ?g real \\
Mrqb_respidl tly SAVE ID 2
Mrqb-pril E.
Mrqb_rd req2 PRI 2

Mrqb_respid2 \ -- SLAVE ID 2
Mrqb-pri2 s pla
Dts rqb_gntm i
Rqb_addr Al-O)-A
Rqb Sz S. st
Rqb bre BRE st
Rqb trid TRD RD:
Rqb initid I Sir I

FIG. 6B Ao Ali A2

Lpmb real AA -
pmb initial RSVD SAVE ID 2
pmb-pril

Mpmb req2 r PR 2
pmb initid2 SLAVE ID 2

Mpmb pri2. N Pri
Dts pmb_gnt_m Ty
Pmb doto DJ I D2
Prmb be BE it.
Pmb trid Trio iD
Dts-pmb Sz f $n

| | | | | |

Patent Application Publication Oct. 16, 2003 Sheet 11 of 29 US 2003/0196040 A1

FIC

r" 70
704(c)
704(b)

ROUND ROBIN
PRIORITY

SCHEDULER REQUESTS
744 76 is

GENERATE VIA DTS
AND UPDATE INTERFACE

718
) f

---------------------------------------T-

PIO

FIC. 9
REQUES Bus REQUEST DATA DATABUS DATA
ARBER BUS BUS ARBITER BUS

------------- --- -----------------------

Roy
TRANSFER TRANSW TRANSIT
ENGINE ENGINE ENGINE

REQUEST BUS REQUESTER
f - - - - - - - -

; 760

- -------

: RECEIVE
FIFO

E.

772. REORDER / 780
- DAT TRANSEE EY TABLE SWITCH INTERFACE ONE-----------------------------

DATABUS

Patent Application Publication Oct. 16, 2003 Sheet 12 of 29 US 2003/0196040 A1

706

PO REQUESS PIOC

PUB RECEIVE FIFO (WRITE) , BUFFER
OPERATION EWORY
SCHEDULER

TRANSFER ENGINE REA) EWB
TRANSW
ENGINE

VEVORY WB
DNA REQUESTS TRANSW

ENGINE
WB RECEIVE FIFO WRITE E. PIPE WWORY BUFFER

RATION PIPE MEWORY
TRANSFERENGINE READ SCHEOUER STAGE DAC

706

38

CONTROLLER 202

ROUND ROBEN T
PRIORITY ARBITER

1/0 BUS 32

Patent Application Publication Oct. 16, 2003 Sheet 13 of 29 US 2003/0196040 A1

FIC. f 2
CB MEMORY ADDRESS SPACE

BYTE WID

START SOURCE DATA LOCATION = x
WIDTH = 10 BYTES

2 WIDTH = 10 BYTES
PITCH - 22 BTEs

PTCH - 22 BYTES

WOTH = 10 BYTES

WDTH = 10 BYTES
COUNT = n

START DESTINATION DATA LOCATION =

WDTH On BYTES

DESCRIPTOR
COUNT CONTRO WORD

FIELD

DATA LOCATION
ADDRESS

Patent Application Publication Oct. 16, 2003 Sheet 14 of 29 US 2003/0196040 A1

FIC. f4

-- 4 BYES-e-
lsb

NEXT DESCRIPTOR

DESCRIPTOR
COUNT c k CONTROL

FIELD

DATA 00ATION
ADDRESS

DATA LOCATION
ADDRESS 2

DATA OCATION
ADDRESS 3

DATA LOCATION .
ADDRESS k

2b-i- --2b

Patent Application Publication Oct. 16, 2003 Sheet 15 of 29 US 2003/0196040 A1

FIC. 15A

302 INTIALIZE A CHANNEL STATE
ds-open-poth

304 ALLOCATE A BUFFER AND ONE
OR TWO CHANNELS

305 WRITE APPROPRIATE WALUES INTO
BUFFER STATE ENORY

308 RESET WALD BITS EN RAW

FOR EACH ALLOCATED CHANNEL WRITE
510 LOCATION IN CHANNEL STATE MEMORY

32 ACTIVATE CHANNES

31- TE WRITES DESCRIPTOR ADDRESS INTO
CHANNEL STATE MEMORY

36 S THIS A SOURCE CHANNEL FOR MNC
- INPUT TO BUFFER 2

YES
38 WRITE BUFFERSIZE WALE IN RCCNT TO TO STEP 380

20 TURN ACTIVE FLAG

324 PROVIDE CHANNEL TO SCHEDUER 742

526 TEFETCH DESCRIPTOR

GO TO STEP 328

Patent Application Publication Oct. 16, 2003 Sheet 16 of 29 US 2003/0196040 A1

FIC. f 5B

328 WRITE DESCRIPTOR IN CHANNEL STATE MEMORY

SO BEGIN FRANSFER O BUFFER WIA SOURCE CHANNEL

332 SEND REQUEST TO ROC 764

334 - DECREMENT RCCNT WHEN CHANNE COMPLETES READ REQUEST

336 SET INTERBURST DELAY COUNT

38

340

S42

544
YES

S46 CHECK HALT BIT

348 CHECK PREFETCH BUFFER FOR NEXT DESCRIPTOR

350 COPY ENTO CURREN POSITION

352 REPEAT PREFETCH

FIG. 15C
CHANNEL ISA DESENATION

WAIT TIL SOURCE SIDE HASTRANSFERRED INA
SUFFICIENT NUMBER OF BYES

IS RCCNT FILLED
YES

CENERATE WRITE REQUESTS TO OTS

SEN) REQUEST TO DSBC

DSBC REMOVES BYTES FROM BUFFER ALIGN THE
AND SEND THE TO TRANSF ENGINE

80

382

384

386.
88

390

US 2003/0196040 A1 Oct. 16, 2003. Sheet 18 of 29 Patent Application Publication

T- - - - - - - - - -| - - - - - ~- - -*------------

JINÍ 83TIO?NOO ? JOMBA

= - - = = = • • • • + - - - - -...-_- __,--

SS3800? WIYO TELJ THIET| HI?
!!!!!

WIYQ QYOT

Patent Application Publication Oct. 16, 2003 Sheet 19 of 29 US 2003/0196040 A1

FIG. 18

560 REF CONTROL

562 CHECK FOR CACHE HITS
OR MISSES

564-x is it is DNC S A VISS 566

FOR A HT CONDUCT
CACHE OPERATION

DEERINE WHECH CACHE LINE
568-1SHOULD BE REPLACED WITH DATA

IN EXTERNAL MEMORY

IN CASE OF WRE-BACK READ
570 OUT CACHE ENE ISSUE STORE

REQUEST TO MCU
FETCH ISSING CACH NE 572

57. CEF FE DATA AND WRIE
IN CACHE DATA MEMORY

RETURN LOAD DATA TO
INSTRUCTION UN OR
WRESTORE DATA T0
CACHE DATA ENORY

576

WRITESTORE DATA T0
578 - EXTERNA MEMORY FOR

YRTE THROUGH CACHE

Patent Application Publication Oct. 16, 2003 Sheet 20 of 29 US 2003/0196040 A1

FIG. f 9

580

EXTERNA ACCESS CONTROL

WAT FOR A READ OR WRITE
DATA REQUES BY ANOTHER

ODUE BUS ASTER
READ WRITE

REQUEST/IS THERE AREAD REQUESTVREQUEST
OR WRITE REQUEST 592

588 MISS of Issy 584 in of wiss SHII 596
IS

TRIGGER REFT CONTROL 585 DETERMINE WHICH WRITE REQUESTED

N DATA CACHE

5/1 CACHE LINE SHOULD DATA TODATA
BE REPLACED CACHE WEORY

590 RETURDATA /
TO BUS MASTER

END 606

582

F WRITE-BACK READ
OU CACHE ENE FRO
CACHE DATA MEMORY
AND ISSUE STORE TO
EORY CONTROLER

598

WRITE REQUESTED DATA 602
TO CACHE DATA MEMORY

AND MODIFY TAG

CED -/-608

US 2003/0196040 A1 Oct. 16, 2003 Sheet 21 of 29 Patent Application Publication

BHOYO YIYO |---------5-7---|-------
-----------------------------?aeg?g;

Patent Application Publication Oct. 16, 2003 Sheet 22 of 29 US 2003/0196040 A1

3D TRIANGLE RASTERIZER

VALID - 642
REGISTER

640 68

SHADING
COLOR

INTERPOLATORS
(r, S, b, a

636

TEXTURE
COORDINATES
INTERPOLATORS

(s, t, w)

SCREEN
COORONATES
INTERPOLATOR

(x,y)

DEPTH
INTERPOLATORS

(z)

634

648

FRAGMENT
GENERATOR

BENNING 644

0cL WEORY/128
646

TE DATA

Patent Application Publication

DATA CACHE

FRAGMENT
INDEX SET UP

BUFFER

SCREEN

650 622

RASTEREZER

COORONATES
INTERPOLATOR

(TILE T FRAGMENT)

Oct. 16, 2003 Sheet 23 of 29

FIG. 22

624 626
TEXTURE

COORONATE

SHADING
COLOR

INTERPOLATORS

TEXTURE
C00RDINATES
INTERPOLATORS

(s, t, w)

652

TEXTURE
FRAGMENT COORONATES FE

LINK OF FRAGMENT (TILE CFRAGMENT)

00AL MEMORY

amm am an as

REGISTER

640

INTERPOLATORS

US 2003/0196040 A1

IWAD

DEPTH

(z)

DEPTH OF
FRAGMENT

(TLE 2 FRAGMENT)

is/

Patent Application Publication Oct. 16, 2003 Sheet 24 of 29 US 2003/0196040 A1

609

as a sm are r m ms r s m r ur r rees m m -a as -- - - - - - S.

SOTC

664
MEMORY ADDRESS CALCULATION

: 666
TEXTURE CACHE TAG CHECK

668 -
670

ADDRESS MAP DS DESCRIPTOR
GENERATION GENERATION

I I I I
F-------------------------------- ---

DATA DATA DATA DATA
STREAER STREAER STREAVER STREAMER
SOURCE - DESTINATION SOURCE DESTINATION

DESCRIPTOR O DESCRIPTOR O DESCRIPTOR DESCRIPTOR
6,7 674/ 676 678

28 N1-LOCAL MEMORY --

Patent Application Publication Oct. 16, 2003 Sheet 25 of 29 US 2003/019604.0 A1

626 934 667

TEXTURE ce ACCUMULATION
BUFFER

944

946
HORIZONTAL INTERPOLATION

948

950

FOR TR-LINEAR
1st PASS)

FOR TR-LINEAR
(2nd PASS)

954

US 2003/0196040 A1 Oct. 16, 2003 Sheet 27 of 29 Patent Application Publication

is -

#99 º zgg

~~~~ ~~~~~~ ~~~~-----~----------------- …______________ 

*** ~== === = == 

«= -. 



Patent Application Publication Oct. 16, 2003 Sheet 28 of 29 US 2003/0196040 A1 

FIC. 36 

y 

CROSS (AC 

(CO) STEP 862 
CRSSC cross B 

CROSS XAC + dxdyAC dxdyAB 

didyAC 

CROSS AC 

CROSS XAC + dydyAC 

Y 

CROSS (AC 

CROSS XAC + dxdyAC 
CROSS XBC 

CROSS XBC + dxdyBC 
(C,C) dxdyBC 

CROSS (AC 

1) STEP 870 

  

  

  



Patent Application Publication Oct. 16, 2003 Sheet 29 of 29 US 2003/0196040 A1 

FIU 27 

CEOvETRY/LIGHTING FOR ALL TRIANGLES IN A FRAME, VLIW CALCULATES 880 
SCREEN COORDINATES, COLORS, AND BINNING PARAMETERS 

ACTIVATE FFU N BENNING MODE 882 

DETERWINE TE INDEX AND TILE DATA 88. 

FOR ALL BINS IN A FRAWE PERFOR SE UP AND RASTERIZATION 886 

FOR ALL TRANGLES IN A BIN VLIW calcuuTES 888 
TRIANGLE SEF UPDATA 

CALCULATE PARAMETERS FOR RENDERING X, Y, Z, RGBA, s, t, w 890 
FOREACH PIXE IN A RANGE 

ACTIVATE FFU IN ENTERPOLATION NODE 892 

FOR ALL PDELS IN A BIN VLIW CALCULATES u, v, FROMs, t, w 894 

3D FFU CALCULATES TEXTURE ADDRESS WHEN 3D TEXTURE CONTROLLER 896 
UNIT IS ACTIVATED IN TEXTURE CALCULATION WODE 

DATA STREAVER FETCHES TEXELS BY GMNG CALCULATED TEXTURE ADDRESS 898 
ACTIVE WIDEO SCALER TO PERFORM BI-LINEAR TEXTURE FILTERING 900 

ANT AASING 902 

FOR ALL PIXELS IN A FRAGMENT WIY CALCULATE u, Y, FROW s, t, W 904 

30 ACCELERATOR TEXTURE ADDRESS CALCULATION 906 

ACTIVATE DATA STREAMER 908 

DATA SFREAVER FETCHES TEXES 90 

VIDEO SCALER PERFORMS TEXTURE FILTERING AND BLENDING 912 

STORE FRAME BUFFER 914 

DATA STREAWER TRANSFERS PROCESSED BIN TO LOCAL VEVORY 96 

C END)^918 



US 2003/0196040 A1 

DATA CACHE SYSTEM 

FIELD OF THE INVENTION 

0001. The present invention relates to a data processor 
having various modules, and more specifically to a cache 
System within that data processor for improving data transfer 
operations among the various modules. 

BACKGROUND OF THE INVENTION 

0002. In many data processing chip sets data is trans 
ferred from one or many processors to memory devices and 
input/output, I/O, Subsystems, or other chip components 
known as functional units, via an appropriate bus structure. 
Typically, the bus Structure includes a processor bus, a 
System bus and a memory bus. Thus, when there is a 
memory operation wherein data is required to be moved to 
or from a memory location to a processor, the System bus 
would cease to operate until the data movement from the 
memory location to the processor is completed. Similarly, 
when there is a data movement from an external device to a 
memory location, the processor bus would cease to operate 
until the data is moved to its intended location. 

0.003 Typically, the main memory in the data processor is 
made out of dynamic RAMs (DRAMs). The access speed of 
DRAMs may not be sufficient for many applications. A 
Somewhat faster memory is available and is referred to as 
static RAM or SRAM. However, SRAM memory is more 
expensive than DRAM and may not be feasible as a main 
memory component. 

0004. In order to alleviate the problems associated with 
the delays caused by DRAMs, many Systems employ a 
cache memory made of high speed static RAM, SRAM, that 
is disposed between the central processing unit and the 
system's main DRAM memory. FIG. 16 illustrates a data 
cache unit 508 in accordance with a prior art cache system. 
A device referred to as a cache controller or refill controller 
518 attempts to maintain copies of information that the 
processing unit may request in a cache memory 516. The 
controller also maintains a tag memory directory 514 to 
track information currently in the cache memory. Whenever 
the processing unit initiates a memory read, the controller 
performs a very quick Search of the directory by accessing 
tag memory 514 via arbiter 510, to determine if the 
requested information is already in the cache. If the infor 
mation is currently Stored in the cache memory, a cache hit 
has occurred. If, however, the information is not currently 
Stored in the cache memory, a cache miss has occurred. 
0005. When a hit occurs, the controller accesses cache 
memory 516 via an arbiter 512, to get the requested infor 
mation. The controller then routes the requested information 
to central processing unit 102. The quick directory Search 
and fast-access time of the cache memory ensures that the 
central processing unit will not stall while waiting for the 
requested information. 
0006 If a miss occurs however, the controller accesses 
DRAM 528 via memory control unit 524 to get the requested 
data. One or more wait states will be inserted in the 
processing unit's bus cycle. Whenever, the cache controller 
is forced to go to DRAM to get information, it always gets 
an object of a fixed size from memory. This is referred to as 
a line of information. The line size is defined by the cache 

Oct. 16, 2003 

controller design. When refill controller 518 gets the line 
from DRAM memory 528, it supplies the originally 
requested data item to central processing unit and records 
the entire line in the cache data memory. 
0007 Furthermore, cache controllers are divided into two 
categories: write-through and write-back. Typically, refill 
controller 518 checks to determine whether central process 
ing unit 102 has initiated a read or a write to DRAM 528. A 
write-through cache controller handles memory writes as 
explained hereinafter. 
0008. On a write hit, the write-through cache controller 
updates the line in both cache memory 516 and DRAM 528. 
This ensures that the contends of the cache always reflects 
the information in the memory. This cache Strategy is 
referred to as coherency. On a write miss, the write-through 
cache controller updates the line in DRAM memory only. 
0009. On the other hand, for a write hit, the write-back 
cache controller updates the line in the cache, but not in 
DRAM 528. Cache controller then marks the line in cache 
tag memory 514 as dirty or modified. Thus, the contents of 
the cache memory and DRAM do not reflect each other. Of 
the two lines, the cache line is now current and the memory 
line is Stale. On a write miss, the write-back cache controller 
updates the line in memory only, with the contents of the 
corresponding cache line. 
0010 Although, there has been many attempts to increase 
the cache hits, there is still a need for a data transfer 
operation by employing a cache System that has an improved 
ratio of cache hits. 

SUMMARY OF THE INVENTION 

0011 Thus, in order to improve the cache hit ratios in a 
data cache System, an external access controller is provided 
that allows the data cache to operate as a bus slave in 
response to read and write requests by other bus masters in 
the System. As a result, based on the knowledge of the data 
that may become necessary to the processor, other bus 
masters provide data to the data cache before the processor 
issues a Store or load operation for that data. 
0012. In accordance with one embodiment of the inven 
tion, in an information processing System, having a plurality 
of modules including a processor, a main memory and a 
plurality of I/O devices, the data cache includes a cache data 
memory coupled to a central processing unit for providing 
data to the processing unit in response to load operations and 
for writing data from the central processing unit in response 
to Store operations. A refill controller is coupled to the cache 
data memory for controlling the operation of the data cache 
in accordance with a specifiable policy. The external access 
controller is coupled to the cache data memory, and to an 
external memory bus Such that the contents of the cache data 
memory are accessible for read and write operations in 
response to read and write requests issued by other modules 
in the information processing System, that function as bus 
masterS. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0013 The subject matter regarded as the invention is 
particularly pointed out and distinctly claimed in the con 
cluding portion of the Specification. The invention, however, 
both as to organization and method of operation, together 



US 2003/0196040 A1 

with features, objects, and advantages thereof may best be 
understood by reference to the following detailed descrip 
tion when read with the accompanying drawings in which: 
0014 FIG. 1(a) is a block diagram of a multimedia 
processor System in accordance with one embodiment of the 
present invention; 
0.015 FIG. 1(b) is a block diagram of an input/output 
(I/O) unit of the multimedia processor system illustrated in 
FIG. 1(a); 
0016 FIG. 1(c) is a block diagram of a multimedia 
System employing a multimedia processor in conjunction 
with a host computer, in accordance with one embodiment 
of the invention. 

0017 FIG. 1(d) is a block diagram of a stand-alone 
multimedia System employing a multimedia processor in 
accordance with one embodiment of the invention. 

0.018 FIG. 2 is a flow chart illustrating a data transfer 
request operation in conjunction with a data transfer Switch 
in accordance with one embodiment of the invention. 

0019 FIGS. 3(a) and 3(b) is a flow chart illustrating a 
read transaction that employs a data transfer Switch in 
accordance with one embodiment of the invention. 

0020 FIGS. 4(a) and 4(b) illustrate the flow of signals 
during a request bus connection and an internal memory bus 
connection in accordance with one embodiment of the 
invention. 

0021 FIG. 5(a) illustrates the timing diagram for a 
request bus read operation, in accordance with one embodi 
ment of the present invention. 
0022 FIG. 5(b) illustrates the timing diagram for a read 
request where the grant is not given immediately, in accor 
dance with one embodiment of the invention. 

0023 FIG. 5(c) illustrates the timing diagram for a 
request bus write operation, in accordance with one embodi 
ment of the invention. 

0024 FIG. 5(d) illustrates the timing diagram for a data 
buS transfer operation, in accordance with one embodiment 
of the invention. 

0025 FIG. 6(a) illustrates a timing diagram for a request 
bus master making a back-to-back read request. 
0026 FIG. 6(b) illustrates a timing diagram for a pro 
ceSSor memory bus master making a back-to-back request, 
when grant is not immediately granted for the Second 
request. 

0027 FIG. 6(c) illustrates a timing diagram for a request 
bus slave receiving a read request followed by a write 
request. 

0028 FIG. 7 illustrates a block diagram of a data 
Streamer in accordance with one embodiment of the inven 
tion. 

0029 FIG. 8 illustrates a block diagram of a transfer 
engine employed in a data Streamer in accordance with one 
embodiment of the invention. 

0030 FIG. 9 is a block diagram of a data transfer switch 
in accordance with one embodiment of the invention. 

Oct. 16, 2003 

0031 FIG. 10 is a block diagram of a data steamer buffer 
controller in accordance with one embodiment of the inven 
tion. 

0032 FIG. 11 is a block diagram of a direct memory 
acceSS controller in accordance with one embodiment of the 
invention. 

0033 FIG. 12 is an exemplary memory address space 
employed in accordance with one embodiment of the inven 
tion. 

0034 FIG. 13 illustrates a data structure for a channel 
descriptor in accordance with one embodiment of the inven 
tion. 

0035 FIG. 14 illustrates a data structure for a channel 
descriptor in accordance with another embodiment of the 
invention. 

0.036 FIGS. 15(a)-15(c) illustrate a flow chart for setting 
a data path in accordance with one embodiment of the 
invention. 

0037 FIG. 16 illustrates a block diagram of a prior art 
cache memory System. 
0038 FIG. 17 illustrates a block diagram of a cache 
memory System in accordance with one embodiment of the 
present invention. 
0039 FIG. 18 is a flow chart illustrating the operation of 
a prior art cache memory System. 
0040 FIG. 19 is a flow chart illustrating the operation of 
a cache memory System in accordance with one embodiment 
of the invention. 

0041 FIG. 20 is a block diagram of a fixed function unit 
in conjunction with a data cache in a multimedia processor 
in accordance with one embodiment of the invention. 

0042 FIG. 21 is a block diagram of a 3D triangle 
rasterizer in a binning mode in accordance with one embodi 
ment of the invention. 

0043 FIG. 22 is a block diagram of a 3D triangle 
rasterizer in interpolation mode in accordance with one 
embodiment of the invention. 

0044 FIG. 23 is a block diagram of a 3D texture con 
troller in accordance with one embodiment of the invention. 

004.5 FIG. 24 is a block diagram of a 3D texture filter in 
accordance with one embodiment of the invention. 

0046 FIGS. 25(a) and 25(b) are block diagrams of a 
Video Scaler in accordance with one embodiment of the 
invention. 

0047 FIG. 26 is a plot of a triangle subjected to a binning 
process in accordance with one embodiment of the inven 
tion. 

0048 FIG. 27 is a flow chart illustrating the process for 
implementing 3D graphics in accordance with one embodi 
ment of the invention. 

DETAILED DESCRIPTION OF THE DRAWINGS 

0049. In accordance with one embodiment of the present 
invention, a multimedia processor 100 is illustrated in FIG. 
1, although the invention is not limited in Scope in that 



US 2003/0196040 A1 

respect. Multimedia processor 100 is a fully programmable 
Single chip that handles concurrent operations. These opera 
tions may include acceleration of graphics, audio, Video, 
telecommunications, networking and other multimedia 
functions. Because all the main components of processor 
100 are disposed on one chip set, the throughput of the 
System is remarkably better than those of the conventional 
Systems as will be explained in more detail below. 

0050 Multimedia processor 100 includes a very-long 
instruction word (VLIW) processor that is usable in both 
hosted and hostless environment. Within the present context 
a hosted environment is one where multimedia processor 
100 is coupled to a separate microprocessor Such as 
INTELOF) X-86, and a hostless environment is one which 
multimedia processor 100 functions as a stand-alone mod 
ule. The VLIW processor is denoted as central processing 
unit having two clusters CPU 102 and CPU 104. These 
processing units 102 and 104 respectively allow multimedia 
processor 100, in accordance with one embodiment of the 
invention, operate as a Stand-alone chip Set. 
0051) The operation of the VLIW processor is well 
known and described in John R. Ellis, Bulldog: A Compiler 
for VLIW Architectures, (The MIT Press, 1986) and incor 
porated herein by reference. Basically, a VLIW processor 
employs an architecture which is Suitable for exploiting 
instruction-level parallelism (ILP) in programs. This 
arrangement allows for the execution of more than one basic 
(primitive) instruction at a time. These processors contain 
multiple functional units, that fetch from an instruction 
cache a very-long instruction word containing Several primi 
tive instructions, So that the instructions may be executed in 
parallel. For this purpose, Special compilers are employed 
which generate code that has grouped together independent 
primitive instructions-executable in parallel. In contrast to 
SuperScalar processor, VLIW processors have relatively 
Simple control logic, because they do not perform any 
dynamic Scheduling nor reordering of operations. VLIW 
processors have been described as a Successor to RISC, 
because the VLIW compiler undertakes the complexity that 
was imbedded in the hardware structure of the prior pro 
CCSSOS 

0052. The instruction set for a VLIW architecture tends to 
consist of Simple instructions. The compiler must assemble 
many primitive operations into a single “instruction word” 
Such that the multiple functional units are kept busy, which 
requires enough instruction-level parallelism (ILP) in a code 
Sequence to fill the available operation slots. Such parallel 
ism is uncovered by the compiler, among other thins, 
through Scheduling code Speculatively acroSS basic blocks, 
performing Software pipelining, and reducing number of 
operations executed. 

0053 An output port of VLIW processor 102 is coupled 
to a data cache 108. Similarly, an output port of VLIW 
processor 104 is coupled to an instruction cache 110. Output 
ports of data cache 108 and instruction cache 110 are in turn 
coupled to input ports of a data transfer Switch 112 in 
accordance with one embodiment of the present invention. 
Furthermore, a fixed function unit 106 is disposed in mul 
timedia processor 100 to handle three dimensional graphical 
processing as will be explained in more detail. Output ports 
of fixed function unit 106 are also coupled to input ports of 
data transfer Switch 112, as illustrated in FIG. 1. Fixed 

Oct. 16, 2003 

function unit 106 is also coupled to an input port of data 
cache 108. The arrangement and operation of the fixed 
function unit in conjunction with the data cache is described 
in more detail in reference with FIGS. 20-26. The arrange 
ment and the operation of data cache 108 in accordance with 
one embodiment of the invention is described in more detail 
below in reference with FIGS. 17 and 19. 

0054 As illustrated in FIG. 1(a), all of the components 
of multimedia processor 100 are coupled to data transfer 
Switch 112. To this end, various ports of memory controller 
124 are coupled to data transfer Switch 112. Memory con 
troller 124 controls the operation of an external memory, 
Such as SDRAM 128. Data transfer Switch 112 is also 
coupled to a data Streamer 122. AS will be explained in more 
detail below, data streamer 122 provides buffered data 
movements within multimedia processor 100. It further 
Supports data transfer between memory or input/output I/O 
devices that have varying bandwidth requirements. In accor 
dance with one embodiment of the present invention, 
memory devices handled by data Streamer 122 may include 
any physical memory within the System that can be 
addressed, including external SDRAM 128, data cache 108, 
and memory space located in fixed function unit 106. 

0055. Furthermore, data streamer 122 handles memory 
transferS to host memory in Situations where multimedia 
processor 100 is coupled to a host processor via a PCI bus 
as described in more detail below in reference with FIG. 
1(c). To this end, multimedia processor 100 also includes a 
PCI/AGP interface 130, having ports that are coupled to data 
transfer Switch 112. PCI/AGP interface 130 allows multi 
media processor 100 communicate with a corresponding 
PCI bus and AGP bus that employ standard protocols 
respectively known as PCI Architecture Specification Rev. 
2.1 (published by the PCI Special Interest Group), and 
incorporated herein by reference, and AGP Architecture 
Specification Rev. 1.0, and incorporated herein by reference. 

0056 Multimedia processor 100 can function as either a 
master or a slave device when coupled to either PCI or AGP 
(Accelerated Graphics Port) bus via interface unit 130. 
Because the two buses can be coupled to multimedia pro 
cessor 100 independent from each other, multimedia pro 
ceSSor 100 can operate as the bus master device on one 
channel and a slave device on the other. To this end 
multimedia processor 100 appears as a multifunction PCI/ 
AGP device, when it operates as a slave device from the 
point of View of a host System. 

0057 Data streamer 122 is also coupled to an input/ 
output I/O bus 132 via a direct memory access, DMA, 
controller 138. A plurality of I/O device controllers 134 are 
coupled also to I/O bus 132. In accordance with one embodi 
ment of the present invention, the output ports of I/O device 
controllerS 134 are coupled to input ports of a versa port 
multiplexer 136. 

0.058 A programmable input/output controller (PIOC) 
126 is coupled to data transfer Switch 112 at some of its ports 
and to I/O bus 132 at other of its ports. 
0059. In accordance with one embodiment of the inven 
tion, I/O device controllers 134 together define an interface 
unit 202 that is configured to provide an interface between 
multimedia processor 100 and the outside world. As will be 
explained in more detail in reference with FIG. 1(b), mul 



US 2003/0196040 A1 

timedia processor 100 can be configured in a variety of 
configurations depending on the number of I/O devices that 
are activated at any one time. 

0060. As illustrated in FIG. 1(a), data transfer switch 112 
includes a processor memory bus (PMB) 114, which is 
configured to receive address and data information from 
fixed function unit 106, data cache 108 and instruction cache 
110 and data streamer 122. 

0061 Data transfer Switch 112 also includes an internal 
memory bus (IMB) 120, which is configured to receive 
address and data information from memory controller 124, 
data streamer 122, programmable input/output (I/O) con 
troller 126, and a PCI/AGP controller 130. 

0.062 Data transfer Switch 112 also includes a request bus 
118, which is configured to receive request signals from all 
components of multimedia processor 100 coupled to the data 
transfer Switch. 

0.063 Data transfer Switch 112 also includes a Switchable 
transceiver 116, which is configured to provide data con 
nections between processor memory bus (PMB) 114 and 
internal memory bus (IMB) 120. Furthermore, data transfer 
Switch 112 includes three bus arbiter units 140,142 and 144 
respectively. Thus, a separate bus arbitration for request and 
data buses is handled, based on System needs as explained 
in detail below. Furthermore.-as illustrated in FIG. 1(a), 
whereas different components in multimedia processor 100 
are coupled to either processor memory bus 114 or internal 
memory bus 120 as separate groups, data Streamer 122 is 
coupled to both memory buses directly. In accordance with 
one embodiment of the present invention, both processor 
memory bus 114 and internal memory bus 120 are 64 bits or 
8 bytes wide, operating at 200 MHZ for a peak bandwidth 
of 1600 MBS each. 

0064. In accordance with one embodiment of the inven 
tion, each bus arbiter, Such as 140, 142 and 144, includes a 
four level first-in-first-out (FIFO) buffer in order to accom 
plish Scheduling of multiple requests that are Sent Simulta 
neously. Typically, each request is Served based on an 
assigned priority level. 

0065 All of the components that are coupled to data 
transfer Switch 112 are referred to as a data transfer Switch 
agent. Furthermore, a component that requests to accom 
plish an operation is referred to in the present context as an 
initiator or bus master. Similarly, a component that responds 
to the request is referred to in the present context as a 
responder or a bus slave. It is noted that an initiator for a 
Specific function or at a specific time may be a Slave for 
another function or at another time. Furthermore, as will be 
explained in more detail, all data within multimedia proces 
Sor 100 is transmitted using one or both of data buses 114 
and 120 respectively. 

0.066 The protocol governing the operation of internal 
memory bus (IMB) and processor memory bus (PMB) is 
now explained in more detail. In accordance with one 
embodiment of the present invention, request buses 114, 118 
and 120 respectively, include Signal lines to accommodate a 
request address, which Signifies the destination address. 
During a request phase the component making a request is 
the bus master, and the component located at the destination 
address is the bus slave. The request buses, also include a 

Oct. 16, 2003 

request byte read enable signal, and a request initiator 
identification signal, which identifies the initiator of the 
request. 

0067. During a data transfer phase, the destination 
address of the request phase becomes the bus master, and the 
initiating component during the request phase becomes the 
bus slave. The buses also include lines to accommodate for 
a transaction identification ID Signal, which are uniquely 
generated by a bus slave during a data transfer phase. 
0068 Additional lines on the buses provide for a data 
transfer size, So that the originator and the destination end 
points can keep a track on the Size of the transfer between 
the two units. Furthermore, the buses include Signal lines to 
accommodate for the type of the command being processed. 
0069. The operation of interface unit 202 in conjunction 
with multiplexer 136 is described in more detail hereinafter 
in reference with FIG. 1(b). 

INTERFACE UNIT & MULTIPLEXER 

0070 Multimedia processor 100 enables concurrent mul 
timedia and I/O functions as a Stand alone unit or on a 
personal computer with minimal host loading and high 
media quality. Multiplexer 136 provides an I/O pinset which 
is software configurable when multimedia processor 100 is 
booted. This makes the I/O functions flexible and Software 
upgradable. The I/O pinset definitions depend on the type of 
I/O device controller 134 being activated. 
0071. Thus, in accordance with one embodiment of the 
invention, the I/O interface units configured on multimedia 
processor 100 can be changed, for example, by loading a 
Software upgrade and rebooting the chip. Likewise as new 
Standards and features become available, Software upgrades 
can take the place of hardware upgrades. 
0072 I/O interface unit includes an NTSC/PAL encoder 
and decoder device controller 224, which is coupled to I/O 
bus 132 and multiplexer 136. ISDN GCI controller unit 220 
is also coupled to I/O bus 132 and multiplexer 136. Similarly 
a T1 unit 210 is coupled to I/O bus 132 and multiplexer 136. 
A Legacy audio signal interface unit 218 is coupled to I/O 
bus 132 and multiplexer 136, and, is configured to provide 
audio signal interface in accordance with an audio protocol 
referred to as Legacy. Audio codec unit 214 is configured to 
provide audio-codec interface Signals. Audio codec unit 214 
is coupled to I/O bus 132 and multiplexer 136. A universal 
serial bus (USB) unit 222 is coupled to I/O bus 132 and 
multiplexer 136. USB unit 222 allows multimedia processor 
100 communicate with a USB bus for receiving control 
Signals from, for example, keyboard devices, joy Sticks and 
mouse devices. Similarly, an IEC958 interface 208 is 
coupled to I/O bus 132 and multiplexer 136. 

0073. An I-S (Inter-IC Sound) interface 212 is configured 
to drive a digital-to-analog converter (not shown) for home 
theater applications. IS interface is commonly employed by 
CD players where it is unnecessary to combine the data and 
clock signals into a Serial data Stream. This interface 
includes Separate master clock, word clock, bit clock, data 
and optional emphasis flag. 

0074) An IC bus interface unit 216 is configured to 
provide communications between multimedia processor 100 
and external on-board devices. The operation of IIC standard 



US 2003/0196040 A1 

is well known and described in Phillips Semiconductors The 
I°C-bus and How to Use it (including specifications) (April 
1995), and incorporated herein by reference. 
0075 Bus interface unit 216 operates in accordance with 
a communications protocol known as display data channel 
interface (DDC) standard. The DDC standard defines a 
communication channel between a computer display and a 
host System. The channel may be used to carry configuration 
information, to allow optimum use of the display and also, 
to carry display control information. In addition, it may be 
used as a data channel for Access bus peripherals connected 
to the host via the display. Display data channel Standard 
calls for hardware arrangements which are configured to 
provide data in accordance with VESA (Video Electronics 
Standard ASSociation) Standards for display data channel 
Specifications. 

0076) The function of each of the I/O device controllers 
mentioned above is described in additional detail hereinaf 
ter. 

0077 RAMDAC or SVGADAC interface 2041 provides 
direct connection to an external RAMDAC. The interface 
also includes a CRT controller, and a clock synthesizer. The 
RAMDAC is programmed through I C serial bus. 
0078 NTSC decoder/encoder controller device 224 inter 
faces directly to NTSC video signals complying with 
CCIR601/656 standard so as to provide an integrated and 
Stand-alone arrangement. This enables multimedia processor 
100 to directly generate high-quality NTSC or PAL video 
Signals. This interface can Support resolutions Specified by 
CCIR601 standard. Advanced video filtering on processor 
102 produces flicker-free output when converting progres 
Sive-to-interlaced and interlaced-to-progressive output. The 
NTSC encoder is controlled through the I°C serial bus. 
0079 Similarly, the NTSC decoder controller provides 
direct connection to a CCIR601/656 formatted NTSC video 
signal which can generate up to a 16-bit YUV at a 13.5 MHZ 
Pixel rate. The decoder is controlled through the I°C serial 
bus. 

0080) ISDN (Integrated Services Digital Networks stan 
dard) interface 220 includes a 5-pin interface which supports 
ISDN BRI (basic rate interface) via an external ISDN U or 
S/T interface device. ISDN standard defines a general digital 
telephone network Specification and has been in existence 
since the mid 1980's. The functionality of this module is 
based on the same principle as a Serial communication 
controller, using IDL2 and SCP interfaces to connect to the 
ISDN U-Interface devices. 

0.081 T1 interface 210 provides a direct connection to 
any third party T1 CSU (channel service unit) or data service 
unit (DSU) through a T1 serial or parallel interface. The 
CSU/DSU and serial/parallel output are software config 
urable through dedicated registers. Separate units handle 
Signal and data control. Typically the channel Service unit 
(CSU) regenerates the waveforms received from the T1 
network and presents the user with a clean Signal at the 
DSC-1 interface. It also regenerates the data sent. The 
remote test functions include loopback for testing from a 
network side. Furthermore, a data service unit (DSU) pre 
pares the customer's data to meet the format requirements of 
the DSC-1 interface, for example by Suppressing ZeroS with 

Oct. 16, 2003 

special coding. The DSU also provides the terminal with 
local and remote loopbacks for testing. 

0082) A single multimedia processor, in accordance with 
one embodiment of the invention is configured to handle up 
to 24 channels of V.34 modem data traffic, and can mix 
V.PCNL and V.34 functions. This feature allows multimedia 
processor 100 to be used to build modem concentrators. 
0083 Legacy audio unit 218 is configured to comply with 
Legacy audio Pro 8-bit Stereo Standard. It provides register 
communications operations (reset, command/status, read 
data/status), digitized voice operations (DMA and Direct 
mode), and professional mixer support (CT1345, Module 
Mixer). The functions of this unit include: 

0084 8-bit monaural/stereo DMA slave mode play/ 
record; 

0085 8-bit host I/O interface for Direct mode play/ 
record; 

0086 Reset, command/data, command status, read 
data and read Status register Support; 

0087 Professional mixer support; 

0088 FM synthesizer (OPLII, III, or IV address 
decoding); 

0089 MPU401 General MIDI support; 
0090 Joystick interface support; 

0091 Software configuration support for native 
DOS mode; and 

0092 PnP (plug and play) support for resources in 
Windows DOS box. 

0093. A PCI signal decoder unit provides for direct 
output of PCI legacy audio signals through multiplexer 136 
ports. 

0094 AC Link interface 214 is a 5 pin digital serial 
interface which is bidirectional, fixed rate, serial PCM 
digital Stream. It can handle multiple input and output audio 
Streams, as well as control register accesses employing a 
TDM format. The interface divides each audio frame into 12 
outgoing and 12 incoming data Streams, each with 20-bit 
Sample resolution. Interface 214 includes a codec that per 
forms fixed 48 KS/S DAC and ADC mixing, and analog 
processing. 

0.095 Transport channel interface (TCI) 206 accepts 
demodulated channel data in transport layer format. It Syn 
chronizes packet data from Satellite or cable, then unpacks 
and places byte-aligned data in the multimedia processor 
100 memory through the DMA controller. Basically, the 
transport channel interface accepts demodulated channel 
data in transport layer format. A transport layer format 
consists of 188 byte packets with a four byte header and a 
184 byte payload. The interface can detect the sync byte 
which is the first byte of every transport header. Once byte 
Sync has been detected, the interface passes byte aligned 
data into memory buffers of multimedia processor 100 via 
data streamer 122 and data transfer Switch 112 (FIG. 1(a)). 
The transport channel interface also accepts MPEG-2 sys 
tem transport packets in byte parallel or bit Serial format. 



US 2003/0196040 A1 

0096) Multimedia processor 100 provides clock correc 
tion and Synchronization for Video and audio channels. 

0097 Universal Serial Bus (USB) interface 222 is a 
Standard interface for communication with low-speed 
devices. This interface conforms to the Standard Specifica 
tion. It is a four-pin interface (two power and two data pins) 
that expects to connect to an external module Such as the 
Philips PDIUSB11. 

0098) Multimedia processor 100 does not act as a USB 
hub, but can communicate with both 12 Mbps and 1.5 Mbps 
devices. It is Software configurable to run at either Speed. 
When configured to run at the 12 Mpbs speed, it can send 
individual data packets to 1.5 Mbps devices. In accordance 
with one embodiment of the invention multimedia processor 
100 communicates with up to 256 devices through the USB. 

0099] The USB is a time-slotted bus. Time slots are one 
millisecond. Each time slot can contain multiple transactions 
that can be isochronous, asynchronous, control, or data. 
Furthermore, data transactions can be individual packets or 
can be bulk transactions. Data transactions are asynchro 
nous. Data is NRZI with bit stuffing. This guarantees a 
transition for clock adjustment at least once every six bits 
variable length data packets are CRC protected. Bulk data 
transactions break longer data Streams up into packets of up 
to 1023 bytes per packet, and Send one packet per time-slot. 

0100 IEC958 interface unit 208 is configured to support 
Several audio Standards, Such as Sony PhilipS Digital Inter 
face (SPDIF); Audio Engineering Society/European Broad 
cast Union (ES/EBU) interface; TOSLINK interface; The 
TOSLINK interface requires external IR devices. The 
IEC958 protocol convention calls for each multi-bit field in 
a sound sample to be shifted in or out with the least 
Significant bit first (little-endian). 

0101) Interface unit 202 also includes an IS controller 
unit 212 which is configured to drive high-quality (better 
than 95 dB SNR) audio digital-to-analog (D/A) converters 
for home theater. Timing is Software configurable to either 
18 or 16bit mode. 

0102) I°C unit 216 employs the IC standard primarily to 
facilitate communications between multimedia processor 
100 and external onboard devices. Comprising a two-line 
serial interface, IC unit 216 provides the physical layer 
(signaling) that allows the multimedia processor 100 serve 
as a master and slave device residing on the IC bus. As a 
result the multimedia processor 100 does not require addi 
tional hardware to relay Status and control information to 
external devices. 

0103 DDC interface provides full compliance with the 
VESA standards for Display Data Channel (DDC) specifi 
cations versions 1, and 2a. DDC Specification compliance is 
offered for: DDC control via two pins in the standard VGA 
connector; DDC control via IC connection through two 
pins in the Standard VGA connector. 

0104. It is noted that each of the I/O units described 
above advantageously include a control register (not shown) 
which corresponds to a PIO register located at a predeter 
mined address on I/O bus 132. As a result, each of the units 
may be directly controlled by receiving appropriate control 
signals via I/O bus 132. 

Oct. 16, 2003 

0105 Thus, in accordance with one embodiment of the 
invention, multimedia processor 100 may be employed in a 
variety of Systems by reprogramming the I/O configurations 
of the I/O unit 202 Such that a desired set of I/O devices have 
access to outside world via multiplexer 136. The pin con 
figurations for multiplexer 136 varies based on the configu 
ration of the I/O unit 202. Some of the exemplary applica 
tions that a System employing multimedia processor 100 
may be used include a three dimensional 3D geometry PC, 
a multimedia PC, a set-top box/3D television, or Web TV, 
and a telecommunications modem System. 
0106 During operation, processor 102 may be pro 
grammed accordingly to provide the proper Signaling via I/O 
bus 132 to I/O unit 202 so as to couple the desired I/O units 
to outside world via multiplexer 136. For example, in 
accordance with one embodiment of the invention, TCI unit 
206 may be activated to couple to an external tuner System 
(not shown) via multiplexer 136 to receive TV signals. 
Multimedia processor 100 may manipulate the received 
Signal and display it on a display unit Such as a monitor. In 
another embodiment of the invention, NTSC unit 224 may 
be activated to couple to an external tuner System (not 
shown) via multiplexer 136 to receive NTSC compliant TV 
Signals. 
0107. It will be appreciated that other applications may 
also be employed in accordance with the principles of the 
present invention. For purposes of illustrations, FIGS. 1(c) 
and 1(d) show block diagrams of two typical Systems 
arranged in accordance with two embodiments of the present 
invention, as discussed hereinafter. 
0.108 Thus, a multimedia system employing multimedia 
processor 100 is illustrated in FIG. 1(c), which operates 
with a host processor 230, such as an X860R, in accordance 
with one embodiment of the present invention. Multimedia 
processor 100 is coupled to a host processor 230 via an 
accelerated graphics bus AGP Processor 230 is coupled to 
an ISA bus via a PCI bus 260 and a south bridge unit 232. 
An audio I/O controller such as 218 (FIG. 1(b)) is config 
ured to receive from and send signals to ISAbus 258 via ISA 
SB/Comm mapper 232 and multiplexer 136. Furthermore, 
I°C/DDC driver unit 216 is configured to receive corre 
sponding Standard compliant signals via multiplexer 136. 
Driver unit 216 receives display data channel Signals which 
are intended to provide signals for controlling CRT resolu 
tions, screen sizes and aspect ratios. ISDN/GCI driver unit 
221 of multimedia processor 100 is configured to receive 
from and send signals to an ISDNU or S/T interface unit 236 
0109) Multimedia processor 100 provides analog RGB 
signals via display refresh unit 226 to a CRT monitor (not 
shown). Multimedia processor 100 is also configured to 
provide NTSC or PAL compliant video signals via CCIR/ 
NTSC driver unit 224 and NTSC encoder unit 238. Con 
versely, multimedia processor 100 is also configured to 
receive NTSC or PAL compliant video signals via CCIR/ 
NTSC driver unit 224 and NTSC decoder unit 240. A local 
oscillator unit 244 is configured to provide a 54 MHZ signal 
to multimedia processor 100 for processing the NTSC 
Signals. 
0110. A demodulator unit 246 is coupled to transport 
channel interface driver unit 206 of multimedia processor 
100. Demodulator unit 246 is configured to demodulate 
Signals based on quadrature amplitude modulation, or 
quadrature phase shift keying modulation or F.E.C. 



US 2003/0196040 A1 

0111. A secondary PCI bus 252 is also coupled to mul 
timedia processor 100 and is configured to receive signals 
generated by a video decoder 248 so as to provide NTSC/ 
PAL signals in accordance with Bt484 standard, provided by 
Brooktree(R). Furthermore, bus 252 receives signals in accor 
dance with 1394 link/phy standard allowing high speed 
serial data interface via 1394 unit 250. Bus 252 may be also 
coupled to another multimedia processor 100. 
0112 Finally, multimedia processor 100 is configured to 
receive analog audio signals via code 254 in accordance 
with AC97 standard. A local oscillator 256 generates an 
oscillating signal for the operation of AC97 code. 

0113 FIG. 1(d) illustrates a stand alone system, such as 
a multimedia TV or WEB TV that employs multimedia 
processor 100 in accordance with another embodiment of 
the invention. In a Stand-alone configuration, multimedia 
processor 100 activates universal serial bus (USB) driver 
unit 222 allowing control via user-interface devices Such as 
keyboards, mouse and joysticks. It is noted that for the 
Stand-alone configuration, VLIW processor performs all the 
graphic tasks in conjunction with other modules of multi 
media processor 100 as will be explained later. However, for 
the arrangement that operates with a host processor 230, 
Some of the graphic tasks are performed by the host pro 
CCSSO. 

DATA TRANSFER SWITCH 

0114 FIG. 2 is a flow diagram of the operation of data 
transfer Switch in accordance with one embodiment of the 
present invention, although the invention is not limited in 
Scope in that respect. 
0115 FIG. 2 illustrates the flow diagram of a bus pro 
tocol, which describes an example of the initiation phase in 
a write transaction from one functional unit in multimedia 
processor 100 to another unit in multimedia processor 100, 
Such as a transaction to write data in data cache 108 to a 
location in SDRAM 128 via memory controller 124, 
although the invention is not limited in Scope in that respect. 
Thus, for this example, the request bus master is data cache 
108, and the request bus slave is memory controller 124. At 
Step 402, request bus master Sends a write request, along 
with a responder ID and a Specifiable priority level to request 
bus arbiter 140. At step 404, request bus arbiter determines 
whether the request bus slave, in this case, memory con 
troller 124, is ready to accept a write request. If So, request 
bus arbiter 140 sends a grant signal to data cache 108, along 
with a transaction ID, and in turn Sends a write request to 
memory controller 124. 
0116. At step 406, request bus master provides address, 
command, Size and its own identifier ID Signals on request 
bus 118. Meanwhile, request bus slave in response to the 
previous request Signal, Sends an updated ready Signal to 
request bus arbiter 140 So as to indicate whether it can accept 
additional requests. Furthermore, the request bus slave puts 
the transaction identifier ID on the request bus. This trans 
action identifier is used to indicate that an entry for this 
transaction exists in the Slave's write queue. The request bus 
master Samples this transaction ID when it receives data 
corresponding to this request from the bus slave. 
0117 For the write transaction explained above, request 
bus master, for example, data cache 108 also becomes a data 

Oct. 16, 2003 

bus master. Thus, at step 408, data cache 108 sends a write 
request, along with a receiver identifier, the applicable 
priority level and the transaction size to data bus arbiter, in 
this case processor memory bus 114. At step 410, data bus 
arbiter 114 Sends a grant Signal to data bus master, and in 
turn sends a request signal to data bus slave (memory 
controller 124 for the present example). 
0118. At step 412, data bus master provides data and byte 
enables up to four consecutive cycles, on the data bus. In 
response, data bus slave Samples the data. The data bus 
master also provides the transaction ID that it originally 
received from the request bus slave at step 404. Finally, the 
data bus arbiter provides the size of the transaction for use 
by the data bus slave. 
0119 FIG. 3a illustrates a flow diagram of a read trans 
action that employs data transfer switch 112. For this 
example, it is assumed that data cache 108 performs a read 
operation on SDRAM 128. Thus, at step 420 request bus 
master (data cache 108 for the present example) sends a read 
request, along with a responder identifier ID Signal, and a 
specifiable priority level to request bus arbiter 140. At step 
422, request bus arbiter determines whether request bus 
Slave is available for the transaction. If So, request bus 
arbiter 140 sends a grant Signal to request bus master, along 
with a transaction ID, and also sends a read request to the 
request bus slave (memory controller 124 in the present 
example). At Step 424, the request bus master (data cache 
108) provides address, size, byte read enable, and its own 
identification signal ID, on the request bus. Meanwhile, 
request bus slave updates its ready signal in request bus 
arbiter 140 to signify whether it is ready to accept more 
accesses. Request bus master also provides the transaction 
ID Signal on the request bus. This transaction ID, is 
employed to indicate that a corresponding request is Stored 
in the bus master's read queue. 
0120 FIG. 3b illustrates the response phase in the read 
transaction. At Step 426, request bus slave (memory con 
troller 124) becomes the data bus master. When the data bus 
master is ready with the read data, it sends a request, a 
Specifiable priority level Signal, and the transaction size to the 
appropriate data bus arbiter; for this example, internal 
memory bus arbiter 142. At step 428, internal memory bus 
arbiter 142 sends a grant signal to the data bus master, and 
sends a request to the data bus slave-data cache 108. At 
step 430, data bus master (memory controller 124) provides 
up to four consecutive cycles of data to internal data bus 120. 
The data bus master also provides a transaction identifica 
tion Signal, transaction ID, which it received during the 
request phase. Finally, internal bus arbiter controls the 
transaction size for the internal bus slave (data cache 108) to 
Sample. 

0121. In sum, in accordance with one example of the 
invention, the initiator components request transferS via the 
request bus arbiter. Each initiator can request 4, 8, 16, 24 and 
32 byte transfer. The transaction, however, must be aligned 
on the communication size boundary. Each initiator may 
make a request in every cycle. Furthermore, each write 
initiator must Sample the transaction ID from the responder 
during the Send phase and must then Send it out during the 
response phase. 

0.122 Furthermore, during the read operations the 
responders are configured to determine when to Send the 



US 2003/0196040 A1 

requested data. The read responderS Sample the initiator ID 
Signal during the Send phase So that they know which device 
to Send data to during the response phase. The read respond 
erS Sample the transaction ID Signal from the initiator during 
the Send phase and then Send it out during the response 
phase. During the write operations, the responders are 
configured to accept write data after accepting a write 
request. 

0123 Table 1 illustrates an exemplary signal definition, 
for request bus 118, in accordance with one embodiment of 
the invention. Table 2 illustrates an exemplary signal defi 
nition, for data buses 114 and 120 in accordance with one 
embodiment of the invention. 

REQUEST BUS 

0124 

TABLE 1. 

Rqb addr31:2 Physical address 

Rqb bre3:0 Byte Read Enable (undefined during writes)- Since 
the request bus address has a 4-byte granularity, the 
byte read enable signifies which of the four bytes 
are being read Rqb breO is set for byte 0, 
Rqb bre1 is set for byte 1, and so on. All bits 
are set when reading 4 or more bytes. The read 
initiator is configured to generate any combinations 
of byte read enables. 
Request Initiator ID signal, which is the 
identification signal of the device making the 
request. 
Request Transaction ID - This is determined by the 
device which receives data. Since this device can be 
the initiator in a read transaction or the responder 
in a write transaction, it can set the transaction ID so 
that it can distinguish between these cases when data 
arrives. Also, since read and write requests can be 
completed out-of-order, the transaction ID can be 
used to signify the request that corresponds to the 
incoming data. 
Request size- This can be predetermined request size 
lengths, such as 4 bytes; 8 bytes; 16 bytes; 24 bytes; 
and 32 bytes. Since the smallest size is four bytes, a 
writer initiator signifies which bytes to be written 
using the data Burst Byte Enables as discussed in 
Table 2 below. A read initiator signifies which bytes 
are being read using Rab bre3:0 described 
above. 
Request Command- This signifies the type of 
operation being performed 
OOO Memory Operation 
OO1 Programmable Input/Output, PIO, operation 
O1O Memory allocate operation 

Rqb init id3.0 

DATABUS 

0125) 

TABLE 2 

Imb data 63:0 Internal Memory Data Bus- The data buses are little 
endian: byte O 
is data 7:0), byte 1 is data15:8, ..., and byte 7 is 
data 63:56). Data is preferably placed in the correct 
byte positions - it is preferably not aligned to the LSB. 
IMB Byte Write Enables (undefined during reads)- 
This is used by a write initiator to signify which bytes 
are to be written. Imb be O is set when writing 
byte 0, Imb be1 is set when writing byte 1, 
and so on. When writing 8 or more bytes, all bits 

Imb be7:0 

Oct. 16, 2003 

TABLE 2-continued 

should be set. The write initiator is allowed to generate 
any combination of byte enables. 

Imb tr id5:0 IMB Transaction ID - This is identical to the 
transaction ID sent on the Request Bus. 

Pmb data 63:0 
Pmb be7:0 
Pmb tr id7:0 

Processor Memory Data Bus 
PMB Byte Write Enables (undefined during reads) 
PMB Response Transaction ID 

0.126 Tables 3 through 9 illustrate command calls 
employed when transferring data Via data transfer Switch 
112. 

TABLE 3 

ROB Master to ROB Arbiter 

XX rqb rd reql 
Xx rqb Wr reql 
Xx rqb resp idl3:0 

Read Request 1 
Write Request 1 
Responder ID 1 - the device ID of the 
responder. It has the same encoding as the 
initiator ID. 

Xx rqb pril 1:0 Priority 1 
OO Highest 
O1 

11 Lowest 
XX rqb rd req2 Read Request 2 - in case there is a 

back-to-back request 
Write Request 2 
Responder ID 2 
Priority 2 

Xx rqb Wr req2 
Xx rqb resp id23:0 
Xx rqb pri21:0 

O127) 

TABLE 4 

ROB Slave to ROB Arbiter 

Xx rqb rd rdy1 
Xx rqb Wr rdy1 
Xx rqb rd rdy2 

Read Ready (1 or more) 
Write Ready (1 or more) 
Read Ready (2 or more) - see back-to-back requests 
below 

Xx rqb wr rdy2 Write Ready (2 or more) 

0128 

TABLE 5 

ROB Arbiter to ROB Arbiter 

Dts rqb gnt XX Bus Grant 

0129 

TABLE 6 

ROB Arbiter to ROB Slave 

Dts rqb rd req XX 
Dts rqb Wr req XX 

Read Request 
Write Request 



US 2003/0196040 A1 

0130 

TABLE 7 

Data Bus Master to Data Bus Arbiter 

Xx imb req1 IMB request 1 
Xx imb init id1 IMB receiver ID 1 
XX limb SZ1 IMB size 1 
Xx imb pri1 IMB priority 1 
Xx imb req2 IMB request 2 
Xx imb int id2 IMB receiver ID 2 
XX imb SZ2 IMB size 2 
Xx imb pri2 IMB priority 2 
Xx pmb req1 PMB request 1 
Xx pmb init idl PMB slave ID 1- the ID of the device receiving 

data. It has the same encoding as Rqb init id. 
Xx pmb Sz1 PMB size 1.- This tells the arbiter how many cycles 

are needed for the transaction. It has the same 
encoding as Rqb SZ. 

Xx pmb pri1 PMB priority 1 
Xx pmb req2 PMB request 2- see back-to-back requests below 
Xx pmb init id2 PMB receiver ID 2 
Xx pmb SZ2 PMB size 2 
Xx pmb pri2 PMB priority 2 

0131) 

TABLE 8 

Data Bus Arbiter to Data Bus Master 

Dts imb gnt XX 
Dts pmb gnt XX 

IMB grant 
PMB grant 

0132) 

TABLE 9 

Data Bus Arbiter to Data Bus Slave 

Dts imb req XX 
Dts pmb req XX 

IMB request 
PMB request 

0133 FIGS. 4(a) and 4(b) illustrate the flow of signals 
during a request bus connection and an internal memory bus 
connection, respectively, in accordance with one embodi 
ment of the invention. For example, in FIG. 4(a), a request 
bus initiator Sends request information to request bus arbiter 
140 in accordance with Table 3. Such request information 
may include a request bus read/write request. The request 
bus responder identification Signal, ID, and the priority level 
of the request. The request bus arbiter Sends read/write 
request Signals to the identified responder or request bus 
Slave (Table 6), in response to which, the responder sends 
back ready indication signals to request bus arbiter (Table 4). 
Upon receipt of the ready indication signal, request bus 
arbiter sends a request bus grant signal to the initiator (Table 
5). Once the grant signal is recognized by the initiator, 
transaction information in accordance with table-1-is 
transmitted to the responder via the request bus. To this end 
a Request bus transaction ID is assigned for the particular 
transaction to be processed. 

0134 FIG. 4(b) illustrates a data bus connection using 
internal memory bus 120. Thus, once the transaction infor 
mation and identification has been set up during the request 
bus arbitration phase, the initiator and responder begin to 

Oct. 16, 2003 

transfer the actual data. The initiator transmits to internal 
memory bus arbiter 142 the transaction information includ 
ing the request, Size, initiator identification signal, ID, and 
the priority level in accordance with Signals defined in Table 
7. Internal memory bus arbiter 142 send a request informa 
tion to the responder, in addition to the size information in 
accordance with Table 8. Thereafter the arbiter sends a grant 
Signal to the initiator, in response to which, the actual data 
transfer occurs between the initiator and the responder in 
accordance with Table 2. 

0135 FIG. 5(a) illustrates the timing diagram for a 
request bus read operation. FIG. 5(b) illustrates the timing 
diagram for a read request where the grant is not given 
immediately. FIG. 5(c) illustrates the timing diagram for a 
request bus write operation. It is noted that for the write 
operation, the request bus transaction identification signal, 
ID, is provided by the responder. Finally, FIG. 5(d) illus 
trates the timing diagram for a data bus data transfer 
operation. It is noted that for a read transaction, the data bus 
master is the read responder and the data bus slave is the read 
initiator. 

0.136 Data transfer Switch 112 is configured to accom 
modate back-to-back requests made by the initiators. AS 
illustrated in the timing diagrams, the latency between 
Sending a request and receiving a grant is two cycles. In the 
AO (or D0) cycle, arbiter 140 detects a request from a bus 
master. However, in the A1 (or D1) cycle, the bus master 
preferably keeps its request Signal-as well as other dedi 
cated Signals to the arbiter-asserted until it receives a grant. 
AS Such, arbiter 140 cannot tell from these signals whether 
the master wants to make a Second request. 
0.137 In order to accommodate a back-to-back request, a 
Second Set of dedicated Signals from the bus master to arbiter 
140 is provided so that the master can signal to the arbiter 
that there is a Second request pending. If a master wants to 
perform another request while it is waiting for its first 
request to be granted, it asserts its Second Set of Signals. If 
arbiter 140 is granting the bus to a master in the current 
cycle, it must look at the Second Set of Signals from that 
master when performing the arbitration for the following 
cycle. When a master receives a grant for its first request, it 
transferS all the information in the lines carrying the Second 
Set of request Signals to the lines carrying first Set of request 
Signals. This is required in case the arbiter cannot grant the 
Second request immediately. 
0.138. The ready signals from a ROB slave are also 
duplicated for a similar reason. When RQB arbiter 140 sends 
a request to a slave, the earliest it can See an updated ready 
Signal is two cycles later. In the AO cycle, it can decide to 
Send a request to a Slave based on its ready signals. However, 
in the A1 cycle, the slave has not updated its ready signals 
because it has not seen the request yet. Therefore, arbiter 140 
cannot tell from this ready Signal whether or not the Slave 
can accept another request. 
0.139. A second set of ready signals from the RQB slave 
to ROB arbiter 140 is provided so that the arbiter can tell 
whether the slave can accept a Second request. In general, 
the first Set of ready Signals signify whether at least one 
request can be accepted and the Second Set of ready signals 
Signify whether at least two requests can be accepted. If 
arbiter 140 is Sending a request to a slave in the current 
cycle, it must look at the Second set of ready Signals from 
that Slave when performing the arbitration for the next cycle. 



US 2003/0196040 A1 

0140. It is noted that there are ready signals for reads and 
writes. RQB slaves may have different queue structures 
(single queue, Separate read queue and Write queue, etc.). 
RQB arbiter 140 knows the queue configuration of the slave 
to determine whether to look at the first or Second read ready 
Signal after a write, and whether to look at the first or Second 
write ready Signal after a read. 
0141 FIG. 6(a) illustrates a timing diagram for a request 
bus master making a back-to-back read request. FIG. 6(b) 
illustrates a timing diagram for a processor memory bus 
master making a back-to-back request, when the grant is not 
immediately granted for the second request. Finally, FIG. 
6(c) illustrates a timing diagram for a request bus slave 
receiving a read request followed by a write request, assum 
ing that the request bus slave has a unified read and write 
Gueue. 

DATASTREAMER 

0142. The operation of data streamer 122 is now dis 
cussed in additional detail. The data Streamer is employed 
for predetermined buffered data movements within multi 
media processor 100. These data movements in accordance 
with Specifiable System configuration may occur between 
memory or input/output (I/O) devices that have varying 
bandwidth requirements. Thus, any physical memory in 
connection with multimedia processor 100 can transmit and 
receive data by employing data Streamer 122. These memory 
units include external SDRAM memory 128, data cache 
108, fixed function unit 106, input/output devices connected 
to input output (I/O) bus 132, and any host memory accessed 
by either the primary or secondary PCI bus controller 130. 
In accordance with one embodiment of the invention, data 
Streamer 122 undertakes data transfer actions under a Soft 
ware control, although the invention is not limited in Scope 
in that respect. To this end a command may initiate a data 
transfer operation between two components within the 
address space defined for multimedia processor 100. 
0143 FIG. 7 illustrates a block diagram of data streamer 
122 in accordance with one embodiment of the invention, 
although the invention is not limited in Scope in this respect. 
Data streamer 122 is coupled to data transfer Switch 112 via 
a data transfer Switch interface 718. A transfer engine 702 
within data Streamer 122 is employed for controlling the 
data transfer operation of data Streamer 122. AS will be 
explained in more detail below, transfer engine 702 imple 
ments a pipeline control logic to handle Simultaneous data 
transferS between different components of multimedia pro 
cessor 100. 

0144. The transfer engine is responsible to execute user 
programs, referred to herein as descriptors that describe a 
data transfer operation. A descriptor as will be explained in 
more detail below, is a data field that includes information 
relating to a memory transfer operation, Such as data 
addresses, pitch, width, count and control information. 
0145 Each descriptor is executed by a portion of data 
Streamer 122 hardware called a channel. A channel is defined 
by Some bits of State in a predetermined memory location 
called channel state memory 704. Channel state memory 
704 Supports 64 channels in accordance with one embodi 
ment of the invention. As illustrated in FIG. 7, channel state 
memory 704 is coupled to transfer engine 702. At any given 
time a number of these 64 channels are active and demand 

Oct. 16, 2003 

Service. Each active channel works with a descriptor. Data 
Streamer 122 allocates one or two channels for a data 
transfer operation. These channels remain allocated to the 
Same data transfer operation until data is transferred from its 
origination address to its destination address within multi 
media processor 100. As will be explained in more detail, 
data Streamer 122 allocates one channel for input/output to 
memory transfers, and allocates two channels for memory to 
memory transferS. 
0146 Transfer engine 702 is coupled to data transfer 
Switch interface 718 for providing data transfer Switch 
request Signals that are intended to be sent to data transfer 
Switch 112. Data transfer switch interface 718 is configured 
to handle outgoing read requests for data and descriptors that 
are generated by transfer engine 702. It also handles incom 
ing data from data transfer Switch 112 to appropriate regis 
ters in internal first-in-first-out buffer 716. Data transfer 
Switch interface 718 also handles outgoing data provided by 
data Streamer 122. 

0147 Data streamer 122 also includes a buffer memory 
714 which in accordance with one embodiment of the 
invention is a 4 KB SRAM memory, physically imple 
mented within multimedia processor 100, although the 
invention is not limited in Scope in that respect. Buffer 
memory 714 includes dual ported double memory banks 
714(a) and 714(b) in accordance with one embodiment of 
the invention. It is noted that for a data Streamer that handles 
64 channels, buffer memory 714 may be divided into 64 
Smaller buffer Spaces. 
0148. The data array in buffer memory 714 is physically 
organized as 8 bytes per line and is accessed 8 bytes at a 
time, by employing a masking technique. However, during 
the operation, a 4 kB of memory is divided into smaller 
buffers, each of which is used in conjunction with a data 
transfer operation. Therefore, a data transfer operation 
employs a data path within data Streamer 122 that is defined 
by one or two channels and one buffer. For memory-to 
memory transfer two channels are employed, whereas, for 
I/O-to-memory transfer one channel is employed. It is noted 
that the size of each smaller buffer is variable as specified by 
the data transfer characteristics. 

0149. In accordance with one embodiment of the inven 
tion, the data move operations are carried out based on 
predetermined chunk sizes. A Source chunk size of "k” 
implies that the Source channel should trigger requests for 
data when the destination channel has moved “k” bytes out 
of buffer memory 714. Similarly, a destination chunk size of 
“k” implies that the destination channel should start moving 
data out of buffer 714 when the Source channel has trans 
ferred “k” bytes of data into the buffer. Chunk sizes are 
multiple of 32 bytes, although the invention is not limited in 
Scope in that respect. 
0150 Buffer memory 714 is accompanied by a valid-bit 
memory that holds 8 bits per line of 8 bytes. The value of the 
valid bit is used to indicate whether the specific byte is valid 
or not. The sense of the valid bit is flipped each time the 
corresponding allocated buffer is filled. This removes the 
necessity to re-initialize the buffer memory each time a 
chunk is transferred. However, the corresponding bits in the 
valid-bits array are initialized to zeroes whenever a buffer is 
allocated for a data transfer path. 
0151. Buffer memory 714 is coupled to and controlled by 
a data streamer buffer controller 706. Buffer controller 706 



US 2003/0196040 A1 

is also coupled to transfer engine 702, and DMA controller 
138, and is configured to handle read and write requests 
received from the transfer engine and the DMA controller. 
Buffer controller 706 employs the data stored in buffer state 
memory 708 to accomplish its tasks. Buffer controller 706 
keeps a count of the number of bytes that are brought into 
the buffer and the number of bytes being taken out. Data 
streamer buffer controller 706 also implements a pipelined 
logic to handle the 64 buffers and manage the read and write 
of data into buffer memory 714. 
0152 Buffer state memory 708 is used to keep state 
information about each of the buffers used in a data path. AS 
mentioned before, the buffer state memory supports 64 
individual buffer FIFOs. 

0153 DMA controller 138 is coupled to I/O bus 132. In 
accordance with one embodiment of the invention, DMA 
controller 138 acts to arbitrate among the I/O devices that 
want to make a DMA request. It also provides buffering for 
DMA requests coming into the data Streamer buffer control 
ler and data going back out to the I/O devices. The arbitra 
tion relating to DMA controller 138 is handled by a round 
robin priority arbiter 710, which is coupled to DMA 
controller 138 and I/O bus 132. Arbiter 710 arbitrates the use 
of the I/O data bus between physical input/output controller, 
PIOC 126 and DMA controller 138. 

0154) In accordance with one embodiment of the inven 
tion, data Streamer 122 treats data cache 108 as an accessible 
memory component and as Such allows direct read and write 
access to data cache 108. As will be explained in more detail 
data streamer 122 is configured to maintain coherency in the 
data cache, whenever a channel descriptor Specifies a data 
cache operation. The ability to initiate read and write 
requests to data cache by other components of multimedia 
processor 100 is suitable for data applications wherein the 
data to be used by CPU 102 and 104 respectively is known 
beforehand. Thus, the cache hit ratio improves Significantly, 
because the application can fill necessary data before CPU 
102 or 104 uses the data. 

O155 As stated before, data streamer 122 in accordance 
with one embodiment of the invention operates based on a 
user Specified Software program, by employing Several 
application programing interface, or API, library calls. To 
this end, programmable input/output controller PIOC 126 
acts as an interface between other components of multime 
dia processor 100 and data streamer 122. Therefore, the 
commands used to communicate with data Streamer 122, at 
the lowest level translate to PIO reads and writes in the data 
Streamer Space. Thus, any component that is capable of 
generating Such PIO read and write operations can commu 
nicate with data Streamer 122. In accordance with one 
embodiment of the invention, these blocks include fixed 
function unit 106, central processing units 102, 104, and a 
host central processing unit coupled to multimedia processor 
100 via, for example, a PCI bus. 
0156. In accordance with one embodiment of the inven 
tion, data streamer 122 occupies 512 K bytes of PIO 
(physical memory) address space. Each data streamer chan 
nel State memory occupies less than 64 bytes in a 4K byte 
page. Each data Streamer channel State memory is in a 
Separate 4K byte page for protection, however, the invention 
is not limited in Scope in that respect. 
O157 Table 10, illustrates the address ranges used for 
various devices. For example, the bit in position 18 is used 
to select between transfer engine 702 and other internal 

Oct. 16, 2003 

components of data Streamer 122. The other components 
include the data RAM used for buffer memory, the valid 
RAM bits that accompany the data RAM, the data streamer 
buffer controller and the DMA controller. 

TABLE 10 

PIO Address Map of the DATA STREAMER 

Starting Ending 
PIO PIO 
OFFSET OFFSET USAGE 

0x00000 0x3FFFF Transfer engine channel state memory and other 
user commands. 

Ox40000 Ox4OFFF DS Buffer Data Ram. 
Ox41000 Ox41FFF DS Buffer Walid Ram 
Ox42000 Ox42FFF DS Buffer Controller 
Ox43000 Ox43FFF DMA Controller 
Ox44000 Ox44FFF Data Streamer TLB (Translation Lookaside 

Buffer) which performs caching mechanism of 
address translation tables same as general purpose 
processors. Multimedia processor 100 includes 
three TLBs for two clusters and a data streamer. 

0158 When bit 18 has a value of 0, the PIO address 
belongs to transfer engine 702. Table 11, illustrates how bits 
17:0 are interpreted for transfer engine 702 internal opera 
tions. 

TABLE 11 

Transfer Engine Decodes 

BIT Name Description 

18 Transfer Engine 1 = NOT transfer engine PIO operation, 
select see table above. O = transfer engine PIO 

operation. 
17:12 Channel Number Channel number 0 to 63 is selected by this 

field 
11:9. Unused 
8:6 TE internal regions 0 = Channel state memory 1 

and user interface 1 = Channel state memory 2 
calls 2 = Reorder table 

3 = ds kick - start a data transfer 
operation 
4 = ds continue 
5 = ds check status 
6 = ds freeze 
7 = ds unfreeze 

5:0 Address select within The user-interface calls are aliased to 
TE regions all addresses within their region 

0159. When bit 18 has a value of 1, the PIO address 
belongs to data streamer buffer controller 706, relating to 
buffer state memory, as shown in Table 12. 

TABLE 12 

Data Streamer Buffer Controller Decodes 

BIT Name Description 

PIO device select is obtained for the Data 
Streamer 

63:19 PIO region 
specification and DS 
device select 

18:12 DS internal component 1000010 
select 

11 BSM select 
10:0 Register select 

O => BSM1 1 => BSM2 
Select one 64 bit register in each buffer 



US 2003/0196040 A1 

0160 The internal structure of each component of data 
Streamer 122 in accordance with one embodiment of the 
invention is described in more detail hereinafter. 

TRANSFER ENGINE 

0.161 FIG. 8 illustrates a block diagram of transfer 
engine 702 in accordance with one embodiment of the 
invention, although the invention is not limited in Scope in 
that respect. The main elements of transfer engine 702 
comprise an operation Scheduler 742, coupled to a fetch 
Stage 744, which in turn is coupled to a generate and update 
stage 746, which is coupled to write-back stage 748. 
Together, components 742 through 748 define the transfer 
engine's execution pipeline. A round-robin priority Sched 
uler 740 is employed to Select the appropriate channels and 
their corresponding channel State memory. 
0162. As will be explained in more detail later, informa 
tion relating to the channels that are ready to be executed are 
stored in channel state memory 704, which is physically 
divided to two channel state memory banks 704(a) and 
704(b) in accordance with one embodiment of the invention. 
Priority scheduler 740 performs a round-robin scheduling of 
the ready channels with 4 priority levels. To this end, ready 
channels with the highest priority level are picked in a 
round-robin arrangement. Channels with lower priority lev 
els are considered only if there are no channels with a higher 
priority level. 
0163 Priority scheduler 740 picks a channel once every 
two cycles and presents it to the operation Scheduler for 
another level of Scheduling. 
0164. Operation scheduler 742 is configured to receive 
four operations at any time and execute each operation one 
at a time. These four operations include: a programmable 
input/output, PIO, operation from the programmable input/ 
output controller, PIOC, 126; an incoming descriptor pro 
gram from data transfer Switch interface 718; a chunk 
request for a channel from a chunk request interface queue 
filled by data streamer buffer controller 706; and a ready 
channel from priority scheduler 740. 
0.165. As will be explained in more detail below in 
reference with FIGS. 13 and 14 a source descriptor program 
defines the Specifics of a data transfer operation to buffer 
memory 714, and a destination descriptor program defines 
the Specifics of a data transfer operation from buffer memory 
714 to a destination location. Furthermore, a buffer issues a 
chunk request for a corresponding Source channel Stored in 
channel state memory 704 to indicate the number of bytes 
that it can receive. The priority order with which the 
operation Scheduler picks a task, from highest to lowest is 
PIO operations, incoming descriptors, chunk requests, and 
ready channels. 
0166 Information about the operation that is selected by 
operation scheduler is transferred to fetch stage 744. The 
fetch Stage is employed to retrieve the bits from channel 
state memory 704, which are required to carry out the 
Selected operation. For example, if the operation Scheduler 
picks a ready channel, the channel's chunk count bits and 
burst size must be read to determine the number of requests 
that must be generated for a data transfer operation. 
0167 Generate and update stage 746 is executed a num 
ber of times that is equal to the number of requests that must 

Oct. 16, 2003 

be generated for a data transfer operation as derived from 
fetch stage 744. For example, if the destination channel's 
transfer burst size is 4, then generate and update Stage 746 
is executed for 4 cycles, generating a request per cycle. AS 
another example, if the operation is a PIO write operation to 
channel State memory 704, generate and update Stage is 
executed once. AS will be explained in more detail below, 
the read/write requests generated by generate and update 
stage 746 are added to a request queue RQQ 764, in data 
transfer Switch interface 718. 

0168 Channel state memory 704 needs to be updated 
after most of the operations that are executed by transfer 
engine 702. For example, when a channel completes gen 
erating requests in the generate and update Stage 746, the 
chunk numbers are decremented and written back to channel 
state memory 704. Write back stage 748 also sends a reset 
signal to channel state memory 704 to initialize the inter 
burst delay counter with the minimum interburst delay value 
as will be explained in more detail in reference with channel 
state memory structure illustrated in Table 13. 

CHANNEL STATE MEMORY 

0169 Information relating to each one of the 64 channels 
in data streamer 122 is stored in channel state memory 704. 
Prior and during a data move operation, data Streamer 122 
employs the data in channel state memory 704 for accom 
plishing its data movement tasks. Tables 13-19, illustrate the 
fields that define the channel state memory. The tables also 
shows the bit positions of the various fields and the value 
with which they should be initiated when the channel is 
allocated for a data transfer in accordance with one embodi 
ment of the invention. 

0170 Channel state memory 704 is divided into two 
portions, 704(a) and 704(b) in accordance with one embodi 
ment of the invention. Channel state memory 704(a) has 
four 64-bit values referred to as 0x00,0x08,0x10, and 0x18. 
Channel state memory 704(b) has three 64-bit values at 
positions 0x00,0x08 and 0x10. 

TABLE 13 

Qhannel State Memory 1 (OFFSET 0x00 

BIT NAME INITIALIZED WITHVALUE 

15:0 Control XXX (don't cares) 
31:16 Count XXX 
47:32 Width XXX 
63:48 Pitch XXX 

0171 

TABLE 1.4 

Qhannel State Memory 1 (OFFSET 0x08 

BIT NAME INITIALIZED WITH VALUE 

31:O Data Address 
47:32 Burst Size 

XXX (don't cares) 
set to number of DTS requests the channel 
must attempt to generate each time that it is 
scheduled. (Larger burst sizes are used to get 
back-to-back requests into the memory 
controller queues, to avoid SDRAM page 



US 2003/0196040 A1 

TABLE 14-continued 

Qhannel State Memory 1 (OFFSET Ox08 

BIT NAME INITIALIZED WITH VALUE 

miss--in conjunction use high DTS priority 
with larger burst sizesfor higher bandwidth 
transfers). 

63:48 Remaining width xxx 
count (RCW) 

0172 

TABLE 1.5 

Qhannel State Memory 1 (OFFSET OX10 

BIT NAME INITIALIZED WITH VALUE 

15:0 Remaining burst O 
count (RBC) 

31:16 Remaining chunk O 
count (RCCNT) 

35:32 State O 
39:36 Interburst delay Must be initialized. Specify in multiples of 

(IBD) 8 cycles, i.e., value 
n => minimum delay of 8 n cycles before 
this channel can be considered for scheduling 
by the priority scheduler. 
id of the buffer assigned to this channel 
A value that is used on the DTS signal lines. 
bit 47: if set to 1 implies allocate in the 
dcache, O implies no-allocate 
bit 46: if set to 1 implies a PIO address 

48 Descriptor prefetch 0 
buffer valid 
(DPBV) 

49 Descriptor valid O 
(DV) 

51:50 Channel priority 

45:40 Buffer id (BID) 
47:46 DTS command 

(CMD) 

value between 0 and 3 indicating the priority 
level of the channel 
O = > highest priority 
3 => lowest priority 

52 Active Flag (A) O 
53 First descriptor O 

(FD) 
54 No more O 

descriptors (NMD) 
55 Descriptor type O = format 1 

1 => format 2 
59:56 Interburst delay O 

count (IDBC) 
63:60 Reserved XXX 

0173 

TABLE 16 

Qhannel State Memory 1 (OFFSETOX18 

BIT NAME INITIALIZED WITH VALUE 

7:0 Address- space id 
(ASID) 

8 TLB mode 

asid of the application using this channel 

O = don't use TLB 
1 => use TLB 
set to required DTS priority to use for 
requests from this channel 
O = > highest 
3 = lowest 
Access mode on the DTS 
bit 12:X 

10:9 DTS priority 

12:11 Cache mode 

Oct. 16, 2003 

TABLE 16-continued 

Qhannel State Memory 1 (OFFSETOX18 

BIT NAME INITIALIZED WITH VALUE 

bit 11:1 => coherent 
O = non-coherent 
way mask for cache accesses. A value 
of 1 = > use way 
bit 13: way 0 in data cache 
bit 14: way 1 
bit 15: way 2 
bit 16: way 3 
start address of the corresponding buffer, 
specifying the full 12 bits. 
1 = > source channel (read) 
O = c destination channel (write) 

35:30 Buffer start address just as it is set in BSM1 

16:13 Way mask 

28:17 Buffer address 
pointer (BAP) 

29 Read/Write (RW) 

(BSA) 
41:36 Buffer end address just as it is set in BSM1 

(BEA) 
42 Valid sense O 

0174) 

TABLE 1.7 

Qhannel State Memory 2 (OFFSET 0x00 

BIT NAME INITIALIZED WITH VALUE 

31:O Next descriptor XXX (don't cares) 
address 

47:32 Control word XXX 
63:48 Count XXX 

0175) 

TABLE 1.8 

Qhannel State Memory 2 (OFFSETOXOS 

BIT NAME INITIALIZED WITHVALUE 

15:0 Width XXX (don't cares) 
31:16 Pitch XXX 
63:32 Data location XXX 

address 

0176) 

TABLE 1.9 

Qhannel State Memory 2 (OFFSET OX10 

BIT NAME INITIALIZED WITHVALUE 

31:O Base address XXX (don't cares) 
63:32 New pointer XXX 

address 

0177. The bandwidth of data transfer achieved by a 
channel is based among other things on four parameters as 
follows: internal channel priority; minimum interburst 
delay; transfer burst size; and data transfer Switch priority. 
When a path is allocated, these four parameters are consid 
ered by the System. Channel features also include three 
parameters that the System initializes. These include the base 



US 2003/0196040 A1 

address, a cache way replacement mask as will be explained 
in more detail, and descriptor fetch mode bits. These param 
eters are explained hereinafter. 
0.178 Channel priority: Data Streamer 122 hardware Sup 
ports four internal channel priority levels (0 being highest 
and 3 lowest). AS explained, the hardware schedules chan 
nels in a round-robin fashion by order of priority. For 
channels associated with memory-memory transferS it is 
preferable to assign equal priorities to both channels to keep 
the data transferS at both Sides moving along at equal pace. 
Preferably, the channels that are hooked up with high 
bandwidth I/O devices are set up at lower level priority and 
channels that are hooked up with lower bandwidth I/O 
devices employ higher priority. Such channels rarely join the 
Scheduling pool, but when they do, they are almost imme 
diately Scheduled and Serviced, and therefore not locked out 
for and unacceptable number of cycles by a higher band 
width, higher priority channel. 
0179 Minimum interburst delay: This parameter relates 
to the minimum number of cycles that must pass before any 
channel can rejoin the Scheduling pool after it is Serviced. 
This is a multiple of 8 cycles. This parameter can be used to 
effectively block off high priority channels or channels that 
have a larger Service time (discussed in the next paragraph) 
for a period of time and allow lower priority channels to be 
Scheduled. 

0180 Transfer burst size: Once a channel is scheduled, 
transfer burst size parameter indicates the number of actual 
requests it can generate on the data transfer Switch, before it 
is de-scheduled again. For a source channel, this indicates 
the number of requests it generates for data to be brought 
into the buffer. For a destination channel, it is the number of 
data packets Sent out using the data in the buffer. The larger 
the value of this parameter, the longer the Service time for a 
particular channel. Each request can ask for a maximum of 
32 bytes and send 32 bytes of data at a time. A channel stays 
Scheduled generating requests until it either runs out of its 
transfer burst size count, encounters a halt bit in a descriptor, 
there are no more descriptors, or a descriptor needs to be 
fetched from memory. 
0181 DTS priority: Each request to a request bus arbiter 
or a memory data bus arbiter on the data transfer Switch is 
accompanied by a priority by the requestor. Both arbiters 
support four levels of priority and the priority to be used for 
the transferS by a channel is pre-programmed into the 
channel State. Higher priorities are used when it is consid 
ered to be important to get multiple requests from the same 
channel to be adjacent in the memory controller queue, for 
SDRAM page hits. (0 is highest priority and 3 is lowest). 
0182 Base address, way mask, and descriptor fetch 
modes: For memory-memory moves, inputting the data path 
structure (with hits) is optional. If this is null, the system 
assumes Some default values for the various parameters. 
These default values are shown in table below. 

0183) When requesting a path for a memory-I/O or 
I/O-memory, the System provides a data path Structure. This 
allows to set the booleans that will indicate to the system 
which transfer will be an I/O transfer and therefore will not 
need a channel allocation. For an I/O to memory transfer, 
parameterS Such as buffer size and chunk sizes are more 
relevant than for a memory-memory transfer, Since it might 
be important to match the transfer parameters to I/O device 
bandwidth requirements. 

Oct. 16, 2003 

0184. In accordance with one embodiment of this inven 
tion, a data path is requested in response to a request for a 
data transfer operation. For a System that is based on 
Software control a kernel returns a data path Structure that 
fills in the actual values of the parameters that was Set, and 
also the ids of the channel that the application will use to 
kick them off. If the path involves an I/O device, the buffer 
id is also returned. This buffer id is passed on by the 
application to the device driver call for that I/O device. The 
device driver uses this value to ready the I/O device to start 
data transfers to that data streamer buffer. If the user 
application is not satisfied with the type (parameters) of the 
DS path resources obtained, it can close the path and try 
again later. 

DESCRIPTOR PROGRAM 

0185. Data transfers are based on two types of descrip 
tors, as Specified in channel State memory field as format 1 
descriptor and format 2 descriptor. In accordance with one 
embodiment of the invention, a format 1 descriptor is 
defined based on the nature of many data transfers in 3D 
graphic and Video image applications. 
0186 Typically, as illustrated in FIG. 12, pixel informa 
tion, is Stored at Scattered locations in the same arrangement 
that the pixels are intended to be displayed. Sometimes it is 
desired to proceed with a data gather operation, where “n” 
pieces of data or pixels are gathered together from n loca 
tions Starting at “start Source data location=X” in the memory 
Space into one contiguous location beginning at “start des 
tination data location=y. Each piece of data gathered is 10 
bytes wide and separated from the next one by 22 bytes 
(pitch). To enable a transfer as illustrated in FIG. 12, two 
Separate descriptors need to be set up, one for the Source 
channel that handles transfers from source to buffer memory 
714 (FIG. 7), and the other for the destination channel that 
handles transfers from the buffer memory to the destination. 
0187 FIG. 13 illustrates a data structure 220 for a format 
1 descriptor in accordance with one embodiment of the 
invention. The size of descriptor 220 is 16 bytes, comprising 
two 8 byte words. The list below describes the different 
fields of the descriptor and how each field is employed 
during a data transfer operation. 

0188 1. Next Descriptor: The first 32 bits hold the 
address of another descriptor. This makes its possible to 
chain Several descriptors together for complicated 
transfer patterns or for those that cannot be described 
using a single descriptor. 

0189 2. Descriptor Control Field. The 16 bits of this 
field are interpreted as follows: 
0190) 15:14-unused 
0191) 13-interrupt the host cpu (on completion of 
this descriptor) 

0.192 12-interrupt the cpu of multimedia proces 
sor 100 (on completion of this descriptor) 

0193 11:9-reserved for software use 
0194 8 No more descriptor (set when this is the 
last descriptor in this chain). 

0.195 7:4-data fetch mode (for all the data 
fetched or sent by this descriptor) 



US 2003/0196040 A1 

0196) 7: cache mode 0=>coherent, 1 =>non-co 
herent 

0197) 6: 1 =>use way mask, 0=>don’t use way 
mask 

0198 5: 1 =>allocate in data cache, 0=>no-allo 
cate in data cache 

0199 (4): 1 =>data in PIO space, 0=>not 
0200) 3-prefetch inhibit if set to 1 
0201 2-halt at the end of this descriptor of set to 

1. 

0202) 1:0-descriptor format type 
0203 00: format 1 
0204 01: format 2 
0205) 10: control descriptor 

0206. It is noted that the coherence bit indicates whether 
the data cache should be checked for the presence of the data 
being transferred in or out. In accordance with a preferred 
embodiment of this invention it is desired that this bit is not 
turned off unless the System has determined that the data was 
not brought into the cache by the CPUs 102 or 104. Turning 
off this bit results in a performance gain by bypassing cache 
108 since it reduces the load on the cache and may decrease 
the latency of the read or write (by 2-18 cycles, depending 
on the data cache queue fullness, if you choose no-allocate 
in the cache). 
0207. The way mask is employed in circumstances 
wherein data cache 108 has multiple ways. For example in 
accordance with one embodiment of the invention, data 
cache 108 has four ways, with 4 kBytes in each way. Within 
the present context, each way in a data cache is defined as 
a separate memory space that is configured to Store a 
specified type of data. The “use way mask' bit simply 
indicates whether the way mask is to be used or not, in all 
the transactions initiated by the current descriptor to the data 
cache. 

0208. The “allocate”, “no-allocate” bit is relevant only if 
the coherent bit is Set. Basically, no-allocate is useful when 
the user wants to check the data cache for coherence reasons, 
but does not want the data to end up in the data cache, if it 
is not already present. Allocate must be set when the user 
wants to pre-load the data cache with Some data from 
memory before the cpu begins computation. 
0209 Table 20 shows the action taken for the different 
values of the coherent and allocate bits in bits 7:4 of 
descriptor control field relating to data fetch modes. 

MEMORY TRANSFER ACCESS MODES 

0210) 

TABLE 2.0 

Command - mode Cache hit Cache miss 

READ Descriptor and 
Source data (like a cpu 
load) coherently- allocate 
READ Descriptor and 
Source data 
coherently-no 
allocate 

Read from the Read from memory and 
data cache allocate cache line 

Read from the Read from memory and 
data cache DO NOT allocate cache line 

Oct. 16, 2003 

TABLE 20-continued 

Command - mode Cache hit Cache miss 

READ Descriptor and Ignore cache Read data directly from the 
Source data non- memory and DO NOT 
coherently-no-allocate allocate cache line 
WRITE Destination data Write the data Allocate a data cache line and 
(like a store) coherently- into the cache write the data into the cache 
allocate and set the line. No memory transaction 

dirty flag. for the refill occurs if the 
cache recognizes the whole of 
the cache line is being 
overwritten. Set the dirty flag. 

WRITE Destination data Write the data Write it to memory directly 
coherently-no-allocate into the data and DO NOT allocate a cache 

cache line and line. 
set the dirty 
flag 

WRITE Destination data Ignore cache 
non-coherently-no 
allocate 

Write data into memory and 
DO Not allocate a cache line. 

0211 Returning to the explanation of descriptor, the PIO 
bit is needed when transferring data from/to PIO (Pro 
grammed I/O) address space. For example, data streamer 
122 can be used to read the data streamer buffer memory 
(which lies in PIO address space). 
0212. The halt bit is used for synchronizing with data 
streamer 122 from the user-level. When set, data streamer 
122 will halt the channel when it is done transferring all the 
data indicated by this descriptor. The data streamer will also 
halt when the “no more descriptors' bit is set. 
0213 When a data streamer channel fetches a descriptor 
and begins its execution, it immediately initiates a prefetch 
of the next descriptor. It is possible for the user to inhibit this 
prefetch process by setting the “prefetch inhibit bit. It is 
valid only when the halt bit is also set. That is, it is 
meaningless to try to inhibit the prefetch when not halting. 

0214. As illustrated in the following list, not all combi 
nations of the data fetch mode bits are valid. For example, 
“allocate” and “use way mask' only have meaning when the 
data cache is the target and Since the data cache does not 
accept PIO accesses any combination where PIO=1 and 
(other bit)=1 is not used. 

coherent use-way-mask allocate PIO space 

1 valid - PIO 
1 invalid 
1 invalid 
1 invalid 
O valid - non-coherent 
- invalid 
- invalid 
O valid - coherent no-allocate 
O valid - coherent allocate 
0 invalid 
O valid - coherent allocate, masked 

0215 3. Count: This indicates the number of pieces of 
data to be transferred using this descriptor. 

0216 4. Width: is the number of bytes to be picked up 
from a given location. 



US 2003/0196040 A1 

0217 5. Pitch: is the offset distance between the last 
byte transferred to the next byte. Destination is Sequen 
tial and hence pitch is 0. Pitch is a signed value which 
enables the data locations gathered to move backwards 
through memory. 

0218 6. Data Location Address: is the address where 
the first byte for this descriptor can be located. In 
Example 1, for the source side, this is “X” and for the 
destination transfer it is “y”. Every data location 
address used by a channel is first added to a base 
address. This base address value is held in the channel's 
state memory. When a channel is initialized by the 
ds open path () call, this base address value is set to 
Zero. This value can be changed by the user using the 
Control descriptor (described below). 

0219) Table 21 below shows how the descriptors for the 
Source and destination transferS are configured, for a data 
transfer from SDRAM 128 into data cache 108, i.e., a cache 
pre-load operation. 

0220. The control word at the source indicates coherent 
data operation, but does not allocate. The halt bit is not Set 
Since there are no more descriptors, and the channel auto 
matically halts when done transferring this data. The “No 
more descriptor' bit must be set. 

TABLE 21 

Source Descriptor 

Source Descriptor Bits Explanation 

0:31 next descriptor 0 
34:47 count 

only one descriptor 

48:63 control word OxO1OO format 1, no-allocate, coherent, no 
more descriptors 

64:79 pitch +22 
80:95 width 1O 
96:127 data address X 

0221) The control word for the destination descriptor in 
table 22 indicates that the data cache is the target by making 
a coherent reference that should allocate in the cache if it 
misses. AS for the Source case, the halt bit is not set Since the 
channel will automatically halt when it is done with this 
transfer, since the next descriptor field is zero. Also the “No 
more descriptor bit is Set as for the Source case. 

TABLE 22 

Destination Descriptor 

Destination Descriptor Bits Explanations 

0:31 next descriptor O 
34:47 count 1. 

only one descriptor 
gathered together in one big 
contiguous piece 
format 1, coherent, allocate, no more 
descriptors 

48:63 control word OxO12O 

64:79 pitch O only one piece 
80:95 width 10 in 
96:127 data address y 

FORMAT 2. DESCRIPTOR 

0222 FIG. 14 illustrates a data structure 240 correspond 
ing to a format 2 descriptor in accordance with one embodi 

16 
Oct. 16, 2003 

ment of the invention. A data movement operation in accor 
dance with a format 2 descriptor is similar to format 1 
descriptor operation in many aspects. However, one differ 
ence with the format 1 descriptor Structure is that a unique 
data location address is Supplied for each data block 
intended to be transferred. Furthermore, the data structure in 
accordance with format 2 descriptor does not employ a pitch 
field. Format 2 descriptor is employed in data transfer 
operations when it is desired to transfer Several pieces of 
data that are identical in width, but which are not separated 
by Some uniform pitch. 
0223) Accordingly, the first field in format 2 descriptor 
contains the next descriptor address. The count field contains 
the number of data pieces that are intended to be transferred. 
The control field specification is identical to that of format 
1 descriptor as discussed in reference with FIG. 13. The 
width field specifies the width of data pieces that are 
intended to be transferred. In accordance with one embodi 
ment of the invention, format 2 descriptors are aligned to a 
16 byte boundary for coherent accesses and 8 byte boundary 
for non-coherent accesses. The length of a format 2 descrip 
tor varies from 16 bytes to multiples of 4 bytes greater than 
16. 

DATA TRANSFER SWITCH INTERFACE 

0224 FIG. 9 illustrates a block diagram of data transfer 
switch (DTS) interface 718 in accordance with one embodi 
ment of the invention, although the invention is not limited 
in Scope in that respect. It is to be understood that a data 
transfer Switch interface is employed by all components of 
multimedia processor 100 that transfer data via data transfer 
switch 112 (FIG. 1(a)). 
0225 DTS interface 718 includes a bus requester 760 that 
is coupled to request bus 118 of data transfer Switch 112. Bus 
requester 760 comprises a request issuer 762 which is 
configured to provide request Signals to o a request bus 
queue (RQQ) 764. Request bus queue 764 is a first-in 
first-out FIFO buffer that holds data and descriptor requests 
on a first come first Served basis. 

0226. The other input port of request bus queue 764 is 
configured to receive read/write requests generated by trans 
fer engine 702 via generate and update stage 746. Read 
requests include requests for data and for channel descrip 
tors. Write requests include requests for data being Sent out. 
0227 Issuer 762 is configured to send a request signal to 
data transfer Switch request bus arbiter 140. When granted, 
bus requester 760 sends the request contained at the top of 
first-in-first-out request queue 764. A request that is not 
granted by data transfer Switch request bus arbiter 140, after 
a few cycles, is removed from the head of request queue 764 
and re-entered at its tail Thus, the data transfer operation 
avoids unreasonable delays when a particular bus slave or 
responder is not ready. AS mentioned before, requests to 
different responders correspond to different channels. Thus, 
the mechanism to remove a request from the queue is 
designed in accordance with one embodiment of the inven 
tion So that one channel does not hold up all other channels 
from making forward progreSS. 

0228 Data transfer Switch interface also includes a 
receive engine 772, which comprises a processor memory 
bus (PMB) receive FIFO buffer 776, a PMB reorder table 



US 2003/0196040 A1 

778, an internal memory bus (IMB) receive FIFO 774 and 
an IMB reorder table 780. An output port of PMB receive 
FIFO buffer 776 is coupled to data switch buffer controller 
(DSBC) 706 and to operation scheduler 742 of transfer 
engine 702. Similarly, an output port of IMB receive FIFO 
774 is coupled to data Switch buffer controller 706 and to 
operation scheduler 742 of transfer engine 702. An output 
port of issuer 762 is coupled to an input port of processor 
memory bus (PMB) reorder table 778, and to an input port 
of internal memory bus (IMP) reorder table 780. Another 
input port of PMB reorder table 778 is configured to receive 
data from data bus 114. Similarly, another input port of IMB 
reorder table 780 is configured to receive data from data bus 
120. 

0229) Processor memory bus (PMB) reorder table 778 or 
internal memory bus (IMB) reorder table 780 respectively 
Store indices that correspond-to read requests that are still 
outstanding. These indices include a-transaction identifica 
tion signal (ID) that is generated for the read request, the 
corresponding buffer identification signal (ID) assigned for 
each read request, the corresponding buffer address and 
other information that may be necessary to process the data 
when it is received. 

0230 First-in-first-out buffers 776 and 774 are config 
ured to hold returned data until it is accepted by either the 
data streamer buffer controller 706, for the situation where 
buffer data is returned, or by transfer engine 702 for the 
Situation where a descriptor is retrieved from a memory 
location. 

0231 Issuer 762 stalls when tables 778 and 780 are full. 
This in turn may stall transfer engine 702 pipes. In accor 
dance with one embodiment of the invention tables 778 and 
780 each Support 8 outstanding requests per bus. By using 
tables that store the buffer address for the return data, it is 
possible to handle out-of-order data returns. As will be 
explained in more detail in reference with the data Streamer 
buffer controller, each byte stored in buffer memory 714 
includes a valid bit indication Signal, which in conjunction 
with a corresponding logic in the buffer controller assures 
that out-of-order returns are handled correctly. 
0232 Data transfer Switch interface 718 also includes a 
transmit engine 782, which comprises a processor memory 
bus (PMB) transmit engine 766 and an internal memory bus 
(IMB) transmit engine 770, both of which are first-in 
first-out FIFO buffers. A buffer 768 is configured to receive 
request signals from transmit engines 766 and 770 respec 
tively and to send data bus requests to data bus arbiters 140 
and 142 respectively. Each transmit engine is also config 
ured to receive data from data streamer buffer controller 706 
and to transmit to corresponding data buses. 
0233. During operation, when the request to request bus 
118 is for read data, issuer 762 provides the address to 
request buS 118 when it receives a grant from request bus 
arbiter 140. Issuer 762 also makes an entry in reorder tables 
778 and 780 respectively, to keep track of outstanding 
requests. If the request is for write data, the issuer puts out 
the address to request buS 118 and queues the request into 
internal FIFO buffer 716 (FIG. 7) for use by data streamer 
buffer controller 706, which examines this queue and ser 
vices the request for write data as will be explained here 
inafter in more detail in reference with data streamer buffer 
controller 706. 

Oct. 16, 2003 

0234 FIG. 10 is a block diagram of data streamer buffer 
controller 706 in accordance with one embodiment of the 
invention, although the invention is not limited in Scope in 
that respect. Data streamer buffer controller 706 manages 
buffer memory 714 and handles read/write requests gener 
ated by transfer engine 702, and request generated by DMA 
controller 138 and PIO controller 126 of FIG. 1. 

0235 Data streamer buffer controller 706 includes two 
pipes for processing buffer related functions. The first pro 
cessing pipe of data streamer buffer controller 706 is referred 
to as processor memory bus, (PMB), pipe, and the Second 
pipe is referred to as internal memory bus (IMB) pipe. The 
operation of each pipe is the same except that the PMB pipe 
handles the transfer engine's data requests that are Sent out 
on processor memory bus 114, and the IMB pipe handles the 
transfer engine's data requests that are Sent out on internal 
memory bus 120. 
0236 AS illustrated in FIG. 10, each pipe is configured to 
receive three separate data inputs. To this end data Streamer 
buffer controller 706 includes a processor memory bus PMB 
pipe operation Scheduler 802, which is configured to receive 
three input signals as follows: (1) all request signals from 
programmable input/output (PIO) controller 126; (2) data 
Signals that are received from processor memory bus 
(PMB), receive FIFO buffer 776 of data transfer switch 718 
(FIG. 9). These data signals are intended to be written to 
buffer memory 714, So as to be retrieved once an appropriate 
chunk size is filled inside buffer memory 714 for a particular 
channel; and (3) transfer engine read signal indication for 
retrieving appropriate data from buffer memory 714 for a 
particular channel. The retrieved data is then Sent to its 
destination, via data transfer Switch interface 718 of data 
streamer 122, as illustrated in FIGS. 1 and 9. 

0237 Operation scheduler 802 assigns an order of execu 
tion to incoming operation requests described above. In 
accordance with one embodiment of the present invention, 
programmable input/output PIO operations are given top 
priority, followed by buffer read operations to retrieve data 
from buffer memory 714, and the lowest priority is given to 
buffer write operations to write data to buffer memory 714. 
Thus, read operations bypass write operations in appropriate 
FIFO buffers discussed in connection with FIG. 9. It is noted 
that when data is targeted to a destination memory, or has 
arrived from a destination memory, it needs to be aligned 
before it can be sent from buffer memory 714 or before it can 
be written into buffer memory 714. 
0238. The output port of operation scheduler 802 is 
coupled to an input port of fetch stage 804. The other input 
port of fetch stage 804 is coupled to an output port of buffer 
state memory 708. 

0239. Once the operation scheduler 802 determines the 
next operation, fetch Stage 804 retrieves the appropriate 
buffer memory information from buffer state memory 708 so 
as to read or write into the corresponding channel buffer, 
which is a portion of buffer memory 714. 
0240 An output port of fetch stage 804 is coupled to 
memory pipe Stage 806, which is configured to proceSS read 
and write requests to buffer memory 714. Memory pipe 
stage 806 is coupled to buffer state memory 708 so as to 
update buffer State memory registers relating to a corre 
sponding buffer that is allocated to one or two channels 



US 2003/0196040 A1 

during a data transfer operation. Memory pipe Stage 806 is 
also coupled to buffer memory 714 to write data into the 
buffer memory and to receive data from the buffer memory. 
An output port of memory pipe Stage 806 is coupled to 
processor memory bus (PMB) transmit engine 766 so as to 
send retrieved data from buffer memory 714 to data transfer 
Switch 718 for further transmission to a destination address 
via data transfer Switch 112. Another output port of memory 
pipe Stage 806 is coupled to programmable input/output 
(PIO) controller 126 for sending retrieved data from buffer 
memory 714 to destination input/output devices that are 
coupled to multimedia processor 100. 

0241 Data streamer buffer controller 706 also includes 
an internal memory bus (IMB) pipe operation scheduler 808, 
which is configured to receive three input Signals as follows: 
(1) all request signals from DMA controller 712; (2) data 
signals that are received from internal memory bus (IMB), 
receive FIFO buffer 774 of data transfer switch 718 (FIG. 
9) These data signals are intended to be written to buffer 
memory 714, So as to be retrieved once an appropriate chunk 
size is filled inside buffer memory 714 for a particular 
channel; and (3) transfer engine read signal indication for 
retrieving appropriate data from buffer memory 714 for a 
particular channel. The retrieved data is then Sent to its 
destination, via data transfer Switch interface 718 of data 
streamer 122, as illustrated in FIGS. 1 and 9. 

0242 Operation scheduler 808 assigns an order of execu 
tion to incoming operation requests described above. In 
accordance with one embodiment of the present invention, 
DMA requests are given top priority, followed by buffer read 
operations to retrieve data from buffer memory 714, and the 
lowest priority is given to buffer write operations to write 
data to buffer memory 714. Thus, read operations bypass 
write operations in appropriate FIFO buffers discussed in 
connection with FIG. 9. It is noted that when data is targeted 
to a destination memory, or has arrived from a destination 
memory, it needs to be aligned before it can be sent from 
buffer memory 714 or before it can be written into buffer 
memory 714. 

0243 The output port of operation scheduler 808 is 
coupled to an input port of fetch stage 810. The other input 
port of fetch stage 810 is coupled to an output port of buffer 
state memory 708. Once the operation scheduler 802 deter 
mines the next operation, fetch stage 804 retrieves the 
appropriate buffer memory information from buffer state 
memory 708 so as to read or write into the corresponding 
channel buffer, which is a portion of buffer memory 714. 
0244. An output port of fetch stage 810 is coupled to 
memory pipe Stage 812, which processes read and write 
requests to buffer memory 714. An output port of memory 
pipe Stage 812 is coupled to an input port of buffer State 
memory 708 so as to update buffer state memory registers 
relating to a corresponding buffer that is allocated to one or 
two channels during a data transfer operation. Memory pipe 
stage 812 is coupled to buffer memory 714 to write data into 
the buffer memory and to receive data from the buffer 
memory. An output port of memory pipe Stage 812 is 
coupled to internal memory bus (IMB) transmit engine 770 
so as to send retrieved data from buffer memory 714 to data 
transfer Switch 718 for further transmission to a destination 
address via data transfer Switch 112. Another output port of 
memory pipe stage 812 is coupled to DMA controller 712 

Oct. 16, 2003 

for sending retrieved data from buffer memory 714 to 
destination input/output devices that are coupled to multi 
media processor 100. 
0245. It is noted that because buffer memory 714 is 
dual-ported, each of the pipes described above can access 
both buffer memory banks 714(a) and 714(b), without 
contention. AS mentioned before, in accordance with one 
embodiment of the invention, buffer memory 714 is a 4 KB 
SRAM memory. The data array is organized as 8 bytes per 
line and is accessed 8 bytes at a time. A plurality of Smaller 
buffer portions are divided within the buffer memory 714, 
wherein each buffer portion is allocated to a particular 
channel during a data transfer operation. 
0246 Buffer memory 714 is accompanied by a valid bit 
memory that holds 8 bits per line of 8 bytes in the buffer 
memory. The value of the valid bit is used to indicate 
whether the specific byte is valid or not. The valid bit is 
flipped each time the corresponding allocated buffer is filled. 
This removes the need to reinitialize the allocated buffer 
portion each time it is used during a data transfer operation. 
However, each time a buffer is allocated for a path, the 
corresponding bits in the valid-bits array must be initialized 
to ZeroeS. 

BUFFER STATE MEMORY 

0247 As explained before, buffer state memory 708 
holds the state for each of the 64 buffers that it supports. 
Each buffer state comprises 128 bit field that is divided to 
couple of 64bit sub fields, referred to as buffer state memory 
one (BSM1) and two (BSM2). Tables 23 and 24 describe the 
bits and fields of the buffer state memory. 

BUFFER STATE MEMORY 1 (0x00) 
0248 

TABLE 23 

BIT NAME INITIALIZED WITHVALUE 

Initialized to the buffer start address. 
That is, the full 12 bits, comprising 
the 6 bits of the buffer start address 
(BSA) appended with 6 zeros 
BSAIOOOOOO 
Initialized to the buffer start address 
similar to the initial output pointer. 

29:24 Buffer end address (BEA) Initialize with 6 bits of the higher 
35:30 Buffer start address (BSA) 6 bits that comprise the full 12 bits 

of the buffer address for its end and 
start address respectively i.e., 
specified in multiples of 64 bytes. 
The actual buffer start address is 
obtained by appending 6 Zeros to the 
buffer start address and the end 
address is obtained by appending 
6 ones to the buffer end address. 
Example 1: for a buffer of size 
64 bytes starting at the beginning of 
the buffer 
BSA = OOOOOO 
BEA = OOOOOO 
actual start address is 000000000000 
actual end address is 000000111111 
Example 2: for a buffer of size 
128 bytes starting 64*11 bytes from 
the beginning of the buffer 
BSA = OO1011 
BEA = OO1100 

11:0 Initial input pointer 

23:12 Initial output pointer 



US 2003/0196040 A1 

TABLE 23-continued 

BIT NAME INITIALIZED WITH VALUE 

actual start address is 001011000000 
actual end address is 001100111111 
Specify in multiples of 32 bytes. 
Is the number of bytes that must be 
brought into the buffer by the input 
channel or input i?o device before the 
Output (destination) channel is 
activated to transfer "output 
chunk size number of bytes out of 
the buffer. 
O = - 0 bytes 
1 => 32 bytes 
2 = > 64 bytes, and so on. 
Similar to output chunk size, but used 
to trigger the input (or source) 
channel, when input chunk size 
number of bytes have been moved 
out of the buffer. 
Value between 0 and 63, representing 
the Output (destination) channel tied 
to this buffer, if one exists, as 
indicated by the output channel 
memory Ilag. 
Value between 0 and 63, representing 
the input (source) channel tied to this 
buffer, if one exists, as indicated by 
the input channel memory flag. 

60 Output channel memory Used to indicate whether this transfer 
flag direction is represented by a channel 

or an I/O device. O = I/O, 
1 => channel. 

61 Input channel memory flag Used to indicate whether this transfer 
direction is represented by a channel 
or an I/O device. 
O = I/O, 1 => channel. 

63:62 reserved XX 

41:36 Output chunk size 

47:42 Input chunk size 

53:48 Output channel id 

59:54 Input channel id 

BUFFER STATE MEMORY 2 (0x00) 
0249 

TABLE 24 

BIT NAME INITIALIZED WITH VALUE 

11:O Current input count O 
23:12 Current output count O 
24 Input valid sense O 
25 Output valid sense O 
26 Last input arrived O 
63:27 reserved XXX 

DMA CONTROLLER 

0250 FIG. 11 illustrates a DMA controller 138 in accor 
dance with one embodiment of the invention, although the 
invention is not limited in Scope in that respect. AS men 
tioned before, DMA controller 138 is coupled to input/ 
output bus 132 and data streamer buffer controller 706. 
0251 A priority arbiter 202 is configured to receive a 
direct memory access DMA request from one or more I/O 
devices that are coupled to I/O bus 132. 
0252) An incoming DMA request buffer 204 is coupled to 
I/O buS 132 and is configured to receive pertinent request 
data from I/O devices whose request has been granted. Each 
I/O device Specifies a request data comprising the buffer 

Oct. 16, 2003 

identification of a desired buffer memory, the number of 
bytes and the type of transfer, Such as input to the buffer or 
output from the buffer. Each request is Stored in incoming 
DMA request 204 buffer to define a DMA request queue. An 
output port of DMA request buffer 204 is coupled to data 
streamer buffer controller 706 as described in reference with 
FIG 10. 

0253) An incoming DMA data buffer 206 is also coupled 
to I/O bus 132 and is configured to receive the data intended 
to be sent by an I/O device whose request has been granted 
and whose request data has been provided to incoming DMA 
request buffer 204. An output port of DMA data buffer 206 
is coupled to data streamer buffer controller 706 as described 
in reference with FIG. 10. 

0254. An outgoing DMA data buffer 208 is also coupled 
to I/O bus 132 and is configured to transmit the data intended 
to be sent to an I/O device. Outgoing DMA data buffer 208 
is configured to receive data from data Streamer buffer 
controller 706 as explained in reference with FIG. 10. 
0255 Thus during operation, DMA controller 138 per 
forms two important functions. First, it arbitrates among the 
I/O devices that intend to make a DMA request. Second, it 
provides buffering for DMA requests and data that are sent 
to data Streamer buffer controller and for data that are Sent 
to an I/O device via I/O bus 132. Each DMA transfer is 
initiated by an I/O device coupled to I/O bus 132. The I/O 
device that makes a DMA request, first requests priority 
arbiter 202 to access I/O bus for transferring its intended 
data. Arbiter 202 employs the DMA priority value specified 
by the I/O device to arbitrate among the different I/O 
devices. DMA controller 138 assigns a higher priority to 
data coming from I/O devices over data sent from the I/O 
devices. Conflicting requests are arbitrated according to 
device priorities. 
0256 Preferably, device requests to DMA controller 138 
are Serviced at a rate of one per cycle, fully pipelined. 
Arbiter 202 employs a round robin priority scheduler 
arrangement with four priority levels. Once a requesting I/O 
device receives a grant signal from arbiter 202, it provides 
its request data to DMA request buffer 204. If the request is 
an output request, it is provided directly to data Streamer 
buffer controller 706. If the buffer associated with the buffer 
identification contained in request data is not large enough 
to accommodate the data transfer, data Streamer buffer 
controller informs DMA controller 138, which in turn sig 
nals a not acknowledge NACK indication back to the I/O 
device. 

0257) If the request from a request I/O device is for a data 
input, DMA controller signals the I/O device to provide its 
data onto I/O bus 132, when it obtains a cycle on the I/O data 
bus. Data Streamer buffer controller generates an interrupt 
signal when it senses buffer overflows or underflows. The 
interrupt Signals are then transmitted to the processor that 
controls the operation of multimedia processor 100. 
0258 DMA controller 138 employs the buffer identifica 
tion of each request to access the correct buffer for the path, 
via data streamer buffer controller 706, which moves the 
requested bytes into or out of the buffer and updates the 
status of the buffer. 

0259 An exemplary operation of data streamer channel 
functions is now explained in more detail in reference with 



US 2003/0196040 A1 

FIGS. 15(a) through 15(c), which illustrate a flow diagram 
of different Steps that are taken in data Streamer 122. 
0260. In response to a request for a data transfer opera 
tion, a channel's State is first initialized by, for example, a 
command referred to as dis open path, at Step 302. At Step 
304, the available resources for Setting up a data path is 
checked and a buffer memory and one or two channels are 
allocated in response to a request for a data transfer opera 
tion. 

0261. At step 306 the appropriate values are written into 
buffer state memory 708 for the new data path, in accordance 
with the values described in reference with Tables 23 and 24. 
At step 308, valid bits are reset in buffer memory 714 at 
locations corresponding to the portion of the allocated data 
RAM that will be used for the buffer. At step 310, for each 
allocated channel corresponding channel State memory loca 
tions are initialized in channel State memory 704, in accor 
dance with Tables 13-19. 

0262. Once a data path has been defined in accordance 
with steps 302 through 310, the initialized channel is acti 
vated in step 312. In accordance with one embodiment of the 
invention, the activation of a channel may be a Software call 
referred to as a ds kick command. Internally, this call 
translates to a channel ds kick operation which is an 
uncached write to a PIO address specified in the PIO map as 
explained in reference with Tables 10-12. The value stored 
in channel State memory is the address of the descriptor, 
such as descriptor 220 (FIG. 13) or descriptor 240 (FIG. 
14), the channel begins to execute. 
0263. At step 314 transfer engine 702 receives the chan 
nel activation signal from PIO controller 126 and in 
response to this signal writes the descriptor address into a 
corresponding location in channel State memory 704. At Step 
316, transfer engine 702 determines whether the channel 
activation signal is for a Source (input to buffer) channel. If 
so, at step 318, the buffer size value is written in the 
remaining chunk count (RCCNT) field as illustrated in Table 
15. The value of the remaining chunk count for a Source 
channel indicates the number of empty Spaces in the buffer 
memory allocated for this data transfer and hence the 
number of bytes that the channel can safely fetch into the 
buffer. It is noted that the value of the remaining chunk count 
for a destination channel indicates the number of valid bytes 
in the buffer, and hence the number of bytes that the channel 
can Safely transfer out. 
0264. Finally, at step 320, transfer engine 702 turns on the 
active flag in the corresponding location in channel State 
memory as described in Table 15. The corresponding inter 
burst delay field in channel state memory 704 for an allocate 
Source channel is also set to Zero. 

0265 At step 324, a channel is provided to operation 
scheduler 742 (FIG. 8). Each channel is considered for 
Scheduling by operation Scheduler 742 of transfer engine 
702 (FIG. 8), when the channel has a zero interburst-delay 
count, its active flag is turned on, and its corresponding 
remaining chunk count (RCCNT) is a non-zero number. 
0266 When a channel's turn reaches by scheduler 742, 
transfer engine 702 Starts a descriptor fetch operation at Step 
326. When the descriptor arrives via the data transfer Switch 
interface 718 (FIG.9), receive engine 772 routes the arrived 
descriptor to transfer engine 702. At step 328, the values of 

20 
Oct. 16, 2003 

the descriptor are written in the allocated channel location in 
channel state memory 704. At step 330 the source channel 
is ready to start to transfer data into the allocated buffer in 
buffer memory 714. 

0267. When the source channel is scheduled, it begins to 
prefetch the next descriptor and at Step 332 generates read 
request messages for data, which are added to request buffer 
queue RQQ 764 of data transfer Switch interface 718 of 
FIG. 9. It is noted that in accordance with one embodiment 
of the invention, the prefetch of the next descriptor may be 
inhibited by the user by setting both the halt and prefetch bits 
in the control word descriptor as described in reference with 
FIGS. 13 and 14. Furthermore, prefetch is not performed 
when a “last descriptor' bit is set in the control word of the 
current descriptor. 

0268. The number of read requests added to request 
queue 764 depends on Several parameters. For example, one 
Such parameter is the burst Size value written into the 
channel State memory for the currently Serviced channel. A 
burst size indicates the size of data transfer initiated by one 
request command. Preferably, the number of requests gen 
erated per Schedule of the channel does not exceed the burst 
size. Another parameter is the remaining chunk count. For 
example, with a burst size of 3, ff, the buffer size is 64 bytes, 
and therefore, two requests may be generated, Since each 
data transfer Switch request may not exceed 32 bytes, in 
accordance with one embodiment of the invention. Another 
parameter is the width, pitch, and count fields in the descrip 
tor. For example, if the width is 8 bytes separated by a pitch 
of 32 bytes, for a count of 4, then, with a burst size of 3, and 
a remaining chunk count RCCNT of 64, the channel will 
generate 3 read requests of 8 bytes long. Then it will take 
another Schedule of the channel to generate the last request 
that would fulfill the descriptor's need for the forth count. 
0269. Once the channel completes its read requests, at 
Step 334, the value of remaining chunk count is decremented 
appropriately. The interburst delay count field is Set to a 
specifiable minimum interburst delay value. This field is 
decremented every 8 cycles at step 338. When the value of 
this field is zero at step 340, the channel is scheduled again 
to continue its Servicing. 

0270. At step 342 the channel is scheduled again. For the 
example described above, the channel generates one request 
to fulfill the 1st 8 bytes. On completion of the descriptor at 
step 344, the active flag is turned off and the channel is not 
considered again by the priority scheduler 740 until the 
active flag field in Table 15 is Set again, for example by a 
data path continue operation command referred to as 
ds continue call. If the halt bit is not set, at step 346, the 
channel will check whether the prefetched descriptor has 
been arrived. If the descriptor has already arrived, it will 
copy the prefetched descriptor to the current position in Step 
350, and start the prefetch of the next descriptor at step 352. 

0271 Transfer engine 702 continues to generate read 
requests for this channel until, burst size has been exceed; 
remaining chunk count RCCNT has been exhausted; a halt 
bit is encountered; the next descriptor has not arrived yet; or 
the last descriptor has been reached. 

0272 Referring to FIG. 15(a) at step 316, when the 
currently considered channel is a destination channel, Step 
380 is executed wherein the channel is not immediately 



US 2003/0196040 A1 

Scheduled like a Source channel, because the value of the 
remaining chunk count field is Zero. The destination channel 
waits at step 382 until the source side has transferred a 
sufficient number of data to its allocated buffer. As explained 
before, the data Source that provides data to the allocated 
buffer may be another channel or an input/output I/O device. 
It is noted that data streamer buffer controller 706 (FIG. 10) 
keeps track of incoming data. When the number of bytes of 
the incoming data exceeds the output chunk count as 
described in Table 23, it sends the chunk count to transfer 
engine 702 (FIG. 8) for that destination channel. Transfer 
engine 702 adds this value to the destination channel's 
RCCNT field in the appropriate channel location in channel 
state memory 704. At step 384, when this event happens, the 
destination channel is ready to be Scheduled. Thereafter at 
Step 386, transfer engine 702 generates write requests to data 
transfer Switch 112 via data transfer Switch interface 718. 

0273. The manner in which write requests are generated 
are based on the same principle described above with 
reference to the manner that read requests are generated in 
accordance with one embodiment of the invention. Thus, the 
parameters to be considered may include, the burst size, the 
remaining chunk count value, and descriptor fields Such as 
pitch, width and count. 
0274. Once the write request address has been provided 
to the request bus, data transfer switch interface 718 for 
wards the request to data streamer buffer controller 706 at 
step 388. In response, data streamer buffer controller 706 
(FIG. 10) removes the necessary number of bytes from 
buffer memory 714, aligns the retrieved data and puts them 
back in transmit engine 782 of FIG. 9 as described above, 
in reference with FIGS. 8-10. 

DATA CACHE 

0275. The structure and operation of data cache 108 in 
accordance with one embodiment of the invention is 
described in more detail hereinafter, although the invention 
is not limited in Scope to this embodiment. 
0276 FIG. 17 illustrates a block diagram of data cache 
108 coupled to a memory bus 114'. It is noted that memory 
bus 114" has been illustrated for purposes of the present 
discussion. Thus, in accordance with one embodiment of the 
invention, data cache 108 may be coupled to data transfer 
Switch 112, and hence, to processor memory buS 114 and 
internal memory bus 120 via transceiver 116. 
0277 Data cache 108 includes a tag memory directory 
536 for storing tag bits of addresses of memory locations 
whose contents are Stored in the data cache. A data cache 
memory 538 is coupled to tag memory 536 to store copies 
of data that are Stored in a main external memory. Both tag 
memory directory 536 and data cache memory 538 are 
accessible via arbiters 532 and 534 respectively. An input 
port of each tag memory 536 and data cache memory 538 is 
configured to receive “write' data as described in more 
detail below. Furthermore, another input port of each tag 
memory 536 and data cache memory 538 is configured to 
receive “read” data as described in more detail below. 

0278 A refill controller unit 540 also referred to as data 
cache controller 540 is employed to carry out all of a fixed 
Set of cache policies. The cache policies are the rules chosen 
to implement the operation of cache 108. Some of these 

Oct. 16, 2003 

policies are well-known and described in J. Handy, Data 
Cache Memory Book, (Academic Press, Inc. 1993), and 
incorporated herein by reference. Typically, these policies 
may include direct-mapped VS. N-Way caching, write 
through VS. Write-back arrangement, line size allocation and 
Snooping. 
0279. As described above a “way” or a “bank” in a cache 
relates to the associativity of a cache. For example, an 
N-way or N-bank cache can Store data from a main memory 
location into any of N cache locations. For a multiple-way 
arrangement each way or bank includes its own tag memory 
directory and data memory (not shown). It is noted that as 
the number of the ways or banks increases So does the 
number of bits in the tag memory directory corresponding to 
each data Stored in the data memory of each bank. It is 
further noted that a direct-mapped cache is a one-Way cache, 
Since any main memory location can only be mapped into 
the Single cache location which has matching Set bits. 
0280 The Snoop feature relates to the process of moni 
toring the traffic in bus 114 to maintain coherency. In 
accordance with one embodiment of the invention, a Snoop 
unit 544 is coupled to memory bus 114 to monitor the traffic 
in bus 114. Snoop unit 544 is coupled to both refill con 
troller 540 and to external access controller 542. When a 
memory bus transaction occurs to an address which is 
replicated in data cache 108, Snoop unit 544 detects a Snoop 
hit and takes appropriate actions according to both the write 
Strategy (write-back or write-through) and to the coherency 
protocol being used by the System. In accordance with one 
embodiment of the invention, data cache 108 performs a 
Snoop function on data transfer operations performed by 
data Streamer 122. 

0281 Returning to the description of refill controller 540, 
an output port of the refill controller is coupled to tag 
memory 536 and data memory 538 via arbiters 532 and 536 
respectively. Another output port of refill controller 540 is 
coupled to the write input port of tag memory 532. Another 
output port of refill controller 540 is coupled to the write 
input port of cache data memory 538. 
0282). Other output ports of refill controller 540 include 
bus request port coupled to memory buS 114 for providing 
bus request signals, write-back data port coupled to memory 
bus 114 for providing write-back data when data cache 108 
intends to write the contents of a cache line into a corre 
sponding external memory location; fill data address port 
coupled to memory bus 114 for providing the data address 
of the cache line whose contents are intended for an external 
memory location. 
0283 An input port of refill controller 540 is configured 
to receive data Signals from a read output port of data 
memory 516. A second input port of refill controller 540 is 
configured to receive tag data from tag memory directory 
532. Another input port of refill controller 540 is configured 
to receive a load/store address Signal from an instruction unit 
of a central processing unit 102. 
0284. In accordance with one embodiment of the inven 
tion, data cache 108 also includes an external acceSS con 
troller 542. External access controller 542 allows data cache 
108 function as a slave module to other modules in media 
processor system 100. Thus, any module in system 100 may 
act as a bus master for accessing data cache 108, based on 
the same access principle performed by central processing 
unit 102. 



US 2003/0196040 A1 

0285) An output port of external access controller 542 is 
coupled to tag memory 536 and cache data memory 538 via 
arbiters 532 and 534 respectively, and to the write input port 
of tag memory 536. Another output port of external acceSS 
controller 542 is coupled to the write input port of cache data 
memory 538. Finally, an output port of external access 
controller 542 is coupled to memory bus 114 for providing 
the data requested by a bus master. 
0286 An input port of external access controller 542 is 
configured to receive data from cache data memory 538. 
Other input port of external access controller 542 include an 
access request port coupled to memory buS 114 for receiv 
ing access requests from other bus masters, a requested data 
address port coupled to memory bus 114 for receiving the 
address of the data relating to the bus master request; and a 
Store data port coupled to memory buS 114 for receiving the 
data provided by a bus master and that is intended to be 
stored in data cache 108. 

0287 Memory bus 114 is also coupled to DRAM 128 via 
a memory controller 124. Furthermore memory bus 114 is 
coupled to a direct memory access controller 138. An output 
port of central processing unit 102 is coupled to tag memory 
536 and cache data memory 538 via arbiters 532 and 534 
respectively, So as to provide addresses corresponding to 
load and Store operations. Another output port of central 
processing unit 102 is coupled to the write input port of 
cache data memory 538 to provide data corresponding to a 
Store operation. Finally, an input port of central processing 
unit 102 is coupled to read output port of cache data memory 
538 to receive data corresponding to a load operation. 

0288 The operation of refill controller 540 is now 
described in reference with FIG. 18. At step 560 refill 
controller begins its operation. At step 562, refill controller 
540 determines whether a request made to data cache unit 
108 is a hit or a miss, by comparing the tag value with the 
upper part of a load or Store address received from central 
processing unit 102. 

0289 At step 564, if a cache miss occurred in response to 
a request, refill controller 540 goes to step 568, and deter 
mines the cache line that needs to be replaced with contents 
of corresponding memory locations in external memory 
such as DRAM 128. At step 570, refill controller determines 
whether cache 108 employs a write-back policy. If so, refill 
controller 540 provides the cache line that is being replaced 
to DRAM 128 by issuing a store request signal to memory 
controller 124. At step 572, refill controller 540 issues a read 
request Signal for the missing cache line via fill data address 
port to memory controller 124. At step 574, refill controller 
540, retrieves the fill data and writes it in cache data memory 
538 and modifies tag memory 536. 
0290 Refill controller 540 then goes to step 576 and 
provides the requested data to central processing unit 102 in 
response to a load request. In the alternative, refill controller 
540 writes a data in cache data memory 538 in response to 
a store request from central processing unit 102. At step 578, 
refill controller 540 writes the data to external memory, such 
as DRAM 128 in response to a store operation provided by 
central processing unit 102. 

0291) If at step 564, it is determined that a hit occurred in 
response to a load or Store request from central processing 
unit 102, refill controller 540 goes to step 566 and provides 

22 
Oct. 16, 2003 

a cache line from cache data memory 538 for either a read 
or a write operation. Refill controller 540 then goes to step 
576 as explained above. 
0292. The operation of external access controller 580 in 
conjunction with refill controller 540 in accordance with one 
embodiment of the present invention is now described in 
reference with FIG. 19. 

0293 At step 580 external access controller begins its 
operation in response to a bus master access request. In 
accordance with one embodiment of the invention, the bus 
master may be any one of the modules described above in 
reference with FIG. 1(a), and the access request may be 
issued as explained in connection with the operation of data 
streamer 122 and data transfer Switch 112. At step 582 
external access controller 542 waits for a read or write 
request by any of the bus masters. 
0294. Once external access controller 542 receives a 
request, it goes to step 584 to determine whether the bus 
master has requested a read or a write operation. If the 
request is a read, external access controller 542 goes to Step 
586 to determine whether a hit or a miss occurred. If in 
response to the read request a cache hit occurs, external 
acceSS controller goes to Step 604 and provides the requested 
data to the bus master. 

0295). If however, in response to the read request a cache 
miss occurs, external access controller goes to Step 588 and 
triggers refill controller 540 So that refill controller 540 
obtains the requested data and fills the data cache at step 590. 
After the refill of data, external access controller 542 pro 
vides the requested data to the bus master at step 604. 
0296 If at step 584 external access controller determines 
that the bus master requested to write a data to data cache 
108, it goes to step 592 to determine whether a cache hit or 
a cache miss occurred. In response to a cache hit, external 
access controller 542 goes to step 596 and allows the bus 
master to write the requested data to data cache memory 
538. 

0297 If at step 592, however, a cache miss occurred, 
external access controller goes to Step 594 and determines 
which cache line in cache data memory needs to be replaced 
with contents of an external memory such as DRAM 128. 
External access controller then goes to step 598. If data 
cache 108 is implementing a write-back policy, external 
access controller at step 598 provides the cache line to be 
replaced from data cache memory 538 and issues a store 
request to memory controller 124 via memory bus 114". 

0298 Thereafter, external access controller 542 goes to 
Step 602 and writes the requested data to cache data memory 
and modifies tag memory 536 accordingly. 

0299 AS mentioned before the external access controller 
542 remarkably increases the cache hit ratio for many 
applications where it is possible to predict in advance the 
data that a central processing unit may require. AS an 
example, for many 3D graphic applications, information 
about texture mapping is Stored in an external memory Such 
as DRAM 128. Because, it can be predicted which infor 
mation will be necessary for the use by central processing 
unit 102, it is beneficial to transfer this information to data 
cache 108 before the actual use by central processing unit 
102. In that event, when the time comes that central pro 



US 2003/0196040 A1 

cessing unit 102 requires a texture mapping information, the 
corresponding-data is already present in the data cache and 
as a result a cache hit occurs. 

0300. It is noted that the data cache in accordance with 
one embodiment of the present invention can be accessed 
through a PCI bus interface from outside of the processor by 
mapping the data cache on PCI Space. Furthermore, any 
memory resource disposed within multimedia processor 100 
can be accessed from outside of the processor by mapping 
on PCI space. 

THREE DIMENSIONAL (3D) GRAPHICS 
PROCESSING 

0301) With reference to FIG. 1(a), fixed function unit 
106 in conjunction with data cache memory 108, central 
processing units 102, 104, and external memory 128, per 
form 3D graphics with a substantially reduced bandwidth 
delays in accordance with one embodiment of the invention, 
although the invention is not limited in Scope in that respect. 
0302 FIG. 20 illustrates a block diagram with major 
components in multimedia processor 100 that are respon 
Sible for performing 3D graphics processing. Thus, in accor 
dance with one embodiment of the invention, fixed function 
unit 106 includes a programmable input/output controller 
618, which provides a control command for other compo 
nents in the fixed function unit. The other components of the 
fixed function unit includes a VGA graphics controller 603, 
which is coupled to programmable input/output controller, 
PIOC, 618 and which is configured to process graphics for 
VGA format. A two dimensional (2D) logic unit 605 is 
coupled to programmable input/output controller, and is 
configured to process two-dimensional graphics. 
0303 Fixed function unit 106 also includes a three 
dimensional (3D) unit 611 that employs a bin-based render 
ing algorithm as will be described in more detail hereinafter. 
Basically, in accordance with one embodiment of the inven 
tion, the 3D unit manipulates units of data referred to as 
chunks, tiles, or bins. Each tile is a Small portion of an entire 
Screen. Thus, the 3D unit in accordance with one embodi 
ment of the invention, preferably employs a binning proceSS 
to draw 3D objects into a corresponding buffer memory 
space within multimedia processor 100. Thus, bottle necking 
problems encountered with the use of external memory for 
rendering algorithms can be Substantially avoided because 
the data transfer within the multimedia processor chip can be 
accomplished at a Substantially high bandwidth. 
0304 3D unit 611 includes a 3D tile rasterizer 607 that is 
also coupled to programmable input/output controller 618, 
and is configured to perform graphics processing tasks. Two 
major tasks of 3D tile rasterizer 607 include binning and 
rasterization, depending on its mode of operation, as will be 
explained in more detail in reference with FIGS. 21 and 22. 
0305) 3D unit 611 also includes a 3D texture controller 
609, which is also coupled to and controlled by program 
mable input/output controller 618. As will be explained in 
more detail, in reference with FIG. 23, 3D texture controller 
derives the addresses for the texels that are intended to be 
employed by 3D unit 611. Thus, based on the derived 
addresses, 3D texture controller 609 generates a channel 
descriptor for use by data Streamer 122 to obtain the appro 
priate texels from a local memory such as SDRAM 128, as 
described above in reference with the operation of data 
streamer 122. 

Oct. 16, 2003 

0306 3D unit 611 also includes a 3D texture filter unit 
610, which is coupled to and controlled by programmable 
input/output controller 618. As will be explained in more 
detail hereinafter, in reference with FIGS. 24 and 25, filter 
unit 610 is configured to perform texture filtering operations 
Such as bi-linear (1 pass) and tri-linear (2pass) interpolation, 
in conjunction with shading color blending and accumula 
tion blending. 
0307 Fixed function unit 106 includes a video scaler unit 
612 that is coupled to and controlled by programmable 
input/output controller 618. Video scaler unit 612 is config 
ured to provide up and down Scaling of Video data using 
several horizontal and vertical taps. Video scaler 612 pro 
vides output pixels to a display refresh unit 226 (FIG. 1(b)) 
for displaying 3D objects on a display Screen. AS will be 
explained in more detail, in accordance with one embodi 
ment of the invention, Some of the functions of texture filter 
are based on the same principles as the functions of the Video 
Scaler. AS Such, Video Scaler 612 shares Some of its functions 
with texture filter 610, in accordance with one embodiment 
of the invention. 

0308 Fixed function unit 106 includes a data transfer 
Switch interface 614 that allows different components of the 
fixed function unit interact with data transfer Switch 112 and 
data streamer 122. Data transfer Switch interface 614 oper 
ates based on the same principles discussed above in refer 
ence with data transfer Switch interface 718 as illustrated in 
FIG. 9. A data cache interface 616 allows fixed function unit 
106 have access to data cache unit 108. 

0309 FIG. 20 illustrates various components of data 
cache 108 that are related to 3D graphics processing opera 
tion in accordance with one embodiment of the invention. 
However, for purposes of clarity, other features and com 
ponents of data cache 108 as discussed in reference with 
FIGS. 16-19 have not been illustrated in FIG. 20. Further 
more, although the components of data cache 108 have been 
illustrated to be disposed within the data cache, it is to be 
understood that one or more components may be disposed as 
Separate cache units in accordance with other embodiments 
of the invention. 

0310 Data cache 108 includes a triangle set-up buffer 
620, which is configured to store results of calculations to 
obtain triangle parameters, Such as Slopes of each edge of a 
triangle. Data cache 10 also includes a rasterizer Set-up 
buffer 622, which is configured to Store additional param 
eters of each triangle, Such as Screen coordinates, texture 
coordinates, Shading colors, depth, and their partial differ 
ential parameters. Data cache 108 includes a depth tile 
buffer, also referred to as tile Z buffer 628 that stores all the 
depth values of all the pixels in a tile. 
0311 Data cache 108 also includes a refill controller 540 
and an external access controller 542, as discussed above in 
reference with FIGS. 17-19. Furthermore, central processing 
units 102,104 are coupled to data cache 108 as described 
above in reference with FIG. 1(a). Additional components 
illustrated in FIG. 20 include data transfer Switch 112, data 
streamer 122, memory controller 124 and SDRAM 128, as 
disclosed and described above in reference with FIGS. 1-15. 
I/O buS 132 is configured to provide signals to a display 
refresh unit 226, which provides display Signals to an image 
display device, Such as a monitor (not shown). In accordance 
with one embodiment of the invention, video scaler 612 is 
coupled directly to display refresh 226. 



US 2003/0196040 A1 

0312. As will be explained in more detail below, the 
geometry and lighting transformations of all triangles on a 
screen are performed by VLIW central processing units 102 
in accordance with one embodiment of the invention. 3D 
unit 611 is responsible to identify all the bins or tiles and all 
the triangles that intersect with each tile. Specifically, 3D 
triangle rasterizer 607 identifies all the triangles in each tile. 
Thereafter for each bin or tile, VLIW central processing 
units 102 perform a triangle Set-up test to calculate the 
parameters of each triangle Such as slope of the edges of 
each triangle. 3D triangle rasterizer 607 also rasterizes all 
the triangles that intersect with each bin or tile. 3D texture 
controller 607 calculates the texture addresses of all pixels 
in a bin or a tile. 

0313. Once the addresses of texels are obtained, data 
Streamer 122 obtains the corresponding texel information 
from SDRAM 128. 3D texture filter 610 performs bi-linear 
and tri-linear interpolation of fetched texels. Data Streamer 
122 thereafter writes the processed image data of each tile or 
bin into a frame buffer. Thus, the frame buffer defines an 
array in DRAM 128 which contains the intensity/color 
values for all pixels of an image. The graphics display device 
can access this array to determine the intensity/color at 
which each pixel is displayed FIG. 21 is a block diagram of 
3D triangle rasterizer 607 in accordance with one embodi 
ment of the invention. For purposes of clarity, FIG. 21 
illustrates the Signal flows that occur when 3D triangle 
rasterizer 607 is operating in a binning mode as will be 
explained in more detail below. 
0314 Data cache 108 is coupled to 3D triangle rasterizer 
607 So as to provide the information necessary for the 
binning operation. Two of the buffers in data cache 108 that 
are employed during the binning operation are set-up buffer 
622 and tile index buffer 630. 

0315 3D triangle rasterizer 607 includes a format con 
verter unit 632 which is configured to receive triangle Set-up 
information from data cache 108. Format converter unit 532 
converts the parameters received from data cache 108 from 
floating point numbers to fixed point numbers. A Screen 
coordinates interpolator 634 is in turn coupled to format 
converter 632, to provide the X.y coordinates of the pixels 
that are being processed by 3D triangle rasterizer 607. A 
binning unit 644 is configured to receive the X.y coordinates 
from interpolator 634 and perform a binning operation as 
described in more detail in reference with FIG. 26. The 
binning unit is also coupled to tile index buffer 630. Infor 
mation calculated by binning unit 644 is provided to a tile 
data buffer 646 within memory 128, via data streamer 122. 
0316 During operation, 3D triangle rasterizer 607 reads 
the Screen coordinates of each node or vertex of a triangle, 
taken as an input from data cache 108. Thereafter, the 
triangle rasterizer identifies all triangles that intersect each 
bin or tile, and composes data Structures called tileindeX and 
tiledata as an output in SDRAM 128. 
0317. As mentioned, before a rasterization phase begins, 
all triangles of an entire Screen are processed for geometry 
and lighting. Setup and rasterization are then repeatedly 
executed for each bin or tile. Binning involves the Separation 
of the output image up into equal size Squares. In accordance 
with one embodiment of the invention, the size of each bin 
or tile is a Square area defined by 16x16 pixels. Each Square 
is rasterized and then moved to the final frame buffer. In 

24 
Oct. 16, 2003 

order for a bin to be correctly rasterized, the information 
relating to all of the triangles that interSect that bin should be 
preferably present. It is for this purpose that Setup and 
rasterization data for all the triangles in a Screen are first 
obtained prior to the binning process. 
0318 Binning involves the process of taking-each-pixel 
along the edges of a triangle and identify all the bins that the 
pixels of a triangle belong to. Thus, the proceSS begins by 
identifying the pixel representing the top vertex of a triangle 
and thereafter moving along the left and right edges of the 
triangle to identify other pixels that interSect with horizontal 
Scan lines, So as the corresponding bins where the pixels 
belong to are obtained. Once the bins are identified an 
identification number, or triangle ID, corresponding to the 
triangle that is being processed is associated with the iden 
tified bins. 

03.19 Tile index buffer 630, is preferably a 2 dimensional 
array that corresponds to the number of bins on a Screen that 
is being processed. This number is Static for a given Screen 
resolution. Thus, tile index buffer 630 includes an index to 
the first triangle ID in tile data buffer 646. The tile data buffer 
is a Static array of Size 256K in local memory, in accordance 
with one embodiment of the invention. Tile data buffer 646 
contains a triangle index, and a pointer to the next triangle. 
Thus, by following the chain, all the triangles for a given bin 
can be found, in accordance with one embodiment of the 
invention. 

0320 FIG. 26 illustrates the operation of a binning 
process on an exemplary triangle, Such as 861, in accordance 
with one embodiment of the invention, although the inven 
tion is not limit in Scope in that respect. Triangle 861 is 
divided into 2 sub-triangles with a horizontal line drawn 
through the middle node or vertex B. As illustrated in FIG. 
26, triangle 861 spans several pixels both in the horizontal 
and Vertical direction, which define a triangle window. 
Binning unit 644 spans these pixels line by line. Thus, at Step 
862, binning unit 644 processes the line that includes the top 
vertex a of the triangle. During the Span, the X coordinate of 
the left-most pixel is Ax or Cross XAC and the X coordinate 
of the right-most pixel is Ax or Cross XAB. Cross XAC is 
the X coordinate of the croSS point between the edge AC and 
the next span, and, CroSS XAB is the X coordinate of the 
croSS point between the edge AB and the next span. In order 
to extract the bins in which these pixels belong, binning unit 
644 employs the condition 

0321 X=min 20AX, Cross XAC), max2(AX, Cross 
XAB)), wherein X is the x-coordinate range of the 
triangle for each Scanline. 

0322. At step 864, binning unit 644 employs the condi 
tion 

X=min 2(CrossXAC, CrossXAC+dxdy AC), max 
2(CrossXAB, Cross XAB+dxdyAB) 

0323 The X coordinate of each cross point between the 
edges AC and AB of the following span is derived by 

CrossXAC=CrossXAC+dxdyAC 
CrossXAB=CrossXAB+dxdyAB 

0324 wherein dxdy AC is the slope of the edge AC of 
triangle 861, and dxdy AB is the slope of the edge AB of 
triangle 861. Step 864 repeats till the span includes the 
middle vertex B. Thereafter binning unit 644 goes to step 
866. 



US 2003/0196040 A1 

0325 At step 866, the X coordinate of the right-most pixel 
is the maximum of three parameters, Such that 

X=min 2(Cross XAC, Cross XAC+dxdyAC), max 
3(Cross XAB, Bx, Cross XBC), 

0326 wherein CrossXBC is the X coordinate of the cross 
point between BC and the next span. Thereafter, binning unit 
644 performs step 868, by continuing to add Cross XAC and 
Cross XBC with dxdy AC and dxdyBC until the spans 
include the bottom vertex C. Such that 

X=min 20ross XAC, Cross XAC+dxdyAC), Max 
2(Cross XBC, CrossXBC+dxdy BC), 

0327) and 
CrossXAC=CrossXAC+dxdyAC 

CrossXBC=CrossXBC+dxdy BC. 

0328 Finally at step 870, binning unit 644 identifies the 
bins wherein the last pixels belong Such that 

X=min 2(Cross XAC, Cx), max 2(Cross XBC, Cx). 
0329. During the above steps 862 through 870, binning 
unit 644 stores the IDs of all the bins which the pixels in the 
edges of each triangle belong to. As a result of the binning 
proceSS for all triangles displayed in a Screen, tile index 
buffer 630 and tile data buffer 646 are filled. This allows 3D 
unit 611 to retrieve the triangles which cross over a bin when 
each bin or tile is processed as explained hereinafter. 

0330 FIG. 22 illustrates 3D triangle rasterizer 607 in a 
rasterization mode. It is noted that the data Structures 
employed during the rasterization mode can re-use the 
memory of data cache 108, where the tile index buffer 630 
was employed during the binning mode. Thus, prior to 
rasterization, the contents of tile index buffer 630 is written 
to local memory DRAM 128. 
0331 3D triangle rasterizer 607 includes a texture coor 
dinates interpolator 636 which is coupled to format con 
verter 632, and which is configured to obtain texture coor 
dinate data of pixels within a triangle by employing an 
interpolation process. A color interpolator 618 is coupled to 
format converter 632, and is configured to obtain color 
coordinates of pixels within a triangle by employing an 
interpolation method. 

0332 A depth interpolator 640 is also coupled to format 
converter 632, and is configured to obtain the depth of the 
pixels within a triangle. It is important to note that in 
accordance with one embodiment of the invention, when a 
bin is being rendered it is likely that the triangles within a bin 
are in Overlapping layers. Layer is a Separable Surface in 
depth from another layer. 3D triangle rasterizer 607 pro 
ceSSes the layers front to back So as to avoid rasterizing 
complete triangles in Succeeding layers. By rasterizing only 
the visible pixels, considerable calculation and processing 
may be saved. Thus, rasterizer 607 sorts the layers on a bin 
by bin basis. Because the average number of triangles in a 
bin is around 10, the Sorting process does not take a long 
time. This Sorting occurs prior to any triangle Set-up or 
rasterization in accordance with one embodiment of the 
invention. 

0333. It is noted that preferably the triangles in a bin are 
not Sorted just on each triangle's average depth or Z value. 
For larger triangles, depth interpolator 640 obtains the Z 
value of the middle of the triangle. Z-valid register 642 is 

Oct. 16, 2003 

coupled to depth interpolator 642 to track the valid depth 
values to be stored in a depth tile buffer 628 in data cache 
108 as described below. 

0334] As illustrated in FIG. 22, the buffers employed in 
data cache 108 during rasterization mode are fragment index 
650, rasterizer set-up buffer 622, texture coordinate tile (tile 
T) 624, color tile (tile C) 626 and depth tile (tile Z) 628. 
Fragment index 650 is coupled to a fragment generator 648, 
which provides fragments which are employed for anti 
aliasing or a blending. 
0335 Fragment generator 648 is coupled to four buffer 
spaces in memory 128 including fragment link buffer 652, 
texture coordinate of fragment buffer 654, color of fragment 
buffer 656 and depth of fragment buffer 658. The operation 
of these buffers in memory is based on the same principle as 
will be discussed in reference with corresponding buffers in 
data cache 108. Rasterizer set-up buffer 622 is coupled to 
format converter 632 So as to provide the triangle parameters 
that are necessary for the rasterization process to complete. 
Furthermore, texture coordinate tile 624 is coupled to tex 
ture coordinate interpolator 636. Similarly, color tile 626 is 
coupled to color interpolator 638, and depth tile 628 is 
coupled to depth interpolator 640. Depth tile 628 holds the 
valid depth values of each triangle in a bin that is being 
processed. 
0336 Thus, during operation, 3D triangle rasterizer 607 
reads triangle Set-up data corresponding to the vertex of each 
triangle, including Screen coordinates, texture coordinates, 
Shading colors, depth and their partial differentials, dR/dX, 
dR/dY, etc. from data cache rasterizes set-up buffer 622. For 
these differentials, for example, R is red component of 
shading color and dR/dX means the difference of R for 
moving 1 pixel along X-direction. dR/dY means the differ 
ence of R for moving 1 pixel along y-direction. Using these 
Set-up parameters, 3D triangle rasterizer 607 rasterizes 
inside of a given triangle by interpolation. By employing the 
Z-buffering only the results of Visible triangles or portions 
thereof are stored in texture coordinate tile 624 and color tile 
626. Thus, the Z value of each pixel is stored in tile 628. The 
Z value indicates the depth of a pixel away from the user's 
eyes. Thus, the Z values indicate whether a pixel is hidden 
by another object or not. 
0337 As a result, texture coordinate tile 624 stores tex 
ture-related information Such as a texture map address and 
size, and texture coordinates for a tile. Texture coordinates 
are interpolated by texture coordinate interpolator 636 as a 
fixed point number and stored in texture coordinate tile 624 
in the same fixed-point format. Similarly, color tile 626 
defines a data structure that stores RGBA shading colors for 
Visible pixels. Thus, the texture and color information pro 
vided after the rasterization relates to visible pixels in 
accordance with one embodiment of the invention. 

0338 FIG. 23 illustrates a block diagram of a 3D texture 
controller 609 that is employed to generate texel addressed 
in accordance with one embodiment of the invention. 3D 
texture controller includes a format converter 632, coupled 
to a memory address calculator 664. The output port of 
memory address calculator is coupled to an input port of a 
texture cache tag check unit 666, which in turn is coupled to 
an address map generator 668 and a data Streamer descriptor 
generator 670. 3D texture controller 609 is coupled to data 
cache 108. 



US 2003/0196040 A1 

0339) Data cache 108 employs address map buffer 660, 
texture coordinate tile 624 and color tile 662 during the 
texture address generation as performed by 3D texture 
controller 609. Thus, address generator 668 provides address 
maps to address map buffer 660 of data cache 108. Further 
more, texture coordinate tile 624 provides the texture coor 
dinates that were generated during the rasterization proceSS 
to memory address calculator 664. Color tile 662 also 
provides color data to memory address calculator 664. 
0340. In response to the information provided by data 
cache 108, 3D texture controller 609 calculates memory 
addresses of necessary texels. Then, 3D texture controller 
609 looks up cache tag 666 to check if the texel is in a 
predetermined portion of data cache 108 referred to as 
texture cache 667. If the cache hits, 3D Texture controller 
609 stores the cache address into another data structure on 
the data cache 108 referred to as address map 660. Other 
wise, 3D texture controller Stores the missing cache line 
address as a data Streamer descriptor So that data Streamer 
122 can move the line from memory 128 to texture cache 
667. Address map 660 is also written during the cache-miss 
condition. 

0341 The data stored in address map 660 is employed at 
a later Stage during texel filtering. Thus, address map buffer 
660 is employed to indicate the mapping of texel addresses 
to pixels. The array stored in address map buffer 660 is a 
Static array for the pixels in a bin and contains a pointer to 
the location in the buffer for the pixel to indicate which 4x4 
texel block is applicable for a given pixel. The type of filter 
required is also stored in address map buffer 660. 

0342 FIG. 24 illustrates 3D texture filter 610 in accor 
dance with one embodiment of the invention. 3D texture 
filter 610 includes a texel fetch unit 942 that is configured to 
receive texel information from address map buffer 660. 
Information received by texel fetch unit 942 is in turn 
provided to texture cache 667 to indicate which texels in 
texture cache 667 need to be filtered next. 

0343 3D texture filter 610 also includes a palettize unit 
944, which is configured to receive texels from texture cache 
667. When the value in texture cache indicates the index of 
the texel colors, palletize unit 944 gets the texel color with 
the index from the table located in data cache. The output 
port of palettize unit 944 is coupled to a horizontal interpo 
lator 946, which in turn is coupled to a vertical interpolator 
948. Both horizontal interpolator 946 and vertical interpo 
lator 948 are configured to receive coefficient parameters 
from address map buffer 660. The output port of vertical 
interpolator 948 is coupled to a tri-linear interpolator 950, 
which receives a coefficient parameter from color tile 622 
for the first pass of interpolation and receives a coefficient 
parameter from a color buffer 930 for the second pass of 
interpolation. 

0344. It is noted that there are two kinds of coefficients in 
accordance with one embodiment of the invention. One 
coefficient is used for bi-linear interpolation and indicates 
how the weight of four neighborhood-texel colors are inter 
polated. The other coefficient is used for tri-linear interpo 
lation, and indicates how the weight of two bi-linear colors 
are interpolated. 
0345 The output port of interpolator 950 is coupled to a 
shading color blend unit 952. Shading color blend unit 952 

26 
Oct. 16, 2003 

is also configured to receive color values from color tile 622. 
An output port of shading color blend unit 952 is coupled to 
color tile 622, and to accumulation blend unit 954. The 
output port of accumulation blend unit 954 is coupled to an 
input port of an accumulation buffer 934 that resides in data 
cache 108 in accordance with one embodiment of the 
invention. 

0346. During operation, 3D texture filter 610 performs 
bi-linear texture filtering. Input texels are read from texture 
cache 667 by employing memory addresses Stored in 
address map buffer 660. The result of bi-linear filtering is 
blended with shading color in color tile 622 and written back 
into color tile 622 as a final textured color. When an 
accumulation is specified, the final color is blended into an 
accumulated color in accumulation buffer 934. 

0347 In order to perform tri-linear filtering two passes 
are required. In the first pass, 3D texture filter output 
bi-linear filtered result stored in color buffer 930. In the 
Second pass, it generates the final tri-linear result by blend 
ing the color stored in color buffer 930 with another bi-linear 
filtered color. 

0348 The contents of palettize unit 944 is loaded from 
data cache 108 by activating 3D texture filter 610 in a set 
palette mode. 
0349 Bi-linear and tri-linear filtering employ a process 
that obtains the weighted Sum of Several neighboring texels. 
In accordance with one embodiment of the invention, a texel 
data is obtained by employing a vertical interpolation fol 
lowed by a horizontal interpolation of neighboring texels. 
For example, the number of vertical texels may be 3 and the 
number of horizontal texels may be 5. Filtering is performed 
using Specifiable coefficients. Thus, a filtering process is 
defined as the weighted sum of 15 texels and the final output 
T for a filtered texel is defined as follows: 

0350 wherein T is a texel information corresponding to 
a fetched texel. It is noted that when the interpolation point 
is within the Same grid as the previous one, there is no need 
to perform vertical interpolation in accordance with one 
embodiment of the invention. This follows because the 
result of Vertical interpolation is the same as one of a 
previous computations. On the other hand, even the texel is 
within the same grid as the previous one, recalculation of the 
horizontal interpolation is necessary, because the relative 
position of the Scaled texel on the grid may be different, thus 
the coefficient set is different. 

0351. Thus, as illustrated above, the core operation for 
texel filtering is multiplication and addition. In accordance 
with one embodiment of the invention, these function may 
be shared with multiplying and adding functions of Video 
Scaler 612 as illustrated in FIGS. 25a and 25b. 

0352 FIG. 25a illustrates a block diagram of video 
Scaler 612 in accordance with one embodiment of the 
present invention. Video scaler 612 includes a bus interface 



US 2003/0196040 A1 

820 which is coupled to processor memory bus 114, and 
which is configured to Send requests and receive pixel 
information therefrom. A fixed function memory 828 is 
coupled to bus interface unit 820 and is configured to receive 
YCbCr pixel data from memory 128 by employing data 
streamer 122. Fixed function memory 828 stores a prede 
termined portion of pixels that is preferably larger than a 
portion that is necessary for interpolation So as to reduce the 
traffic between memory 128 and video scaler 612. 
0353 A Source image buffer 822 is coupled to fixed 
function memory 828, and is configured to receive pixel data 
that is Sufficient to perform an interpolation operation. Pixel 
address controller 826 generates the address of pixel data 
that is retrieved from fixed function memory 828, for 
interpolation operation A Vertical Source data shift register 
824 is coupled to source image buffer 822 and is configured 
to shift pixel data for multiply and add operation that is 
employed during an interpolation process. It is noted that 
when Video Scaler 612 is performing a filtering operation for 
3D texture filter 610, vertical source data shift register 824 
is configured to Store and shift appropriate texel data for the 
multiply and add operation. 
0354) A horizontal source data shift register 830 is con 
figured to Store intermediate vertically interpolated pixels, as 
derived by multiply and add circuit 834. The data in hori 
Zontal data shift register 830 can be used again for multi 
plication and adding operation. 
0355. A coefficient storage unit 844 is configured to store 
prespecified coefficients for interpolation operation. Thus, 
when Video Scaler 612 is performing a filtering operation for 
3D texture filter 610, coefficient storage unit 844 stores 
filtering coefficients for texels, and, when Video Scaler 612 
is performing a Scaling operation, coefficient Storage unit 
844 stores interpolation coefficients for pixels. 
0356. A coordinate adder 846 is coupled to a selector 840 
to control the retrieval of appropriate coefficients for the 
multiply and add operation. Coordinate adder 846 is in turn 
coupled to an X,y base address, which correspond to the 
coordinates of a starting pixel, or texel. A A unit 850, is 
configured to provide the differential for vertical and hori 
Zontal directions for the coordinates of a desired Scaled pixel 
on the non-Scaled original pixel plane. 
0357 Multiply and add unit 834 is configured to perform 
the multiply and add operations as illustrated in FIG.25b in 
accordance with one embodiment of the invention, although 
the invention is not limited in Scope in that respect. Thus, 
multiply and add unit 834 comprises a plurality of pixel and 
coefficient registers 852, and 854, which are multiplied by 
multiplier856 to generate a number via adder 860. 
0358) An output pixel first-in-first-out FIFO buffer 842 is 
configured to Store the derived pixels for output to a display 
refresh unit, Such as 226, or to data cache 108, depending on 
the value of a corresponding control bit in Video Scaler 
control register. 
0359 During operation, in accordance with one embodi 
ment of the invention, video scaler 612 reads YCbCr pixel 
data from memory 128 using data Streamer 122, and places 
them in fixed function memory 828. Thereafter, appropriate 
bits corresponding to Y, Cb, Cr pixel data are read from fixed 
function memory 828 using pixel address controller 826. 
The retrieved data is written into three source image buffer 

27 
Oct. 16, 2003 

Spaces in Source image buffer 822 corresponding to Y, Cb 
and Cr data. When vertical source data shift registers have 
empty Space, Source image buffer 822 provides a copy of its 
data to vertical Source data Shift registers. For vertical 
interpolations, intermediate vertically interpolated pixels are 
stored in horizontal source data shift register 830. 
0360 The sequence for vertical and horizontal interpo 
lations depends on the Scaling factor. In accordance with one 
embodiment of the invention, there are three multiply and 
add units 834 in video Scaler 612 So that three vertical and 
three horizontal interpolations can be performed Simulta 
neously. 

0361 FIG. 27 is a flow chart Summarizing the steps 
involved in 3D graphics processing as discussed in connec 
tion with FIGS. 20-26. Thus, at step 880, VLIW processor 
102 calculates geometry data by calculating Screen coordi 
nates, colors and binning parameters for all triangles inside 
a frame. At step 882 fixed function unit is activated for 
binning by providing binning indication Signal to 3D tri 
angle rasterizer 607. As a result of binning, tile index and tile 
data for all bins are calculated at step 884. 

0362 At step 886, for all bins in a frame set-up and 
interpolation for visible pixels within triangles begins. Thus, 
VLIW 102 calculates triangle set-up data at step 888. At step 
890, 3D triangle rasterizer calculates parameters for render 
ing including x,y,z, RGBA, S,t, and w for each pixel in a 
triangle, by activating 3D triangle rasterizer 607 in interpo 
lation mode at step 892. The s, t, and w parameters are 
homogeneous texture coordinates and are employed for, 
what is know as, perspective correction. Homogeneous 
texture coordinates indicate which texel does a pixel corre 
spond with. 

0363 For all pixels in a bin VLIW 102 calculates texture 
coordinates for each pixel in response to S,t, w calculations 
obtained by 3D triangle rasterizer 607. At step 896 3D 
texture controller 609 calculates the texture addresses. At 
step 898 data streamer 122 fetches texels from memory 128 
in response to calculated texture addresses. It is noted that 
while data Streamer 122 is fetching texels corresponding to 
a bin, VLIW processor 102 is calculating texture coordinates 
u,v corresponding to a following bin. This is possible 
because of the structure of data cache 108 which allows 
access to cache by fixed function unit in accordance with one 
embodiment of the invention. 

0364. At step 900, video scaler 612 is activated in con 
junction with 3D texture filter 610 to perform texel filtering 
on a portion of fetched filters. 

0365. In accordance with one embodiment of the inven 
tion at steps 902 through 912 3D graphics unit performs 
anti-aliasing and a blending for all pixels in a fragment based 
on the same principles discussed in connection with Steps 
894 through 900. At step 914 the data derived by fixed 
function unit is Stored in a frame buffer, by employing data 
Streamer 122 to transfer data to a local memory Space, Such 
as one in SDRAM 128. 

0366 Thus, the present invention allows for a binning 
process by employing data cache in a multimedia processor, 
and Storing corresponding data relating to each bin in the 
data cache. Furthermore, in accordance with one aspect of 
the invention, before fetching texels, the visible pixels of a 



US 2003/0196040 A1 

triangle are first identified and thus, only corresponding 
texels are retreived from a local memory. 
0367. While only certain features of the invention have 
been illustrated and described herein, many modifications, 
Substitutions, changes or equivalents will now occur to those 
skilled in the art. It is therefore, to be understood that the 
appended claims are intended to cover all Such modifications 
and changes that fall within the true Spirit of the invention. 
We claim: 

1. A data cache System in a multimedia processor, having 
a plurality of modules including a processor, a main 
memory, a data cache and a plurality of I/O devices, 
wherein, 

Said data cache is configured in an N-way Set associative 
Structure, and is capable of adding information indi 

28 
Oct. 16, 2003 

cating which way of Said data cache is Switchable, as an 
option of read and write command used for accessing 
the data cache Via an internal memory bus. 

2. A data cache System in a multimedia processor, having 
a plurality of modules including a processor, a main 
memory, a data cache and a plurality of I/O devices, wherein 

Said data cache and a data Streamer are connected to a first 
internal memory bus, and further, 

Said data Streamer and Said main memory are connected 
to a Second internal memory bus, allowing a data 
traffic to be distributed. 


