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57 ABSTRACT

An information processing system has a plurality of mod-
ules, including a processor, a main memory and a plurality
of I/O devices. A data cache comprises a cache data memory
which is coupled to the processor which provides data to the
processor in response to a load operation and for writing data
from the processor in response to a store operation. A refill
controller is coupled to the cache data memory for control-
ling the operation of the data cache in accordance with a
specifiable policy. An external access controller is coupled to
the cache data memory. The external access controller is
coupled to an external memory bus, such that the contents of
the cache data memory are accessible for read and write
operations in response to read and write requests issued by
the modules in the information processing system.
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DATA CACHE SYSTEM

FIELD OF THE INVENTION

[0001] The present invention relates to a data processor
having various modules, and more specifically to a cache
system within that data processor for improving data transfer
operations among the various modules.

BACKGROUND OF THE INVENTION

[0002] In many data processing chip sets data is trans-
ferred from one or many processors to memory devices and
input/output, I/O, subsystems, or other chip components
known as functional units, via an appropriate bus structure.
Typically, the bus structure includes a processor bus, a
system bus and a memory bus. Thus, when there is a
memory operation wherein data is required to be moved to
or from a memory location to a processor, the system bus
would cease to operate until the data movement from the
memory location to the processor is completed. Similarly,
when there is a data movement from an external device to a
memory location, the processor bus would cease to operate
until the data is moved to its intended location.

[0003] Typically, the main memory in the data processor is
made out of dynamic RAMs (DRAMs). The access speed of
DRAMSs may not be sufficient for many applications. A
somewhat faster memory is available and is referred to as
static RAM or SRAM. However, SRAM memory is more
expensive than DRAM and may not be feasible as a main
memory component.

[0004] In order to alleviate the problems associated with
the delays caused by DRAMSs, many systems employ a
cache memory made of high speed static RAM, SRAM, that
is disposed between the central processing unit and the
system’s main DRAM memory. FIG. 16 illustrates a data
cache unit 508 in accordance with a prior art cache system.
A device referred to as a cache controller or refill controller
518 attempts to maintain copies of information that the
processing unit may request in a cache memory 516. The
controller also maintains a tag memory directory 514 to
track information currently in the cache memory. Whenever
the processing unit initiates a memory read, the controller
performs a very quick search of the directory by accessing
tag memory 514 via arbiter 510, to determine if the
requested information is already in the cache. If the infor-
mation is currently stored in the cache memory, a cache hit
has occurred. If, however, the information is not currently
stored in the cache memory, a cache miss has occurred.

[0005] When a hit occurs, the controller accesses cache
memory 516 via an arbiter 512, to get the requested infor-
mation. The controller then routes the requested information
to central processing unit 102. The quick directory search
and fast-access time of the cache memory ensures that the
central processing unit will not stall while waiting for the
requested information.

[0006] If a miss occurs however, the controller accesses
DRAM 528 via memory control unit 524 to get the requested
data. One or more wait states will be inserted in the
processing unit’s bus cycle. Whenever, the cache controller
is forced to go to DRAM to get information, it always gets
an object of a fixed size from memory. This is referred to as
a line of information. The line size is defined by the cache
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controller design. When refill controller 518 gets the line
from DRAM memory 528, it supplies the originally
requested data item to central processing unit and records
the entire line in the cache data memory.

[0007] Furthermore, cache controllers are divided into two
categories: write-through and write-back. Typically, refill
controller 518 checks to determine whether central process-
ing unit 102 has initiated a read or a write to DRAM 528. A
write-through cache controller handles memory writes as
explained hereinafter.

[0008] On a write hit, the write-through cache controller
updates the line in both cache memory 516 and DRAM 528.
This ensures that the contends of the cache always reflects
the information in the memory. This cache strategy is
referred to as coherency. On a write miss, the write-through
cache controller updates the line in DRAM memory only.

[0009] On the other hand, for a write hit, the write-back
cache controller updates the line in the cache, but not in
DRAM 528. Cache controller then marks the line in cache
tag memory 514 as dirty or modified. Thus, the contents of
the cache memory and DRAM do not reflect each other. Of
the two lines, the cache line is now current and the memory
line is stale. On a write miss, the write-back cache controller
updates the line in memory only, with the contents of the
corresponding cache line.

[0010] Although, there has been many attempts to increase
the cache hits, there is still a need for a data transfer
operation by employing a cache system that has an improved
ratio of cache hits.

SUMMARY OF THE INVENTION

[0011] Thus, in order to improve the cache hit ratios in a
data cache system, an external access controller is provided
that allows the data cache to operate as a bus slave in
response to read and write requests by other bus masters in
the system. As a result, based on the knowledge of the data
that may become necessary to the processor, other bus
masters provide data to the data cache before the processor
issues a store or load operation for that data.

[0012] In accordance with one embodiment of the inven-
tion, in an information processing system, having a plurality
of modules including a processor, a main memory and a
plurality of I/O devices, the data cache includes a cache data
memory coupled to a central processing unit for providing
data to the processing unit in response to load operations and
for writing data from the central processing unit in response
to store operations. A refill controller is coupled to the cache
data memory for controlling the operation of the data cache
in accordance with a specifiable policy. The external access
controller is coupled to the cache data memory, and to an
external memory bus such that the contents of the cache data
memory are accessible for read and write operations in
response to read and write requests issued by other modules
in the information processing system, that function as bus
masters.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The subject matter regarded as the invention is
particularly pointed out and distinctly claimed in the con-
cluding portion of the specification. The invention, however,
both as to organization and method of operation, together
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with features, objects, and advantages thereof may best be
understood by reference to the following detailed descrip-
tion when read with the accompanying drawings in which:

[0014] FIG. 1(a) is a block diagram of a multimedia
processor system in accordance with one embodiment of the
present invention;

[0015] FIG. 1(b) is a block diagram of an input/output
(1/O) unit of the multimedia processor system illustrated in
FIG. 1(a);

[0016] FIG. 1(c¢) is a block diagram of a multimedia
system employing a multimedia processor in conjunction
with a host computer, in accordance with one embodiment
of the invention.

[0017] FIG. 1(d) is a block diagram of a stand-alone
multimedia system employing a multimedia processor in
accordance with one embodiment of the invention.

[0018] FIG. 2 is a flow chart illustrating a data transfer
request operation in conjunction with a data transfer switch
in accordance with one embodiment of the invention.

[0019] FIGS. 3(a) and 3(b) is a flow chart illustrating a
read transaction that employs a data transfer switch in
accordance with one embodiment of the invention.

[0020] FIGS. 4(a) and 4(D) illustrate the flow of signals
during a request bus connection and an internal memory bus
connection in accordance with one embodiment of the
invention.

[0021] FIG. 5(a) illustrates the timing diagram for a
request bus read operation, in accordance with one embodi-
ment of the present invention.

[0022] FIG. 5(b) illustrates the timing diagram for a read
request where the grant is not given immediately, in accor-
dance with one embodiment of the invention.

[0023] FIG. 5(c) illustrates the timing diagram for a
request bus write operation, in accordance with one embodi-
ment of the invention.

[0024] FIG. 5(d) illustrates the timing diagram for a data
bus transfer operation, in accordance with one embodiment
of the invention.

[0025] FIG. 6(a) illustrates a timing diagram for a request
bus master making a back-to-back read request.

[0026] FIG. 6(b) illustrates a timing diagram for a pro-
cessor memory bus master making a back-to-back request,
when grant is not immediately granted for the second
request.

[0027] FIG. 6(c) illustrates a timing diagram for a request
bus slave receiving a read request followed by a write
request.

[0028] FIG. 7 illustrates a block diagram of a data
streamer in accordance with one embodiment of the inven-
tion.

[0029] FIG. 8 illustrates a block diagram of a transfer
engine employed in a data streamer in accordance with one
embodiment of the invention.

[0030] FIG. 9 is a block diagram of a data transfer switch
in accordance with one embodiment of the invention.
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[0031] FIG. 10 is a block diagram of a data steamer buffer
controller in accordance with one embodiment of the inven-
tion.

[0032] FIG. 11 is a block diagram of a direct memory
access controller in accordance with one embodiment of the
invention.

[0033] FIG. 12 is an exemplary memory address space
employed in accordance with one embodiment of the inven-
tion.

[0034] FIG. 13 illustrates a data structure for a channel
descriptor in accordance with one embodiment of the inven-
tion.

[0035] FIG. 14 illustrates a data structure for a channel
descriptor in accordance with another embodiment of the
invention.

[0036] FIGS. 15(a)-15(c) illustrate a flow chart for setting
a data path in accordance with one embodiment of the
invention.

[0037] FIG. 16 illustrates a block diagram of a prior art
cache memory system.

[0038] FIG. 17 illustrates a block diagram of a cache
memory system in accordance with one embodiment of the
present invention.

[0039] FIG. 18 is a flow chart illustrating the operation of
a prior art cache memory system.

[0040] FIG. 19 is a flow chart illustrating the operation of
a cache memory system in accordance with one embodiment
of the invention.

[0041] FIG. 20 is a block diagram of a fixed function unit
in conjunction with a data cache in a multimedia processor
in accordance with one embodiment of the invention.

[0042] FIG. 21 is a block diagram of a 3D triangle
rasterizer in a binning mode in accordance with one embodi-
ment of the invention.

[0043] FIG. 22 is a block diagram of a 3D triangle
rasterizer in interpolation mode in accordance with one
embodiment of the invention.

[0044] FIG. 23 is a block diagram of a 3D texture con-
troller in accordance with one embodiment of the invention.

[0045] FIG. 24 is a block diagram of a 3D texture filter in
accordance with one embodiment of the invention.

[0046] FIGS. 25(a) and 25(b) are block diagrams of a
video scaler in accordance with one embodiment of the
invention.

[0047] FIG. 26 is a plot of a triangle subjected to a binning
process in accordance with one embodiment of the inven-
tion.

[0048] FIG. 27 is a flow chart illustrating the process for
implementing 3D graphics in accordance with one embodi-
ment of the invention.

DETAILED DESCRIPTION OF THE DRAWINGS

[0049] In accordance with one embodiment of the present
invention, a multimedia processor 100 is illustrated in FIG.
1, although the invention is not limited in scope in that
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respect. Multimedia processor 100 is a fully programmable
single chip that handles concurrent operations. These opera-
tions may include acceleration of graphics, audio, video,
telecommunications, networking and other multimedia
functions. Because all the main components of processor
100 are disposed on one chip set, the throughput of the
system is remarkably better than those of the conventional
systems as will be explained in more detail below.

[0050] Multimedia processor 100 includes a very-long
instruction word (VLIW) processor that is usable in both
hosted and hostless environment. Within the present context
a hosted environment is one where multimedia processor
100 is coupled to a separate microprocessor such as
INTEL® X-86, and a hostless environment is one which
multimedia processor 100 functions as a stand-alone mod-
ule. The VLIW processor is denoted as central processing
unit having two clusters CPU 102 and CPU 104. These
processing units 102 and 104 respectively allow multimedia
processor 100, in accordance with one embodiment of the
invention, operate as a stand-alone chip set.

[0051] The operation of the VLIW processor is well-
known and described in John R. Ellis, Bulldog: A Compiler
for VLIW Architectures, (The MIT Press, 1986) and incor-
porated herein by reference. Basically, a VLIW processor
employs an architecture which is suitable for exploiting
instruction-level parallelism (ILP) in programs. This
arrangement allows for the execution of more than one basic
(primitive) instruction at a time. These processors contain
multiple functional units, that fetch from an instruction
cache a very-long instruction word containing several primi-
tive instructions, so that the instructions may be executed in
parallel. For this purpose, special compilers are employed
which generate code that has grouped together independent
primitive instructions—executable in parallel. In contrast to
superscalar processor, VLIW processors have relatively
simple control logic, because they do not perform any
dynamic scheduling nor reordering of operations. VLIW
processors have been described as a successor to RISC,
because the VLIW compiler undertakes the complexity that
was imbedded in the hardware structure of the prior pro-
cessors

[0052] The instruction set for a VLIW architecture tends to
consist of simple instructions. The compiler must assemble
many primitive operations into a single “instruction word”
such that the multiple functional units are kept busy, which
requires enough instruction-level parallelism (ILP) in a code
sequence to fill the available operation slots. Such parallel-
ism is uncovered by the compiler, among other thins,
through scheduling code speculatively across basic blocks,
performing software pipelining, and reducing number of
operations executed.

[0053] An output port of VLIW processor 102 is coupled
to a data cache 108. Similarly, an output port of VLIW
processor 104 is coupled to an instruction cache 110. Output
ports of data cache 108 and instruction cache 110 are in turn
coupled to input ports of a data transfer switch 112 in
accordance with one embodiment of the present invention.
Furthermore, a fixed function unit 106 is disposed in mul-
timedia processor 100 to handle three dimensional graphical
processing as will be explained in more detail. Output ports
of fixed function unit 106 are also coupled to input ports of
data transfer switch 112, as illustrated in FIG. 1. Fixed
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function unit 106 is also coupled to an input port of data
cache 108. The arrangement and operation of the fixed
function unit in conjunction with the data cache is described
in more detail in reference with FIGS. 20-26. The arrange-
ment and the operation of data cache 108 in accordance with
one embodiment of the invention is described in more detail
below in reference with FIGS. 17 and 19.

[0054] As illustrated in FIG. 1(a), all of the components
of multimedia processor 100 are coupled to data transfer
switch 112. To this end, various ports of memory controller
124 are coupled to data transfer switch 112. Memory con-
troller 124 controls the operation of an external memory,
such as SDRAM 128. Data transfer switch 112 is also
coupled to a data streamer 122. As will be explained in more
detail below, data streamer 122 provides buffered data
movements within multimedia processor 100. It further
supports data transfer between memory or input/output I/O
devices that have varying bandwidth requirements. In accor-
dance with one embodiment of the present invention,
memory devices handled by data streamer 122 may include
any physical memory within the system that can be
addressed, including external SDRAM 128, data cache 108,
and memory space located in fixed function unit 106.

[0055] Furthermore, data streamer 122 handles memory
transfers to host memory in situations where multimedia
processor 100 is coupled to a host processor via a PCI bus
as described in more detail below in reference with FIG.
1(c). To this end, multimedia processor 100 also includes a
PCI/AGP interface 130, having ports that are coupled to data
transfer switch 112. PCI/AGP interface 130 allows multi-
media processor 100 communicate with a corresponding
PCI bus and AGP bus that employ standard protocols
respectively known as PCI Architecture Specification Rev.
2.1 (published by the PCI Special Interest Group), and
incorporated herein by reference, and AGP Architecture
Specification Rev. 1.0, and incorporated herein by reference.

[0056] Multimedia processor 100 can function as either a
master or a slave device when coupled to either PCI or AGP
(Accelerated Graphics Port) bus via interface unit 130.
Because the two buses can be coupled to multimedia pro-
cessor 100 independent from each other, multimedia pro-
cessor 100 can operate as the bus master device on one
channel and a slave device on the other. To this end
multimedia processor 100 appears as a multifunction PCI/
AGP device, when it operates as a slave device from the
point of view of a host system.

[0057] Data streamer 122 is also coupled to an input/
output I/O bus 132 via a direct memory access, DMA,
controller 138. A plurality of I/O device controllers 134 are
coupled also to I/O bus 132. In accordance with one embodi-
ment of the present invention, the output ports of I/O device
controllers 134 are coupled to input ports of a versa port
multiplexer 136.

[0058] A programmable input/output controller (PIOC)
126 is coupled to data transfer switch 112 at some of its ports
and to I/O bus 132 at other of its ports.

[0059] In accordance with one embodiment of the inven-
tion, I/O device controllers 134 together define an interface
unit 202 that is configured to provide an interface between
multimedia processor 100 and the outside world. As will be
explained in more detail in reference with FIG. 1(b), mul-
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timedia processor 100 can be configured in a variety of
configurations depending on the number of I/O devices that
are activated at any one time.

[0060] Asillustrated in FIG. 1(a), data transfer switch 112
includes a processor memory bus (PMB) 114, which is
configured to receive address and data information from
fixed function unit 106, data cache 108 and instruction cache
110 and data streamer 122.

[0061] Data transfer switch 112 also includes an internal
memory bus (IMB) 120, which is configured to receive
address and data information from memory controller 124,
data streamer 122, programmable input/output (I/O) con-
troller 126, and a PCI/AGP controller 130.

[0062] Data transfer switch 112 also includes a request bus
118, which is configured to receive request signals from all
components of multimedia processor 100 coupled to the data
transfer switch.

[0063] Data transfer switch 112 also includes a switchable
transceiver 116, which is configured to provide data con-
nections between processor memory bus (PMB) 114 and
internal memory bus (IMB) 120. Furthermore, data transfer
switch 112 includes three bus arbiter units 140, 142 and 144
respectively. Thus, a separate bus arbitration for request and
data buses is handled, based on system needs as explained
in detail below. Furthermore,-as illustrated in FIG. 1(a),
whereas different components in multimedia processor 100
are coupled to either processor memory bus 114 or internal
memory bus 120 as separate groups, data streamer 122 is
coupled to both memory buses directly. In accordance with
one embodiment of the present invention, both processor
memory bus 114 and internal memory bus 120 are 64 bits or
8 bytes wide, operating at 200 MHZ for a peak bandwidth
of 1600 MB’s each.

[0064] In accordance with one embodiment of the inven-
tion, each bus arbiter, such as 140, 142 and 144, includes a
four level first-in-first-out (FIFO) buffer in order to accom-
plish scheduling of multiple requests that are sent simulta-
neously. Typically, each request is served based on an
assigned priority level.

[0065] All of the components that are coupled to data
transfer switch 112 are referred to as a data transfer switch
agent. Furthermore, a component that requests to accom-
plish an operation is referred to in the present context as an
initiator or bus master. Similarly, a component that responds
to the request is referred to in the present context as a
responder or a bus slave. It is noted that an initiator for a
specific function or at a specific time may be a slave for
another function or at another time. Furthermore, as will be
explained in more detail, all data within multimedia proces-
sor 100 is transmitted using one or both of data buses 114
and 120 respectively.

[0066] The protocol governing the operation of internal
memory bus (IMB) and processor memory bus (PMB) is
now explained in more detail. In accordance with one
embodiment of the present invention, request buses 114, 118
and 120 respectively, include signal lines to accommodate a
request address, which signifies the destination address.
During a request phase the component making a request is
the bus master, and the component located at the destination
address is the bus slave. The request buses, also include a
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request byte read enable signal, and a request initiator
identification signal, which identifies the initiator of the
request.

[0067] During a data transfer phase, the destination
address of the request phase becomes the bus master, and the
initiating component during the request phase becomes the
bus slave. The buses also include lines to accommodate for
a transaction identification ID signal, which are uniquely
generated by a bus slave during a data transfer phase.

[0068] Additional lines on the buses provide for a data
transfer size, so that the originator and the destination end
points can keep a track on the size of the transfer between
the two units. Furthermore, the buses include signal lines to
accommodate for the type of the command being processed.

[0069] The operation of interface unit 202 in conjunction
with multiplexer 136 is described in more detail hereinafter
in reference with FIG. 1(b).

INTERFACE UNIT & MULTIPLEXER

[0070] Multimedia processor 100 enables concurrent mul-
timedia and I/O functions as a stand alone unit or on a
personal computer with minimal host loading and high
media quality. Multiplexer 136 provides an I/O pinset which
is software configurable when multimedia processor 100 is
booted. This makes the I/O functions flexible and software
upgradable. The I/O pinset definitions depend on the type of
I/O device controller 134 being activated.

[0071] Thus, in accordance with one embodiment of the
invention, the I/O interface units configured on multimedia
processor 100 can be changed, for example, by loading a
software upgrade and rebooting the chip. Likewise as new
standards and features become available, software upgrades
can take the place of hardware upgrades.

[0072] T1/O interface unit includes an NTSC/PAL encoder
and decoder device controller 224, which is coupled to I/O
bus 132 and multiplexer 136. ISDN GCI controller unit 220
is also coupled to I/O bus 132 and multiplexer 136. Similarly
a T1 unit 210 is coupled to I/O bus 132 and multiplexer 136.
A Legacy audio signal interface unit 218 is coupled to I/O
bus 132 and multiplexer 136, and, is configured to provide
audio signal interface in accordance with an audio protocol
referred to as Legacy. Audio codec unit 214 is configured to
provide audio-codec interface signals. Audio codec unit 214
is coupled to I/O bus 132 and multiplexer 136. A universal
serial bus (USB) unit 222 is coupled to I/O bus 132 and
multiplexer 136. USB unit 222 allows multimedia processor
100 communicate with a USB bus for receiving control
signals from, for example, keyboard devices, joy sticks and
mouse devices. Similarly, an IEC958 interface 208 is
coupled to I/O bus 132 and multiplexer 136.

[0073] An I*S (Inter-IC Sound) interface 212 is configured
to drive a digital-to-analog converter (not shown) for home
theater applications. IS interface is commonly employed by
CD players where it is unnecessary to combine the data and
clock signals into a serial data stream. This interface
includes separate master clock, word clock, bit clock, data
and optional emphasis flag.

[0074] An I°C bus interface unit 216 is configured to
provide communications between multimedia processor 100
and external on-board devices. The operation of IIC standard
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is well known and described in Phillips Semiconductors The
IPC-bus and How to Use it (including specifications) (April
1995), and incorporated herein by reference.

[0075] Bus interface unit 216 operates in accordance with
a communications protocol known as display data channel
interface (DDC) standard. The DDC standard defines a
communication channel between a computer display and a
host system. The channel may b e used to carry configuration
information, to allow optimum use of the display and also,
to carry display control information. In addition, it may be
used as a data channel for Access bus peripherals connected
to the host via the display. Display data channel standard
calls for hardware arrangements which are configured to
provide data in accordance with VESA (Video Electronics
Standard Association) standards for display data channel
specifications.

[0076] The function of each of the I/O device controllers
mentioned above is described in additional detail hereinaf-
ter.

[0077] RAMDAC or SVGA DAC interface 2041 provides
direct connection to an external RAMDAC. The interface
also includes a CRT controller, and a clock synthesizer. The
RAMDAC is programmed through I>C serial bus.

[0078] NTSC decoder/encoder controller device 224 inter-
faces directly to NTSC video signals complying with
CCIR601/656 standard so as to provide an integrated and
stand-alone arrangement. This enables multimedia processor
100 to directly generate high-quality NTSC or PAL video
signals. This interface can support resolutions specified by
CCIR601 standard. Advanced video filtering on processor
102 produces flicker-free output when converting progres-
sive-to-interlaced and interlaced-to-progressive output. The
NTSC encoder is controlled through the I*C serial bus.

[0079] Similarly, the NTSC decoder controller provides
direct connection to a CCIR601/656 formatted NTSC video
signal which can generate up to a 16-bit YUV at a 13.5 MHZ
Pixel rate. The decoder is controlled through the I°C serial
bus.

[0080] ISDN (Integrated Services Digital Networks stan-
dard) interface 220 includes a 5-pin interface which supports
ISDN BRI (basic rate interface) via an external ISDN U or
S/T interface device. ISDN standard defines a general digital
telephone network specification and has been in existence
since the mid 1980’s. The functionality of this module is
based on the same principle as a serial communication
controller, using IDL.2 and SCP interfaces to connect to the
ISDN U-Interface devices.

[0081] T1 interface 210 provides a direct connection to
any third party T1 CSU (channel service unit) or data service
unit (DSU) through a T1 serial or parallel interface. The
CSU/DSU and serial/parallel output are software config-
urable through dedicated registers. Separate units handle
signal and data control. Typically the channel service unit
(CSU) regenerates the waveforms received from the T1
network and presents the user with a clean signal at the
DSC-1 interface. It also regenerates the data sent. The
remote test functions include loopback for testing from a
network side. Furthermore, a data service unit (DSU) pre-
pares the customer’s data to meet the format requirements of
the DSC-1 interface, for example by suppressing zeros with
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special coding. The DSU also provides the terminal with
local and remote loopbacks for testing.

[0082] A single multimedia processor, in accordance with
one embodiment of the invention is configured to handle up
to 24 channels of V.34 modem data traffic, and can mix
V.PCNL and V.34 functions. This feature allows multimedia
processor 100 to be used to build modem concentrators.

[0083] ILegacy audio unit 218 is configured to comply with
Legacy audio Pro 8-bit stereo standard. It provides register
communications operations (reset, command/status, read
data/status), digitized voice operations (DMA and Direct
mode), and professional mixer support (CT1 345, Module
Mixer). The functions of this unit include:

[0084] 8-bit monaural/stereo DMA slave mode play/
record;

[0085] 8-bit host I/O interface for Direct mode play/
record;

[0086] Reset, command/data, command status, read
data and read status register support;

[0087] Professional mixer support;

[0088] FM synthesizer (OPLIIL, III, or IV address
decoding);

[0089] MPU401 General MIDI support;
[0090] Joystick interface support;

[0091] Software configuration support for native
DOS mode; and

[0092] PnP (plug and play) support for resources in
Windows DOS box.

[0093] A PCI signal decoder unit provides for direct
output of PCI legacy audio signals through multiplexer 136
ports.

[0094] AC Link interface 214 is a 5 pin digital serial
interface which is bidirectional, fixed rate, serial PCM
digital stream. It can handle multiple input and output audio
streams, as well as control register accesses employing a
TDM format. The interface divides each audio frame into 12
outgoing and 12 incoming data streams, each with 20-bit
sample resolution. Interface 214 includes a codec that per-
forms fixed 48 KS/S DAC and ADC mixing, and analog
processing.

[0095] Transport channel interface (TCI) 206 accepts
demodulated channel data in transport layer format. It syn-
chronizes packet data from satellite or cable, then unpacks
and places byte-aligned data in the multimedia processor
100 memory through the DMA controller. Basically, the
transport channel interface accepts demodulated channel
data in transport layer format. A transport layer format
consists of 188 byte packets with a four byte header and a
184 byte payload. The interface can detect the sync byte
which is the first byte of every transport header. Once byte
sync has been detected, the interface passes byte aligned
data into memory buffers of multimedia processor 100 via
data streamer 122 and data transfer switch 112 (FIG. 1(a)).
The transport channel interface also accepts MPEG-2 sys-
tem transport packets in byte parallel or bit serial format.
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[0096] Multimedia processor 100 provides clock correc-
tion and synchronization for video and audio channels.

[0097] Universal Serial Bus (USB) interface 222 is a
standard interface for communication with low-speed
devices. This interface conforms to the standard specifica-
tion. It is a four-pin interface (two power and two data pins)
that expects to connect to an external module such as the
Philips PDIUSBI11.

[0098] Multimedia processor 100 does not act as a USB
hub, but can communicate with both 12 Mbps and 1.5 Mbps
devices. It is software configurable to run at either speed.
When configured to run at the 12 Mpbs speed, it can send
individual data packets to 1.5 Mbps devices. In accordance
with one embodiment of the invention multimedia processor
100 communicates with up to 256 devices through the USB.

[0099] The USB is a time-slotted bus. Time slots are one
millisecond. Each time slot can contain multiple transactions
that can be isochronous, asynchronous, control, or data.
Furthermore, data transactions can be individual packets or
can be bulk transactions. Data transactions are asynchro-
nous. Data is NRZI with bit stuffing. This guarantees a
transition for clock adjustment at least once every six bits
variable length data packets are CRC protected. Bulk data
transactions break longer data streams up into packets of up
to 1023 bytes per packet, and send one packet per time-slot.

[0100] IEC958 interface unit 208 is configured to support
several audio standards, such as Sony Philips Digital Inter-
face (SPDIF); Audio Engineering Society/European Broad-
cast Union (ES/EBU) interface; TOSLINK interface; The
TOSLINK interface requires external IR devices. The
IEC958 protocol convention calls for each multi-bit field in
a sound sample to be shifted in or out with the least
significant bit first (little-endian).

[0101] Interface unit 202 also includes an IS controller
unit 212 which is configured to drive high-quality (better
than 95 dB SNR) audio digital-to-analog (D/A) converters
for home theater. Timing is software configurable to either
18 or 16bit mode.

[0102] I*C unit 216 employs the I°C standard primarily to
facilitate communications between multimedia processor
100 and external onboard devices. Comprising a two-line
serial interface, I°C unit 216 provides the physical layer
(signaling) that allows the multimedia processor 100 serve
as a master and slave device residing on the I°C bus. As a
result the multimedia processor 100 does not require addi-
tional hardware to relay status and control information to
external devices.

[0103] DDC interface provides full compliance with the
VESA standards for Display Data Channel (DDC) specifi-
cations versions 1, and 2a. DDC specification compliance is
offered for: DDC control via two pins in the standard VGA
connector; DDC control via I*C connection through two
pins in the standard VGA connector.

[0104] Tt is noted that each of the I/O units described
above advantageously include a control register (not shown)
which corresponds to a PIO register located at a predeter-
mined address on I/O bus 132. As a result, each of the units
may be directly controlled by receiving appropriate control
signals via I/O bus 132.
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[0105] Thus, in accordance with one embodiment of the
invention, multimedia processor 100 may be employed in a
variety of systems by reprogramming the I/O configurations
of the I/O unit 202 such that a desired set of I/O devices have
access to outside world via multiplexer 136. The pin con-
figurations for multiplexer 136 varies based on the configu-
ration of the I/O unit 202. Some of the exemplary applica-
tions that a system employing multimedia processor 100
may be used include a three dimensional 3D geometry PC,
a multimedia PC, a set-top box/3D television, or Web TV,
and a telecommunications modem system.

[0106] During operation, processor 102 may be pro-
grammed accordingly to provide the proper signaling via I/O
bus 132 to I/O unit 202 so as to couple the desired I/O units
to outside world via multiplexer 136. For example, in
accordance with one embodiment of the invention, TCI unit
206 may be activated to couple to an external tuner system
(not shown) via multiplexer 136 to receive TV signals.
Multimedia processor 100 may manipulate the received
signal and display it on a display unit such as a monitor. In
another embodiment of the invention, NTSC unit 224 may
be activated to couple to an external tuner system (not
shown) via multiplexer 136 to receive NTSC compliant TV
signals.

[0107] 1t will be appreciated that other applications may
also be employed in accordance with the principles of the
present invention. For purposes of illustrations, FIGS. 1©
and 1(d) show block diagrams of two typical systems
arranged in accordance with two embodiments of the present
invention, as discussed hereinafter.

[0108] Thus, a multimedia system employing multimedia
processor 100 is illustrated in FIG. 1(c), which operates
with a host processor 230, such as an X86®, in accordance
with one embodiment of the present invention. Multimedia
processor 100 is coupled to a host processor 230 via an
accelerated graphics bus AGP. Processor 230 is coupled to
an ISA bus via a PCI bus 260 and a south bridge unit 232.
An audio I/O controller such as 218 (FIG. 1(b)) is config-
ured to receive from and send signals to ISA bus 258 via ISA
SB/Comm mapper 232 and multiplexer 136. Furthermore,
I?C/DDC driver unit 216 is configured to receive corre-
sponding standard compliant signals via multiplexer 136.
Driver unit 216 receives display data channel signals which
are intended to provide signals for controlling CRT resolu-
tions, screen sizes and aspect ratios. ISDN/GCI driver unit
221 of multimedia processor 100 is configured to receive
from and send signals to an ISDN U or S/T interface unit 236

[0109] Multimedia processor 100 provides analog RGB
signals via display refresh unit 226 to a CRT monitor (not
shown). Multimedia processor 100 is also configured to
provide NTSC or PAL compliant video signals via CCIR/
NTSC driver unit 224 and NTSC encoder unit 238. Con-
versely, multimedia processor 100 is also configured to
receive NTSC or PAL compliant video signals via CCIR/
NTSC driver unit 224 and NTSC decoder unit 240. A local
oscillator unit 244 is configured to provide a 54 MHz signal
to multimedia processor 100 for processing the NTSC
signals.

[0110] A demodulator unit 246 is coupled to transport
channel interface driver unit 206 of multimedia processor
100. Demodulator unit 246 is configured to demodulate
signals based on quadrature amplitude modulation, or
quadrature phase shift keying modulation or F.E.C.
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[0111] A secondary PCI bus 252 is also coupled to mul-
timedia processor 100 and is configured to receive signals
generated by a video decoder 248 so as to provide NTSC/
PAL signals in accordance with Bt484 standard, provided by
Brooktree®. Furthermore, bus 252 receives signals in accor-
dance with 1394 link/phy standard allowing high speed
serial data interface via 1394 unit 250. Bus 252 may be also
coupled to another multimedia processor 100.

[0112] Finally, multimedia processor 100 is configured to
receive analog audio signals via code 254 in accordance
with AC’97 standard. A local oscillator 256 generates an
oscillating signal for the operation of AC’97 code.

[0113] FIG. 1(d) illustrates a stand alone system, such as
a multimedia TV or WEB TV that employs multimedia
processor 100 in accordance with another embodiment of
the invention. In a stand-alone configuration, multimedia
processor 100 activates universal serial bus (USB) driver
unit 222 allowing control via user-interface devices such as
keyboards, mouse and joysticks. It is noted that for the
stand-alone configuration, VLIW processor performs all the
graphic tasks in conjunction with other modules of multi-
media processor 100 as will be explained later. However, for
the arrangement that operates with a host processor 230,
some of the graphic tasks are performed by the host pro-
CesSor.

DATA TRANSFER SWITCH

[0114] FIG. 2 is a flow diagram of the operation of data
transfer switch in accordance with one embodiment of the
present invention, although the invention is not limited in
scope in that respect.

[0115] FIG. 2 illustrates the flow diagram of a bus pro-
tocol, which describes an example of the initiation phase in
a write transaction from one functional unit in multimedia
processor 100 to another unit in multimedia processor 100,
such as a transaction to write data in data cache 108 to a
location in SDRAM 128 via memory controller 124,
although the invention is not limited in scope in that respect.
Thus, for this example, the request bus master is data cache
108, and the request bus slave is memory controller 124. At
step 402, request bus master sends a write request, along
with a responder ID and a specifiable priority level to request
bus arbiter 140. At step 404, request bus arbiter determines
whether the request bus slave, in this case, memory con-
troller 124, is ready to accept a write request. If so, request
bus arbiter 140 sends a grant signal to data cache 108, along
with a transaction ID, and in turn sends a write request to
memory controller 124.

[0116] At step 406, request bus master provides address,
command, size and its own identifier ID signals on request
bus 118. Meanwhile, request bus slave in response to the
previous request signal, sends an updated ready signal to
request bus arbiter 140 so as to indicate whether it can accept
additional requests. Furthermore, the request bus slave puts
the transaction identifier ID on the request bus. This trans-
action identifier is used to indicate that an entry for this
transaction exists in the slave’s write queue. The request bus
master samples this transaction ID when it receives data
corresponding to this request from the bus slave.

[0117] For the write transaction explained above, request
bus master, for example, data cache 108 also becomes a data
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bus master. Thus, at step 408, data cache 108 sends a write
request, along with a receiver identifier, the applicable
priority level and the transaction size to data bus arbiter, in
this case processor memory bus 114. At step 410, data bus
arbiter 114 sends a grant signal to data bus master, and in
turn sends a request signal to data bus slave (memory
controller 124 for the present example).

[0118] Atstep 412, data bus master provides data and byte
enables up to four consecutive cycles, on the data bus. In
response, data bus slave samples the data. The data bus
master also provides the transaction ID that it originally
received from the request bus slave at step 404. Finally, the
data bus arbiter provides the size of the transaction for use
by the data bus slave.

[0119] FIG. 3a illustrates a flow diagram of a read trans-
action that employs data transfer switch 112. For this
example, it is assumed that data cache 108 performs a read
operation on SDRAM 128. Thus, at step 420 request bus
master (data cache 108 for the present example) sends a read
request, along with a responder identifier ID signal, and a
specifiable priority level to request bus arbiter 140. At step
422, request bus arbiter determines whether request bus
slave is available for the transaction. If so, request bus
arbiter 140 sends a grant signal to request bus master, along
with a transaction ID, and also sends a read request to the
request bus slave (memory controller 124 in the present
example). At step 424, the request bus master (data cache
108) provides address, size, byte read enable, and its own
identification signal ID, on the request bus. Meanwhile,
request bus slave updates its ready signal in request bus
arbiter 140 to signify whether it is ready to accept more
accesses. Request bus master also provides the transaction
ID signal on the request bus. This transaction ID, is
employed to indicate that a corresponding request is stored
in the bus master’s read queue.

[0120] FIG. 3b illustrates the response phase in the read
transaction. At step 426, request bus slave (memory con-
troller 124) becomes the data bus master. When the data bus
master is ready with the read data, it sends a request, a
specfiable priority level signal, and the transaction size to the
appropriate data bus arbiter; for this example, internal
memory bus arbiter 142. At step 428, internal memory bus
arbiter 142 sends a grant signal to the data bus master, and
sends a request to the data bus slave—data cache 108. At
step 430, data bus master (memory controller 124) provides
up to four consecutive cycles of data to internal data bus 120.
The data bus master also provides a transaction identifica-
tion signal, transaction ID, which it received during the
request phase. Finally, internal bus arbiter controls the
transaction size for the internal bus slave (data cache 108) to
sample.

[0121] In sum, in accordance with one example of the
invention, the initiator components request transfers via the
request bus arbiter. Each initiator can request 4, 8, 16, 24 and
32 byte transfer. The transaction, however, must be aligned
on the communication size boundary. Each initiator may
make a request in every cycle. Furthermore, each write
initiator must sample the transaction ID from the responder
during the send phase and must then send it out during the
response phase.

[0122] Furthermore, during the read operations the
responders are configured to determine when to send the
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requested data. The read responders sample the initiator ID
signal during the send phase so that they know which device
to send data to during the response phase. The read respond-
ers sample the transaction ID signal from the initiator during
the send phase and then send it out during the response
phase. During the write operations, the responders are
configured to accept write data after accepting a write
request.

[0123] Table 1 illustrates an exemplary signal definition,
for request bus 118, in accordance with one embodiment of
the invention. Table 2 illustrates an exemplary signal defi-
nition, for data buses 114 and 120 in accordance with one
embodiment of the invention.

REQUEST BUS
[0124]

TABLE 1

Rgb_addr[31:2] Physical address

Rgb_bre[3:0] Byte Read Enable (undefined during writes)- Since
the request bus address has a 4-byte granularity, the
byte read enable signifies which of the four bytes
are being read Rqb__bre[0] is set for byte O,
Rqb_bre[1] is set for byte 1, and so on. All bits

are set when reading 4 or more bytes. The read
initiator is configured to generate any combinations
of byte read enables.

Request Initiator ID signal, which is the
identification signal of the device making the
request.

Request Transaction ID - This is determined by the
device which receives data. Since this device can be
the initiator in a read transaction or the responder

in a write transaction, it can set the transaction ID so
that it can distinguish between these cases when data
arrives. Also, since read and write requests can be
completed out-of-order, the transaction ID can be
used to signify the request that corresponds to the
incoming data.

Request size- This can be predetermined request size
lengths, such as 4 bytes; 8 bytes; 16 bytes; 24 bytes;
and 32 bytes. Since the smallest size is four bytes, a
writer initiator signifies which bytes to be written
using the data Burst Byte Enables as discussed in
Table 2 below. A read initiator signifies which bytes
are being read using Rgb__bre[3:0] described

above.

Request Command- This signifies the type of
operation being performed

000 Memory Operation

001 Programmable Input/Output, PIO, operation
010 Memory allocate operation

Rgb_init id[3.0]

Rgb_tr_id[7:0]

Rgb_sz[2:0]

Rgb_cmd[2:0]

DATA BUS
[0125]

TABLE 2

Imb_ data[63:0] Internal Memory Data Bus- The data buses are little-
endian: byte 0

is data[7:0], byte 1 is data[15:8], . . ., and byte 7 is
data[63:56]. Data is preferably placed in the correct
byte positions - it is preferably not aligned to the LSB.
IMB Byte Write Enables (undefined during reads)-
This is used by a write initiator to signify which bytes
are to be written. Imb__be[0] is set when writing

byte 0, Imb__be[1] is set when writing byte 1,

and so on. When writing 8 or more bytes, all bits

Imb__be[7:0]
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TABLE 2-continued

should be set. The write initiator is allowed to generate
any combination of byte enables.
Imb_tr_id[5:0] IMB Transaction ID - This is identical to the
transaction ID sent on the Request Bus.
Pmb__data[63:0]
Pmb__be[7:0]

Pmb__tr_id[7:0]

Processor Memory Data Bus
PMB Byte Write Enables (undefined during reads)
PMB Response Transaction ID

[0126] Tables 3 through 9 illustrate command calls
employed when transferring data via data transfer switch
112.

TABLE 3

RQB Master to RQB Arbiter

Xx__rqb_rd__reql
Xx__rqb__wr__reql
Xx_rqb_resp_id][3:0]

Read Request 1

Write Request 1

Responder ID 1 - the device ID of the
responder. It has the same encoding as the
initiator ID.

Xx_rqb_pril[1:0] Priority 1
00 Highest
01

10

1 Lowest

Xx_rqb_rd_req2 Read Request 2 - in case there is a
back-to-back request

Write Request 2

Responder ID 2

Priority 2

Xx_ rqb_wr_req2
Xx_rqb_resp_id2[3:0]
Xx_rqb_pri2[1:0]

[0127]

TABLE 4

RQB Slave to RQB Arbiter

Xx_rqb_rd_rdyl
Xx_ rqb_wr_rdyl
Xx_rqb_rd_rdy2

Read Ready (1 or more)

Write Ready (1 or more)

Read Ready (2 or more) - see back-to-back requests
below

Xx_rqb_wr_rdy2 Write Ready (2 or more)

[0128]
TABLE 5
RQB Arbiter to RQB Arbiter
Dts_ rqb__gnt  xx Bus Grant
[0129]

TABLE 6

RQB Arbiter to RQB Slave

Dts_rqb_rd__req__xx
Dts__rqb__wr__req__xx

Read Request
Write Request
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[0130]
TABLE 7

Data Bus Master to Data Bus Arbiter
Xx__imb__reql IMB request 1
Xx__imb__init_id1 IMB receiver ID 1
Xx__imb__sz1 IMB size 1
Xx__imb__pril IMB priority 1
Xx__imb__req2 IMB request 2
Xx_imb_int_id2  IMB receiver ID 2
Xx_imb_ sz2 IMB size 2
Xx__imb__pri2 IMB priority 2
Xx__pmb__reql PMB request 1

Xx__pmb__init_idl PMB slave ID 1- the ID of the device receiving

data. It has the same encoding as Rqb__init_id.

Xx__pmb__szl PMB size 1- This tells the arbiter how many cycles
are needed for the transaction. It has the same
encoding as Rqb__sz.

Xx_ pmb__pril PMB priority 1

Xx__pmb__req2 PMB request 2- see back-to-back requests below

Xx__pmb__init_id2 PMB receiver ID 2

Xx__pmb__sz2 PMB size 2

Xx_ pmb__pri2 PMB priority 2

[0131]

TABLE 8

Data Bus Arbiter to Data Bus Master

Dts_ imb_ gnt xx
Dts__pmb__gnt_xx

IMB grant
PMB grant

[0132]

TABLE 9

Data Bus Arbiter to Data Bus Slave

Dts__imb__req_xx
Dts__pmb__req__xx

IMB request
PMB request

[0133] FIGS. 4(a) and 4(D) illustrate the flow of signals
during a request bus connection and an internal memory bus
connection, respectively, in accordance with one embodi-
ment of the invention. For example, in FIG. 4(a), a request
bus initiator sends request information to request bus arbiter
140 in accordance with Table 3. Such request information
may include a request bus read/write request. The request
bus responder identification signal, ID, and the priority level
of the request. The request bus arbiter sends read/write
request signals to the identified responder or request bus
slave (Table 6), in response to which, the responder sends
back ready indication signals to request bus arbiter (Table 4).
Upon receipt of the ready indication signal, request bus
arbiter sends a request bus grant signal to the initiator (Table
5). Once the grant signal is recognized by the initiator,
transaction information in accordance with table—I1—is
transmitted to the responder via the request bus. To this end
a Request bus transaction ID is assigned for the particular
transaction to be processed.

[0134] FIG. 4(b) illustrates a data bus connection using
internal memory bus 120. Thus, once the transaction infor-
mation and identification has been set up during the request
bus arbitration phase, the initiator and responder begin to
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transfer the actual data. The initiator transmits to internal
memory bus arbiter 142 the transaction information includ-
ing the request, size, initiator identification signal, ID, and
the priority level in accordance with signals defined in Table
7. Internal memory bus arbiter 142 send a request informa-
tion to the responder, in addition to the size information in
accordance with Table 8. Thereafter the arbiter sends a grant
signal to the initiator, in response to which, the actual data
transfer occurs between the initiator and the responder in
accordance with Table 2.

[0135] FIG. 5(a) illustrates the timing diagram for a
request bus read operation. FIG. 5(b) illustrates the timing
diagram for a read request where the grant is not given
immediately. FIG. 5(c) illustrates the timing diagram for a
request bus write operation. It is noted that for the write
operation, the request bus transaction identification signal,
ID, is provided by the responder. Finally, FIG. 5(d) illus-
trates the timing diagram for a data bus data transfer
operation. It is noted that for a read transaction, the data bus
master is the read responder and the data bus slave is the read
initiator.

[0136] Data transfer switch 112 is configured to accom-
modate back-to-back requests made by the initiators. As
illustrated in the timing diagrams, the latency between
sending a request and receiving a grant is two cycles. In the
A0 (or DO) cycle, arbiter 140 detects a request from a bus
master. However, in the Al (or D1) cycle, the bus master
preferably keeps its request signal—as well as other dedi-
cated signals to the arbiter—asserted until it receives a grant.
As such, arbiter 140 cannot tell from these signals whether
the master wants to make a second request.

[0137] In order to accommodate a back-to-back request, a
second set of dedicated signals from the bus master to arbiter
140 is provided so that the master can signal to the arbiter
that there is a second request pending. If a master wants to
perform another request while it is waiting for its first
request to be granted, it asserts its second set of signals. If
arbiter 140 is granting the bus to a master in the current
cycle, it must look at the second set of signals from that
master when performing the arbitration for the following
cycle. When a master receives a grant for its first request, it
transfers all the information in the lines carrying the second
set of request signals to the lines carrying first set of request
signals. This is required in case the arbiter cannot grant the
second request immediately.

[0138] The ready signals from a RQB slave are also
duplicated for a similar reason. When RQB arbiter 140 sends
a request to a slave, the earliest it can see an updated ready
signal is two cycles later. In the A0 cycle, it can decide to
send a request to a slave based on its ready signals. However,
in the Al cycle, the slave has not updated its ready signals
because it has not seen the request yet. Therefore, arbiter 140
cannot tell from this ready signal whether or not the slave
can accept another request.

[0139] A second set of ready signals from the RQB slave
to RQB arbiter 140 is provided so that the arbiter can tell
whether the slave can accept a second request. In general,
the first set of ready signals signify whether at least one
request can be accepted and the second set of ready signals
signify whether at least two requests can be accepted. If
arbiter 140 is sending a request to a slave in the current
cycle, it must look at the second set of ready signals from
that slave when performing the arbitration for the next cycle.
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[0140] Tt is noted that there are ready signals for reads and
writes. RQB slaves may have different queue structures
(single queue, separate read queue and write queue, etc.).
RQB arbiter 140 knows the queue configuration of the slave
to determine whether to look at the first or second read ready
signal after a write, and whether to look at the first or second
write ready signal after a read.

[0141] FIG. 6(a) illustrates a timing diagram for a request
bus master making a back-to-back read request. FIG. 6(b)
illustrates a timing diagram for a processor memory bus
master making a back-to-back request, when the grant is not
immediately granted for the second request. Finally, FIG.
6(c) illustrates a timing diagram for a request bus slave
receiving a read request followed by a write request, assum-
ing that the request bus slave has a unified read and write
queue.

DATA STREAMER

[0142] The operation of data streamer 122 is now dis-
cussed in additional detail. The data streamer is employed
for predetermined buffered data movements within multi-
media processor 100. These data movements in accordance
with specifiable system configuration may occur between
memory or input/output (I/O) devices that have varying
bandwidth requirements. Thus, any physical memory in
connection with multimedia processor 100 can transmit and
receive data by employing data streamer 122. These memory
units include external SDRAM memory 128, data cache
108, fixed function unit 106, input/output devices connected
to input output (I/O) bus 132, and any host memory accessed
by either the primary or secondary PCI bus controller 130.
In accordance with one embodiment of the invention, data
streamer 122 undertakes data transfer actions under a soft-
ware control, although the invention is not limited in scope
in that respect. To this end a command may initiate a data
transfer operation between two components within the
address space defined for multimedia processor 100.

[0143] FIG. 7 illustrates a block diagram of data streamer
122 in accordance with one embodiment of the invention,
although the invention is not limited in scope in this respect.
Data streamer 122 is coupled to data transfer switch 112 via
a data transfer switch interface 718. A transfer engine 702
within data streamer 122 is employed for controlling the
data transfer operation of data streamer 122. As will be
explained in more detail below, transfer engine 702 imple-
ments a pipeline control logic to handle simultaneous data
transfers between different components of multimedia pro-
cessor 100.

[0144] The transfer engine is responsible to execute user
programs, referred to herein as descriptors that describe a
data transfer operation. A descriptor as will be explained in
more detail below, is a data field that includes information
relating to a memory transfer operation, such as data
addresses, pitch, width, count and control information.

[0145] Each descriptor is executed by a portion of data
streamer 122 hardware called a channel. A channel is defined
by some bits of state in a predetermined memory location
called channel state memory 704. Channel state memory
704 supports 64 channels in accordance with one embodi-
ment of the invention. As illustrated in FIG. 7, channel state
memory 704 is coupled to transfer engine 702. At any given
time a number of these 64 channels are active and demand
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service. Each active channel works with a descriptor. Data
streamer 122 allocates one or two channels for a data
transfer operation. These channels remain allocated to the
same data transfer operation until data is transferred from its
origination address to its destination address within multi-
media processor 100. As will be explained in more detail,
data streamer 122 allocates one channel for input/output to
memory transfers, and allocates two channels for memory to
memory transfers.

[0146] Transfer engine 702 is coupled to data transfer
switch interface 718 for providing data transfer switch
request signals that are intended to be sent to data transfer
switch 112. Data transfer switch interface 718 is configured
to handle outgoing read requests for data and descriptors that
are generated by transfer engine 702. It also handles incom-
ing data from data transfer switch 112 to appropriate regis-
ters in internal first-in-first-out buffer 716. Data transfer
switch interface 718 also handles outgoing data provided by
data streamer 122.

[0147] Data streamer 122 also includes a buffer memory
714 which in accordance with one embodiment of the
invention is a 4 KB SRAM memory, physically imple-
mented within multimedia processor 100, although the
invention is not limited in scope in that respect. Buffer
memory 714 includes dual ported double memory banks
714(a) and 714()) in accordance with one embodiment of
the invention. It is noted that for a data streamer that handles
64 channels, buffer memory 714 may be divided into 64
smaller buffer spaces.

[0148] The data array in buffer memory 714 is physically
organized as 8 bytes per line and is accessed 8 bytes at a
time, by employing a masking technique. However, during
the operation, a 4 kB of memory is divided into smaller
buffers, each of which is used in conjunction with a data
transfer operation. Therefore, a data transfer operation
employs a data path within data streamer 122 that is defined
by one or two channels and one buffer. For memory-to-
memory transfer two channels are employed, whereas, for
I/O-to-memory transfer one channel is employed. It is noted
that the size of each smaller buffer is variable as specified by
the data transfer characteristics.

[0149] In accordance with one embodiment of the inven-
tion, the data move operations are carried out based on
predetermined chunk sizes. A source chunk size of “k”
implies that the source channel should trigger requests for
data when the destination channel has moved “k” bytes out
of buffer memory 714. Similarly, a destination chunk size of
“k” implies that the destination channel should start moving
data out of buffer 714 when the source channel has trans-
ferred “k” bytes of data into the buffer. Chunk sizes are
multiple of 32 bytes, although the invention is not limited in
scope in that respect.

[0150] Buffer memory 714 is accompanied by a valid-bit
memory that holds 8 bits per line of 8 bytes. The value of the
valid bit is used to indicate whether the specific byte is valid
or not. The sense of the valid bit is flipped each time the
corresponding allocated buffer is filled. This removes the
necessity to re-initialize the buffer memory each time a
chunk is transferred. However, the corresponding bits in the
valid-bits array are initialized to zeroes whenever a buffer is
allocated for a data transfer path.

[0151] Buffer memory 714 is coupled to and controlled by
a data streamer buffer controller 706. Buffer controller 706
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is also coupled to transfer engine 702, and DMA controller
138, and is configured to handle read and write requests
received from the transfer engine and the DMA controller.
Buffer controller 706 employs the data stored in buffer state
memory 708 to accomplish its tasks. Buffer controller 706
keeps a count of the number of bytes that are brought into
the buffer and the number of bytes being taken out. Data
streamer buffer controller 706 also implements a pipelined
logic to handle the 64 buffers and manage the read and write
of data into buffer memory 714.

[0152] Buffer state memory 708 is used to keep state
information about each of the buffers used in a data path. As
mentioned before, the buffer state memory supports 64
individual buffer FIFOs.

[0153] DMA controller 138 is coupled to I/O bus 132. In
accordance with one embodiment of the invention, DMA
controller 138 acts to arbitrate among the I/O devices that
want to make a DMA request. It also provides buffering for
DMA requests coming into the data streamer buffer control-
ler and data going back out to the I/O devices. The arbitra-
tion relating to DMA controller 138 is handled by a round-
robin priority arbiter 710, which is coupled to DMA
controller 138 and I/O bus 132. Arbiter 710 arbitrates the use
of the I/O data bus between physical input/output controller,
PIOC 126 and DMA controller 138.

[0154] In accordance with one embodiment of the inven-
tion, data streamer 122 treats data cache 108 as an accessible
memory component and as such allows direct read and write
access to data cache 108. As will be explained in more detail
data streamer 122 is configured to maintain coherency in the
data cache, whenever a channel descriptor specifies a data
cache operation. The ability to initiate read and write
requests to data cache by other components of multimedia
processor 100 is suitable for data applications wherein the
data to be used by CPU 102 and 104 respectively is known
beforehand. Thus, the cache hit ratio improves significantly,
because the application can fill necessary data before CPU
102 or 104 uses the data.

[0155] As stated before, data streamer 122 in accordance
with one embodiment of the invention operates based on a
user specified software program, by employing several
application programing interface, or API, library calls. To
this end, programmable input/output controller PIOC 126
acts as an interface between other components of multime-
dia processor 100 and data streamer 122. Therefore, the
commands used to communicate with data streamer 122, at
the lowest level translate to PIO reads and writes in the data
streamer space. Thus, any component that is capable of
generating such PIO read and write operations can commu-
nicate with data streamer 122. In accordance with one
embodiment of the invention, these blocks include fixed
function unit 106, central processing units 102, 104, and a
host central processing unit coupled to multimedia processor
100 via, for example, a PCI bus.

[0156] In accordance with one embodiment of the inven-
tion, data streamer 122 occupies 512 K bytes of PIO
(physical memory) address space. Each data streamer chan-
nel state memory occupies less than 64 bytes in a 4K byte
page. Each data streamer channel state memory is in a
separate 4K byte page for protection, however, the invention
is not limited in scope in that respect.

[0157] Table 10, illustrates the address ranges used for
various devices. For example, the bit in position 18 is used
to select between transfer engine 702 and other internal
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components of data streamer 122. The other components
include the data RAM used for buffer memory, the valid
RAM bits that accompany the data RAM, the data streamer
buffer controller and the DMA controller.

TABLE 10

PIO Address Map of the DATA STREAMER

Starting ~ Ending

PIO PIO

OFFSET OFFSET USAGE

0x00000 Ox3FFFF Transfer engine channel state memory and other
user commands.

0x40000 O0x40FFF DS Buffer Data Ram.

0x41000 0x41FFF DS Buffer Valid Ram

0x42000 0x42FFF DS Buffer Controller

0x43000 O0x43FFF DMA Controller

0x44000 0x44FFF  Data Streamer TLB (Translation Lookaside

Buffer) which performs caching mechanism of
address translation tables same as general purpose
processors. Multimedia processor 100 includes
three TLBs for two clusters and a data streamer.

[0158] When bit 18 has a value of 0, the PIO address
belongs to transfer engine 702. Table 11, illustrates how bits
17:0 are interpreted for transfer engine 702 internal opera-
tions.

TABLE 11

Transfer Engine Decodes

BIT Name Description
18 Transfer Engine 1 = NOT transfer engine PIO operation,
select see table above. 0 = transfer engine PIO
operation.
17:12 Channel Number Channel number 0 to 63 is selected by this
field

11:9  Unused
8:6 TE internal regions 0 = Channel state memory 1
and user interface 1 = Channel state memory 2

calls 2 = Reorder table
3 = ds_kick - start a data transfer
operation

4 = ds__continue
5 = ds_ check_ status
6 = ds_ freeze
7 = ds__unfreeze
5:0  Address select withn The user-interface calls are aliased to
TE regions all addresses within their region

[0159] When bit 18 has a value of 1, the PIO address
belongs to data streamer buffer controller 706, relating to
buffer state memory, as shown in Table 12.

TABLE 12

Data Streamer Buffer Controller Decodes

BIT Name Description

PIO device select is obtained for the Data
Streamer

63:19 PIO region
specification and DS
device select

18:12 DS internal component 1000010
select

1 BSM select

10:0 Register select

0 =>BSM1 1=> BSM2
Select one 64 bit register in each buffer
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[0160] The internal structure of each component of data
streamer 122 in accordance with one embodiment of the
invention is described in more detail hereinafter.

TRANSFER ENGINE

[0161] FIG. 8 illustrates a block diagram of transfer
engine 702 in accordance with one embodiment of the
invention, although the invention is not limited in scope in
that respect. The main elements of transfer engine 702
comprise an operation scheduler 742, coupled to a fetch
stage 744, which in turn is coupled to a generate and update
stage 746, which is coupled to write-back stage 748.
Together, components 742 through 748 define the transfer
engine’s execution pipeline. A round-robin priority sched-
uler 740 is employed to select the appropriate channels and
their corresponding channel state memory.

[0162] As will be explained in more detail later, informa-
tion relating to the channels that are ready to be executed are
stored in channel state memory 704, which is physically
divided to two channel state memory banks 704(a) and
704(b) in accordance with one embodiment of the invention.
Priority scheduler 740 performs a round-robin scheduling of
the ready channels with 4 priority levels. To this end, ready
channels with the highest priority level are picked in a
round-robin arrangement. Channels with lower priority lev-
els are considered only if there are no channels with a higher
priority level.

[0163] Priority scheduler 740 picks a channel once every
two cycles and presents it to the operation scheduler for
another level of scheduling.

[0164] Operation scheduler 742 is configured to receive
four operations at any time and execute each operation one
at a time. These four operations include: a programmable
input/output, PIO, operation from the programmable input/
output controller, PIOC, 126; an incoming descriptor pro-
gram from data transfer switch interface 718; a chunk
request for a channel from a chunk request interface queue
filled by data streamer buffer controller 706; and a ready
channel from priority scheduler 740.

[0165] As will be explained in more detail below in
reference with FIGS. 13 and 14 a source descriptor program
defines the specifics of a data transfer operation to buffer
memory 714, and a destination descriptor program defines
the specifics of a data transfer operation from buffer memory
714 to a destination location. Furthermore, a buffer issues a
chunk request for a corresponding source channel stored in
channel state memory 704 to indicate the number of bytes
that it can receive. The priority order with which the
operation scheduler picks a task, from highest to lowest is
PIO operations, incoming descriptors, chunk requests, and
ready channels.

[0166] Information about the operation that is selected by
operation scheduler is transferred to fetch stage 744. The
fetch stage is employed to retrieve the bits from channel
state memory 704, which are required to carry out the
selected operation. For example, if the operation scheduler
picks a ready channel, the channel’s chunk count bits and
burst size must be read to determine the number of requests
that must be generated for a data transfer operation.

[0167] Generate and update stage 746 is executed a num-
ber of times that is equal to the number of requests that must
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be generated for a data transfer operation as derived from
fetch stage 744. For example, if the destination channel’s
transfer burst size is 4, then generate and update stage 746
is executed for 4 cycles, generating a request per cycle. As
another example, if the operation is a PIO write operation to
channel state memory 704, generate and update stage is
executed once. As will be explained in more detail below,
the read/write requests generated by generate and update
stage 746 are added to a request queue RQQ 764, in data
transfer switch interface 718.

[0168] Channel state memory 704 needs to be updated
after most of the operations that are executed by transfer
engine 702. For example, when a channel completes gen-
erating requests in the generate and update stage 746, the
chunk numbers are decremented and written back to channel
state memory 704. Write back stage 748 also sends a reset
signal to channel state memory 704 to initialize the inter-
burst delay counter with the minimum interburst delay value
as will be explained in more detail in reference with channel
state memory structure illustrated in Table 13.

CHANNEL STATE MEMORY

[0169] Information relating to each one of the 64 channels
in data streamer 122 is stored in channel state memory 704.
Prior and during a data move operation, data streamer 122
employs the data in channel state memory 704 for accom-
plishing its data movement tasks. Tables 13-19, illustrate the
fields that define the channel state memory. The tables also
shows the bit positions of the various fields and the value
with which they should be initiated when the channel is
allocated for a data transfer in accordance with one embodi-
ment of the invention.

[0170] Channel state memory 704 is divided into two
portions, 704(a) and 704(b) in accordance with one embodi-
ment of the invention. Channel state memory 704(a) has
four 64-bit values referred to as 0x00,0x08,0x10, and 0x18.
Channel state memory 704(b) has three 64-bit values at
positions 0x00,0x08 and 0x10.

TABLE 13

Channel State Memory 1 (OFFSET 0x00)

BIT NAME INITIALIZED WITH VALUE
15:0 Control xxx (don’t cares)
31:16 Count XXX
47:32 Width XXX
63:48 Pitch XXX
[0171]

TABLE 14

Channel State Memory 1 (OFFSET 0x08)

BIT NAME INITIALIZED WITH VALUE

31:0 Data Address
47:32 Burst Size

xxx (don’t cares)

set to number of DTS requests the channel
must attempt to generate each time that it is
scheduled. (Larger burst sizes are used to get
back-to-back requests into the memory
controller queues, to avoid SDRAM page
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TABLE 14-continued
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TABLE 16-continued

Channel State Memory 1 (OFFSET 0x08)

Channel State Memory 1 (OFFSET 0x18)

BIT NAME INITIALIZED WITH VALUE BIT NAME INITIALIZED WITH VALUE
miss--in conjunction use high DTS priority bit 11:1 = > coherent
with larger burst sizes/or higher bandwidth 0 = > non-coherent
transfers). 16:13 Way mask way mask for cache accesses. A value
63:48  Remaining width xxx of 1 = > use way
count (RCW) bit 13: way 0 in data cache
bit 14: way 1
bit 15: way 2
bit 16: way 3
[0172] 28:17 Buffer address start address of the corresponding buffer,
pointer (BAP) specifying the full 12 bits.
29 Read/Write (RW) 1 = > source channel (read)
TABLE 15 0 = > destination channel (write)
35:30 Buffer start address just as it is set in BSM1
Channel State Memory 1 (OFFSET 0x10) (BSA)
41:36 Buffer end address  just as it is set in BSM1
BIT NAME INITIALIZED WITH VALUE (BEA)
15:0 Remaining burst 0 42 Valid sense 0
count (RBC)
31:16 Remaining chunk 0
count (RCCNT) [0174]
35:32 State 0
39:36 Interburst delay Must be initialized. Specify in multiples of
(IBD) 8 cycles, Le., value TABLE 17
n = > minimum delay of 8 n cycles before
this channel can be considered for scheduling Channel State Memory 2 (OFFSET 0x00)
by the priority scheduler.
45:40 Buffer id (BID) id of the buffer assigned to this channel BIT NAME INITIALIZED WITH VALUE
47:46 DTS command A value that is used on the DTS signal lines.
(CMD) bit 47: if set to 1 implies allocate in the 310 Next descriptor xxx (don’t cares)
dcache, 0 implies no-allocate address
bit 46: if set to 1 implies a PIO address 47:32 Control word XXX
48  Descriptor prefetch 0 63:48 Count XXX
buffer valid
(DPBV)
49 Descriptor valid 0
oV [0175]
51:50 Channel priority value between 0 and 3 indicating the priority
level of the channel TABLE 18
0 = > highest priority
3 = > lowest priority Channel State Memory 2 (OFFSET 0x08)
52 Active Flag (A) 0
53 (FFH];; descriptor 0 BIT NAME INITIALIZED WITH VALUE
54 No more 0 15:0 Width xxx (don’t cares)
descriptors (NMD) 31:16 Pitch XXX
55 Descriptor type 0 => format 1 63:32 Data location XXX
1 => format 2 address
59:56 Interburst delay 0
count (IDBC)
63:60 Reserved XXX
[0176]
[0173] TABLE 19
Channel State Memory 2 (OFFSET 0x10)
TABLE 16
BIT NAME INITIALIZED WITH VALUE
Channel State Memory 1 (OFFSET 0x18)
31:0 Base address xxx (don’t cares)
BIT NAME INITIALIZED WITH VALUE 63:32 New pointer XXX
address
7:0  Address- space id  asid of the application using this channel
(ASID)
8 TLB mode 0 => don’t use TLB
1 = > usec TLB [0177] The bandwidth of data transfer achieved by a
10:9 DTS priority set to required DTS priority to use for channel is based among other things on four parameters as
requests from this channel follows: internal channel priority; minimum interburst
0 = > highest delay: fer b ize: and d £ itch priori
3 = > lowest clay; transter burst size; and data transter switch priority.
12:11 Cache mode Access mode on the DTS When a path is allocated, these four parameters are consid-

bit 12:x

ered by the system. Channel features also include three
parameters that the system initializes. These include the base
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address, a cache way replacement mask as will be explained
in more detail, and descriptor fetch mode bits. These param-
eters are explained hereinafter.

[0178] Channel priority: Data Streamer 122 hardware sup-
ports four internal channel priority levels (0 being highest
and 3 lowest). As explained, the hardware schedules chan-
nels in a round-robin fashion by order of priority. For
channels associated with memory-memory transfers it is
preferable to assign equal priorities to both channels to keep
the data transfers at both sides moving along at equal pace.
Preferably, the channels that are hooked up with high
bandwidth I/O devices are set up at lower level priority and
channels that are hooked up with lower bandwidth I/O
devices employ higher priority. Such channels rarely join the
scheduling pool, but when they do, they are almost imme-
diately scheduled and serviced, and therefore not locked out
for and unacceptable number of cycles by a higher band-
width, higher priority channel.

[0179] Minimum interburst delay: This parameter relates
to the minimum number of cycles that must pass before any
channel can rejoin the scheduling pool after it is serviced.
This is a multiple of 8 cycles. This parameter can be used to
effectively block off high priority channels or channels that
have a larger service time (discussed in the next paragraph)
for a period of time and allow lower priority channels to be
scheduled.

[0180] Transfer burst size: Once a channel is scheduled,
transfer burst size parameter indicates the number of actual
requests it can generate on the data transfer switch, before it
is de-scheduled again. For a source channel, this indicates
the number of requests it generates for data to be brought
into the buffer. For a destination channel, it is the number of
data packets sent out using the data in the buffer. The larger
the value of this parameter, the longer the service time for a
particular channel. Each request can ask for a maximum of
32 bytes and send 32 bytes of data at a time. A channel stays
scheduled generating requests until it either runs out of its
transfer burst size count, encounters a halt bit in a descriptor,
there are no more descriptors, or a descriptor needs to be
fetched from memory.

[0181] DTS priority: Each request to a request bus arbiter
or a memory data bus arbiter on the data transfer switch is
accompanied by a priority by the requestor. Both arbiters
support four levels of priority and the priority to be used for
the transfers by a channel is pre-programmed into the
channel state. Higher priorities are used when it is consid-
ered to be important to get multiple requests from the same
channel to be adjacent in the memory controller queue, for
SDRAM page hits. (0 is highest priority and 3 is lowest).

[0182] Base address, way mask, and descriptor fetch
modes: For memory-memory moves, inputting the data path
structure (with hits) is optional. If this is null, the system
assumes some default values for the various parameters.
These default values are shown in table below.

[0183] When requesting a path for a memory-I/O or
I/O-memory, the system provides a data path structure. This
allows to set the booleans that will indicate to the system
which transfer will be an I/O transfer and therefore will not
need a channel allocation. For an I/O to memory transfer,
parameters such as buffer size and chunk sizes are more
relevant than for a memory-memory transfer, since it might
be important to match the transfer parameters to I/O device
bandwidth requirements.
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[0184] In accordance with one embodiment of this inven-
tion, a data path is requested in response to a request for a
data transfer operation. For a system that is based on
software control a kernel returns a data path structure that
fills in the actual values of the parameters that was set, and
also the ids of the channel that the application will use to
kick them off. If the path involves an I/O device, the buffer
id is also returned. This buffer id is passed on by the
application to the device driver call for that I/O device. The
device driver uses this value to ready the I/O device to start
data transfers to that data streamer buffer. If the user
application is not satisfied with the type (parameters) of the
DS path resources obtained, it can close the path and try
again later.

DESCRIPTOR PROGRAM

[0185] Data transfers are based on two types of descrip-
tors, as specified in channel state memory field as format 1
descriptor and format 2 descriptor. In accordance with one
embodiment of the invention, a format 1 descriptor is
defined based on the nature of many data transfers in 3D
graphic and video image applications.

[0186] Typically, as illustrated in FIG. 12, pixel informa-
tion, is stored at scattered locations in the same arrangement
that the pixels are intended to be displayed. Sometimes it is
desired to proceed with a data gather operation, where “n”
pieces of data or pixels are gathered together from n loca-
tions starting at “start source data location=x" in the memory
space into one contiguous location beginning at “start des-
tination data location=y.” Each piece of data gathered is 10
bytes wide and separated from the next one by 22 bytes
(pitch). To enable a transfer as illustrated in FIG. 12, two
separate descriptors need to be set up, one for the source
channel that handles transfers from source to buffer memory
714 (FIG. 7), and the other for the destination channel that
handles transfers from the buffer memory to the destination.

[0187] FIG. 13 illustrates a data structure 220 for a format
1 descriptor in accordance with one embodiment of the
invention. The size of descriptor 220 is 16 bytes, comprising
two 8 byte words. The list below describes the different
fields of the descriptor and how each field is employed
during a data transfer operation.

[0188] 1. Next Descriptor: The first 32 bits hold the
address of another descriptor. This makes its possible to
chain several descriptors together for complicated
transfer patterns or for those that cannot be described
using a single descriptor.

[0189] 2. Descriptor Control Field. The 16 bits of this
field are interpreted as follows:

[0190] [15:14]—unused

[0191] [13}—interrupt the host cpu (on completion of
this descriptor)

[0192] [12]—interrupt the cpu of multimedia proces-
sor 100 (on completion of this descriptor)

[0193] [11:9]—reserved for software use

[0194] [8]—No more descriptor (set when this is the
last descriptor in this chain).

[0195] [7:4]—data fetch mode (for all the data
fetched or sent by this descriptor)
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[0196] [7]: cache mode O=>coherent, 1=>non-co-
herent

[0197] [6]: 1=>use way mask, O=>don’t use way
mask

[0198] [5]: 1=>allocate in data cache, O=>no-allo-
cate in data cache

[0199] [4]: 1=>data in PIO space, O=>not

[0200] [3]—prefetch inhibit if set to 1

[0201] [2]—halt at the end of this descriptor of set to
1

[0202] [1:0]—descriptor format type
[0203] 00: format 1
[0204] O1: format 2
[0205] 10: control descriptor

[0206] Tt is noted that the coherence bit indicates whether
the data cache should be checked for the presence of the data
being transferred in or out. In accordance with a preferred
embodiment of this invention it is desired that this bit is not
turned off unless the system has determined that the data was
not brought into the cache by the CPUs 102 or 104. Turning
off this bit results in a performance gain by bypassing cache
108 since it reduces the load on the cache and may decrease
the latency of the read or write (by 2-18 cycles, depending
on the data cache queue fullness, if you choose no-allocate
in the cache).

[0207] The way mask is employed in circumstances
wherein data cache 108 has multiple ways. For example in
accordance with one embodiment of the invention, data
cache 108 has four ways, with 4 k Bytes in each way. Within
the present context, each way in a data cache is defined as
a separate memory space that is configured to store a
specified type of data. The “use way mask™ bit simply
indicates whether the way mask is to be used or not, in all
the transactions initiated by the current descriptor to the data
cache.

[0208] The “allocate”, “no-allocate™ bit is relevant only if
the coherent bit is set. Basically, no-allocate is useful when
the user wants to check the data cache for coherence reasons,
but does not want the data to end up in the data cache, if it
is not already present. Allocate must be set when the user
wants to pre-load the data cache with some data from
memory before the cpu begins computation.

[0209] Table 20 shows the action taken for the different
values of the coherent and allocate bits in bits 7:4 of
descriptor control field relating to data fetch modes.

MEMORY TRANSFER ACCESS MODES
[0210]

TABLE 20

Command - mode Cache hit Cache miss

READ Descriptor and
Source data (like a cpu
load) coherently- allocate
READ Descriptor and
Source data
coherently-no-

allocate

Read from the Read from memory and
data cache allocate cache line

Read from the Read from memory and
data cache DO NOT allocate cache line
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TABLE 20-continued

Command - mode Cache hit Cache miss

READ Descriptor and Ignore cache  Read data directly from the
Source data non- memory and DO NOT
coherently-no-allocate allocate cache line
WRITE Destination data Write the data  Allocate a data cache line and
(like a store) coherently- into the cache  write the data into the cache
allocate and set the line. No memory transaction
dirty flag. for the refill occurs if the
cache recognizes the whole of
the cache line is being
overwritten. Set the dirty flag.
WRITE Destination data Write the data  Write it to memory directly
coherently-no-allocate into the data and DO NOT allocate a cache
cache line and line.
set the dirty
flag
WRITE Destination data Ignore cache
non-coherently-no-
allocate

Write data into memory and
DO Not allocate a cache line.

[0211] Returning to the explanation of descriptor, the PIO
bit is needed when transferring data from/to PIO (Pro-
grammed I/O) address space. For example, data streamer
122 can be used to read the data streamer buffer memory
(which lies in PIO address space).

[0212] The halt bit is used for synchronizing with data
streamer 122 from the user-level. When set, data streamer
122 will halt the channel when it is done transferring all the
data indicated by this descriptor. The data streamer will also
halt when the “no more descriptors™ bit is set.

[0213] When a data streamer channel fetches a descriptor
and begins its execution, it immediately initiates a prefetch
of the next descriptor. It is possible for the user to inhibit this
prefetch process by setting the “prefetch inhibit” bit. It is
valid only when the halt bit is also set. That is, it is
meaningless to try to inhibit the prefetch when not halting.

[0214] As illustrated in the following list, not all combi-
nations of the data fetch mode bits are valid. For example,
“allocate” and “use way mask” only have meaning when the
data cache is the target and since the data cache does not
accept PIO accesses any combination where PIO=1 and
(other bit)=1 is not used.

coherent  use-way-mask allocate PIO space

0 0
1

1 valid - PIO

1 invalid

1 invalid

1 invalid

0 valid - non-coherent

— invalid

— invalid

0 valid - coherent no-allocate
0 valid - coherent allocate

0 invalid

0 valid - coherent allocate, masked

»—no>—nc;>—n| o>—n|

1
0
1
0
0
1
1

»-u—n»—u—nooo|

[0215] 3. Count: This indicates the number of pieces of
data to be transferred using this descriptor.

[0216] 4. Width: is the number of bytes to be picked up
from a given location.
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[0217] 5. Pitch: is the offset distance between the last
byte transferred to the next byte. Destination is sequen-
tial and hence pitch is 0. Pitch is a signed value which
enables the data locations gathered to move backwards
through memory.

[0218] 6. Data Location Address: is the address where
the first byte for this descriptor can be located. In
Example 1, for the source side, this is “x” and for the
destination transfer it is “y”. Every data location

address used by a channel is first added to a base

address. This base address value is held in the channel’s
state memory. When a channel is initialized by the
ds_open_path () call, this base address value is set to
zero. This value can be changed by the user using the
Control descriptor (described below).

[0219] Table 21 below shows how the descriptors for the
source and destination transfers are configured, for a data
transfer from SDRAM 128 into data cache 108, i.e., a cache
pre-load operation.

[0220] The control word at the source indicates coherent
data operation, but does not allocate. The halt bit is not set
since there are no more descriptors, and the channel auto-
matically halts when done transferring this data. The “No
more descriptor” bit must be set.

TABLE 21

Source Descriptor

Source Descriptor Bits Explanation

0:31 next descriptor 0 only one descriptor

34:47 count n

48:63 control word 0x0100 format 1, no-allocate, coherent, no
more descriptors

64:79 pitch +22

80:95 width 10

96:127 data address X

[0221] The control word for the destination descriptor in
table 22 indicates that the data cache is the target by making
a coherent reference that should allocate in the cache if it
misses. As for the source case, the halt bit is not set since the
channel will automatically halt when it is done with this
transfer, since the next descriptor field is zero. Also the “No
more descriptor” bit is set as for the source case.

TABLE 22

Destination Descriptor

Destination Descriptor Bits Explanations

only one descriptor

gathered together in one big
contiguous piece

format 1, coherent, allocate, no more
descriptors

0:31 next descriptor 0
34:47 count 1

48:63 control word 0x0120

64:79 pitch 0 only one piece
80:95 width 10n
96:127 data address y

FORMAT 2 DESCRIPTOR

[0222] FIG. 14 illustrates a data structure 240 correspond-
ing to a format 2 descriptor in accordance with one embodi-

16
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ment of the invention. A data movement operation in accor-
dance with a format 2 descriptor is similar to format 1
descriptor operation in many aspects. However, one differ-
ence with the format 1 descriptor structure is that a unique
data location address is supplied for each data block
intended to be transferred. Furthermore, the data structure in
accordance with format 2 descriptor does not employ a pitch
field. Format 2 descriptor is employed in data transfer
operations when it is desired to transfer several pieces of
data that are identical in width, but which are not separated
by some uniform pitch.

[0223] Accordingly, the first field in format 2 descriptor
contains the next descriptor address. The count field contains
the number of data pieces that are intended to be transferred.
The control field specification is identical to that of format
1 descriptor as discussed in reference with FIG. 13. The
width field specifies the width of data pieces that are
intended to be transferred. In accordance with one embodi-
ment of the invention, format 2 descriptors are aligned to a
16 byte boundary for coherent accesses and 8 byte boundary
for non-coherent accesses. The length of a format 2 descrip-
tor varies from 16 bytes to multiples of 4 bytes greater than
16.

DATA TRANSFER SWITCH INTERFACE

[0224] FIG. 9 illustrates a block diagram of data transfer
switch (DTS) interface 718 in accordance with one embodi-
ment of the invention, although the invention is not limited
in scope in that respect. It is to be understood that a data
transfer switch interface is employed by all components of
multimedia processor 100 that transfer data via data transfer
switch 112 (FIG. 1(a)).

[0225] DTS interface 718 includes a bus requester 760 that
is coupled to request bus 118 of data transfer switch 112. Bus
requester 760 comprises a request issuer 762 which is
configured to provide request signals to o a request bus
queue (RQQ) 764. Request bus queue 764 is a first-in-
first-out FIFO buffer that holds data and descriptor requests
on a first come first served basis.

[0226] The other input port of request bus queue 764 is
configured to receive read/write requests generated by trans-
fer engine 702 via generate and update stage 746. Read
requests include requests for data and for channel descrip-
tors. Write requests include requests for data being sent out.

[0227] Issuer 762 is configured to send a request signal to
data transfer switch request bus arbiter 140. When granted,
bus requester 760 sends the request contained at the top of
first-in-first-out request queue 764. A request that is not
granted by data transfer switch request bus arbiter 140, after
a few cycles, is removed from the head of request queue 764
and re-entered at its tail Thus, the data transfer operation
avoids unreasonable delays when a particular bus slave or
responder is not ready. As mentioned before, requests to
different responders correspond to different channels. Thus,
the mechanism to remove a request from the queue is
designed in accordance with one embodiment of the inven-
tion so that one channel does not hold up all other channels
from making forward progress.

[0228] Data transfer switch interface also includes a
receive engine 772, which comprises a processor memory
bus (PMB) receive FIFO buffer 776, a PMB reorder table
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778, an internal memory bus (IMB) receive FIFO 774 and
an IMB reorder table 780. An output port of PMB receive
FIFO buffer 776 is coupled to data switch buffer controller
(DSBC) 706 and to operation scheduler 742 of transfer
engine 702. Similarly, an output port of IMB receive FIFO
774 is coupled to data switch buffer controller 706 and to
operation scheduler 742 of transfer engine 702. An output
port of issuer 762 is coupled to an input port of processor
memory bus (PMB) reorder table 778, and to an input port
of internal memory bus (IMP) reorder table 780. Another
input port of PMB reorder table 778 is configured to receive
data from data bus 114. Similarly, another input port of IMB
reorder table 780 is configured to receive data from data bus
120.

[0229] Processor memory bus (PMB) reorder table 778 or
internal memory bus (IMB) reorder table 780 respectively
store indices that correspond-to read requests that are still
outstanding. These indices include a-transaction identifica-
tion signal (ID) that is generated for the read request, the
corresponding buffer identification signal (ID) assigned for
each read request, the corresponding buffer address and
other information that may be necessary to process the data
when it is received.

[0230] First-in-first-out buffers 776 and 774 are config-
ured to hold returned data until it is accepted by either the
data streamer buffer controller 706, for the situation where
buffer data is returned, or by transfer engine 702 for the
situation where a descriptor is retrieved from a memory
location.

[0231] Issuer 762 stalls when tables 778 and 780 are full.
This in turn may stall transfer engine 702 pipes. In accor-
dance with one embodiment of the invention tables 778 and
780 each support 8 outstanding requests per bus. By using
tables that store the buffer address for the return data, it is
possible to handle out-of-order data returns. As will be
explained in more detail in reference with the data streamer
buffer controller, each byte stored in buffer memory 714
includes a valid bit indication signal, which in conjunction
with a corresponding logic in the buffer controller assures
that out-of-order returns are handled correctly.

[0232] Data transfer switch interface 718 also includes a
transmit engine 782, which comprises a processor memory
bus (PMB) transmit engine 766 and an internal memory bus
(IMB) transmit engine 770, both of which are first-in-
first-out FIFO buffers. A buffer 768 is configured to receive
request signals from transmit engines 766 and 770 respec-
tively and to send data bus requests to data bus arbiters 140
and 142 respectively. Each transmit engine is also config-
ured to receive data from data streamer buffer controller 706
and to transmit to corresponding data buses.

[0233] During operation, when the request to request bus
118 is for read data, issuer 762 provides the address to
request bus 118 when it receives a grant from request bus
arbiter 140. Issuer 762 also makes an entry in reorder tables
778 and 780 respectively, to keep track of outstanding
requests. If the request is for write data, the issuer puts out
the address to request bus 118 and queues the request into
internal FIFO buffer 716 (FIG. 7) for use by data streamer
buffer controller 706, which examines this queue and ser-
vices the request for write data as will be explained here-
inafter in more detail in reference with data streamer buffer
controller 706.
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[0234] FIG. 10 is a block diagram of data streamer buffer
controller 706 in accordance with one embodiment of the
invention, although the invention is not limited in scope in
that respect. Data streamer buffer controller 706 manages
buffer memory 714 and handles read/write requests gener-
ated by transfer engine 702, and request generated by DMA
controller 138 and PIO controller 126 of FIG. 1.

[0235] Data streamer buffer controller 706 includes two
pipes for processing buffer related functions. The first pro-
cessing pipe of data streamer buffer controller 706 is referred
to as processor memory bus, (PMB), pipe, and the second
pipe is referred to as internal memory bus (IMB) pipe. The
operation of each pipe is the same except that the PMB pipe
handles the transfer engine’s data requests that are sent out
on processor memory bus 114, and the IMB pipe handles the
transfer engine’s data requests that are sent out on internal
memory bus 120.

[0236] Asillustrated in FIG. 10, each pipe is configured to
receive three separate data inputs. To this end data streamer
buffer controller 706 includes a processor memory bus PMB
pipe operation scheduler 802, which is configured to receive
three input signals as follows: (1) all request signals from
programmable input/output (PIO) controller 126; (2) data
signals that are received from processor memory bus
(PMB), receive FIFO buffer 776 of data transfer switch 718
(FIG. 9)—These data signals are intended to be written to
buffer memory 714, so as to be retrieved once an appropriate
chunk size is filled inside buffer memory 714 for a particular
channel; and (3) transfer engine read signal indication for
retrieving appropriate data from buffer memory 714 for a
particular channel. The retrieved data is then sent to its
destination, via data transfer switch interface 718 of data
streamer 122, as illustrated in FIGS. 1 and 9.

[0237] Operation scheduler 802 assigns an order of execu-
tion to incoming operation requests described above. In
accordance with one embodiment of the present invention,
programmable input/output PIO operations are given top
priority, followed by buffer read operations to retrieve data
from buffer memory 714, and the lowest priority is given to
buffer write operations to write data to buffer memory 714.
Thus, read operations bypass write operations in appropriate
FIFO buffers discussed in connection with FIG. 9. It is noted
that when data is targeted to a destination memory, or has
arrived from a destination memory, it needs to be aligned
before it can be sent from buffer memory 714 or before it can
be written into buffer memory 714.

[0238] The output port of operation scheduler 802 is
coupled to an input port of fetch stage 804. The other input
port of fetch stage 804 is coupled to an output port of buffer
state memory 708.

[0239] Once the operation scheduler 802 determines the
next operation, fetch stage 804 retrieves the appropriate
buffer memory information from buffer state memory 708 so
as to read or write into the corresponding channel buffer,
which is a portion of buffer memory 714.

[0240] An output port of fetch stage 804 is coupled to
memory pipe stage 806, which is configured to process read
and write requests to buffer memory 714. Memory pipe
stage 806 is coupled to buffer state memory 708 so as to
update buffer state memory registers relating to a corre-
sponding buffer that is allocated to one or two channels
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during a data transfer operation. Memory pipe stage 806 is
also coupled to buffer memory 714 to write data into the
buffer memory and to receive data from the buffer memory.
An output port of memory pipe stage 806 is coupled to
processor memory bus (PMB) transmit engine 766 so as to
send retrieved data from buffer memory 714 to data transfer
switch 718 for further transmission to a destination address
via data transfer switch 112. Another output port of memory
pipe stage 806 is coupled to programmable input/output
(PIO) controller 126 for sending retrieved data from buffer
memory 714 to destination input/output devices that are
coupled to multimedia processor 100.

[0241] Data streamer buffer controller 706 also includes
an internal memory bus (IMB) pipe operation scheduler 808,
which is configured to receive three input signals as follows:
(1) all request signals from DMA controller 712; (2) data
signals that are received from internal memory bus (IMB),
receive FIFO buffer 774 of data transfer switch 718 (FIG.
9)—These data signals are intended to be written to buffer
memory 714, so as to be retrieved once an appropriate chunk
size is filled inside buffer memory 714 for a particular
channel; and (3) transfer engine read signal indication for
retrieving appropriate data from buffer memory 714 for a
particular channel. The retrieved data is then sent to its
destination, via data transfer switch interface 718 of data
streamer 122, as illustrated in FIGS. 1 and 9.

[0242] Operation scheduler 808 assigns an order of execu-
tion to incoming operation requests described above. In
accordance with one embodiment of the present invention,
DMA requests are given top priority, followed by buffer read
operations to retrieve data from buffer memory 714, and the
lowest priority is given to buffer write operations to write
data to buffer memory 714. Thus, read operations bypass
write operations in appropriate FIFO buffers discussed in
connection with FIG. 9. It is noted that when data is targeted
to a destination memory, or has arrived from a destination
memory, it needs to be aligned before it can be sent from
buffer memory 714 or before it can be written into buffer
memory 714.

[0243] The output port of operation scheduler 808 is
coupled to an input port of fetch stage 810. The other input
port of fetch stage 810 is coupled to an output port of buffer
state memory 708. Once the operation scheduler 802 deter-
mines the next operation, fetch stage 804 retrieves the
appropriate buffer memory information from buffer state
memory 708 so as to read or write into the corresponding
channel buffer, which is a portion of buffer memory 714.

[0244] An output port of fetch stage 810 is coupled to
memory pipe stage 812, which processes read and write
requests to buffer memory 714. An output port of memory
pipe stage 812 is coupled to an input port of buffer state
memory 708 so as to update buffer state memory registers
relating to a corresponding buffer that is allocated to one or
two channels during a data transfer operation. Memory pipe
stage 812 is coupled to buffer memory 714 to write data into
the buffer memory and to receive data from the buffer
memory. An output port of memory pipe stage 812 is
coupled to internal memory bus (IMB) transmit engine 770
so as to send retrieved data from buffer memory 714 to data
transfer switch 718 for further transmission to a destination
address via data transfer switch 112. Another output port of
memory pipe stage 812 is coupled to DMA controller 712
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for sending retrieved data from buffer memory 714 to
destination input/output devices that are coupled to multi-
media processor 100.

[0245] 1t is noted that because buffer memory 714 is
dual-ported, each of the pipes described above can access
both buffer memory banks 714(a¢) and 714(b), without
contention. As mentioned before, in accordance with one
embodiment of the invention, buffer memory 714 is a 4 KB
SRAM memory. The data array is organized as 8 bytes per
line and is accessed 8 bytes at a time. A plurality of smaller
buffer portions are divided within the buffer memory 714,
wherein each buffer portion is allocated to a particular
channel during a data transfer operation.

[0246] Buffer memory 714 is accompanied by a valid bit
memory that holds 8 bits per line of 8 bytes in the buffer
memory. The value of the valid bit is used to indicate
whether the specific byte is valid or not. The valid bit is
flipped each time the corresponding allocated buffer is filled.
This removes the need to reinitialize the allocated buffer
portion each time it is used during a data transfer operation.
However, each time a buffer is allocated for a path, the
corresponding bits in the valid-bits array must be initialized
to zeroes.

BUFFER STATE MEMORY

[0247] As explained before, buffer state memory 708
holds the state for each of the 64 buffers that it supports.
Each buffer state comprises 128 bit field that is divided to
couple of 64 bit sub fields, referred to as buffer state memory
one (BSM1) and two (BSM2). Tables 23 and 24 describe the
bits and fields of the buffer state memory.

BUFFER STATE MEMORY 1 (0x00)
[0248]

TABLE 23

BIT NAME INITIALIZED WITH VALUE

Initialized to the buffer start address.
That is, the full 12 bits, comprising
the 6 bits of the buffer start address
(BSA) appended with 6 zeros
[BSA][000000]

Initialized to the buffer start address
similar to the initial output pointer.
29:24 Buffer end address (BEA) Initialize with 6 bits of the higher
35:30 Buffer start address (BSA) 6 bits that comprise the full 12 bits
of the buffer address for it’s end and
start address respectively ie.,
specified in multiples of 64 bytes.
The actual buffer start address is
obtained by appending 6 zeros to the
buffer start address and the end
address is obtained by appending

6 ones to the buffer end address.
Example 1: for a buffer of size

64 bytes starting at the beginning of
the buffer

BSA = 000000

BEA = 000000

actual start address is 000000000000
actual end address is 000000111111
Example 2: for a buffer of size

128 bytes starting 64*11 bytes from
the beginning of the buffer

BSA = 001011

BEA = 001100

11:0  Initial input pointer

23:12 Initial output pointer
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TABLE 23-continued

BIT NAME INITIALIZED WITH VALUE

actual start address is 001011000000
actual end address is 001100111111
Specify in multiples of 32 bytes.

Is the number of bytes that must be

brought into the buffer by the input

channel or input i/o device before the
output (destination) channel is
activated to transfer “output

chunk size” number of bytes out of

the buffer.

0 => 0 bytes

1 => 32 bytes

2 => 64 bytes, and so on.

Similar to output chunk size, but used

to trigger the input (or source)

channel, when input chunk size
number of bytes have been moved
out of the buffer.

Value between 0 and 63, representing

the output (destination) channel tied

to this buffer, if one exists, as
indicated by the output channel
memory flag.

Value between 0 and 63, representing

the input (source) channel tied to this

buffer, if one exists, as indicated by
the input channel memory flag.

60 Output channel memory Used to indicate whether this transfer

flag direction is represented by a channel
or an [/O device. 0 = > [/O,
1 = > channel.

61 Input channel memory flag Used to indicate whether this transfer
direction is represented by a channel
or an IO device.

0 =>I/O, 1 = > channel.

63:62 reserved XX

41:36 Output chunk size

47:42 Input chunk size

53:48 Output channel id

59:54 Input channel id

BUFFER STATE MEMORY 2 (0x00)
[0249]

TABLE 24

BIT NAME INITIALIZED WITH VALUE

11:0 Current input count 0
23:12  Current output count 0
24 Input valid sense 0
25 Output valid sense 0
26 Last input arrived 0
63:27  reserved XXX
DMA CONTROLLER
[0250] FIG. 11 illustrates a DMA controller 138 in accor-

dance with one embodiment of the invention, although the
invention is not limited in scope in that respect. As men-
tioned before, DMA controller 138 is coupled to input/
output bus 132 and data streamer buffer controller 706.

[0251] A priority arbiter 202 is configured to receive a
direct memory access DMA request from one or more I/O
devices that are coupled to I/O bus 132.

[0252] An incoming DMA request buffer 204 is coupled to
I/0 bus 132 and is configured to receive pertinent request
data from I/O devices whose request has been granted. Each
I/O device specifies a request data comprising the buffer
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identification of a desired buffer memory, the number of
bytes and the type of transfer, such as input to the buffer or
output from the buffer. Each request is stored in incoming
DMA request 204 buffer to define a DM A request queue. An
output port of DMA request buffer 204 is coupled to data
streamer buffer controller 706 as described in reference with
FIG. 10.

[0253] An incoming DMA data buffer 206 is also coupled
to I/O bus 132 and is configured to receive the data intended
to be sent by an I/O device whose request has been granted
and whose request data has been provided to incoming DMA
request buffer 204. An output port of DMA data buffer 206
is coupled to data streamer buffer controller 706 as described
in reference with FIG. 10.

[0254] An outgoing DMA data buffer 208 is also coupled
to I/O bus 132 and is configured to transmit the data intended
to be sent to an I/O device. Outgoing DMA data buffer 208
is configured to receive data from data streamer buffer
controller 706 as explained in reference with FIG. 10.

[0255] Thus during operation, DMA controller 138 per-
forms two important functions. First, it arbitrates among the
I/O devices that intend to make a DMA request. Second, it
provides buffering for DMA requests and data that are sent
to data streamer buffer controller and for data that are sent
to an I/O device via I/O bus 132. Each DMA transfer is
initiated by an I/O device coupled to I/O bus 132. The I/O
device that makes a DMA request, first requests priority
arbiter 202 to access I/O bus for transferring its intended
data. Arbiter 202 employs the DMA priority value specified
by the I/O device to arbitrate among the different I/O
devices. DMA controller 138 assigns a higher priority to
data coming from I/O devices over data sent from the I/O
devices. Conflicting requests are arbitrated according to
device priorities.

[0256] Preferably, device requests to DMA controller 138
are serviced at a rate of one per cycle, fully pipelined.
Arbiter 202 employs a round robin priority scheduler
arrangement with four priority levels. Once a requesting I/0
device receives a grant signal from arbiter 202, it provides
its request data to DMA request buffer 204. If the request is
an output request, it is provided directly to data streamer
buffer controller 706. If the buffer associated with the buffer
identification contained in request data is not large enough
to accommodate the data transfer, data streamer buffer
controller informs DMA controller 138, which in turn sig-
nals a not acknowledge NACK indication back to the I/O
device.

[0257] 1If the request from a request I/O device is for a data
input, DMA controller signals the I/O device to provide its
data onto I/O bus 132, when it obtains a cycle on the I/O data
bus. Data streamer buffer controller generates an interrupt
signal when it senses buffer overflows or underflows. The
interrupt signals are then transmitted to the processor that
controls the operation of multimedia processor 100.

[0258] DMA controller 138 employs the buffer identifica-
tion of each request to access the correct buffer for the path,
via data streamer buffer controller 706, which moves the
requested bytes into or out of the buffer and updates the
status of the buffer.

[0259] An exemplary operation of data streamer channel
functions is now explained in more detail in reference with
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FIGS. 15(a) through 15(c), which illustrate a flow diagram
of different steps that are taken in data streamer 122.

[0260] In response to a request for a data transfer opera-
tion, a channel’s state is first initialized by, for example, a
command referred to as ds_open_path, at step 302. At step
304, the available resources for setting up a data path is
checked and a buffer memory and one or two channels are
allocated in response to a request for a data transfer opera-
tion.

[0261] At step 306 the appropriate values are written into
buffer state memory 708 for the new data path, in accordance
with the values described in reference with Tables 23 and 24.
At step 308, valid bits are reset in buffer memory 714 at
locations corresponding to the portion of the allocated data
RAM that will be used for the buffer. At step 310, for each
allocated channel corresponding channel state memory loca-
tions are initialized in channel state memory 704, in accor-
dance with Tables 13-19.

[0262] Once a data path has been defined in accordance
with steps 302 through 310, the initialized channel is acti-
vated in step 312. In accordance with one embodiment of the
invention, the activation of a channel may be a software call
referred to as a ds_kick command. Internally, this call
translates to a channel ds_kick operation which is an
uncached write to a PIO address specified in the PIO map as
explained in reference with Tables 10-12. The value stored
in channel state memory is the address of the descriptor,
such as descriptor 220 (FIG. 13) or descriptor 240 (FIG.
14), the channel begins to execute.

[0263] At step 314 transfer engine 702 receives the chan-
nel activation signal from PIO controller 126 and in
response to this signal writes the descriptor address into a
corresponding location in channel state memory 704. At step
316, transfer engine 702 determines whether the channel
activation signal is for a source (input to buffer) channel. If
so, at step 318, the buffer size value is written in the
remaining chunk count (RCCNT) field as illustrated in Table
15. The value of the remaining chunk count for a source
channel indicates the number of empty spaces in the buffer
memory allocated for this data transfer and hence the
number of bytes that the channel can safely fetch into the
buffer. It is noted that the value of the remaining chunk count
for a destination channel indicates the number of valid bytes
in the buffer, and hence the number of bytes that the channel
can safely transfer out.

[0264] Finally, at step 320, transfer engine 702 turns on the
active flag in the corresponding location in channel state
memory as described in Table 15. The corresponding inter-
burst delay field in channel state memory 704 for an allocate
source channel is also set to zero.

[0265] At step 324, a channel is provided to operation
scheduler 742 (FIG. 8). Each channel is considered for
scheduling by operation scheduler 742 of transfer engine
702 (FIG. 8), when the channel has a zero interburst-delay
count, its active flag is turned on, and its corresponding
remaining chunk count (RCCNT) is a non-zero number.

[0266] When a channel’s turn reaches by scheduler 742,
transfer engine 702 starts a descriptor fetch operation at step
326. When the descriptor arrives via the data transfer switch
interface 718 (FIG. 9), receive engine 772 routes the arrived
descriptor to transfer engine 702. At step 328, the values of
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the descriptor are written in the allocated channel location in
channel state memory 704. At step 330 the source channel
is ready to start to transfer data into the allocated buffer in
buffer memory 714.

[0267] When the source channel is scheduled, it begins to
prefetch the next descriptor and at step 332 generates read
request messages for data, which are added to request buffer
queue RQQ 764 of data transfer switch interface 718 of
FIG. 9. It is noted that in accordance with one embodiment
of the invention, the prefetch of the next descriptor may be
inhibited by the user by setting both the halt and prefetch bits
in the control word descriptor as described in reference with
FIGS. 13 and 14. Furthermore, prefetch is not performed
when a “last descriptor” bit is set in the control word of the
current descriptor.

[0268] The number of read requests added to request
queue 764 depends on several parameters. For example, one
such parameter is the burst size value written into the
channel state memory for the currently serviced channel. A
burst size indicates the size of data transfer initiated by one
request command. Preferably, the number of requests gen-
erated per schedule of the channel does not exceed the burst
size. Another parameter is the remaining chunk count. For
example, with a burst size of 3, ff, the buffer size is 64 bytes,
and therefore, two requests may be generated, since each
data transfer switch request may not exceed 32 bytes, in
accordance with one embodiment of the invention. Another
parameter is the width, pitch, and count fields in the descrip-
tor. For example, if the width is 8 bytes separated by a pitch
of 32 bytes, for a count of 4, then, with a burst size of 3, and
a remaining chunk count RCCNT of 64, the channel will
generate 3 read requests of 8 bytes long. Then it will take
another schedule of the channel to generate the last request
that would fulfill the descriptor’s need for the forth count.

[0269] Once the channel completes its read requests, at
step 334, the value of remaining chunk count is decremented
appropriately. The interburst delay count field is set to a
specifiable minimum interburst delay value. This field is
decremented every 8 cycles at step 338. When the value of
this field is zero at step 340, the channel is scheduled again
to continue its servicing.

[0270] At step 342 the channel is scheduled again. For the
example described above, the channel generates one request
to fulfill the 1st 8 bytes. On completion of the descriptor at
step 344, the active flag is turned off and the channel is not
considered again by the priority scheduler 740 until the
active flag field in Table 15 is set again, for example by a
data path continue operation command referred to as
ds_continue call. If the halt bit is not set, at step 346, the
channel will check whether the prefetched descriptor has
been arrived. If the descriptor has already arrived, it will
copy the prefetched descriptor to the current position in step
350, and start the prefetch of the next descriptor at step 352.

[0271] Transfer engine 702 continues to generate read
requests for this channel until, burst size has been exceed;
remaining chunk count RCCNT has been exhausted; a halt
bit is encountered; the next descriptor has not arrived yet; or
the last descriptor has been reached.

[0272] Referring to FIG. 15(a) at step 316, when the
currently considered channel is a destination channel, step
380 is executed wherein the channel is not immediately
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scheduled like a source channel, because the value of the
remaining chunk count field is zero. The destination channel
waits at step 382 until the source side has transferred a
sufficient number of data to its allocated buffer. As explained
before, the data source that provides data to the allocated
buffer may be another channel or an input/output I/O device.
It is noted that data streamer buffer controller 706 (FIG. 10)
keeps track of incoming data. When the number of bytes of
the incoming data exceeds the output chunk count as
described in Table 23, it sends the chunk count to transfer
engine 702 (FIG. 8) for that destination channel. Transfer
engine 702 adds this value to the destination channel’s
RCCNT field in the appropriate channel location in channel
state memory 704. At step 384, when this event happens, the
destination channel is ready to be scheduled. Thereafter at
step 386, transfer engine 702 generates write requests to data
transfer switch 112 via data transfer switch interface 718.

[0273] The manner in which write requests are generated
are based on the same principle described above with
reference to the manner that read requests are generated in
accordance with one embodiment of the invention. Thus, the
parameters to be considered may include, the burst size, the
remaining chunk count value, and descriptor fields such as
pitch, width and count.

[0274] Once the write request address has been provided
to the request bus, data transfer switch interface 718 for-
wards the request to data streamer buffer controller 706 at
step 388. In response, data streamer buffer controller 706
(FIG. 10) removes the necessary number of bytes from
buffer memory 714, aligns the retrieved data and puts them
back in transmit engine 782 of FIG. 9 as described above,
in reference with FIGS. 8-10.

DATA CACHE

[0275] The structure and operation of data cache 108 in
accordance with one embodiment of the invention is
described in more detail hereinafter, although the invention
is not limited in scope to this embodiment.

[0276] FIG. 17 illustrates a block diagram of data cache
108 coupled to a memory bus 114'. It is noted that memory
bus 114' has been illustrated for purposes of the present
discussion. Thus, in accordance with one embodiment of the
invention, data cache 108 may be coupled to data transfer
switch 112, and hence, to processor memory bus 114 and
internal memory bus 120 via transceiver 116.

[0277] Data cache 108 includes a tag memory directory
536 for storing tag bits of addresses of memory locations
whose contents are stored in the data cache. A data cache
memory 538 is coupled to tag memory 536 to store copies
of data that are stored in a main external memory. Both tag
memory directory 536 and data cache memory 538 are
accessible via arbiters 532 and 534 respectively. An input
port of each tag memory 536 and data cache memory 538 is
configured to receive “write” data as described in more
detail below. Furthermore, another input port of each tag
memory 536 and data cache memory 538 is configured to
receive “read” data as described in more detail below.

[0278] A refill controller unit 540 also referred to as data
cache controller 540 is employed to carry out all of a fixed
set of cache policies. The cache policies are the rules chosen
to implement the operation of cache 108. Some of these
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policies are well-known and described in J. Handy, Dara
Cache Memory Book, (Academic Press, Inc. 1993), and
incorporated herein by reference. Typically, these policies
may include direct-mapped vs. N-Way caching, write-
through vs. write-back arrangement, line size allocation and
snooping.

[0279] As described above a “way” or a “bank” in a cache
relates to the associativity of a cache. For example, an
N-way or N-bank cache can store data from a main memory
location into any of N cache locations. For a multiple-way
arrangement each way or bank includes its own tag memory
directory and data memory (not shown). It is noted that as
the number of the ways or banks increases so does the
number of bits in the tag memory directory corresponding to
each data stored in the data memory of each bank. It is
further noted that a direct-mapped cache is a one-Way cache,
since any main memory location can only be mapped into
the single cache location which has matching set bits.

[0280] The snoop feature relates to the process of moni-
toring the traffic in bus 114' to maintain coherency. In
accordance with one embodiment of the invention, a snoop
unit 544 is coupled to memory bus 114' to monitor the traffic
in bus 114'. Snoop unit 544 is coupled to both refill con-
troller 540 and to external access controller 542. When a
memory bus transaction occurs to an address which is
replicated in data cache 108, snoop unit 544 detects a snoop
hit and takes appropriate actions according to both the write
strategy (write-back or write-through) and to the coherency
protocol being used by the system. In accordance with one
embodiment of the invention, data cache 108 performs a
snoop function on data transfer operations performed by
data streamer 122.

[0281] Returning to the description of refill controller 540,
an output port of the refill controller is coupled to tag
memory 536 and data memory 538 via arbiters 532 and 536
respectively. Another output port of refill controller 540 is
coupled to the write input port of tag memory 532. Another
output port of refill controller 540 is coupled to the write
input port of cache data memory 538.

[0282] Other output ports of refill controller 540 include
bus request port coupled to memory bus 114' for providing
bus request signals; write-back data port coupled to memory
bus 114' for providing write-back data when data cache 108
intends to write the contents of a cache line into a corre-
sponding external memory location; fill data address port
coupled to memory bus 114' for providing the data address
of the cache line whose contents are intended for an external
memory location.

[0283] An input port of refill controller 540 is configured
to receive data signals from a read output port of data
memory 516. A second input port of refill controller 540 is
configured to receive tag data from tag memory directory
532. Another input port of refill controller 540 is configured
to receive a load/store address signal from an instruction unit
of a central processing unit 102.

[0284] In accordance with one embodiment of the inven-
tion, data cache 108 also includes an external access con-
troller 542. External access controller 542 allows data cache
108 function as a slave module to other modules in media
processor system 100. Thus, any module in system 100 may
act as a bus master for accessing data cache 108, based on
the same access principle performed by central processing
unit 102.



US 2003/0196040 A1l

[0285] An output port of external access controller 542 is
coupled to tag memory 536 and cache data memory 538 via
arbiters 532 and 534 respectively, and to the write input port
of tag memory 536. Another output port of external access
controller 542 is coupled to the write input port of cache data
memory 538. Finally, an output port of external access
controller 542 is coupled to memory bus 114' for providing
the data requested by a bus master.

[0286] An input port of external access controller 542 is
configured to receive data from cache data memory 538.
Other input port of external access controller 542 include an
access request port coupled to memory bus 114' for receiv-
ing access requests from other bus masters; a requested data
address port coupled to memory bus 114' for receiving the
address of the data relating to the bus master request; and a
store data port coupled to memory bus 114' for receiving the
data provided by a bus master and that is intended to be
stored in data cache 108.

[0287] Memory bus 114' is also coupled to DRAM 128 via
a memory controller 124. Furthermore memory bus 114' is
coupled to a direct memory access controller 138. An output
port of central processing unit 102 is coupled to tag memory
536 and cache data memory 538 via arbiters 532 and 534
respectively, so as to provide addresses corresponding to
load and store operations. Another output port of central
processing unit 102 is coupled to the write input port of
cache data memory 538 to provide data corresponding to a
store operation. Finally, an input port of central processing
unit 102 is coupled to read output port of cache data memory
538 to receive data corresponding to a load operation.

[0288] The operation of refill controller 540 is now
described in reference with FIG. 18. At step 560 refill
controller begins its operation. At step 562, refill controller
540 determines whether a request made to data cache unit
108 is a hit or a miss, by comparing the tag value with the
upper part of a load or store address received from central
processing unit 102.

[0289] At step 564, if a cache miss occurred in response to
a request, refill controller 540 goes to step 568, and deter-
mines the cache line that needs to be replaced with contents
of corresponding memory locations in external memory
such as DRAM 128. At step 570, refill controller determines
whether cache 108 employs a write-back policy. If so, refill
controller 540 provides the cache line that is being replaced
to DRAM 128 by issuing a store request signal to memory
controller 124. At step 572, refill controller 540 issues a read
request signal for the missing cache line via fill data address
port to memory controller 124. At step 574, refill controller
540, retrieves the fill data and writes it in cache data memory
538 and modifies tag memory 536.

[0290] Refill controller 540 then goes to step 576 and
provides the requested data to central processing unit 102 in
response to a load request. In the alternative, refill controller
540 writes a data in cache data memory 538 in response to
a store request from central processing unit 102. At step 578,
refill controller 540 writes the data to external memory, such
as DRAM 128 in response to a store operation provided by
central processing unit 102.

[0291] If at step 564, it is determined that a hit occurred in
response to a load or store request from central processing
unit 102, refill controller 540 goes to step 566 and provides
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a cache line from cache data memory 538 for either a read
or a write operation. Refill controller 540 then goes to step
576 as explained above.

[0292] The operation of external access controller 580 in
conjunction with refill controller 540 in accordance with one
embodiment of the present invention is now described in
reference with FIG. 19.

[0293] At step 580 external access controller begins its
operation in response to a bus master access request. In
accordance with one embodiment of the invention, the bus
master may be any one of the modules described above in
reference with FIG. 1(a), and the access request may be
issued as explained in connection with the operation of data
streamer 122 and data transfer switch 112. At step 582
external access controller 542 waits for a read or write
request by any of the bus masters.

[0294] Once external access controller 542 receives a
request, it goes to step 584 to determine whether the bus
master has requested a read or a write operation. If the
request is a read, external access controller 542 goes to step
586 to determine whether a hit or a miss occurred. If in
response to the read request a cache hit occurs, external
access controller goes to step 604 and provides the requested
data to the bus master.

[0295] 1If however, in response to the read request a cache
miss occurs, external access controller goes to step 588 and
triggers refill controller 540 so that refill controller 540
obtains the requested data and fills the data cache at step 590.
After the refill of data, external access controller 542 pro-
vides the requested data to the bus master at step 604.

[0296] 1If at step 584 external access controller determines
that the bus master requested to write a data to data cache
108, it goes to step 592 to determine whether a cache hit or
a cache miss occurred. In response to a cache hit, external
access controller 542 goes to step 596 and allows the bus
master to write the requested data to data cache memory
538.

[0297] 1If at step 592, however, a cache miss occurred,
external access controller goes to step 594 and determines
which cache line in cache data memory needs to be replaced
with contents of an external memory such as DRAM 128.
External access controller then goes to step 598. If data
cache 108 is implementing a write-back policy, external
access controller at step 598 provides the cache line to be
replaced from data cache memory 538 and issues a store
request to memory controller 124 via memory bus 114"

[0298] Thereafter, external access controller 542 goes to
step 602 and writes the requested data to cache data memory
and modifies tag memory 536 accordingly.

[0299] As mentioned before the external access controller
542 remarkably increases the cache hit ratio for many
applications where it is possible to predict in advance the
data that a central processing unit may require. As an
example, for many 3D graphic applications, information
about texture mapping is stored in an external memory such
as DRAM 128. Because, it can be predicted which infor-
mation will be necessary for the use by central processing
unit 102, it is beneficial to transfer this information to data
cache 108 before the actual use by central processing unit
102. In that event, when the time comes that central pro-
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cessing unit 102 requires a texture mapping information, the
corresponding-data is already present in the data cache and
as a result a cache hit occurs.

[0300] It is noted that the data cache in accordance with
one embodiment of the present invention can be accessed
through a PCI bus interface from outside of the processor by
mapping the data cache on PCI space. Furthermore, any
memory resource disposed within multimedia processor 100
can be accessed from outside of the processor by mapping
on PCI space.

THREE DIMENSIONAL (3D) GRAPHICS
PROCESSING

[0301] With reference to FIG. 1(a), fixed function unit
106 in conjunction with data cache memory 108, central
processing units 102, 104, and external memory 128, per-
form 3D graphics with a substantially reduced bandwidth
delays in accordance with one embodiment of the invention,
although the invention is not limited in scope in that respect.

[0302] FIG. 20 illustrates a block diagram with major
components in multimedia processor 100 that are respon-
sible for performing 3D graphics processing. Thus, in accor-
dance with one embodiment of the invention, fixed function
unit 106 includes a programmable input/output controller
618, which provides a control command for other compo-
nents in the fixed function unit. The other components of the
fixed function unit includes a VGA graphics controller 603,
which is coupled to programmable input/output controller,
PIOC, 618 and which is configured to process graphics for
VGA format. A two dimensional (2D) logic unit 605 is
coupled to programmable input/output controller, and is
configured to process two-dimensional graphics.

[0303] Fixed function unit 106 also includes a three
dimensional (3D) unit 611 that employs a bin-based render-
ing algorithm as will be described in more detail hereinafter.
Basically, in accordance with one embodiment of the inven-
tion, the 3D unit manipulates units of data referred to as
chunks, tiles, or bins. Each tile is a small portion of an entire
screen. Thus, the 3D unit in accordance with one embodi-
ment of the invention, preferably employs a binning process
to draw 3D objects into a corresponding buffer memory
space within multimedia processor 100. Thus, bottle necking
problems encountered with the use of external memory for
rendering algorithms can be substantially avoided because
the data transfer within the multimedia processor chip can be
accomplished at a substantially high bandwidth.

[0304] 3D unit 611 includes a 3D tile rasterizer 607 that is
also coupled to programmable input/output controller 618,
and is configured to perform graphics processing tasks. Two
major tasks of 3D tile rasterizer 607 include binning and
rasterization, depending on its mode of operation, as will be
explained in more detail in reference with FIGS. 21 and 22.

[0305] 3D unit 611 also includes a 3D texture controller
609, which is also coupled to and controlled by program-
mable input/output controller 618. As will be explained in
more detail, in reference with FIG. 23, 3D texture controller
derives the addresses for the texels that are intended to be
employed by 3D unit 611. Thus, based on the derived
addresses, 3D texture controller 609 generates a channel
descriptor for use by data streamer 122 to obtain the appro-
priate texels from a local memory such as SDRAM 128, as
described above in reference with the operation of data
streamer 122.
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[0306] 3D unit 611 also includes a 3D texture filter unit
610, which is coupled to and controlled by programmable
input/output controller 618. As will be explained in more
detail hereinafter, in reference with FIGS. 24 and 25, filter
unit 610 is configured to perform texture filtering operations
such as bi-linear (1pass) and tri-linear (2pass) interpolation,
in conjunction with shading color blending and accumula-
tion blending.

[0307] Fixed function unit 106 includes a video scaler unit
612 that is coupled to and controlled by programmable
input/output controller 618. Video scaler unit 612 is config-
ured to provide up and down scaling of video data using
several horizontal and vertical taps. Video scaler 612 pro-
vides output pixels to a display refresh unit 226 (FIG. 1(b))
for displaying 3D objects on a display screen. As will be
explained in more detail, in accordance with one embodi-
ment of the invention, some of the functions of texture filter
are based on the same principles as the functions of the video
scaler. As such, video scaler 612 shares some of its functions
with texture filter 610, in accordance with one embodiment
of the invention.

[0308] Fixed function unit 106 includes a data transfer
switch interface 614 that allows different components of the
fixed function unit interact with data transfer switch 112 and
data streamer 122. Data transfer switch interface 614 oper-
ates based on the same principles discussed above in refer-
ence with data transfer switch interface 718 as illustrated in
FIG. 9. A data cache interface 616 allows fixed function unit
106 have access to data cache unit 108.

[0309] FIG. 20 illustrates various components of data
cache 108 that are related to 3D graphics processing opera-
tion in accordance with one embodiment of the invention.
However, for purposes of clarity, other features and com-
ponents of data cache 108 as discussed in reference with
FIGS. 16-19 have not been illustrated in FIG. 20. Further-
more, although the components of data cache 108 have been
illustrated to be disposed within the data cache, it is to be
understood that one or more components may be disposed as
separate cache units in accordance with other embodiments
of the invention.

[0310] Data cache 108 includes a triangle set-up buffer
620, which is configured to store results of calculations to
obtain triangle parameters, such as slopes of each edge of a
triangle. Data cache 10 also includes a rasterizer set-up
buffer 622, which is configured to store additional param-
eters of each triangle, such as screen coordinates, texture
coordinates, shading colors, depth, and their partial differ-
ential parameters. Data cache 108 includes a depth tile
buffer, also referred to as tile Z buffer 628 that stores all the
depth values of all the pixels in a tile.

[0311] Data cache 108 also includes a refill controller 540
and an external access controller 542, as discussed above in
reference with FIGS. 17-19. Furthermore, central processing
units 102,104 are coupled to data cache 108 as described
above in reference with FIG. 1(a). Additional components
illustrated in FIG. 20 include data transfer switch 112, data
streamer 122, memory controller 124 and SDRAM 128, as
disclosed and described above in reference with FIGS. 1-15.
I/O bus 132 is configured to provide signals to a display
refresh unit 226, which provides display signals to an image
display device, such as a monitor (not shown). In accordance
with one embodiment of the invention, video scaler 612 is
coupled directly to display refresh 226.
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[0312] As will be explained in more detail below, the
geometry and lighting transformations of all triangles on a
screen are performed by VLIW central processing units 102
in accordance with one embodiment of the invention. 3D
unit 611 is responsible to identify all the bins or tiles and all
the triangles that intersect with each tile. Specifically, 3D
triangle rasterizer 607 identifies all the triangles in each tile.
Thereafter for each bin or tile, VLIW central processing
units 102 perform a triangle set-up test to calculate the
parameters of each triangle such as slope of the edges of
each triangle. 3D triangle rasterizer 607 also rasterizes all
the triangles that intersect with each bin or tile. 3D texture
controller 607 calculates the texture addresses of all pixels
in a bin or a tile.

[0313] Once the addresses of texels are obtained, data
streamer 122 obtains the corresponding texel information
from SDRAM 128. 3D texture filter 610 performs bi-linear
and tri-linear interpolation of fetched texels. Data streamer
122 thereafter writes the processed image data of each tile or
bin into a frame buffer. Thus, the frame buffer defines an
array in DRAM 128 which contains the intensity/color
values for all pixels of an image. The graphics display device
can access this array to determine the intensity/color at
which each pixel is displayed FIG. 21 is a block diagram of
3D triangle rasterizer 607 in accordance with one embodi-
ment of the invention. For purposes of clarity, FIG. 21
illustrates the signal flows that occur when 3D triangle
rasterizer 607 is operating in a binning mode as will be
explained in more detail below.

[0314] Data cache 108 is coupled to 3D triangle rasterizer
607 so as to provide the information necessary for the
binning operation. Two of the buffers in data cache 108 that
are employed during the binning operation are set-up buffer
622 and tile index buffer 630.

[0315] 3D triangle rasterizer 607 includes a format con-
verter unit 632 which is configured to receive triangle set-up
information from data cache 108. Format converter unit 532
converts the parameters received from data cache 108 from
floating point numbers to fixed point numbers. A screen
coordinates interpolator 634 is in turn coupled to format
converter 632, to provide the X,y coordinates of the pixels
that are being processed by 3D triangle rasterizer 607. A
binning unit 644 is configured to receive the X,y coordinates
from interpolator 634 and perform a binning operation as
described in more detail in reference with FIG. 26. The
binning unit is also coupled to tile index buffer 630. Infor-
mation calculated by binning unit 644 is provided to a tile
data buffer 646 within memory 128, via data streamer 122.

[0316] During operation, 3D triangle rasterizer 607 reads
the screen coordinates of each node or vertex of a triangle,
taken as an input from data cache 108. Thereafter, the
triangle rasterizer identifies all triangles that intersect each
bin or tile, and composes data structures called tileindex and
tiledata as an output in SDRAM 128.

[0317] As mentioned, before a rasterization phase begins,
all triangles of an entire screen are processed for geometry
and lighting. Setup and rasterization are then repeatedly
executed for each bin or tile. Binning involves the separation
of the output image up into equal size squares. In accordance
with one embodiment of the invention, the size of each bin
or tile is a square area defined by 16x16 pixels. Each square
is rasterized and then moved to the final frame buffer. In
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order for a bin to be correctly rasterized, the information
relating to all of the triangles that intersect that bin should be
preferably present. It is for this purpose that setup and
rasterization data for all the triangles in a screen are first
obtained prior to the binning process.

[0318] Binning involves the process of taking-each-pixel
along the edges of a triangle and identify all the bins that the
pixels of a triangle belong to. Thus, the process begins by
identifying the pixel representing the top vertex of a triangle
and thereafter moving along the left and right edges of the
triangle to identify other pixels that intersect with horizontal
scan lines, so as the corresponding bins where the pixels
belong to are obtained. Once the bins are identified an
identification number, or triangle ID, corresponding to the
triangle that is being processed is associated with the iden-
tified bins.

[0319] Tile index buffer 630, is preferably a 2 dimensional
array that corresponds to the number of bins on a screen that
is being processed. This number is static for a given screen
resolution. Thus, tile index buffer 630 includes an index to
the first triangle ID in tile data buffer 646. The tile data buffer
is a static array of size 256K in local memory, in accordance
with one embodiment of the invention. Tile data buffer 646
contains a triangle index, and a pointer to the next triangle.
Thus, by following the chain, all the triangles for a given bin
can be found, in accordance with one embodiment of the
invention.

[0320] FIG. 26 illustrates the operation of a binning
process on an exemplary triangle, such as 861, in accordance
with one embodiment of the invention, although the inven-
tion is not limit in scope in that respect. Triangle 861 is
divided into 2 sub-triangles with a horizontal line drawn
through the middle node or vertex B. As illustrated in FIG.
26, triangle 861 spans several pixels both in the horizontal
and vertical direction, which define a triangle window.
Binning unit 644 spans these pixels line by line. Thus, at step
862, binning unit 644 processes the line that includes the top
vertex a of the triangle. During the span, the x coordinate of
the left-most pixel is Ax or Cross XAC and the x coordinate
of the right-most pixel is Ax or Cross XAB. Cross XAC is
the x coordinate of the cross point between the edge AC and
the next span, and, Cross XAB is the x coordinate of the
cross point between the edge AB and the next span. In order
to extract the bins in which these pixels belong, binning unit
644 employs the condition

[0321] X=[min 2(Ax, Cross XAC), max2(Ax, Cross
XAB)], wherein X is the x-coordinate range of the
triangle for each scanline.

[0322] At step 864, binning unit 644 employs the condi-
tion

X=[min 2(CrossXAC, CrossXAC+dxdy AC), max
2(CrossXAB, Cross XAB+dxdyAB)]

[0323] The x coordinate of each cross point between the
edges AC and AB of the following span is derived by
CrossXAC=CrossXAC+dxdyAC
CrossXAB=CrossXAB+dxdyAB
[0324] wherein dxdyAC is the slope of the edge AC of
triangle 861, and dxdyAB is the slope of the edge AB of
triangle 861. Step 864 repeats till the span includes the

middle vertex B. Thereafter binning unit 644 goes to step
866.



US 2003/0196040 A1l

[0325] Atstep 866, the x coordinate of the right-most pixel
is the maximum of three parameters, such that

X=[min 2(Cross XAC, Cross XAC+dxdyAC), max

3(Cross XAB, Bx, Cross XBC)],
[0326] wherein CrossXBC is the x coordinate of the cross
point between BC and the next span. Thereafter, binning unit
644 performs step 868, by continuing to add Cross XAC and
Cross XBC with dxdyAC and dxdyBC until the spans
include the bottom vertex C, such that

X=[min 2(Cross XAC, Cross XAC+dxdyAC), Max
2(Cross XBC, CrossXBC+dxdyBC)},

[0327] and

CrossXAC=CrossXAC+dxdyAC
CrossXBC=CrossXBC+dxdyBC.

[0328] Finally at step 870, binning unit 644 identifies the
bins wherein the last pixels belong such that

X=[min 2(Cross XAC, Cx), max 2(Cross XBC, Cx)].

[0329] During the above steps 862 through 870, binning
unit 644 stores the IDs of all the bins which the pixels in the
edges of each triangle belong to. As a result of the binning
process for all triangles displayed in a screen, tile index
buffer 630 and tile data buffer 646 are filled. This allows 3D
unit 611 to retrieve the triangles which cross over a bin when
each bin or tile is processed as explained hereinafter.

[0330] FIG. 22 illustrates 3D triangle rasterizer 607 in a
rasterization mode. It is noted that the data structures
employed during the rasterization mode can re-use the
memory of data cache 108, where the tile index buffer 630
was employed during the binning mode. Thus, prior to
rasterization, the contents of tile index buffer 630 is written
to local memory DRAM 128.

[0331] 3D triangle rasterizer 607 includes a texture coor-
dinates interpolator 636 which is coupled to format con-
verter 632, and which is configured to obtain texture coor-
dinate data of pixels within a triangle by employing an
interpolation process. A color interpolator 618 is coupled to
format converter 632, and is configured to obtain color
coordinates of pixels within a triangle by employing an
interpolation method.

[0332] A depth interpolator 640 is also coupled to format
converter 632, and is configured to obtain the depth of the
pixels within a triangle. It is important to note that in
accordance with one embodiment of the invention, when a
bin is being rendered it is likely that the triangles within a bin
are in overlapping layers. Layer is a separable surface in
depth from another layer. 3D triangle rasterizer 607 pro-
cesses the layers front to back so as to avoid rasterizing
complete triangles in succeeding layers. By rasterizing only
the visible pixels, considerable calculation and processing
may be saved. Thus, rasterizer 607 sorts the layers on a bin
by bin basis. Because the average number of triangles in a
bin is around 10, the sorting process does not take a long
time. This sorting occurs prior to any triangle set-up or
rasterization in accordance with one embodiment of the
invention.

[0333] It is noted that preferably the triangles in a bin are
not sorted just on each triangle’s average depth or Z value.
For larger triangles, depth interpolator 640 obtains the Z
value of the middle of the triangle. Z-valid register 642 is
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coupled to depth interpolator 642 to track the valid depth
values to be stored in a depth tile buffer 628 in data cache
108 as described below.

[0334] As illustrated in FIG. 22, the buffers employed in
data cache 108 during rasterization mode are fragment index
650, rasterizer set-up buffer 622, texture coordinate tile (tile
T) 624, color tile (tile C) 626 and depth tile (tile Z) 628.
Fragment index 650 is coupled to a fragment generator 648,
which provides fragments which are employed for anti-
aliasing or a blending.

[0335] Fragment generator 648 is coupled to four buffer
spaces in memory 128 including fragment link buffer 652,
texture coordinate of fragment buffer 654, color of fragment
buffer 656 and depth of fragment buffer 658. The operation
of these buffers in memory is based on the same principle as
will be discussed in reference with corresponding buffers in
data cache 108. Rasterizer set-up buffer 622 is coupled to
format converter 632 so as to provide the triangle parameters
that are necessary for the rasterization process to complete.
Furthermore, texture coordinate tile 624 is coupled to tex-
ture coordinate interpolator 636. Similarly, color tile 626 is
coupled to color interpolator 638, and depth tile 628 is
coupled to depth interpolator 640. Depth tile 628 holds the
valid depth values of each triangle in a bin that is being
processed.

[0336] Thus, during operation, 3D triangle rasterizer 607
reads triangle set-up data corresponding to the vertex of each
triangle, including screen coordinates, texture coordinates,
shading colors, depth and their partial differentials, dR/dX,
dR/dY, etc. from data cache rasterizes set-up buffer 622. For
these differentials, for example, R is red component of
shading color and dR/dX means the difference of R for
moving 1 pixel along x-direction. dR/dY means the differ-
ence of R for moving 1 pixel along y-direction. Using these
set-up parameters, 3D triangle rasterizer 607 rasterizes
inside of a given triangle by interpolation. By employing the
Z-buffering only the results of visible triangles or portions
thereof are stored in texture coordinate tile 624 and color tile
626. Thus, the Z value of each pixel is stored in tile 628. The
Z value indicates the depth of a pixel away from the user’s
eyes. Thus, the Z values indicate whether a pixel is hidden
by another object or not.

[0337] As a result, texture coordinate tile 624 stores tex-
ture-related information such as a texture map address and
size, and texture coordinates for a tile. Texture coordinates
are interpolated by texture coordinate interpolator 636 as a
fixed point number and stored in texture coordinate tile 624
in the same fixed-point format. Similarly, color tile 626
defines a data structure that stores RGBA shading colors for
visible pixels. Thus, the texture and color information pro-
vided after the rasterization relates to visible pixels in
accordance with one embodiment of the invention.

[0338] FIG. 23 illustrates a block diagram of a 3D texture
controller 609 that is employed to generate texel addressed
in accordance with one embodiment of the invention. 3D
texture controller includes a format converter 632, coupled
to a memory address calculator 664. The output port of
memory address calculator is coupled to an input port of a
texture cache tag check unit 666, which in turn is coupled to
an address map generator 668 and a data streamer descriptor
generator 670. 3D texture controller 609 is coupled to data
cache 108.
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[0339] Data cache 108 employs address map buffer 660,
texture coordinate tile 624 and color tile 662 during the
texture address generation as performed by 3D texture
controller 609. Thus, address generator 668 provides address
maps to address map buffer 660 of data cache 108. Further-
more, texture coordinate tile 624 provides the texture coor-
dinates that were generated during the rasterization process
to memory address calculator 664. Color tile 662 also
provides color data to memory address calculator 664.

[0340] In response to the information provided by data
cache 108, 3D texture controller 609 calculates memory
addresses of necessary texels. Then, 3D texture controller
609 looks up cache tag 666 to check if the texel is in a
predetermined portion of data cache 108 referred to as
texture cache 667. If the cache hits, 3D Texture controller
609 stores the cache address into another data structure on
the data cache 108 referred to as address map 660. Other-
wise, 3D texture controller stores the missing cache line
address as a data streamer descriptor so that data streamer
122 can move the line from memory 128 to texture cache
667. Address map 660 is also written during the cache-miss
condition.

[0341] The data stored in address map 660 is employed at
a later stage during texel filtering. Thus, address map buffer
660 is employed to indicate the mapping of texel addresses
to pixels. The array stored in address map buffer 660 is a
static array for the pixels in a bin and contains a pointer to
the location in the buffer for the pixel to indicate which 4x4
texel block is applicable for a given pixel. The type of filter
required is also stored in address map buffer 660.

[0342] FIG. 24 illustrates 3D texture filter 610 in accor-
dance with one embodiment of the invention. 3D texture
filter 610 includes a texel fetch unit 942 that is configured to
receive texel information from address map buffer 660.
Information received by texel fetch unit 942 is in turn
provided to texture cache 667 to indicate which texels in
texture cache 667 need to be filtered next.

[0343] 3D texture filter 610 also includes a palettize unit
944, which is configured to receive texels from texture cache
667. When the value in texture cache indicates the index of
the texel colors, palletize unit 944 gets the texel color with
the index from the table located in data cache. The output
port of palettize unit 944 is coupled to a horizontal interpo-
lator 946, which in turn is coupled to a vertical interpolator
948. Both horizontal interpolator 946 and vertical interpo-
lator 948 are configured to receive coefficient parameters
from address map buffer 660. The output port of vertical
interpolator 948 is coupled to a tri-linear interpolator 950,
which receives a coefficient parameter from color tile 622
for the first pass of interpolation and receives a coefficient
parameter from a color buffer 930 for the second pass of
interpolation.

[0344] 1t is noted that there are two kinds of coefficients in
accordance with one embodiment of the invention. One
coefficient is used for bi-linear interpolation and indicates
how the weight of four neighborhood-texel colors are inter-
polated. The other coefficient is used for tri-linear interpo-
lation, and indicates how the weight of two bi-linear colors
are interpolated.

[0345] The output port of interpolator 950 is coupled to a
shading color blend unit 952. Shading color blend unit 952

Oct. 16, 2003

is also configured to receive color values from color tile 622.
An output port of shading color blend unit 952 is coupled to
color tile 622, and to accumulation blend unit 954. The
output port of accumulation blend unit 954 is coupled to an
input port of an accumulation buffer 934 that resides in data
cache 108 in accordance with one embodiment of the
invention.

[0346] During operation, 3D texture filter 610 performs
bi-linear texture filtering. Input texels are read from texture
cache 667 by employing memory addresses stored in
address map buffer 660. The result of bi-linear filtering is
blended with shading color in color tile 622 and written back
into color tile 622 as a final textured color. When an
accumulation is specified, the final color is blended into an
accumulated color in accumulation buffer 934.

[0347] In order to perform tri-linear filtering two passes
are required. In the first pass, 3D texture filter output
bi-linear filtered result stored in color buffer 930. In the
second pass, it generates the final tri-linear result by blend-
ing the color stored in color buffer 930 with another bi-linear
filtered color.

[0348] The contents of palettize unit 944 is loaded from
data cache 108 by activating 3D texture filter 610 in a set
palette mode.

[0349] Bi-linear and tri-linear filtering employ a process
that obtains the weighted sum of several neighboring texels.
In accordance with one embodiment of the invention, a texel
data is obtained by employing a vertical interpolation fol-
lowed by a horizontal interpolation of neighboring texels.
For example, the number of vertical texels may be 3 and the
number of horizontal texels may be 5. Filtering is performed
using specifiable coefficients. Thus, a filtering process is
defined as the weighted sum of 15 texels and the final output
T for a filtered texel is defined as follows:

Tx=k11Txy+k12Txy+1+k13Txy+2
Tx+1=k21Tx+1y+k22Tx+1y+1=k23Tx+1y+2
Tx+2=k31Tx+2y+k32Tx+2y+1+k33Tx+2y+2
Tx+3=kA1Tx+3y+kA2Tx+3y+1+k43Tx+3y+2
Tx+4=k51Tx+4y+k52Tx+4y+1+k53Tx+4y+2
Toutput=ka Tx+kb Tx+1+kc Tx+2+kd Tx+3+kc Tx+4

[0350] wherein T is a texel information corresponding to
a fetched texel. It is noted that when the interpolation point
is within the same grid as the previous one, there is no need
to perform vertical interpolation in accordance with one
embodiment of the invention. This follows because the
result of vertical interpolation is the same as one of a
previous computations. On the other hand, even the texel is
within the same grid as the previous one, recalculation of the
horizontal interpolation is necessary, because the relative
position of the scaled texel on the grid may be different, thus
the coefficient set is different.

[0351] Thus, as illustrated above, the core operation for
texel filtering is multiplication and addition. In accordance
with one embodiment of the invention, these function may
be shared with multiplying and adding functions of video
scaler 612 as illustrated in FIGS. 254 and 25b.

[0352] FIG. 25q illustrates a block diagram of video
scaler 612 in accordance with one embodiment of the
present invention. Video scaler 612 includes a bus interface



US 2003/0196040 A1l

820 which is coupled to processor memory bus 114, and
which is configured to send requests and receive pixel
information therefrom. A fixed function memory 828 is
coupled to bus interface unit 820 and is configured to receive
YCbCr pixel data from memory 128 by employing data
streamer 122. Fixed function memory 828 stores a prede-
termined portion of pixels that is preferably larger than a
portion that is necessary for interpolation so as to reduce the
traffic between memory 128 and video scaler 612.

[0353] A source image buffer 822 is coupled to fixed
function memory 828, and is configured to receive pixel data
that is sufficient to perform an interpolation operation. Pixel
address controller 826 generates the address of pixel data
that is retrieved from fixed function memory 828, for
interpolation operation A vertical source data shift register
824 is coupled to source image buffer 822 and is configured
to shift pixel data for multiply and add operation that is
employed during an interpolation process. It is noted that
when video scaler 612 is performing a filtering operation for
3D texture filter 610, vertical source data shift register 824
is configured to store and shift appropriate texel data for the
multiply and add operation.

[0354] A horizontal source data shift register 830 is con-
figured to store intermediate vertically interpolated pixels, as
derived by multiply and add circuit 834. The data in hori-
zontal data shift register 830 can be used again for multi-
plication and adding operation.

[0355] A coefficient storage unit 844 is configured to store
prespecified coefficients for interpolation operation. Thus,
when video scaler 612 is performing a filtering operation for
3D texture filter 610, coefficient storage unit 844 stores
filtering coefficients for texels, and, when video scaler 612
is performing a scaling operation, coefficient storage unit
844 stores interpolation coefficients for pixels.

[0356] A coordinate adder 846 is coupled to a selector 840
to control the retrieval of appropriate coefficients for the
multiply and add operation. Coordinate adder 846 is in turn
coupled to an x,y base address, which correspond to the
coordinates of a starting pixel, or texel. A A unit 850, is
configured to provide the differential for vertical and hori-
zontal directions for the coordinates of a desired scaled pixel
on the non-scaled original pixel plane.

[0357] Multiply and add unit 834 is configured to perform
the multiply and add operations as illustrated in FIG. 25b in
accordance with one embodiment of the invention, although
the invention is not limited in scope in that respect. Thus,
multiply and add unit 834 comprises a plurality of pixel and
coefficient registers 852, and 854, which are multiplied by
multiplier 856 to generate a number via adder 860.

[0358] An output pixel first-in-first-out FIFO buffer 842 is
configured to store the derived pixels for output to a display
refresh unit, such as 226, or to data cache 108, depending on
the value of a corresponding control bit in video scaler
control register.

[0359] During operation, in accordance with one embodi-
ment of the invention, video scaler 612 reads YCbCr pixel
data from memory 128 using data streamer 122, and places
them in fixed function memory 828. Thereafter, appropriate
bits corresponding to Y, Cb, Cr pixel data are read from fixed
function memory 828 using pixel address controller 826.
The retrieved data is written into three source image buffer
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spaces in source image buffer 822 corresponding to Y, Cb
and Cr data. When vertical source data shift registers have
empty space, source image buffer 822 provides a copy of its
data to vertical source data shift registers. For vertical
interpolations, intermediate vertically interpolated pixels are
stored in horizontal source data shift register 830.

[0360] The sequence for vertical and horizontal interpo-
lations depends on the scaling factor. In accordance with one
embodiment of the invention, there are three multiply and
add units 834 in video scaler 612 so that three vertical and
three horizontal interpolations can be performed simulta-
neously.

[0361] FIG. 27 is a flow chart summarizing the steps
involved in 3D graphics processing as discussed in connec-
tion with FIGS. 20-26. Thus, at step 880, VLIW processor
102 calculates geometry data by calculating screen coordi-
nates, colors and binning parameters for all triangles inside
a frame. At step 882 fixed function unit is activated for
binning by providing binning indication signal to 3D tri-
angle rasterizer 607. As a result of binning, tile index and tile
data for all bins are calculated at step 884.

[0362] At step 886, for all bins in a frame set-up and
interpolation for visible pixels within triangles begins. Thus,
VLIW 102 calculates triangle set-up data at step 888. At step
890, 3D triangle rasterizer calculates parameters for render-
ing including x,y,z, RGBA, [s,t, and w] for each pixel in a
triangle, by activating 3D triangle rasterizer 607 in interpo-
lation mode at step 892. The s, t, and w parameters are
homogeneous texture coordinates and are employed for,
what is know as, perspective correction. Homogeneous
texture coordinates indicate which texel does a pixel corre-
spond with.

[0363] For all pixels in a bin VLIW 102 calculates texture
coordinates for each pixel in response to s,t, w calculations
obtained by 3D triangle rasterizer 607. At step 896 3D
texture controller 609 calculates the texture addresses. At
step 898 data streamer 122 fetches texels from memory 128
in response to calculated texture addresses. It is noted that
while data streamer 122 is fetching texels corresponding to
abin, VLIW processor 102 is calculating texture coordinates
u,v corresponding to a following bin. This is possible
because of the structure of data cache 108 which allows
access to cache by fixed function unit in accordance with one
embodiment of the invention.

[0364] At step 900, video scaler 612 is activated in con-
junction with 3D texture filter 610 to perform texel filtering
on a portion of fetched filters.

[0365] In accordance with one embodiment of the inven-
tion at steps 902 through 912 3D graphics unit performs
anti-aliasing and a blending for all pixels in a fragment based
on the same principles discussed in connection with steps
894 through 900. At step 914 the data derived by fixed
function unit is stored in a frame buffer, by employing data
streamer 122 to transfer data to a local memory space, such
as one in SDRAM 128.

[0366] Thus, the present invention allows for a binning
process by employing data cache in a multimedia processor,
and storing corresponding data relating to each bin in the
data cache. Furthermore, in accordance with one aspect of
the invention, before fetching texels, the visible pixels of a
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triangle are first identified and thus, only corresponding
texels are retreived from a local memory.

[0367] While only certain features of the invention have
been illustrated and described herein, many modifications,
substitutions, changes or equivalents will now occur to those
skilled in the art. It is therefore, to be understood that the
appended claims are intended to cover all such modifications
and changes that fall within the true spirit of the invention.

We claim:

1. A data cache system in a multimedia processor, having
a plurality of modules including a processor, a main
memory, a data cache and a plurality of I/O devices,
wherein,

said data cache is configured in an N-way set associative
structure, and is capable of adding information indi-
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cating which way of said data cache is switchable, as an
option of read and write command used for accessing

the data cache via an internal memory bus.
2. A data cache system in a multimedia processor, having
a plurality of modules including a processor, a main
memory, a data cache and a plurality of I/O devices, wherein

said data cache and a data streamer are connected to a first
internal memory bus, and further,

said data streamer and said main memory are connected
to a second internal memory bus, allowing a data
traffic to be distributed.



