Innovation, Sciences et Innovation, Science and CA 2991685 C 2023/09/26

I*I Développement économique Canada Economic Development Canada
Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 99 1 685
12y BREVET CANADIEN
CANADIAN PATENT
13 C
(86) Date de dépdt PCT/PCT Filing Date: 2015/07/09 (51) Cl.Int./Int.Cl. HO4L 9/12(2006.01),
(87) Date publication PCT/PCT Publication Date: 2016/01/14 HO4L 12/12(2006.01)
" . (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2023/09/26 THOMAS, ANDREW, CA
(85) Entrée phase nationale/National Entry: 2018/01/08 e
(73) Propriétaire/Owner:
(86) N° demande PCT/PCT Application No.: IB 2015/001765 REAL INNOVATIONS INTERNATIONAL LLC, CA

(87) N° publication PCT/PCT Publication No.: 2016/005821 (74) Agent: THOMAS, PAUL E.

(30) Priorités/Priorities: 2014/07/10 (US62/023,172),
2014/08/10 (US62/035,473), 2014/11/14 (US14/542,427),
2015/06/18 (US14/743,666)

(54) Titre : SYSTEME ET PROCEDE DESTINES A DES SERVICES DU CLOUD EN TEMPS REEL SECURISES
(54) Title: SYSTEM AND METHOD FOR SECURE REAL-TIME CLOUD SERVICES

1105 1106

Server .
(Authoritative Client) —i> C13l1lf(a)r11t
1102 \— Network —/ —

. 1107 .

Server .
(Authoritative Client) Client
1101

1102

Server / o — _\ Client
(Authaoritative Client) Firewalls Firewalls 1101
1102 1103 1104 1191

(57) Abrégé/Abstract:

A system and method for providing secure, end-to-end data service enabling real-time data over the Internet is disclosed. The
system and method provides a communication framework between sensors, devices, and machinery and the users of that data
from any remote location that is connected to the Internet without requiring open inbound firewall ports, while at the same time
enabling high data rates, low latency and full bi-directionality. The graphical and networking features of RIA frameworks in
combination with the disclosed system and method provide low-latency, real-time data applications in a web browser securely over
the Internet.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

wo 2016/005821 A3 || I N0F V00 00O 0O 0 R

(43) International Publication Date

CA 02991685 2018-01-08

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

14 January 2016 (14.01.2016)

WIPOIPCT

(10) International Publication Number

WO 2016/005821 A3

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

International Patent Classification:
HO4L 9/12 (2006.01) HO4L 12/12 (2006.01)

International Application Number:
PCT/IB2015/001765

International Filing Date:
9 July 2015 (09.07.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/023,172 10 July 2014 (10.07.2014) US
62/035,473 10 August 2014 (10.08.2014) US
14/542,427 14 November 2014 (14.11.2014) US
14/743,666 18 June 2015 (18.06.2015) US

Applicant: REAL INNOVATIONS INTERNATIONAL
LLC [CA/CA]; 162 Guelph Street, Suite 253, Georgetown,
ON L7G 5X7 (CA).

Inventor: THOMAS, Andrew, S.; 2559 Burnford Trail,
Mississauga, ON L5M 5E3 (CA).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(84)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

(88)

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

Date of publication of the international search report:
17 March 2016

(54) Title: SYSTEM AND METHOD FOR SECURE REAL-TIME CLOUD SERVICES

(57) Abstract: A system and method for
providing secure, end-to-end data ser-
vice enabling real-time data over the In-

Server 1f1 05 11{06 _ ternet is disclosed. The system and

(Authoritative Client) Client method provides a communication

1102 _ Network _ 1101 framework between sensors, devices,

1107 and machinery and the users of that data

: . from any remote location that is connec-

. > . ted to the Internet without requiring

open inbound firewall ports, while at

(Auth osrﬁerl\;ﬁ/re Client) > gel?\ljgr « Client the same time enabling high daFa rates,

1102 1100 1101 low latency and full bi-directionality.

— “__ The graphical and networking features

. \ . of RIA frameworks in combination with

. . the disclosed system and method

provide low-latency, real-time data ap-

Server - i —~ Client plications in a web browser securely
(Authoritative Client) Firewalls Firewalls 1101 over the Internet.

1102 1103 1104 S

FIG. 11

CA 2991685 REPLACEMENT PAGE - 18/11/21

TITLE

SYSTEM AND METHOD FOR SECURE REAL-TIME CLOUD SERVICES

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims priority to U.S. Non-Provisional Application
14/743,666, filed June 18, 2015, which is a continuation of U.S. Non-Provisional
Application 14/542,427, filed November 14, 2014, which claim priority to U.S.
Provisional Application No. 62/023,172, filed July 10, 2014, and U.S. Provisional
Application No. 62/035,473, filed August 10, 2014.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document contains material which is
subject to copyright protection. The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent disclosure, as it appears in
the Patent and Trademark Office patent file or records, but otherwise reserves all

copyright rights whatsoever.

Date Regue/Date Received 2021-11-19

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

BACKGROUND OF THE INVENTION

[0003] Recal-time data refers to any digital or analog information that should be
processed and/or transmitted within a certain amount of time after that data is originally
created. The time elapsed from the moment that the data is created until it is processed
and/or transmitted is known as latency. The maximum latency allowable for any
particular real-time application is application-dependent. Applications where the
maximum latency is a strict requirement can be referred to as “hard” real-time
applications, while applications where the maximum latency is not a strict requirement
can be referred to as “soft” real-time applications. Soft real-time applications need only
satisfy an application-dependent, often subjective, measure of “fast enough”. Non-real-
time data is data that is not required to satisfy any particular latency requirement.
[0004] The term “data” may refer to hard real-time, soft real-time or non-real-time
data. “Real-time data” may refer to hard real-time or soft real-time data.

[0005] Real-time data is typically generated due to a physical process or a computer
program external to the computer system that processed the data. For example, real-
time data may include: information from an industrial process control system such as
motor status, fluid tank level, valve position, conveyor speed and so on; prices,
volumes, etc. for financial instruments such as stocks; user interface events such as an
indication that a user has clicked on a button on a computer display; data entry by a
human operator; and computer operating system status changes. Virtually any
information that is changing over time can be treated as real-time data.

[0006] An originator of data may be described as a “‘data source”. For example, data
may originate as a physical process, measured electrically, and converted to a digital
representation, or data may originate in a digital representation. Generally, data is made
available in a digital computer as a digital representation, following zero or more steps
to convert the data into a digital representation. A data source may comprise all of the
components and steps necessary to convert the data to a digital form accessible by a
computer program.

[0007] Analogous to a data source is a “data sink”. A data sink consumes, or uses,

data. Some examples of data sinks are: actuators in a process control system; trade

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

processing software in a stock trading system; a user interface application; a database or
other data storage system.

[0008] Many data sources are also data sinks. Accordingly, a data source may
comprise a data source, a data sink, or both simultaneously. For example, when data is
transmitted to a data source, the data source may also act as a data sink.

[0009] In computer applications, data is commonly managed by a “server”. The server
can act as cither a data source or a data sink, or both together, allowing “client”
applications to interact with the data that the server manages.

[0010] Generally, a client application must initiate a connection with a server in order
to interact with data. That connection can be “short-lived”, where the connection exists
only for the duration of a single or few interactions with the data, or “long-lived”, where
the connection persists for many interactions with the data, and possibly for the duration
of the client application’s lifetime. Long-lived connections are also referred to as
“persistent” connections.

[0011] Data sources provide data in one or more “data formats” that define the digital
representation of the data. The data format may conform to a published standard or be
particular to the data source. Similarly, data sinks may require data in a published
standard format or in a format particular to the data sink.

[0012] Data sources provide access to data through one or more “transmission
protocols”. A transmission protocol specifies the mechanism by which data are
transferred from a data source to a data sink. A transmission protocol may conform to a
published standard or be particular to the data source. A data source may combine data
formats and transmission protocols such that not all supported data formats can be
transmitted via all supported transmission protocols. Generally, a “protocol” or “data
protocol” refers to the combination of a particular data format transmitted via a
particular transmission protocol.

[0013] A data sink must support at least one data protocol offered by a data source in
order to use the data generated by the data source. Since a large number of data
protocols exist, it is impractical for all data sources and data sinks to support all data

protocols. As a result, client applications that make usc of data arc usually crcated only

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

to support the most necessary protocols for their primary purpose. Similarly, data
sources generally support only those protocols that are necessary for their primary
purpose. So, for example, there is no way to directly connect a web browser that
supports the HTTP protocol to a spreadsheet application that supports the DDE
protocol.
[0014] A protocol conversion step must be performed to convert data from a protocol
supported by a data source into a protocol supported by a data sink in order for the data
sink to make usc of the data offercd by the data source. This conversion step can be
performed by a “middleware” application. A primary purpose of a middleware
application may be to facilitate communication between a data source and a data sink,
usually by converting data from one protocol to another such that data sources and data
sinks can interact indirectly when they share no protocol in common.
[0015] A data source may transfer data to a data sink using at least two methods:
L. On demand: the data source passively waits for a data sink to request some or
all of the data available in the data source. When the data sink makes a request for
data, the source responds with a result indicating the current state of the requested
data. If the data sink needs to be informed of changes to the data, the data sink must
repeat the request in order for the data source to respond with the updated data. This
repeated request for the same data by the data sink is known as “polling”. A data sink
may create either a short-lived connection to the data source for each new request, or a

persistent connection over which many repeated requests are transmitted.

2. By subscription: the data sink creates a persistent connection to the data
source, and subscribes to some or all of the data available from the data source. The
data source transmits any changes to the data via the persistent connection as those
changes occur. The data source will continue to send changes to the data until the data

sink specifies otherwise or the connection is closed.

[0016] It is understood that data transfer methods such as shared memory, message
queues and mailboxes are variations on either the demand or subscription methods. It is

also understood that the terms data transfer, data propagation, or data transmission all

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

refer to the movement of data within a system, and these terms may be used
interchangeably, as they relate to the specific data transfer method. It is further
understood that these methods are independent of the underlying transmission protocol.
[0017] Computer applications dealing with real-time data must be reliable, responsive
and ecasily connected to their data sources. This has meant that real-time data
processing applications have historically been created as stand-alone applications
connected directly or indirectly to the data source. This stand-alone architecture has
also allowed the applications to take full advantage of the graphical capabilities of the
computer to provide rich dynamic visualization of the real-time data. By contrast,
applications based on web browser technology have proven unsuitable in terms of data
connectivity and graphical speed. The HTTP protocol is intended as a request-response
communication method where each request-response pair requires a web client
(typically a web browser) to open a new socket to a web server, perform the
communication and then shut down the socket. This paradigm works well for
communication that is infrequent and not particularly time-sensitive. The HTTP
protocol further limits the types of transactions to data retrieval from the web server or
data submission to the web server, but not both in the same transaction. Methodologies
such as AJAX that are based on this model are expected to make relatively few
transactions and tend to scale to higher speeds very poorly. The computational and
networking costs of establishing and closing connections for each transaction act as a
limit to the speed of such systems.

[0018] Consequently, widespread real-time data processing, as well as display in a web
browser, has been unavailable. Some developer efforts have provided access to data-
driven displays using ActiveX components in a web browser, but these components are
generally poorly supported by modern browsers and subject to limitations due to the
security risks that they represent.

[0019] Efforts have been made to display changing data in a web browser using the
built-in Javascript engine of the browser. This is generally achieved using a
mcthodology called AJAX (Asynchronous Javascript and XML), where the web

browser polls periodically for new data and then updates its display accordingly. This

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

polling mechanism is highly inefficient, and suitable only for relatively small data sets
or for relatively slow-moving data. Lowering the polling rate to conserve CPU or
network bandwidth has the effect of raising data latency, which is unacceptable for real-
time applications.

[0020] Efforts to improve on AJAX, through a mechanism called Streaming AJAX,
take advantage of a side-effect of the browser page loading mechanism to cause a
browser page to grow incrementally by adding Javascript commands to the page over
time. Each Javascript command ¢xccutes as it arrives, giving the impression of a
continuous data stream. The web browser is effectively fooled into thinking that it is
loading a very large web page over a slow network connection. This method has
several drawbacks, including the fact that the web browser’s memory and CPU usage
can grow continuously over time due to the ever-larger page that is being transmitted.
Holding an HTTP connection open to collect multiple asynchronous messages from a
specially designed web server like this effectively makes the short-lived HTTP
connection into a long-lived streaming connection. This allows much faster updates
from the server to the client, as new data can be transmitted from the server
asynchronously and does not require the client to open and close a connection for each
new message. However, it does nothing to speed up the communication from the client
to the server. Effectively it creates a fast uni-directional channel from the server to the
client, while still retaining the negative performance characteristics of HTTP when
communicating from the client to the server.

[0021] Both AJAX and streaming AJAX methods suffer from a lack of quality display
options within the web browser. Web browsers are generally designed for the display
of static pages and web “forms”, and do not offer high-speed or high quality graphic
presentation options. Efforts to improve upon graphical display options have tended to
be incompatible among web browsers, and generally very slow to execute.

[0022] All data transmission solutions based on built-in web browser capability are
primarily targeted at receiving data in the web browser. The communication of data is
uni-directional, in that the connection that receives data from a server cannot also be

used to transmit data to the server. If the web browser needs to transmit data back to

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

the server, it must do so by opening a new connection, transmitting an HTTP request,
and then closing the connection again. Consequently, solutions such as Streaming
AJAX are very slow to transmit data back to the data server, because of the large
overheads and latencies incurred by having to emit a new HTTP request for every data
transmission.

[0023] Some efforts at web-based data visualization attempt to improve the user
cxperience by presenting slow-moving (high latency) data as if it were faster. This is
achicved by displaying interpolated data in the web browser at higher frequency than
the data is actually arriving. For example, a circular gauge representing a speedometer
might receive the values 1 and 100, separated in time by 5 seconds. The web page
could then draw the gauge dial 5 times per second, changing the value by 4 each time.
This would give the viewer an impression of a smoothly changing speed, even though
the underlying data delivery contains no such information. That is, such a display of
interpolated data can be entirely misleading to the viewer. This kind of interpolation
obscures the true behavior of the underlying data, and is usually unacceptable in real-
time applications such as process control and stock-market trading.

[0024] Rich Internet Application (“RIA”) frameworks such as Adobe Flash™ and
Microsoft Silverlight™ offer improved platforms for both data processing and graphical
display within a web browser. These RIA frameworks also support direct TCP/IP
communications within the RIA. Surprisingly, the combination of these features makes
it possible to process and display real-time information in a web browser. This
processing and display capability has not been translated into real-time data systems due
to a perception in the software industry that RIAs are suited primarily to video,
advertising and games.

[0025] A common alternative to HTTP is to provide a secondary communication
socket for high-speed data alongside the HTTP communication channel. Effectively,
the web client communicates via HTTP for the presentation information, and via a
separate dedicated socket for high-speed bi-directional data communication. This

solves the speed issuc, but introduces other issucs:

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

[0026] A separate communication socket requires a separate TCP port to be open on
the server. This means another opening in the corporate firewall, which IT departments
commonly resist.

[0027] Rich Internet Application (RIA) frameworks, such as Flash or Silverlight,
commonly implement limits on socket communication that require yet another well-
known port to be open to act as an access policy server. This introduces a further
opening in the corporate firewall, further limiting the uscfulness of the technique.
[0028] An RIA framework operating within a browser (c.g., Silverlight) may not
implement its own SSL layer, relying instead on the browser’s HTTPS implementation
for encryption. In such a case, a dedicated socket implemented by an RIA will not be
secure.

[0029] Dedicated sockets will not pass through web proxies.

[0030] The advent of high-speed or real-time data processing over the Internet has
created a need for long-lived high-speed socket communication. This need has driven
the RIA implementers to offer such sockets, but with the limitations described above.
There remains an unmet need for long-lived bi-directional socket communication over
HTTP or, more preferably, HTTPS to a web server.

[0031] The HTMLS specification includes a draft specification called WebSockets.
This intends to provide two-way communication between a client and server using a
HTTP-mediated socket. Although WebSockets are not universally supported at this
time, they provide the possibility of creating bi-directional connections through forward
and reverse web proxies. The current invention enables real-time data connectivity
through WebSockets, providing successful connectivity even in instances where the
data source or end user are isolated from the Internet via proxy servers and are unable to
make a connection via an arbitrary TCP/IP port. This significantly broadens the set of
network topologies on which the current invention may be usefully implemented while
allowing an additional potential level of security on the client networks.

[0032] The present invention is suitable to augment industrial Supervisory Control And
Data Acquisition (“SCADA?”) systems. SCADA systems comprise data collection

hardwarc such as scnsors and other devices, communication nctworks, central

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

processing systems, and display units to allow plant operators and engineers to view the
data in their industrial processes in real time. SCADA systems often comprise
interfaces that support a supervisory level of coordination and control, such as
uploading new recipes to a candy-making machine, changing global settings on a wind
turbine, or acknowledging a high pressure alarm for a boiler.

[0033] SCADA systems have evolved over time. The first generation systems were
“monolithic”, running on individual computers, connecting to ficld devices directly.
The second generation allowed “distributed” processing, using multiple computers
communicating with each other over a local-area network (“LAN”’) and communicating
with the field devices over proprictary control networks. The current, “networked”,
generation uses personal computers and open standards such as TCP/IP and open
protocols for local-area networking. Thus it is now possible to access SCADA systems
and data from the Internet, although there are fundamental questions about security that
are limiting the broad adoption of such capabilities.

[0034] Networked SCADA systems are designed using a client/server model. A server
(device or software application) contains a collection of data items. These data items
are made available to a client (device or software application) upon request by the
client. The implicit assumption is that the server is the authoritative source of the data
values, and has a-priori knowledge of which data values it will supply. The client is
non-authoritative, and determines which data items it may use by querying the server.
For clarity, the authoritative source of data has the responsibility to determine which
data items it will contain and make available to its clients, and the data values held in
the authoritative source are presumed to be correct and current. The client cannot
determine which data items exist, and may only affect the values and/or properties of
the data items defined within the server.

[0035] Importantly, the server is simultancously the authoritative data source and also a
listener for incoming connections from the client. In a networked system, this means
that any client that uses the data must be able to initiate a connection to the server. In a
SCADA system, this would mean, for example, that an operator workstation (acting as a

client) must be able to make a connection to the SCADA server. This in turn requires

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-10-

that the SCADA server be reachable via the network from the client’s location. In the
case of a Internet-based or cloud-based system, this means that the SCADA server must
be reachable from the Internet, posing an unacceptable security risk. For clarity, the
terms “cloud” and “Internet” may be used interchangeably throughout this disclosure.
[0036] When the topic of cloud computing is raised among process control engineers,
there are many justifiable concerns about security. SCADA and other manufacturing
and control systems often support high-value production lincs, where any interference
or foul play could cost thousands or millions of dollars. Although recently some shop
floors have begun to make their process data available to the rest of the company on
corporate LANs, there is strong resistance to opening ports in plant firewalls to allow
incoming connections from the Internet.

[0037] On the other hand, cloud systems generally require Internet access, typically
using a web browser HMI (“Human Machine Interface”) or RIA or other kind of client
to connect to a server on the process side. Until the present invention, this meant that a
port had to be opened in the factory firewall to allow the web browser to connect. And
this is a security risk that few plant engineers are willing to take. The primary source of
security exploits is firewalls permitting inbound connections. Unless these are removed,
the plant is exposed to attack.

[0038] Due to the mission-critical nature of SCADA systems, engineers and managers
responsible for industrial processes are reluctant to expose them directly to the Internet,
running behind secure firewalls to keep intruders and hackers at bay. Compounding the
problem is that the architecture of most installed industrial systems was not developed
with the Internet in mind. To adequately address the concerns of industrial users, a
fundamentally different approach to data networking is needed. The present invention
solves this problem by employing a novel approach to security that meets the stringent

requirements of industrial users of real-time data.

SUMMARY OF THE INVENTION

[0039] The present invention provides a system and method for use of the graphical

and networking features of network clients such as web browsers, RIA frameworks and

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-11 -

dedicated applications in conjunction with at least one real-time data server to provide
low-latency, real-time data applications in a web browser. The invention overcomes the
limitations of current AJAX and streaming AJAX while simultaneously dealing with
data sources whose data is not usable within a web browser.

[0040] The present invention also provides a long-lived, bi-directional communication
mechanism from a web client that may be performed entirely over HTTP or HTTPS,
preferably using existing HTTP verbs (e.g. GET and POST) while being operable with
existing browser and RIA technology. Throughout this disclosure, the terms “RIA”,
“Rich Internet Application”, “Web Browser”, “network client” and “client” are
understood to refer interchangeably to any software or hardware application that
communicates by means of the HTTP or HTTPS protocol.

[0041] The present invention also provides a system and method for secure, end-to-end
data service enabling real-time data over the Internet. The invention provides real-time
connectivity between sensors, devices, and machinery and the users of their data from
any remote location that is connected to the Internet, with data throughput rates that
may be over 25,000 data changes per second, preferably over 50,000 data changes per
second, more preferably over 75,000 data changes per second, and most preferably over
100,000 data changes per second. The added latency of the data stream may be
measured in milliseconds more than the latency of the connection over the Internet
itself, preferably no more than 200 milliseconds, more preferably no more than 100
milliseconds, yet more preferably no more than 50 milliseconds, yet more preferably no
more than 25 milliseconds, yet more preferably no more than 10 milliseconds, and most
preferably no more than 5 milliseconds. The present invention is particularly valuable
for those working with real-time data from industrial systems, embedded devices,
“smart” devices or financial systems.

[0042] The invention improves upon the state of the art in real-time data delivery to
web browsers and network clients by reducing the data latency to a point where
visualization components can be animated using true data values, rather than
interpolated values. This allows short-lived behavior in the data to be more accurately

presented to the user. Short-lived data behavior is commonly important in

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-12 -

understanding the true dynamics of the real-time system represented by that data. For
example, a person watching a physical gauge can discern important system properties
by watching vibration or overshoot in the gauge needle behavior. In one embodiment
of the invention, a digital representation of the physical gauge can capture the needle
dynamics and provide the same high-quality information as the physical gauge.

[0043] The invention vastly improves the speed of data transmission from the user to
the data server, reducing CPU and network costs and reducing latency. This allows the
user to participate in more sophisticated control scenarios where system responsiveness
is important to correct behavior. For example, the system may require a hold-and-
release interaction while filling a vessel with water. The user would press a button and
hold it until the vessel is full, then release the button. Clearly, the system must respond
rapidly in order to avoid over-filling the vessel. This type of control is not possible in
typical web-based applications due to the unpredictability of the data delivery latency.
Surprisingly, the invention makes possible classes of control and real-time data
applications that were previously too slow, unreliable or primitive to be contemplated
through a web browser.

[0044] Typical web applications deal with data provided in a specific format by the
application designer. This may be an intentional method for limiting the end-user
choice, or simply a limitation on the design. Even where the data format follows an
industry standard (such as XML or JSON), the data source is specific to the application.
The invention also provides a general purpose mechanism for delivering a wide variety
of real-time data originating from both industry-standard and proprietary sources.
Advantageously, the invention can further provide that data in a variety of data formats.
[0045] Many sources of data, both real-time and non-real-time, are not intended for
network use (i.e., transmission over a network). The present invention allows data from
these data sources, such as Microsoft Excel™ (Microsoft Corp.), to be reliably and
rapidly delivered to any RIA or web-based application over a network. Some data
sources, such as those based on OPC, were intended for network use but are not
designed for communication with a web browser. The invention allows these sources to

also be delivered reliably and rapidly to a web-based application. Other data sources,

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-13 -

such as database systems, provide no interface at all for real-time information. The
invention allows non-real-time data from sources such as database applications to be
delivered as if it were real-time, thereby eliminating the need for a RIA or web-based
application to perform very inefficient polling of the database.

[0046] Data sources and data sinks may connect to the server via persistent connections
or short-lived connections. It is understood that the connection method to the server
will reflect the requirements of the particular data source or sink.

[0047] The invention provides a method by which real-time data from one or more data
sources 1s efficiently made available to a Rich Internet Application. The invention
further provides a method for the RIA to efficiently modify the real-time data or
generate new real-time data that can be transmitted back to the data source or sources.
The data source or sources can then retransmit that data to other RIAs on the network.
The invention thus effectively allows any number of RIA applications to communicate
with one another in real time, and to jointly communicate with one or many real-time
data sources. The invention allows for the abstraction of real-time data such that any
data that can be represented using the abstraction can be made available to the RIA,
regardless of its original source, representation or transfer protocol.

[0048] The present invention provides a system and method for an Internet or cloud-
based communication framework and service that does not require any open incoming
firewall ports for connected data sources and clients (e.g. industrial facilities, end-user
client devices), thereby eliminating exposure to potential attacks. The invention
provides this novel improvement by reversing the client/server relationship between the
plant and the cloud server. Instead of the plant data source acting as a server, with the
present invention, the plant data source acts as a client, and the cloud service acts as the
server. This reverses the direction of how a connection is made with the Internet. The
plant data source server sends an outbound connection request to a server in the cloud,
and therefore there is no need to open any inbound ports in the plant firewall. This
novel approach keeps the plant firewall closed, and shrinks the potential attack surface

to zcro.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-14 -

[0049] Prior to the present invention, reversal of the client/server relationship was not
done before because there was no perceived need, and it did not make intuitive or
architectural sense. Existing SCADA and control systems, as well as standard industrial
protocols, such as OPC, expect the server to be an authoritative holder of a data set.
Since the data is being generated at a process, and then used elsewhere, it is logical that
consumers of the data (e.g. outside users) are the clients, and that the clients request
data from the process, the server. A client is naturally expected to connect to the server,
query the data set, and subscribe to the data that the client requires. This prior art
method works well enough in a closed system that existing protocols were designed for.
However, a cloud-based system requires a fundamentally new approach.

[0050] By changing the role of client and server, the present invention provides the
unusual and novel case where the client becomes the authoritative holder of the data set.
The process, acting as a client, connects to the cloud server and configures that server
with its current data set. Updates to the data set are subsequently passed from the
process to the cloud server. On the other side, users (clients) of the data connect to the
cloud server by a similar method. Clients also make outbound client connections to the
cloud server, and can interact with the data set in real time. On the client side as well,
no incoming firewall ports need be opened. Functioning in this manner, the present
invention allows a cloud server to provide access to process data without opening a
single incoming port in the plant firewall or in the client’s firewall.

[0051] The current invention inverts the client/server relationship. That is, the client
application can optionally act as the authoritative data source, and the server can act as a
non-authoritative consumer of that data. In fact, the current invention provides for a
single application to act as an authoritative server, an authoritative client, a non-
authoritative server and a non-authoritative client simultaneously. This makes it
possible to situate a server application on a publicly accessible cloud computer that is
acting as a non-authoritative server, while configuring a SCADA system within a secure
network as an authoritative client. The SCADA system makes an outbound connection
from within the sccure SCADA network to the cloud server, and populates the cloud

server with its data set. The cloud server requires no a-priori knowledge of its data sct,

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-15-

but instead learns its data set from the authoritative client in the SCADA system. Other
clients on the public network that need access to the SCADA system’s data will connect
to the cloud server as non-authoritative clients, thus treating the cloud server as an
authoritative server for the data that in fact originates at the SCADA system. Thus, a
client application is able to connect to the cloud system and interact with the SCADA
system’s data as if it were connecting to the SCADA system, yet the SCADA system is
never exposed to the public network. An unexpected result of the present invention is
to provide remote access to the SCADA system’s data without compromising the
network security of the SCADA system itself.

[0052] For added security, the current invention allows for a second instance of the
application, operating as a non-authoritative server to the SCADA system and as an
authoritative client to the cloud system, to be installed in a separate network within the
industrial plant such that this second instance has no access to the secure SCADA
network. The SCADA system then emits data to this second instance, and this second
instance emits the data to the cloud server. In this configuration, the SCADA system
does not even have a direct outbound connection to the Internet, but instead is further
isolated by the network containing the second instance.

[0053] SCADA systems generally provide a mechanism to allow a client application
(like an operator panel) to emit value changes to certain data items. For example, an
operator may want to start or stop a machine in the plant. Plant owners may be
reluctant to allow modifications to the SCADA data from remote locations. The current
invention allows the SCADA system (acting as an authoritative client to the cloud) to
refuse all attempts to modify the values of data items, even where user permissions
would normally allow it. In addition, the cloud server can be configured to allow
certain users to modify the values of certain data items based on their user credentials
and the IP address of the computer from which they are connecting. Thus, the current
invention provides security both from attacks via the public network and from
unauthorized attempts to modify the data, even in the event that the cloud server is

compromiscd.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-16 -

[0054] In another embodiment, a method of providing a secure network connection is
performed by listening at a server for inbound connection requests to the server on a
network between the server and a client, receiving at the server a first inbound
connection request from the client, establishing from the first inbound connection
request a first network connection between the server and the client, and receiving at the
server a first data set from the client over the first network connection, wherein the
client 1s the authoritative source of the first data sct and is inaccessible via inbound
connection requests.

[0055] In another embodiment, a system for providing a secure data network is
provided. The system includes a server communicatively coupled to a network between
the server and a client, the server operable to: listen for inbound connection requests,
establish a first data connection between the server and the client based on a first
inbound connection request received by the server, and receive a first data set from the
client over the first data connection, wherein the first data set is produced by an
authoritative source. The client is inaccessible via inbound connection requests and the
client is the authoritative source.

[0056] Although this description refers to its application to SCADA systems, it should
be understood that this same mechanism is broadly applicable for any data that may be
made available via a public network. That data could originate from any program or
process, such as financial trading systems, home electricity meters, remote machinery,
cell phones, embedded devices, or any other program or device that generates data, and
still fall within the scope of the present invention. In one aspect of the invention, a
common requirement is that the data source is not be required to accept inbound

network connections in order to make its data available to users of that data.

BRIEF DESCRIPTION OF THE FIGURES

[0057] FIG. 1 is an exemplary block diagram illustrating a direct connection between a

RIA and a data server, in accordance with one embodiment of the present invention.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-17 -

[0058] FIG. 2 is an exemplary block diagram illustrating a connection between a RIA,
a server, and a separate data source, in accordance with one embodiment of the
invention.

[0059] FIG. 3 is an exemplary block diagram illustrating connections between multiple
RIAs, a server, and multiple, separate data sources, in accordance with one embodiment
of the invention.

[0060] FIG. 4 is an exemplary flowchart illustrating onec mecthod of RIA control flow,
in accordance with one embodiment of the invention.

[0061] FIG. 5a, b is an exemplary flowchart illustrating one method of operation of a
server, in accordance with one embodiment of the invention.

[0062] FIG. 6 is an exemplary block diagram illustrating a data server managing
simultaneous connections to multiple RIAs, in accordance with one embodiment of the
invention.

[0063] FIG. 7 is an exemplary block diagram illustrating real-time transmission of data
via a local or wide area network between a spreadsheet application and a RIA, in
accordance with one embodiment of the invention.

[0064] FIG. 8 is an exemplary block diagram illustrating a system implementation, in
accordance with one embodiment of the invention.

[0065] FIG. 9a, b, c is an exemplary flowchart illustrating one method of operation of a
client and a server, in accordance with one embodiment of the invention.

[0066] FIG. 10 is an exemplary block diagram illustrating a prior art system
implementation.

[0067] FIG. 11 is an exemplary block diagram illustrating a system implementation, in
accordance with one embodiment of the invention.

[0068] FIG. 12 is an exemplary block diagram illustrating a system implementation, in

accordance with one embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0069] The following description is presented to enable any person skilled in the art to

make and use the invention, and is provided in the context of particular applications of

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

- 18 -

the invention. Various modifications to the disclosed embodiments will be readily
apparent to those skilled in the art, and the general principles defined herein may be
applied to other embodiments and applications without departing from the scope of the
present invention. Reference to various embodiments and examples does not limit the
scope of the invention, which is limited only by the scope of the claims attached hereto.
Additionally, any examples set forth in this specification are not intended to be limiting
and merely sct forth some of the many possible embodiments for the claimed invention.
[0070] The program environment in which a present embodiment of the invention is
executed illustratively incorporates a general-purpose computer or a special purpose
device such as a hand-held computer, telephone or PLC. Details of such devices (e.g.,
processor, memory, data storage, display) may be omitted for the sake of clarity.
[0071] Tt is also understood that the techniques of the present invention may be
implemented using a variety of technologies. For example, the methods described
herein may be implemented in software executing on a computer system, or
implemented in hardware utilizing either a combination of microprocessors or other
specially designed application-specific integrated circuits, programmable logic devices,
or various combinations thereof. In particular, the methods described herein may be
implemented by a series of computer-executable instructions residing on a suitable
computer-readable medium. Suitable computer-readable media may include volatile
(e.g., RAM) and/or non-volatile (¢.g., ROM, disk) memory, carrier waves and
transmission media (e.g., copper wire, coaxial cable, fiber optic media). Exemplary
carrier waves may take the form of electrical, electromagnetic or optical signals
conveying digital data streams along a local network, a publicly accessible network
such as the Internet or some other communication link.

[0072] In reference to the example embodiments shown in the figures, it is understood
that simplified examples were chosen for clarity. Single instances of an element (e.g. a
RIA, a server, a client, a data source, a data sink, etc.) appearing in the figures may be
substituted for a plurality of the same element, and still fall within the scope of the

present invention.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-19-

[0073] Accordingly, in one aspect, the present invention provides a method of
providing real-time data to a RIA, the method comprising: producing data at a data
source; propagating the data to a server; collecting the data at the server; creating a
persistent connection from the RIA to the server; and subscribing the RIA to subscribed
data, wherein the subscribed data comprises at least some of the data collected at the
server, wherein the server propagates the subscribed data to the RIA through the
persistent connection as the data is collected at the server. The method may further
comprisc sending RIA-originated data to the server. The RIA-originated data may
contain at least one change request to the data or at least one command to the server
through the persistent connection. Further, the data may be propagated through at least
one intermediate component. The server may receive the at least one change request
and transmit the at least one change request to the data source. The at least one change
request may be transmitted through the intermediate component. The intermediate
component may be an intermediate hardware component or an intermediate software
component. Optionally, the RIA may subscribe to the subscribed data. Producing data
at the data source and propagating the data to the server may be concurrent with
collecting the data at the server. The RIA may perform an action based upon the data,
such as a calculation or a modification of a graphical representation. The RIA may
provide a visual representation of the data on a user display, and a user may interact
with the visual representation to generate RIA-originated data. The visual
representation may be a program running within a RIA framework. The RIA-originated
data may instruct the server to perform an action, such as to shut down the server, or to
alter its behavior, such as to alter which data arrives from the server.

[0074] For example, RIA-originated data may be as a result of user interaction, a timer
gvent, a response to a data change coming from the server, a script, or another non-user
generated event.

[0075] In another aspect, the present invention provides a method of providing real-
time data to a RIA, the method comprising: providing data from a data source;
propagating data from the data source to a scrver; collecting data at the server;

producing data at the RIA; creating a first persistent connection from the server to the

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-20 -

RIA; creating a second persistent connection from the RIA to the server; propagating
data from the RIA to the server through the second persistent connection; and
subscribing the RIA to subscribed data, wherein the subscribed data comprises at least
some of the data collected at the server, and wherein the server propagates the
subscribed data to the RIA through the first persistent connection. The method may
further comprise propagating data from the server to a data sink. The first persistent
connection and the second persistent connection may consist of a single connection.
The data source, data sink and server may consist of a single component, or any
combination of two or more components. The data may be propagated though at least
one intermediate selected from the group comprising: a software component, a
hardware component, and a network.

[0076] A data item may be propagated between the RIA and the server on a
subscription basis, wherein the data item is propagated immediately in response to a
change in the data item. The propagated data may be selected from the group
comprising: numeric data, non-numeric data, configuration settings and executable
commands. The RIA may perform an action based upon the data, where the action is
selected from the group comprising: a modification of a visual representation of a user
display, a calculation, production of new data, modification of existing data, storage of
data, an audible indication, execution of a script, propagation of data to the server, a
user-visible programmatic response, and a non-user-visible programmatic response.
Data produced at the RIA may instruct the server to perform an action selected from the
group comprising: modification of data within the server, propagation of the data to data
sinks connected to the server, execution of a script, storage of the data to a file system,
creation of new data, propagation of new data to data sinks connected to the server,
modification of a server configuration, modification of a server behavior, a user-visible
programmatic response, and a non-user-visible programmatic response.

[0077] In yet another aspect, the present invention provides a computer readable
storage medium storing instructions that, when executed on one or more computers,
cause the computers to perform methods of providing real-time data to a RIA as

described above.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-2 -

[0078] In another aspect, the present invention provides a system for providing real-
time data to a RIA, the system comprising: at least one data source; at least one server
comprising: a data collection component for collecting data from the at least one data
source; and a data emission component for emitting data to at least one data client; at
least one RIA; and optionally at least one data sink. The server may further comprise a
data modification component for modifying the form of the data collected by the data
collection component for emission by the data emission component. It is understood
that the at lcast onc data source and at lcast one server may be implemented in at Icast
one computer program (i.c. a single computer program, or two or more scparatc
computer programs).

[0079] The server may further comprise one or more components selected from: a data
modification component; a data creation component; a user interface component; a
computer file system interaction component; a program interaction component for
interacting with other programs running on a computer running the server; a scripting
language component to perform programmable actions; an HTTP component for
accepting HTTP requests from client programs and respond with documents as
specified by those requests, in a manner analogous to a “web server”, including the
ability to dynamically construct the document in response to the request, and to include
within the document the current values of the data resident in the server and the results
of executing statements in the server’s built-in scripting language; a synchronization
component to exchange and synchronize data with another running instance of the
server on any local or network-accessible computer, such that both servers maintain
essentially identical copies of that data, thereby enabling client applications connected
to either instance of the server to interact with the same data set; a first throttling
component to limit the rate at which data is collected; a second throttling component to
limit the rate at which data is emitted; a connectivity component to detect a loss of
connectivity to other servers, and to reconnect to the other servers when connectivity is
regained; a redundancy component to redundantly connect to multiple other servers of
identical or similar information such that data from any of the other servers may be

collected in the event that one or more of the other servers is inaccessible; and a

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-0

bridging component to “bridge” data among sources of data such that some or all of the
data within those sources will maintain similar values with one another, or bridge data
among data sources including a mathematical transformation such that the data in one
source is maintained as the mathematical transformation of the data in the other source,
including the ability to apply the mathematical transformation in both the forward and
inverse directions through a bi-direction bridging operation. It is understood that this
sct of server components could be extended by adding additional functionality to the
scrver to support other data collection and transmission mechanisms, other processing
mechanisms and other storage mechanisms.

[0080] The data collection component may collect data in one or more of the following
manners: on demand, wherein the server sends a request for some or all of the data
resident in another server, and that other server responds with the current value or
values of the requested data only once in response to the request; by subscription,
wherein the server sends a request for a subscription to some or all of the data resident
in another server, and the other server responds by sending the current value or values
of its data, and then continues to send any subsequent changes to the value or values of
the data until the server either terminates its connection to the other server, or requests
that the other server cease sending updates; on a trigger, wherein a client, script or
human (a “user”) configures the server to collect the data only if a certain trigger
condition is met, be that a timer, a time of day, a data change, a change in the system
status, a user action or some other detectable event; and passively by waiting for a
“client” application to send data to the server.

[0081] The data emission component may emit data in one or more of the following
manners: on demand, wherein a “client” application sends a request for some or all of
the data, and the server responds with the current value or values of the requested data
only once in response to the request; by subscription, wherein a client application sends
a request for a subscription to some or all of the data, and the server responds by
sending the current value or values of the data, and then continues to send any
subscquent changes to the value or values of the data until the client either terminates its

connection to the server, or requests that the server cease sending updates; and on a

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-23 -

trigger, wherein a client, script or human (a “user”) configures the server to emit the
data only if a certain trigger condition is met, be that a timer, a time of day, a data
change, a change in the system status, a user action or some other detectable event.
[0082] The data collected at the data collection component may be received using one
or more transmission protocols selected from: Dynamic Data Exchange (DDE), OLE
for Process Control (OPC), OPC Alarm and Event specification (OPC A&E), OPC
Unificd Architecture (OPC-UA), OPC Express Interface (OPC-Xi), TCP/IP, SSL
(Secure Socket Layer) over TCP/IP through a custom interface, Hypertext Transfer
Protocol (HTTP), Secure HTTP (HTTPS), Open Database Connectivity (ODBC),
Microsoft Real-Time Data specification (RTD), Message queuces, Windows
Communication Foundation (WCF), industrial bus protocols such as Profibus and
Modbus, Windows System Performance Counters, TCP/IP communication from
embedded systems, TCP/IP communication from non-MS-Windows systems, TCP/IP
communication from Linux, TCP/IP communication from QNX, TCP/IP
communication from TRON, TCP/IP communication from any system offering a C
compiler and TCP implementation, Scripts written using a built-in scripting language,
data entered by humans through a user interface, data read from a local disk file, data
read from a remotely accessible disk file, proprietary formats, user-defined formats,
and formats added through extensions to the server. An example of a proprietary
format is Wonderware SuiteLink™.

[0083] The data emitted from the data emission component may be transmitted using
one or more transmission protocols selected from: Dynamic Data Exchange (DDE),
OLE for Process Control (OPC), OPC Alarm and Event specification (OPC A&E), OPC
Unified Architecture (OPC-UA), OPC Express Interface (OPC-Xi), TCP/IP, SSL
(Secure Socket Layer) over TCP/IP through a custom interface, Hypertext Transfer
Protocol (HTTP), Secure HTTP (HTTPS), Open Database Connectivity (ODBC),
Microsoft Real-Time Data specification (RTD), Message queues, Windows
Communication Foundation (WCF), industrial bus protocols such as Profibus and
Modbus, TCP/IP communication to embedded systems, TCP/IP communication to non-

MS-Windows systems, data presented to humans through a user interface, data written

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-24 -

to a local disk file, data written to a remotely accessible disk file, proprietary formats,
user-defined formats, formats added through extensions to the server, electronic mail
(E-Mail), and Short Message Service (SMS) message format.

[0084] Further, the data collected at the data collection component may be in a format
appropriate to the transmission protocol. The data emitted from the data emission
component may be in a format appropriate to the transmission protocol. The data
collected at the data collection component and the data emitted from the data emission
component may also be in a format sclected from: parenthetical expression (LISP-like)
format, Hypertext Markup Language (HTML), eXtensible Markup Language (XML),
JavaScript Object Notation (JSON), proprictary binary format, user-definable text
format, and a format added through extension of the server.

[0085] The system may further comprise an Application Programming Interface (API)
that implements a TCP/IP connection and one or more of the data formats supported by
the server, which may assist a programmer in establishing a connection as described
above. The API may be implemented for one or more of the following platforms: “C”
programming language, “C++” programming language, Microsoft .Net programming
environment, Microsoft Silverlight RIA framework, Adobe Flash RIA framework,
Adobe Air RIA framework, a programming language supporting TCP/IP
communication (including any scripting language), and a RIA framework supporting
TCP/IP communication.

[0086] The RIA may be implemented using a RIA framework selected from: Microsoft
Silverlight, Adobe Air, and a RIA framework supporting TCP/IP communication. The
RIA framework may comprise support for: making a first long-lived TCP/IP data
connection to the server to receive data; receiving data from the server; and transmitting
data to the server over a second TCP/IP data connection. The data may be received
from the server on demand or by subscription. The first TCP/IP data connection and the
second TCP/IP data connection may be the same connection. The second TCP/IP data
connection may be a long-lived connection. The second TCP/IP data connection may

be a short-lived connection. The TCP/IP data connection to the server may be in a

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-25.

protocol selected from: an API, as described above, a direct TCP/IP connection, HTTP
and HTTPS.

[0087] The client may be implemented using a RIA framework, a web browser, a
compiled computer language, an interpreted computer language, a hardware device, or
another implementation mechanism that supports the HTTP and/or HTTPS protocols.
The client may comprise support for: making a first long-lived TCP/IP data connection
to the server to receive data; receiving data from the server; and transmitting data to the
server over a sccond long-lived TCP/IP data connection. The data may be received
from the server on demand or by subscription. The TCP/IP data connections to the
server may be in a protocol selected from: HTTP and HTTPS.

[0088] Data from the server may be received, or data to the server may be transmitted,
in one or more forms selected from: a parenthetical expression (LISP-like) format,
Hypertext Markup Language (HTML), eXtensible Markup Language (XML),
JavaScript Object Notation (JSON), a proprietary binary format, a user definable
format, and a format added by extension to the server.

[0089] The RIA framework may further comprise support for presenting a graphical
display representing the data to a user. The graphical display may comprise one or
more graphical elements selected from: a textual display, a slider, a chart, a trend graph,
a circular gauge, a linear gauge, a button, a check box, a radio button, a progress bar, a
primitive graphical object, controls supported by the RIA framework, custom controls
created to extend the RIA framework, third-party controls implemented using the RIA
framework, and a customized graphical element.

[0090] Configuration information of the graphical display may be saved on the server,
as well as loaded from the server. A graphical element may be created and modified
within the graphical display. The graphical element may be a customized graphical
element, customizable by a user, wherein the customization may be saved on the server.
Customization may be performed by a programmer, without requiring modification to
an application implemented in the RIA framework. The customized graphical element
may be available for use to a user in other graphical displays. These customizations

may be for creating new displays, modifying existing displays, all in addition to the

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

=26 -

graphical elements originally supported by the user interface application. The graphical
clement may comprise one or more properties that are user-modifiable, and which may
be selectable by a programmer. User interaction with the graphical element may cause
a user interface application to emit modifications to the data to the server. A user-only
mode may be provided to disallow creation or modification of the graphical display by a
user, and a read-only mode may also be provided to disallow interaction with the
graphical clement by the user. A system administrator may select which user and for
which graphical display a user interface application will operate in onc of the user-only
mode and read-only mode. The user may be required to identify himself, and where
such identification is required, the user interface application may operate in at least one
of the user-only mode and the read-only mode. Advantageously, the features of the
invention allow modification of the graphical displays through any user RIA terminal
and the resulting changes, upon saving, are immediately available to all other RIA
terminals connected to the server.

[0091] In another aspect, the present invention provides a method of providing bi-
directional streaming communication over the HTTP or HTTPS protocol between a
client and a server, the method comprising: generating a session ID; opening a first
socket via a first HTTP transaction from the client to the server; associating the session
ID with the first socket at the server and client; opening a second socket via a second
HTTP transaction from the client to the server; associating the session ID with the
second socket at the server and at the client; maintaining a long-lived connection on the
first socket; and maintaining a long-lived connection on the second socket, wherein a
correspondence is created among the session ID, the first socket and the second socket,
and wherein bi-directional communication is established between the client and the
Server.

[0092] The method may further comprise the client transmitting at least one data
message selected from the group comprising: configuration information, commands,
real-time information, pending data from a previous transaction, and other data. The
method may further comprise waiting for an event from the first socket; verifying

whether the event from the first socket is an error; reading available data from the first

CA 02991685 2018-01-08

WO 2016/005821 PCT/1IB2015/001765

_27-

socket when the event is not an error; processing the data to produce a result; and
optionally sending the result to the server via the second socket. The method may
further comprise the client: closing the first socket; and closing the second socket,
wherein the event from the first socket is an error. The method may further comprise
the client: waiting for a client-generated event; processing the client-generated event to
produce a result; and optionally sending the result to the server via the second socket.
The client-generated event may be selected from the group comprising: an internally-
generated stimulus, a result of user activity, a timer, and an external stimulus. The
method may further comprise the client: marking data for transmission to the server as
pending; closing the second socket; opening a new second socket; and associating the
new second socket with the session ID.

[0093] The method may further comprise the server: waiting for an event from the
second socket; verifying whether the event from the second socket is an error; reading
available data from the second socket when the event is not an error; processing the data
to produce a result; and optionally sending the result to the client via the first socket.
The method may further comprise the server closing the second socket, wherein the
event from the second socket is an error. The method may further comprise the server:
waiting for a server-generated event; processing the server-generated event to produce a
result; and optionally sending the result to the client via the first socket. The server-
gencrated event may be selected from the group comprising: an internally-generated
stimulus, a result of uscr activity, a timer, a result from another connected clicnt, data
from a data source, and an external stimulus. The method may further comprise the
scrver: closing the first socket; and closing the sccond socket.

[0094] In the above method, the first HI'TP transaction may be selected from the group
comprising: a HTTP GET transaction and a HTTP HEAD transaction; and the second
HTTP transaction may be selected from the group comprising: a HTTP POST
transaction, a HTTP PUT transaction, a HT'TP PATCH transaction, and a HTTP
TRACE transaction. Preferably, the first HTTP transaction is a HTTP GET transaction,
and the second HTTP transaction is a HTTP POST transaction.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-28 -

[0095] In yet another aspect, the present invention provides a system for providing bi-
directional streaming communication over the HTTP or HTTPS protocol, the system
comprising: at least one client; and at least one server, wherein the at least one client is
adapted to implement the above-described method, and wherein the at least one server
is adapted to implement the above-described method. The at least one client may
comprise a RIA. The at least one server may comprises: a data collection component
for collecting data from the at lcast one data source; and a data emission component for
cmitting data to at least onc data client.

[0096] In yet a further aspect, the present invention provides a computer readable
memory storing instructions that, when executed on one or more computers, cause the
computers to perform a method of providing bi-directional streaming communication
over the HTTP or HTTPS protocol between a client and a server, the method
comprising the steps of the above-described method.

[0097] As described above, the HTTP protocol implements a transaction model where
each transaction is generally short-lived. Each transaction is initiated by the client, and
is specified to either transmit data to the server, or to request data from the server, but
not both.

[0098] A web client may need to transmit or receive a large volume of data. In this
case, it may implement an API that allows the client to send-and-receive the data in
incomplete chunks. That is, it may require multiple send and receive actions before the
entire data set has been transmitted. For example, a client that receives an image from a
server may receive the image in chunks of 1KB so that it can begin to render the image
before the entire image has arrived to produce a progressive rendering effect. This
behavior can be leveraged within the client to produce a continuous stream of data. The
client may make an HTTP GET request to a URL on a specially designed server (or a
standard server with a specially designed handler for that URL). The server may
respond with an HTTP header, and then hold the socket open. At any time in the future,
the server may transmit data on the socket, which will arrive at the client as an
incomplete transmission. The client can process this data and then wait for more. So

long as the server holds the socket open, the client will simply act on the expectation

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-29.

that there is more data to be received, and will process it as it arrives. The server can
transmit more information asynchronously to the client at any time without the need for
the client to repeatedly open and close HTTP connections. This mechanism is the
underlying methodology of Streaming AJAX. As disclosed above, it is uni-directional.
This mechanism does not provide high-speed communication from the client to the
Server.

[0099] One of the important innovations of the present invention is to solve the
problem of creating a high-speed connection from the client to the server. The solution
provides that the client opens an HTTP POST transaction with the server, and transmits
the necessary HTTP header information. The server will then wait for the data payload
of the POST to arrive. At any time in the future, the client may transmit data on the
open socket, effectively acting like the Streaming AJAX mechanism in the reverse
direction. The client may hold the socket open indefinitely, transmitting data as
necessary without having to repeatedly open and close HTTP connections for each new
transmission.

[0100] The server must be aware that the data will arrive as a stream, and to process the
information as it arrives. This may require custom behavior in the server.

[0101] The HTTP protocol specifies that a client must inform the server of the size of
an HTTP POST message in the HTTP headers (the content-length). It is a violation of
the HTTP protocol for the client to transmit more or less data than specified in the
content-length header. The present invention recognizes this by tracking the number of
bytes transmitted from the client to the server. The HTTP POST content length is
specified by the client to be an arbitrary number of bytes. When the client has
transmitted content-length bytes, it closes its existing connection and opens a new
connection and continues transmitting. The number of bytes in a POST message can be
large (e.g. up to 2°! bytes), so this open and close will happen very infrequently. The
result will be a slight latency in the transmission of some data, but no loss of
information.

[0102] In a preferred cmbodiment, the present invention requires two sockets, onc

handling the server-to-client communication via HI'TP GET, and the other handling

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-30 -

client-to-server communication via HTTP POST. In order for these two sockets to act
in concert to provide bi-directional streaming communication, the web server must be
aware that they are related halves of a single conversation. This relationship may be
established by the client. The client opens the HTTP GET connection first, and
includes in its URL a unique session handle (¢.g., a randomly generated GUID). When
the client subsequently opens the HTTP POST request, it includes the same session
handle in the URL. The server is then able to associate the two connections. When the
HTTP POST connection must be closed and re-opened duc to reaching the content-
length limit, the client transmits the same GUID again. The server is then able to
associate this new POST socket with the existing GET socket.

[0103] The web server needs to understand that this methodology is being employed.
It must keep track of calls to a specially designated URL for the original GET
connection, associate the session handle with that connection, and then subsequently
associate POST connections with the same session handle with that GET connection. It
may be desirable, but not necessary, for the web server to spawn a separate thread to
handle each connection pair.

[0104] Having established the GET and POST connections, the client can receive
asynchronous data transmissions from the server via the GET connection and transmit
asynchronous data to the server via the POST connection. The server does the reverse,
transmitting data via the GET connection and receiving data via the POST connection.
The behavior of both client and server are otherwise the same as if they were
communicating via a single bi-directional socket.

[0105] As will be understood by a person skilled in the art, other HTTP verbs such as
HEAD, PUT, PATCH and TRACE may also be used. It will also be appreciated, for
example, that it is possible to further modify a server to recognize other verbs or relax
protocol restrictions on the HEAD transaction to behave like a GET. So, other verbs
may be used if the server is modified to recognize the added/different behavior. Such
modifications depart from a strict implementation of the HTTP specification, yet still

fall within the present invention.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-3] -

[0106] The unexpected advantages of the present invention in regard to the system and
method for secure real-time cloud services are several. To address security concerns,
one prior art method for sharing process data on the cloud has been to use a Virtual
Private Network (“VPN”). However, from a security perspective, use of a VPN is
problematic because every device on the VPN is open to every other machine. Each
device (and each user of said device) must be fully trusted on the VPN. Security is
complex and not very good, making it virtually impossible to usc this approach for open
communication between companics. Accordingly, the present invention allows sharing
of data between third party companies without requiring that the third parties access an
existing VPN, and therefore never exposing computers and devices on the VPN to those
third parties. Furthermore, VPNSs also incur a performance penalty, either
compromising real-time performance or significant additional cost to compensate (e.g.,
by requiring additional hardware, computational resources and complexity to a system).
[0107] Further advantageously, the present invention allows users to connect plant
floor equipment to management as well as partner and third-party companies, using
software at the plant site that is configured by the client company to allow specific data
streams to be uploaded or downloaded.

[0108] The present invention may be completely software-based, and can be
implemented on existing hardware, therefore not introducing significant complexity to
an established network.

[0109] Advantageously, using methods disclosed herein, once the client/server
connection is established, the data can flow in either direction. Client users can monitor
a system in real time, affect changes, and see the effect of their actions immediately, as
if they were working on a local system. Or, if required, the system can be configured
from the plant to be one-way, read-only.

[0110] The present invention provides the ability to connect to any industrial system,
using open, standard protocols like OPC, TCP, and ODBC. Such flexibility allows
further cost reduction by fully utilizing investments in existing equipment, or enhance

new installations with cloud connectivity. Examples uses of the present invention arc

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-32.-

the addition to existing SCADA systems, enhanced function as an HMI for an
individual machine, or access RTUs or even individual embedded devices.

[0111] In combination with methods disclosed herein, the present invention supports
publish/subscribe data delivery, an event-driven model in which a client registers for
data changes one time and then receives subsequent updates immediately after they
occur. This low-latency, cloud-based system adds extremely low overhead to the
overall data transmission time, cffectively keeping throughput speeds to just a few
milliseconds (or less) more than the network propagation time.

[0112] In one embodiment, the present invention may achieve very high-speed
performance is by handling data in the simplest possible format. Providing a data-
centric design, the present system can function with various kinds of data sources and
users, such as control systems, OPC servers, databases, spreadsheets, web pages, and
embedded devices. Preferably, when a connection is made to the cloud server,
incoming data is stripped of unnecessary formatting (XML, HTML, OPC, SQL, etc.)
and passed as quickly as possible to any registered clients. At the receiving end the data
is delivered in whatever format the client requires.

[0113] With the methods disclosed herein, a RIA or web-based user interface for
secure cloud services provides anywhere-access to register for the service, configure
data connection options, and monitor usage and costs. Additionally, all data display
screens may be provided via the web-based interface. This web-based HMI allows
users to create pages from anywhere, and deploy them immediately.

[0114] Further advantageously, one of the benefits of cloud computing is its ability to
scale up or down to meet the needs of its users. The present invention can not only
handle bursts of high-speed activity in the data flow, it can also be quickly configured to
meet the needs of a growing system. Users can add data points to a particular device, or
bring on new devices, new SCADA systems, even new locations and installations
through an casy-to-use, web-based configuration interface.

[0115] The present invention is operable as a real-time industrial system, and can
maintain a suitable level of performance and security in a cloud environment. Its

sophisticated connectivity options allow the primary control system in a plant to

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-33 .

continue functioning without disruption. The result is a robust and secure feed of live
process data into an enterprise to provide opportunities for real-time monitoring,
collaboration, and predictive maintenance.

[0116] Referring to FIG. 1, in one embodiment, RIA 101 makes a data connection
directly to a program that is acting as both data source and data server 100. This could
occur where the data source is both a collector of raw data and a transmitter via a
TCP/IP protocol. An example of this would be an OPC-UA server embedded within a
PLC. Another example would be an embedded device that acts as a data source and
provides a TCP/IP server capability offering a custom TCP/IP interface. Yet another
example would be a stock market data feed that offers a TCP/IP interface.

[0117] Referring to FIG. 2, in one embodiment, another configuration comprises a
separate data source 202 and server 203. This configuration extends the communication
model by converting the data protocol of data source 202 into a TCP/IP protocol that
can be processed by RIA 201. This greatly broadens the number and type of data
sources 202 by allowing the server 203 to interact with data sources 202 that do not
provide a TCP/IP interface directly.

[0118] Referring to FIG. 3, in one embodiment, server 303 may manage connections to
more than one data source 302 and to more than one RIA 301 simultaneously. This
more complex configuration performs aggregation of data from data sources 302 and
RIAs 301 into a single data set that is accessible from anywhere on the TCP/IP network.
[0119] In another embodiment, a system may include multiple servers, interconnected
with one or more data sources and/or one or more RIAs.

[0120] Referring to FIG. 4, in one embodiment, a method of RIA behavior and control
flow is shown. The RIA does not require an explicit stopping criterion, though one or
more may be incorporated. The RIA is stopped implicitly when a user closes the web
browser or page containing the RIA. The RIA simultancously follows two flows of
control, which can be either interleaved in a single program thread or implemented in
separate program threads. The method may comprise additional processing specific to

the RIA.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-34 -

[0121] In the first flow of control, the RIA attempts to establish and maintain a
connection to a server, and to respond to changes in the data available from the server.
The RIA first attempts to establish a connection (Step 401). If the connection is not
successful, it simply re-tries that connection indefinitely. If the connection succeeds
(Step 402) then the RIA may subscribe to all or part of the data set (Step 403).
Alternatively, it is possible for the server to implicitly subscribe the RIA to the data set
based on the presence of a connection, in which case Step 403 may be skipped. In
addition to a subscription, thc RIA may also transmit other information to the server to
configure the behavior of the data transmission, such as a minimum time between
updates or timeout parameters on the connection.

[0122] Having once established a connection, the RIA waits for notifications of a
change in data from the server (Step 404). If a data change has occurred (Step 405)
then the RIA processes that data in some fashion (Step 407). This processing may be to
modify an internal state of the RIA, modify a graphical representation, play a sound or
any other programmatic response that the RIA designer determines. If no data change
occurs, the RIA checks to determine if the connection to the server has been lost for any
reason (Step 406). If the connection has not been lost, the RIA returns to wait for a data
change to occur (Step 404). If the connection has been lost then the RIA re-tries the
connection to the server (Step 401).

[0123] Simultaneously with Steps 401 through 407, the RIA may also accept user
input, allowing the user to generate changes in the data that can be propagated back to
the server. The RIA waits for user input (Step 420) either in a separate program thread
or multiplexed with Steps 401 through 407.

[0124] FIG. 4 exemplifies a separately threaded method. If user input has occurred
(Step 421) then the RIA can attempt to transmit the resulting data to the server. It does
this by first checking to see if the server is connected (Step 422). If so, the RIA
transmits the new data to the server (Step 423). If not, the RIA waits for more input
(Step 420). The check for the server connection (Step 422) may be implicit in the

attempt to transmit the data, in which case Steps 422 and 423 are combined in practice.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-35.

[0125] The RIA may also be non-interactive such that user input is not accepted, in
which case Steps 420 to 423 can be omitted.

[0126] Referring to FIG. 5, in one embodiment, the method of operation of a data
server is shown. The server may be simultaneously collecting data from zero or more
data sources while serving data to zero or more RIA connections. The two main flows
of control can be implemented in separate threads, or by interleaving the two flow
control paths within a single thread.

[0127] In order to intcract with a data source, the server must first cstablish a
connection to that data source (Step 501). Normally, the server initiates this connection
to the data source. In some cascs, the data source may initiate the connection to the
server. If the connection succeeds (Step 502), the server begins collecting data from the
data source (Step 503). If the connection fails, the server re-tries the connection to the
data source (Step 501). If the data source is the initiator of the connection to the server,
then Steps 501 and 502 collapse to a single wait state and the server passively waits for
the data source to connect. The data collection (Step 503) will follow a method
appropriate to the data source, and may differ from one data source to another. The
server can be made to accommodate any data source whose data can be represented in
the server. If new data becomes available from the data source (Step 504), the server
converts that data to the server’s internal data representation. This allows the server to
aggregate data from a variety of data sources using different data representations. Step
506 can be omitted in the simple case where the data source, server and RIA all use the
same data representation. The server then attempts to transmit the data to each RIA.
The server may first establish that a RIA is connected (Step 507). If one or more RIAs
are connected, the server converts the data to a representation suitable for the RIA (Step
508) and transmits that data to each connected RIA (Step 509). If no RIA is connected,
the server continues collecting data from the data source (Step 503). The server repeats
this sequence (Steps 501 - 509) indefinitely. The server may choose not to collect data
from a data source when no data sink is connected to the server that requires data from

that data source.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-36 -

[0128] Simultaneous with, or interleaved with, collecting data from the data source, the
server also manages connections from RIAs. The server waits for a connection from an
RIA (Step 520). When an RIA attempts to connect to the server (Step 521) the server
accepts the connection (Step 522) and continues to wait for connections from other
RIAs. While waiting for an RIA to connect, the server must also determine whether an
existing RIA connection has disconnected (Step 523). If an RIA has disconnected, the
RIA connection is removed from any tracking in the server (Step 524) so that no
attempt 1s made in future to transmit data (Step 509) to the disconnected RIA. The
server repeats this sequence (Steps 520 - 524) indefinitely. The server may apply
acceptance criteria when the RIA attempts to connect (Step 522) such that the server
may refuse the connection for any reason, such as an authentication failure or a server-
applied limit on the maximum number of concurrent connections from RIA instances.
[0129] Simultaneously with, or interleaved with, collecting data from the data source
and managing new connections from RIAs, the server may also receive data from RIAs
already connected. The server waits for data to arrive from the RIA (Step 530). When
new data arrives (Step 531), the server converts this data into the server’s internal data
format (Step 532). The server then determines if any RIA is currently connected (Step
533). The server then converts the data to a format suitable for receipt by the RIA (Step
534) and transmits the data to each currently connected RIA (Step 535). The server
then determines if any data source that requires this change of information is currently
connected (Step 536). For each data source requiring the information that is currently
connected to the server, the server converts the data to a format suitable for that data
source (Step 537) and transmits the data (Step 538). The server repeats this sequence
(Steps 530 - 538) indefinitely.

[0130] Steps 501 through 509 can be replicated repeatedly for each data source to
which the server may connect.

[0131] Steps 520 through 524 can be replicated repeatedly for each RIA from which

the server may receive a connection.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-37 -

[0132] Steps 530 through 538 may be replicated for each connected RIA, or may be
multiplexed such that Step 530 waits simultancously for all connected RIAs at once, or
any combination of these options.

[0133] It is understood that the methods exemplified in FIG. 4 and FIG. 5 may be
modified to include additional capabilities, including: explicit stopping conditions for
both the RIA and the data server; the ability of the server to wait passively for a data
source to connect to the server; the ability of the server to actively connect to the RIA;
the ability of the server to simultancously manage connections to multiple data sources;
the ability of the server to simultaneously manage connections to multiple RIAs; and
the ability of the server to simultancously receive data from multiple RI1As.

[0134] Referring to FIG. 6, in one embodiment, the data server’s 603 ability to
simultaneously manage connections to multiple RIAs 601 advantageously allows for
RIAs 601 to communicate among one another through the server. Any information
transmitted from RIA 601 to server 603 will be treated by the server as if the RIA 601 is
a data source, and will propagate that data to any other RIAs 601 that are connected to
the server and have subscribed to that data. Surprisingly, this effectively creates a
network of RIAs intercommunicating in real time. In fact, server 603 may be used to
enable communication among any number of client applications, using any combination
of protocols that the server supports.

[0135] Referring to FIG. 7, in one embodiment, a substantial benefit of this invention is
the ability to present data in RIA 701 that originates from sources that cannot otherwise
be accessed via a network. In this embodiment, data originating in spreadsheet
application 705, such as Microsoft Excel, may be transmitted via a local or wide area
network, which was not possible prior to the present invention. Data transmission from
Microsoft Excel is limited to DDE, RTD or ad-hoc communication through fragile
scripts. No protocol supplied by Microsoft Excel, including DDE, RTD and ad-hoc
communication through scripts, enables real-time communication with a RIA. The
invention allows any application to communicate in real time with the spreadsheet data
over any TCP/IP network, vastly broadening the scope of applications for spreadshect

data. The combination of this communication ability with RIA 701 offers the ability to

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-38 -

have multiple simultancous users interacting with a single spreadsheet through a simple
web browser connection. This same functionality extends to any protocol that server
703 supports.

[0136] When running a RTA within a web browser, the RIA must be served to a web
browser using a web server. That is, the user enters a URL into a web browser, or
clicks a link within a web page for that URL, causing the web browser to load a web
page containing the RIA. The URL is serviced by a web server such as Microsoft [IS™

or Apache™. The sequence of cvents when loading and connecting the RIA is thus:

1. The user selects a URL in the web browser
2. The web browser loads the page containing the RIA from the web server
3. The web browser starts the RIA

4. The RIA connects to the data server via TCP/IP

5. The RIA subscribes to data in the data server
6. The data server begins transmitting data according to the subscription
7. Data service continues until the RIA disconnects or is otherwise stopped

[0137] This sequence requires that a web server be present and configured to serve the
RIA. It may be convenient to cmbed the web scrver capability within the data server to
reduce the number of system components and to more tightly intcgrate the web
functions with the data functions of the RIA.

[0138] It will be readily apparent to those skilled in the art that the RIA may be
executed from an embedded browser or a separate non-browser host (sometimes
referred to as an out-of-browser mode for the RIA) to launch a RIA session. The URL
and web browser may not be evident to the user. Accordingly, the first three steps in
the sequence of events above may be modified to reflect these alternate embodiments.
[0139] In the present invention, a RIA may be any application written using a RIA

framework that is capable of using or generating data.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-39.

[0140] In one embodiment, the RIA displays real-time data visually to a user. The
visual components may be gauges, trend graphs, progress bars, buttons, images and
other visual representations common in desktop applications. Since there is a wide
variety of possible representations, and the most suitable representation for a particular
data set will differ from the most suitable representation for another data set, the RIA
should be user-configurable. This means that the user may be presented with a visual
configuration tool that allows him to associate data with visual “objects”. A collection
of these visual objects can be arranged together into a visual “page” commonly used to
display related information. The user could then create multiple pages to display
different sets of related information.

[0141] In order to provide to the user the ability to customize the data visualization, the
RIA must provide either integrated or separate customization functionality, more
commonly referred to as an editor. This editor provides a means by which the user
specifies the visual design of pages displaying the real-time data. The editor may also
provide the ability to design specialized versions of visual objects.

[0142] The information regarding the design of individual visual objects and the design
of the visual pages should be stored by the web server. This allows the user to create
data visualization that can be viewed by any other user with the necessary access
privileges at the web server. The RIA interacts with the web server to store and retrieve
documents stored in a format such as XML. The transmission of this information may
be performed either through an existing real-time data connection or using a separate
HTTP connection. A built-in web server within the data server simplifies the
implementation of this transmission, but is not necessary.

[0143] In one embodiment of the invention, a system implementing the methods of the
invention comprises the following software applications:

L. Cogent DataHub™ (Cogent Real-Time Systems Inc.) acting as the data server
2. Cogent DataHub (Cogent Real-Time Systems Inc.) acting as the web server

3. Microsoft Silverlight (Microsoft Corp.) acting as the RIA framework

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

- 40 -

4. DataHub API for .Net (Cogent Real-Time Systems Inc.) acting as a protocol

implementation layer for Microsoft Silverlight

5. DataHub WebView™ (Cogent Real-Time Systems Inc.) acting as a RIA for

display of real-time data in a web browser

6. DataHub WebView (Cogent Real-Time Systems Inc.) acting as a display

editor for visual object and page design

[0144] In addition, Cogent DataHub may send and receive data from a variety of data

sources, including:

L. Microsoft Excel™ (Microsoft Corp.) acting as a spreadsheet application
2. OPC-DA scrver (various manufacturers) acting as a data communication
interface

3. OPC-UA server (various manufacturers) acting as a data communication
interface

4. OPC Xi server (various manufacturers) acting as a data communication
interface

5. ODBC server (various manufacturers) acting as a database interface

[0145] Referring to FIG. &, in one embodiment, depending on the particular
implementation, zero or more data sources 801 are attached to the Cogent DataHub™
802, which in turn is attached to a Cogent DataHub WebView™ RIA 803 for delivering
real-time data displays.

[0146] In alternate embodiments of the invention, the RIA framework may be any RIA
framework capable of supporting a persistent network connection. Examples of
alternate such RIA frameworks include Adobe Flash™ and Adobe Flex™. It is
appreciated that other RIA frameworks may also be suitable.

[0147] The RIA may be any application created using the RIA framework that can
consume or produce data using the server’s TCP/IP communication protocol.

[0148] The RIA framework could be integral to the web browser, as would be the case,

for example, if HTMLS5 supported the necessary TCP communication mechanism.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-4] -

[0149] The data server may be any application designed to collect data from a data
source or act as a data source itself, as long as it also supplies a TCP/IP communication
method that can be accessed by a constructed RIA.

[0150] A data source may be any application or system capable of producing real-time
data that can be converted into a format suitable for representation within the server.
[0151] A data source may also be any application or system capable of producing non-
rcal-time data that can be converted into a format suitable for representation within the
server. The server can poll this data repeatedly or collect it by subscription to provide
the data to a RIA even in the case that the original data is not real-time. For example, a
database management system (DBMS) is generally not real-time, but the data can be
polled repeatedly to create a periodically updating data set within the server, thus
supplying a RIA with a pseudo-real-time view of the data within the DBMS.

[0152] The server and the data source may be combined into a single application, as
may be the case with an OPC-UA server, or with an embedded device that offers access
to its data via a TCP/IP connection.

[0153] The web server may be any application capable of serving the web page
containing the RIA.

[0154] A program developed using any compiled or interpreted computer language that
can open and interact with a TCP/IP socket may be used in place of a RIA, which may
or may not run within a web browser. Similarly, the methods of the present invention
may also be implemented using code executable directly in a browser, in an out-of-
browser host, or through an extension of the browser, in place of a RIA, such that the
browser, out-of-browser host, or browser extension can open and interact with a TCP/IP
socket, make a persistent network connection and, optionally, offer graphical
capabilities.

[0155] Referring to FIG. 9, in one embodiment, a mechanism for bi-directional
streaming communication between a client and a server using two HTTP connections is
shown. It is assumed that the server is already running, and is listening for TCP
conncctions on a port agreed upon by the server and the client. For clarity, specifics of

the HT'TP protocol arc not shown or described, as that is well-defined in the industry,

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-4) .

and known to a person skilled in the art. Also, the handling of immaterial error
conditions is omitted.

[0156] Asshown in FIG. 9a, the client starts, or begins, its attempt to communicate
with the server via bi-directional HTTP streaming (Step 900). First, the client generates
a GUID to identify the present communication session (Step 901). Alternatively, the
server could generate a GUID at the client’s request (not shown). This GUID will be
uscd by the scrver to associate the GET and POST sockets with onc another and with
the client connection. Next, the client opens an HTTP GET transaction, supplying its
GUID as part of the URL (Step 902). The server records this GUID and associates it
with the HTTP GET socket (Step 903). The server holds this socket open. The client
then opens an HTTP POST transaction with the server (Step 904), again supplying the
GUID as part of the URL, or in the body of the POST message. The client specifies the
content-length of this HTTP POST transaction to be an arbitrary number of bytes that is
acceptable to the server. The server associates the HTTP POST socket with the GUID,
therefore creating a correspondence among the client, the POST socket and the GET
socket.

[0157] Once the POST and GET sockets have been successfully opened, the client may
transmit configuration information and any data pending from a previous connection via
the POST socket (Step 906). The client may choose to send configuration information
only on the first connection of the POST socket for a given session. On subsequent
POST socket connections, there may be data that was previously undeliverable that is
delivered at this point. If any commands or data were transmitted in Step 906, then the
server processes them (Step 907) and generates zero or more responses that the client
will receive in Step 908.

[0158] Once the connection is fully established, the client and server respectively enter
wait states where they wait either for data arriving from the other, or for events that
would cause them to emit data to the other. That is, the server may wait for data to
arrive from the client, or for a locally generated (server-generated) event to occur (Step

919), as illustrated in FIG. 9c. Similarly, the client may wait for data to arrive from the

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-43 .-

server, or for a locally generated (client-generated) event to occur (Step 908), as
illustrated in FIG. 9b.

[0159] Referring to FIG. 9D, the client will subsequently enter a loop where it waits for
an event (Step 908) and processes it according to its type (Step 909). If the event is an
event originating from the GET socket, the client will first check whether that event is a
socket error (Step 911). If so, the client closes its end of the GET and POST sockets
(Step 915), effectively closing the communication session with the server, and trics to
create a new scssion with the server by returning to Step 902, or alternatively to Step
901 (not shown). If the event is an event originating from the GET socket and is not an
error, the client reads the available data from the socket (Step 912), and processes it in
some manner (Step 913). This processing may generate a result that can be transmitted
back to the server via the POST socket (Step 914). The result may be a nil result, in
which case nothing is transmitted back to the server. Alternatively, the client may
optionally choose to transmit nothing back to the server.

[0160] The result transmission via the POST socket in Step 914 could fail. At least one
failure mode is an HTTP protocol violation. That is, once the client has transmitted
content-length bytes to the server, it is a violation of the HTTP protocol to send more
bytes on the POST socket. Subsequent attempts to send data on the POST socket will
fail, so the client checks for this and other failures (Step 916). If a transmission failure
occurs then the client will mark the data for this transmission as pending (Step 917), and
will close the POST socket (Step 918). The client will then attempt to re-open the
POST socket by returning to step 904. In this instance, the client should not close and
re-open the GET socket, since that would terminate the entire session and would cause
the pending transmission to be lost. By re-opening the POST socket, the client and
server maintain their session even though a socket reconnection is taking place.

[0161] If the client generates an event internally, or as a result of user activity, a timer,
or other external stimulus that requires communication with the server in Step 909, then
the client will perform whatever processing is required to compute data to be

transmitted to the server (Step 910). This data is effectively the result data of the cvent,

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-44 -

which is then transmitted to the server (Step 914) and follows the same transmission
method as for result data from a socket event.

[0162] The client may loop indefinitely, establishing the connection to the server and
re-establishing that connection should it fail. The client may choose to signal failures
and reconnection states to a user or other program, or may simply reconnect to the
server without notification.

[0163] After Step 907, the server will also enter a loop where it waits for an event in
Step 919 and processes it according to its type (Step 920), as illustrated in FIG. 9¢. If
the event is an event originating from the POST socket, the server will first check
whether that event is a socket error (Step 922). If the event is a socket error, the server
closes its end of the POST socket (Step 923), effectively requesting that the client re-
establish its POST socket. This allows the client to maintain its session with the server
by only re-establishing one of the two communication sockets. If the event is an event
originating from the POST socket and is not an error, the server reads the available data
from the socket (Step 924), and processes it in some manner (Step 925). This
processing may generate a result that can be transmitted back to the client via the GET
socket (Step 926). The result may be a nil result, in which case nothing is transmitted
back to the client. Alternatively, the server may optionally choose to transmit nothing
back to the client.

[0164] The resultant transmission via the GET socket in Step 926 could fail. The
server checks for transmissions failures (Step 927), and if a transmission failure occurs
then the server will close both the POST and GET sockets, effectively ending the
session (Step 928). The server does not attempt to re-establish a connection with the
client, but rather waits for the client to re-establish the connection if necessary. This
effectively will return the client/server system to Step 902 or, alternatively, to Step 901
(not shown). It may be desirable in some implementations to maintain the same GUID
through multiple sessions, although this is not a required feature.

[0165] If the server generates an event internally, or as a result of user activity, a timer,
another connected client, data from a data source, or other external stimulus that

requires communication with the client in Step 919, then the server will perform

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-45 -

whatever processing is required to compute data to be transmitted to the client (Step
921). This data is effectively the result data of the event, which is then transmitted to
the client (Step 926) and follows the same transmission method as for result data from a
socket event.

[0166] As would be readily appreciated by a person skilled in the art, there can be
errors handling in Steps 901 through 907 that would close any open sockets and re-start
the connection process at Step 901. Although these errors handling have not been
illustrated in FIG. 9 for clarity, they would be included in a preferred embodiment. As
will be appreciated by a person skilled in the art, the client may choose to terminate the
connection (¢.g. closing the browser client), and any such termination may be handled
by the server in the same manner as a transmission error. That is, the server will close
both the GET and POST sockets, terminate the session and wait for a client to connect
(Step 900).

[0167] The client and server can implement wait states in any number of ways,
including creating a new process thread to perform a synchronous wait or performing a
multiple-event wait in a single thread. These are implementation details that will
depend on choices made during the client and server implementations, but do not depart
from the scope of the present invention.

[0168] Surprisingly, a substantial benefit of the present invention is the ability to
provide high-speed, bi-directional communication between a client and server using a
HTTP or HTTPS-mediated socket, while overcoming limitations in the HTTP protocol,
and also maintaining operability with existing browser and RIA technology.

[0169] In an alternate embodiment, the present invention and the bi-directional
communication method is also applicable to web client/servers employing a RIA.
[0170] Advantageously, the present invention is operable on any device that is capable
of opening an HTTP or HTTPS-mediated socket. For example, the client/server
implementation may comprise multiple servers propagating data in real-time over a
network or the Internet, optionally in a secure manner via HTTPS, without any major
and therefore costly changes in existing infrastructure (¢.g., sccurity policies, firewalls,

software, hardwarc, ctc.).

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

- 46 -

[0171] Referring to FIG. 10, a prior art system for providing direct communication
between a server 1002 and a client 1001 separated by a network 1007 is shown, as
envisioned by a traditional SCADA system. In this example implementation, the server
1002 and client 1001 are situated behind firewalls 1003, 1004 to protect from
unauthorized access from any third parties (not shown) on network 1007. Arrow 1006
symbolically shows client 1001 originating a request for data located on server 1002,
and arrow 1005 shows server 1002 waiting for incoming requests from client 1001. In
order for the client 1001 to access data on server 1002, the server’s firewall 1003 must
be configured to allow an incoming connection from outside firewall 1003. In this
example, server 1002 is exposed to incoming requests originating from network 1007,
and therefore firewall 1003 provides a point of attack or vulnerability that may be
exploited.

[0172] When the network 1007 is a private network, the assumption is that a concerted
malicious attack on the server 1002 through the open port on the firewall 1003 is
unlikely and an acceptable risk. However, when the network 1007 is a public network
(e.g. the Internet), the likelihood of a concerted attack on the server 1002 is high, and
the risk is unacceptable.

[0173] Referring to FIG. 11, in one embodiment, a system for providing secure, real-
time data over a network 1107 is shown. In contrast to the prior art system shown in
FIG. 10, the novel system shown in FIG. 11 illustrates the differences between a direct
client/server connection, and a cloud-based system as provided by the present invention.
[0174] In the present invention, a cloud server 1100 is situated away from both the
server 1102, acting as an authoritative client, and the user client 1101 (non-
authoritative). Both the server 1102 and client 1101 initiate outbound connections, as
shown by arrows 1105, 1106, to the cloud server 1100, through their respective
firewalls 1103, 1104. The firewalls 1103, 1104 are not required to provide any open
inbound ports. This configuration is equally secure regardless of whether the network
1107 between server 1102 and client 1101 is private or public.

[0175] The server or authoritative client 1102 decides what data to send to the cloud

scrver 1100. Further, cach scrver 1102 can sct cach data strcam to be onc-way or two-

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-47 -

way, and can send some or all of its data, depending on its needs. Preferably, this
configuration is set by the customer at the authoritative client by way of a connector,
provided in the form of a software application described above (the DataHub).
Accordingly, configuration may be set entirely in the connector, not at the cloud server,
thereby optionally providing an additional layer of security should the cloud server be
compromised.

[0176] Also shown in FIG. 11 arc multiple servers 1102 acting as authoritative clients,
which is an unexpected result made possible by the present invention. Specifically, the
present invention allows multiple servers 1102 to act as authoritative clients for their
own data sets (not illustrated), and aggregated at the cloud server 1102 for efficient
consumption by one or more clients 1101. Surprisingly, this allows for servers 1102 to
be located in physically separate locations from each other (e.g. in different plant
facilities located around the world), while producing a unified data set at the cloud
server such that the client(s) 1101 see the unified data set as if it were produced from a
single system. That is, distributed system appears to the client as a single system. Such
functionality is not possible in traditional SCADA systems. This is advantageous at
least to provide convenience and the ability to simultaneously monitor an entire network
of systems, and to share data among the servers 1102. Examples of such applications
are broad, for instance coordinated operation of vehicle fleets, networks of devices,
global financial trading systems and redundant parallel systems.

[0177] When an authoritative client (server 1102) connects to the cloud server 1100, it
does not know whether the server 1100 contains the data items that the authoritative
client 1102 intends to publish, and where those data items do exist in the server 1100,
the client 1101 does not know their current values. Typically a client will rely on a
server to provide the items and their values, but in the case of an authoritative client
1102 it is the client 1102 which must provide the items and their values. Thus, upon an
initial connection, the authoritative client 1102 must emit its entire data set and current
values, ignoring and overwriting any values already present in the server 1100. The
current invention optionally provides this behavior, allowing any client to select

whether it will be authoritative for a particular data set.

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

- 48 -

[0178] Similarly, when an authoritative client 1102 disconnects from the cloud server
1100, it must be able to inform other connected clients that the authoritative source of
data is no longer providing data. The authoritative client 1102 informs the server that it
is authoritative, and additionally instructs the server 1100 to alter the properties of the
data items in the server when the client disconnects to indicate that those data items are
“not connected”. The cloud server 1100 must co-operate in this process, since the
authoritative client has alrcady disconnected before the data items are marked as “not
connected”, and the server must propagate this change of status (sometimes referred to
as “quality”) to other connected clients.

[0179] The combination of these important features ensures that the data on the server
1100 is either consistent with the data on the authoritative client 1102, oritisin a
known error state to indicate that the authoritative client 1102 is not connected to the
cloud server 1100.

[0180] Referring to FIG. 12, in another embodiment, a system is shown that is similar
to that shown in FIG. 11, but in a more visually descriptive manner. In particular,
exemplary types of servers may comprise embedded devices, SCADA systems or
various connected consumer products, all producing, propagating, sending and/or
receiving data (some in real time, some not). As illustrated in FIG. 12, these devices are
behind firewalls without open incoming firewall ports, thereby eliminating direct
attacks from would-be hackers on the public network (not shown). On the same public
network, a secure cloud server may receive outbound connections initiated by the
device behind the firewalls, as illustrated symbolically by the large arrow across the
firewall to the cloud server. Within the large arrow, data may be sent safely back to the
devices.

[0181] Also shown in FIG. 12 is another aspect of the present invention, whereby the
cloud server may employ methods described above to send data to RIAs for predictive
maintenance or HMI displays, for data analysis (¢.g. generating key performance
indices), or to databases, or to provide alerts (e.g. via email or SMS).

[0182] In another embodiment (not shown), a fircwall is not provided in front of the

scrvers, clients or devices on the network, where the scrvers/clients/devices arc

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

-49 .

configured to reject inbound connection requests. This is to be contrasted with
employing firewalls that ignore inbound connection requests to the server/client/device
behind the firewalls. In this embodiment, the operating system of the
server/client/device responds to inbound connection requests, after a fashion, with a
‘nobody is listening’ response. While this configuration may be less secure than
employing firewalls, there are situations where the server/client/device is resource
constrained to the point where it is not possible to include a firewall. Surprisingly, the
present invention thus provides a method to provide a more sccure method of
communication with resource-constrained devices.

[0183] It should be understood that when referring to a network residing between, for
instance, a server and a client, the network itself may comprise a series of network
connections; that is, there is no implication of a direct connection. Similarly, any
server, client or device ‘on’ the Internet is understood to mean that the server, client or
device is connected to a network connection that is accessible to the Internet.

[0184] It is also understood that an authority on a data set, or an authoritative holder of
a data set, refers to the originator of the data set, and all other recipients of the data set
hold non-authoritative copies. In the present invention, a server, client or device can
inherit authority from another server, client or device; for example, the cloud server
may act as an authority on a data set for another client/end-user device; the client/end-
user device sees the cloud server as the authority on the data set, but unknown to the
client/end-user device, the cloud server may be propagating the data from a “true”
authoritative client/end-user device connected to the cloud server. It is appreciated that
the present invention allows for a myriad of combinations of servers, clients, and
devices interconnected and inheriting authority over multiple data sets shared among

them.

CA 2991685 50 REPLACEMENT PAGE - 12/09/22

CLAIMS

1. A method of receiving a data set, the method comprising:
establishing a first network connection between a server and a first client;

receiving at the first client a first data set from the server over the first network

connection; and

providing, to an interface of the first client, the first data set, wherein (i) data in the
first data set is provided from data in a second data set received at the server from a second
client via a second network connection, (ii) the second network connection is established by
the sending of an inbound connection request by the second client to the server, the second
client being inaccessible via inbound connection requests, and (iii) the data in the first data set
is represented according to a first data representation independent of a data representation

corresponding to the second client.

2. The method of claim 1, wherein the data in the second data set is represented
according to the data representation corresponding to the second client.

3. The method of claim 2, wherein the server converts the second data set into
the first data set.
4. The method of any one of claims 1 to 3, wherein the first data representation is

independent of a data representation specific to the first client.

5. The method of any one of claims 1 to 4, wherein the first data representation is
an abstract representation independent of data representations specific to individual clients of

the server.

6. The method of any one of claims 1 to 5, wherein the first client displays a

visualization of the first data set to a user.

7. The method of claim 6, wherein the first client displays the visualization using

a web browser operating on the first client.

Date Recue/Date Received 2022-09-12

CA 2991685 51 REPLACEMENT PAGE - 12/09/22

8. The method of claim 6 or 7, wherein the first client displays the visualization

substantially in real time relative to the sending of the second data set by the second client.

9. The method of any one of claims 6 to 8, wherein, based on the displayed

visualization, the user of the first client performs an action.

10. The method of claim 9, wherein the user of the first client performs the action

when the displayed visualization satisfies a condition.

11. The method of claim 10, wherein the displayed visualization includes an
indication of a value, and the condition is satisfied when the indication of the value reaches a

threshold.

12. The method of any one of claims 9 to 11, wherein during the displaying of the

visualization, the first client and the second client are in physical vicinity of each other.

13. Themethod of any one of claims 6 to 12, wherein the second data set includes
data streaming from a data source, and wherein the first data set includes a stream of data
corresponding to the streamed data from the data source.

14. The method of claim 13, wherein the first client continuously updates the
visualization based on the data stream in the first data set.

15. Themethod of claim 14, wherein the first client continuously updates the
visualization substantially in real time relative to the streaming of data from the data source.

16. Themethod of claim 15, wherein the user of the first client performs an action

when the displayed visualization satisfies a condition.

17. Themethod of claim 16, wherein the displayed visualization includes an
indication of a value, and the condition is satisfied when the indication of the value reaches a

threshold.
18. A system of providing a data set, comprising:
a processor configured to:

establish a first network connection with a first client; and

Date Recue/Date Received 2022-09-12

CA 2991685 52 REPLACEMENT PAGE - 12/09/22

transmit a first data set to the first client over the first network connection so as to
provide, to an interface of the first client, the first data set, wherein (i) data in the first data set
is provided to the processor from data in a second data set received by the processor from a
second client via a second network connection, (ii) the second network connection is
established by the sending of an inbound connection request by the second client to the
processor, the second client being inaccessible via inbound connection requests, and (iii) the
data in the first data set is represented according to a first data representation independent of a

data representation corresponding to the second client.

19. A non-transitory computer-readable medium having stored thereon one or
more sequences of instructions for causing one or more processors to perform the method
according to any one of claims 1 to 17.

20. A system comprising:

one or more processors; and
a computer-readable storage medium coupled to the one or more computer
processors, the computer-readable storage medium comprising instructions stored thereon,

wherein the instructions when executed by the one or more processors cause the one or more

processors to perform the method in any one of claims 1 to 17.

Date Recue/Date Received 2022-09-12

WO 2016/005821

Combined Data
Source and
Server
100

CA 02991685 2018-01-08

PCT/IB2015/001765

1/12

TCP/IP - Rich Internet

Application
101

FIG. 1

WO 2016/005821

Data Source
202

CA 02991685 2018-01-08

2/12

Protocol Of

Server
203

TCP/IP

PCT/IB2015/001765

FIG. 2

Rich Internet
Application
201

WO 2016/005821

Data Source
302

Data Source
302

CA 02991685 2018-01-08

Data Source
302

3/12
Protocols of
P Data Server
Sources 303

TCP/IP

PCT/IB2015/001765

Rich Internet
Application
301

FIG. 3

Rich Internet
Application
301

Rich Internet
Application
301

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

4/12
401
N\ Attempt to 420\ Wait for
» connect to [¢—— > userinout (€1
server P

402

Connection
Succeeded?

Subscribe to
403\ all or part

of data set

404
0 N\ Wait for

—» datato
change

Server
Connected?

Transmit
data changes
to server

¢

423

Connection
to Server
Lost?

407~_| Process
data change

FIG. 4

WO 2016/005821

501
R Connect
—— »| todata |«
source

502

Connection
Succeeded?

Collect data

No

CA 02991685 2018-01-08

5/12

Server Starts

h 4

520\ Wait for
—p RIA to <
connect

Accept

» from data
source

New Data

Available?
No vailable

Data
Source
Connection
Lost?

Yes

Yes

v

Convert data
to internal
representation

connection

I

522

523

RIA
Disconnecting?

Remove
connection

¢

No

524

PCT/IB2015/001765

530
N\ Wait for
»(data from
RIA

531

New Data
Available?

Convert data to
internal
representation

\-532

RIA
Connected?

Convert data to
RIA-suitable
representation

\ 4

Transmit data
to each RIA

(

535

WO 2016/005821

507

RIA
Connected?

CA 02991685 2018-01-08

PCT/IB2015/001765

6/12
® ©

536

508 Convert data to
4 RIA-suitable
representation

Data Source
Connected?

A

y

Convert data to data
source-swtaple N\ 537
representation

A

509\ Transmit data

y

Transmit data

to each RIA to data source N\ 538

Rich Internet
Application [\

TCP/IP PP 601

603
N\ Server
TCP/IP
CPI Rich Internet

Application [\~ g01

FIG. 6

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

7/12
Spreadsheet DDE, RTD Server TCP/IP Rich Internet
Application < C((?):\/I > 703 < > Application
705 - 701
Other Data
Sources
Various
OPC - UA 803
Server TCP/IP 802 TCP/IP /
/ (Real-Time
Data) DataHub
Cogent [« > Web View™
DDE, |
MS - Excel™ |« R1D » DataHub (Using Mi o
’ ™ < > sing Microso
COoM HTTP | “siverlight™)
(Visual
OPC - DA COM Design)
Server
Various
ODBC Server
\. | /
801

FIG. 8

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

8/12

< Client starts >—\ 900

\ 4
Client generates GUID [N_ g4

I

Client opens HTTP GET

@—» connection to server, _ 902

sending GUID

I

Server associates GET
socket with GUID | N—903

I

Client opens POST
connection to server,
(D)}——>{ sending GUID, with

content — length of [904
N bytes

I

Server associates POST
socket with GUID and \905
GET socket

I

Client sends pending data
to server via POST socket| \—906

I

Server responds to
commands via GET
socket [\—907

Client Server

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

7

Wait for client -

9/12

y

generated event or [_gqg
data on GET socket

910
¢

Compute result

909
Client Event >

915
911 Close GET and
POST sockets
912\ Read data from GET
socket

913
o Process data

!

914 Send result via
N POST socket

.

Mark data as
pending data | \~917

h 4

Close POST socket \91 8

5

916

Send
Failed?

Yes

FIG. 9B

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765

Wait for server -

10/12

\ 4

generated eventor [N_g1g
data on POST socket

921

¢

Compute result

920

Server Event

923
922
Close
POST socket
924 Read data from é
N POST socket
925~ | Process data
926\ Send result via GET |
socket
927 v
Send Yes Close POST and

Failed? GET sockets [_9028

o

FIG. 9C

CA 02991685 2018-01-08

WO 2016/005821 PCT/IB2015/001765
11/12
PE;{C%R 1005 1006
Network
1007
Server |, ’ Client
1002 1001
Firewall Firewall
1003—_| 1004~
1105 1106
Server .
(Authoritative Client) _L’ <—L Client
1101
1102 \— Network — /
. 1107 .
Server Cloud Client
(Authoritative Client) Server 11'%?
1102 1100 1191
Server / -~ /_/_\ |
itati ' ' i Client
(Authoritative Client) Firewalls Firewalls 1101
1102 1103 1104 1101

FIG. 11

WO 2016/005821

©
EH (& |
—]

Embedded
Devices

Tl

SCADA
Systems

dﬁ?@

Connectg
Products

CA 02991685 2018-01-08

12/12
)
g Hackers
o
=
Secure
Cloud
Server
w0
©
2
o
=

Hackers

FIG. 12

PCT/IB2015/001765

Predictive
Maintenance

1Y

HMI

]

Email/SMS

=y

)

OEM KPI

E

Database

O

Server
(Authoritative Client)
1102

Server
(Authoritative Client)
1102

1105

Server
(Autharitative Client)
1102

e
Firewalls
1103

‘_L
Network m /

Client
1101

Client
1101

AN

—~ —\
Firewalls

1104

Client
1101

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - CLAIMS
	Page 53 - CLAIMS
	Page 54 - CLAIMS
	Page 55 - DRAWINGS
	Page 56 - DRAWINGS
	Page 57 - DRAWINGS
	Page 58 - DRAWINGS
	Page 59 - DRAWINGS
	Page 60 - DRAWINGS
	Page 61 - DRAWINGS
	Page 62 - DRAWINGS
	Page 63 - DRAWINGS
	Page 64 - DRAWINGS
	Page 65 - DRAWINGS
	Page 66 - DRAWINGS
	Page 67 - REPRESENTATIVE_DRAWING

