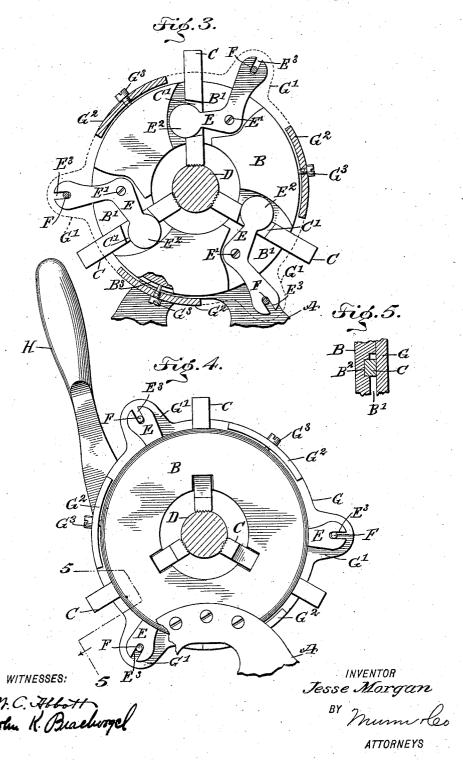

J. MORGAN. ATTACHMENT FOR TURNING LATHES. APPLICATION FILED FEB. 19, 1906.

2 SHEETS-SHEET 1.

WITNESSES:

St. C. Hlott John K. Brashvogel INVENTOR

Jesse Morgan


BY

Mum Reo

ATTORNEYS

J. MORGAN. ATTACHMENT FOR TURNING LATHES. APPLICATION FILED FEB. 19, 1906.

2 SHEETS-SHEET 2.

UNITED STATES PATENT OFFICE.

JESSE MORGAN, OF HUGHESVILLE, PENNSYLVANIA, ASSIGNOR OF ONE-HALF TO THEODORE A. BOAK, OF HUGHESVILLE, PENNSYLVANIA.

ATTACHMENT FOR TURNING-LATHES.

No. 850,035.

Specification of Letters Patent.

Patented April 9, 1907.

Application filed February 19, 1906. Serial No. 301,816.

To all whom it may concern:

Be it known that I, JESSE MORGAN, a citizen of the United States, and a resident of Hughesville, in the county of Lycoming and State of Pennsylvania, have invented a new and Improved Attachment for Turning-Lathes, of which the following is a full, clear, and exact description.

This invention relates to lathes for metal co or wood work, and is especially useful in boring and centering or as a center rest or sup-

port.

The object of the invention is to provide a simple, efficient, and durable lathe, steady-15 rest, or chuck which is easily operated manually, which may be attached without diffi-culty to lathes of the usual construction, and which will afford means for securely holding or steadying the material or work.

The invention consists in the construction and combination of parts which will be set forth hereinafter and particularly pointed

out in the claims.

Reference is to be had to the accompany-25 ing drawings, which illustrate as an example the preferred embodiment of my invention, in which drawings similar characters of reference indicate like parts in the several views, and in which-

Figure 1 is a front elevation of the inven-Fig. 2 is a vertical cross-section on the line 2 2 of Fig. 1. Fig. 3 is a vertical section on the line 3 3 of Fig. 2. Fig. 4 is a partial rear elevation, and Fig. 5 is a cross-section

on the line 5 5 of Fig. 4.

In the preferred embodiment of my invention, I provide a base or standard A, adapted to be properly mounted upon or secured to the lathe-body. An annular jaw-carrier B is carried by the base A and is secured thereto by means of screws. The jaw-carrier B is provided with recesses B', wherein are located radial grooves or channels B². Jaw-bars C, converging toward the center of the device, 45 are arranged so as to slide freely in the channels or grooves B2 and are adapted to engage with their inner extremities the work D, held or steadied thereby. The jaws C are actuated by means of bell-crank levers E, piv-50 otally secured to the jaw-carrier by means of screws E'. The levers E terminate at one

transverse grooves or recesses C' of the jaw-The other extremities of the levers bars C. E are provided with slots E3, which engage 55 with bolts or screw-pins F, carried by extensions G' of the face-plate or ring G.

The slots E³ allow the necessary play of the levers in the movement of the face-plate G relative to the jaw-carrier B. It is under- 60

stood that the slots could be provided at the fulcrums E' and the extremities at E3 pivot-

ed to the face-plate G.

It will be seen from the arrangement described that the jaw-bars C are all simultane- 65 ously moved inward or outward, so that the work engaged by the jaws is held in the center of the device, which center coincides with the longitudinal axis of the lathe-spindle and work center. The attachment may be pro- 70 vided with roughened jaws to hold the work immovable when a boring-cutter is used with a live spindle or with smooth jaws, permitting the work to revolve within them and operating in that case to steady and center the 75 same.

The annular face-plate G is arranged rotatably with reference to the jaw-carrier B and is held in position relative to the latter by means of screw-pins G³, carried by lateral 80 flanges G² and engaging with a groove B' in the periphery of the jaw-carrier B. face-plate G is provided with a handle H, suitably secured thereto, whereby the faceplate may be turned with reference to the 85 jaw-carrier, which is rigidly held by the base A, which in turn is mounted upon the lathe or boring-machine. When the face-plate is turned, the bell-crank levers E are caused to turn about the fulcrums at E', with a conse- 9c quent cam-like action of the extremities E2 upon the sides of the recesses or grooves C' in the jaw-bars C, causing the jaw-bars to move either inwardly or outwardly in the radial ${
m grooves}\ {
m B}^{
m 2}.$ The movement of the face-plate 95 about the jaw-carrier is limited in one direction by the abutting of the flanges G2 against the jaw-bars C and in the other direction by the coming together of the jaw-bars, as illustrated in Fig. 1. It is understood that when 100 the jaws have been moved inward into engagement with the work they can be secured or fastened in place by tightening the guide end in circular extensions E2, which lie in | screw-pins G3, which hold the face-plate and

jaw-carrier together, the screw-pins acting in this case as set-screws.

Having thus described the preferred form of my invention, what I claim as new, and 5 desire to secure by Letters Patent, is—

1. In an attachment for turning-lathes, a rigid jaw-carrier having means for guiding jaw-bars, converging jaw-bars having recesses in the sides, a member rotatable relatively to said jaw-carrier, said rotatable member being provided with studs, and bell-crank levers fulcrumed to said jaw-carrier and having curved extremities engaging with said recesses of said jaw-bars and having 15 slots at the other extremities engaging with the studs carried by said rotatable member.

2. In an attachment for turning-lathes, a support, a rigid jaw-carrier having means for guiding jaw-bars, converging jaw-bars, a member rotatable relatively to said jaw-carrier and having lateral extensions provided with studs, and bell-crank levers fulcrumed to said jaw-carrier having arms adapted to slide said jaw-bars and opposite arms extending laterally beyond said rotatable member, said opposite arms having slots engaging

with said studs carried by said rotatable member.

3. In an attachment for turning-lathes, a support, a rigid jaw-carrier having recesses in the face thereof, converging guide-grooves in said recesses, jaw-bars mounted in said guide-grooves and having recesses, a member adjacent to the face of said jaw-carrier and rotatable relatively thereto, said rotatable member having extensions provided with studs, bell-crank levers in said recesses of said jaw-carrier and fulcrumed therewithin, an arm of each of said levers having a curved end adapted to engage with a recess of one of said jaw-bars, and an opposite arm of each of said levers extending laterally beyond said rotatable member and having a slot adapted to engage with one of said studs.

In testimony whereof I have signed my 45 name to this specification in the presence of

two subscribing witnesses.

JESSE MORGAN.

Witnesses: Theo. A. Boak, Zella A. Moyer.