Office de la Propriéte Canadian CA 2685892 A1 2008/11/13
Intellectuelle Intellectual Property

du Canada Office (21) 2 685 892
v organisme An agency of 12y DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada

CANADIAN PATENT APPLICATION
13) A1

(86) Date de déepot PCT/PCT Filing Date: 2008/05/08

(87) Date publication PCT/PCT Publication Date: 2008/11/13
(85) Entree phase nationale/National Entry: 2009/11/02

(86) N° demande PCT/PCT Application No.: CA 2008/000833
(87) N° publication PCT/PCT Publication No.: 2008/134895
(30) Priorité/Priority: 200/7/05/08 (US60/916,613)

(51) Cl.Int./Int.Cl. GO6F 9/44(2006.01),
HO4L 12/24 (2006.01), HO4L 29/00 (2006.01)

(71) Demandeur/Applicant:
RESEARCH IN MOTION LIMITED, CA

(72) Inventeurs/Inventors:
BIBR, VIERA, CA;
BURGESS, DAVE, CA;
NEIL, TIM, CA

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

(54) Titre : APPLICATION XML PUSH ET EXECUTION A DISTANCE D'UNE APPLICATION SANS FIL
54) Title: XML PUSH AND REMOTE EXECUTION OF A WIRELESS APPLICATIONS

(57) Abregé/Abstract:

A method Is provided for faclilitating generation of a wireless application capable of receliving messages from a server-side
application. The method comprising the following steps. A structured data file defining the wireless application Is parsed for

302
Add Device Method
~ 300
304 l
\..+ Build application »
308
306 =
Notify developer
Create message | /J
Figure 3
Y
311
Create inter-op function _,/
g 314
Ribbon Alert? 12>, Enable ribbon alert in .
created message -
no
316 ~
Dialog Alerfs~YeS | Enable dialog alertin j13
created message -
no
320
Device Method-._YeS | Edit options in created | 322
Optlons’> message
Viore device no 326
methods Remove code attributes_*/
324

C anad a http.//opic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca

OPIC - CIPO 191

OPIC

e

T N §.
.l.!.\‘\-c.c..--.
. T

3 '_{,-.T'l'.
o~

CA 2685892 A1 2008/11/13

en 2 685 892
13) A1

(57) Abrege(suite)/Abstract(continued):

identifying at least one exposed function. Message definitions are generated In accordance with the exposed function for enabling
communication between the server-side application and the wireless application. At least one Interoperability functions Is
generated. Each interoperability function is associated with one of the exposed functions. The interoperability function Is configured
to execute the associated exposed function upon receipt of a message defined by a corresponding message definition.

woO 2008/134895 A1 I B0 ! A1 O A 0 0

CA 02685892 2009-11-02

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f-
International Bureau ¥

(43) International Publication Date
13 November 2008 (13.11.2008)

(51) International Patent Classification:

GO6F 9/44 (2006.01) HO4L 29/00 (2006.01)
HO4L 12/24 (2006.01) HO4Q 7/20 (2006.01)
(21) International Application Number:
PCT/CA2008/000888
(22) International Filing Date: 8 May 2008 (08.05.2008)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/916,613 8 May 2007 (08.05.2007) US

(71) Applicant (for all designated States except US): RE-
SEARCH IN MOTION LIMITED [CA/CA]; 295
Phillip Street, Waterloo, Ontario N2L 3W& (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): NEIL, Tim
|[CA/CA]; 5807 Raftsman Cove, Mississauga, Ontario
L5M 7H2 (CA). BURGESS, Dave [CA/CA]; 40 Land-
mark Court, Apt. B1, Markham, Ontario L3R 9N6 (CA).

(10) International Publication Number

WO 2008/134895 Al

BIBR, Viera [CA/CA]; 6479 McNiven Road, Box 828,
Kilbride, Ontario LOP 1GO (CA).

Agent: GOWLING LAFLEUR HENDERSON LLP;
Suite 1600, 1 First Canadian Place, 100 King Street West,
Toronto, Ontario M5X 1G5 (CA).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, 1.C,
LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN,
MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH,
PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
ZA, 7ZM, 7ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(74)

(81)

(84)

[Continued on next page]

(54) Title: XML PUSH AND REMOTE EXECUTION OF A WIRELESS APPLICATION

302
\. Add Device Method 300
304
_ Build application |
|
308
306 -
yes .
Errors? » Notify developer
no
310
» Create message /
311
Create inter-op function _/
312 314
Ribbon Alert? ~>Y2°> | Enable ribbon alert in »
created message —
no
316 ~
Dialog Alert? Y%, Enable dialog alert in j18
created message -
no
320
Dévice Method~_Y®S | Edit options in created | 322
Options? message 1/
no
<
yes _~More device~._No | 326
methods Remove code attributes |/
324
Figure 3

(57) Abstract: A method is provided for facilitating generation of
a wireless application capable of receiving messages from a server-
side application. The method comprising the following steps. A
structured data file defining the wireless application is parsed for
identifying at least one exposed function. Message definitions are
generated in accordance with the exposed function for enabling
communication between the server-side application and the wire-
less application. At least one interoperability functions is gener-
ated. Each interoperability function is associated with one of the
exposed functions. The interoperability function is configured to
execute the associated exposed function upon receipt of a message
defined by a corresponding message definition.

CA 02685892 2009-11-02

WO 2008/134895 A1 IHIHHVA!H AR AR 1 1 AR O R

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, Published:

FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT,NL, — with international search report
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,

CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

10

15

20

25

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
1

XML PUSH AND REMOTE EXECUTION OF A WIRELESS APPLICATIONS
[0001] The present invention relates generally to wireless applications and a system and method
for pushing data to the wireless application for remote execution thereof. The present

application claims priority from U.S. Provisional Application No. 60/916,613 filed May 8, 2007.

BACKGROUND

[0002] There are continually increasing number of mobile communication devices in use today,
including, for example, smart phones, personal digital assistants (PDAs) with wireless
capabilities, personal computers, self-service kiosks and two-way pagers. Accordingly, software
applications are being developed to execute on these devices and increase their utility. For
example, a smart phone may include an application which retrieves the weather for a range of
cities, or a PDA which may include an application that allows a user to shop for groceries. Such
software applications take advantage of connectivity to a communication network in order to

provide timely and useful services to users of the communication devices.

[0003] However, due to limited resources of many devices, as well as the complexity and
expense required to deliver large amounts of data to the devices, developing and maintaining
software applications tailored for a variety of devices remains a difficult and time-consuming

task.

[0004] Further, with the proliferation of wireless communication devices, there is an increased
demand to quickly and easily develop client applications that support access to one or more
backend servers. Therefore, it is often the case that the application 1s developed independently

of the required interface to the backend server.

[0005] Accordingly, component applications (also referred to as wireless applications herein)
and methods for developing and implementing such applications have been introduced. Details

regarding component application can be found in Patent Cooperation Treaty Application

Numbers PCT/CA2003/001976 entitled, “System and Method for Building and Execution of
Platform-Neutral Generic Services Client Applications” and published as W02004059938;
PCT/CA2003/001980 entitled, “System and Method of Building Wireless Component
Applications” and published as W02004059957; and PCT/CA2003/001981 entitled, “System

10

15

20

25

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
2

and Method of Creating and Communicating with Component Based Wireless Applications” and

published as W02004059939, each of which is assigned to the owner of the present application.

[0006] In order for a user of a mobile device executing a wireless application to receive data in

the form of notifications, the user subscribes to a data source using protocols such as WS-

Eventing. Data can then be pushed to the mobile device. However, WS-Eventing is a relatively

“chatty” protocol which can consume significant bandwidth for a wireless application.

[0007] Accordingly, an improved method for pushing data to a device is desired. Further, a
simple method for designing server-side applications to exploit the improved method is also

desired.

SUMMARY

[0008] In accordance with one embodiment, there is provided a method for facilitating
generation of a wireless application capable of receiving messages from a server-side
application, the method comprising the steps of: parsing a structured data file defining the
wireless application for identifying at least one exposed function; generating message definitions
in accordance with the exposed functions for enabling communication between the server-side
application and the wireless application; and generating at least one interoperability function,
each interoperability function being associated with one of the exposed functions, the
interoperability function configured to execute the associated exposed function upon receipt of a
message defined by a corresponding message definition. A computer readable medium

comprising instructions configured to execute the above method 1s also provided.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Embodiments will be described by way of example only with reference to the following

drawings in which:

Figure 1 1s a block diagram of a communication network infrastructure;
Figure 2 1s flow chart illustrating the operation of an XML push;

Figure 3 is a flow chart illustrating the generation of the required components for facilitating

a message push to a wireless application; and

10

15

20

25

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
3

Figure 4 is a flow chart illustrating the generation of a server-side application capable of

executing a message push to a wireless application.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0010] A portion of the disclosure of this patent document contains material which is subject to
copyright protection. The copyright owner has no objection to the facsimile reproduction by any
one of the patent document or patent disclosure, as it appears in the Patent and Trademark Office

patent file or records, but otherwise reserves all copyright rights whatsoever.

[0011] For convenience, like numerals in the description refer to like structures in the drawings.
Referring to Figure 1, a communication network infrastructure is illustrated generally by numeral
100. The communication infrastructure 100 comprises a plurality of communication devices
102, or simply devices 102, a communication network 104, an application gateway 106 and a

plurality of data-sources 108.

[0012] The devices 102 may include both wired and wireless computing devices such as a
desktop computer, a notebook or other portable computer, a smart phone, a personal digital
assistant (PDA), and the like. The devices 102 are in communication with the application
gateway 106 via the communication network 104. Accordingly, the communication network 104
may include several components such as a wireless network 110, a relay 112, a corporate server
114 and/or a mobile data server 116 for relaying data between the devices 102 and the

application gateway 106.

[0013] The application gateway 106 comprises a gateway server 118, a provisioning server 120,
a discovery server 122 and a repository 124. The gateway server 118 i1s in communication with
both the provisioning server 120 and the discovery server 122. The gateway server 110 is further
in communication with a plurality of the data-sources 108, such as Web services 108a, database
services 108b, as well as other enterprise services 108c, via a suitable link. For example, the
gateway server 110 1s connected with the Web services 108a and database services 108b via
Simple Object Access Protocol (SOAP) and Java Database Connectivity (JDBC) respectively.
Other types of data-sources 108 and their corresponding links will be apparent to a person of
ordinary skill in the art. Accordingly, it can be seen that the gateway server 118 acts as a

message broker between the devices 102 and the data-sources 108.

10

15

20

25

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
4

[0014] Each wireless device 102 is initially provisioned with a service book establishing various
protocols and settings, including connectivity information for the corporate server 114 and/or the
mobile data server 116. These parameters may include a Uniform Resource Locator (URL) for
the application gateway server 118 as well as its encryption key. Alternatively, 1f the wireless
device 102 is not initially provisioned with the URL and encryption key, they may be pushed to

the wireless device 102 via the mobile data server 116. The mobile device 102 can then connect

with the application gateway 106 via the URL of the application gateway server 118.

[0015] Applications are provided for execution on the wireless devices 102. The applications
are stored in a repository 124 as a series of packages, or bundles. The packages are typically
created by an application developer using a wireless application design tool provided in an
wireless application development environment 107. The wireless application design tool
provides support for a drag-and-drop graphical approach for visual design of application
components including screens, data elements, messages and application workflow logic, as

described in the previously referenced documents.

[0016] The application packages are represented as structured data, such as Extensible Mark-up
Language (XML), that can be generated automatically by the design tool through an automatic
code generation process. The design tool further enables the automatically-generated code to
include, or be otherwise augmented by, an industry standard scripting language, such as

JavaScript or another scripting/programming language known 1n the art.

[0017] The availability of application packages in the repository 124 is published in a registry
via a discovery service provided by the discovery server 122. It is recognized that there can be

more than one repository 124 and associated registries used by the gateway server 118.

[0018] Once again, the design tool is operated in an application development environment 107

executing on a computer. The development methodology of the design tool can be based on a

visual “drag and drop” system of building application models.

[0019] The design tool can be structured as a set of plug-ins to a generic integrated design
environment (IDE) framework such as, for example, the Eclipse'" framework. Alternatively,

the tool can be configured as a complete design framework without using a plug-in architecture.

10

15

20

25

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
S

[0020] In many cases, a developer of server-side application has a priori knowledge of the
devices to which information has to be pushed. For such cases, requiring the mobile device user
to subscribe to the server-side application using protocols such as WS Eventing can waste a
significant amount of bandwidth due to the overhead involved in the protocols. Accordingly, a
method has been developed for pushing messages to the mobile device 102 without requiring

subscription by the user.

[0021] In order to facilitate a message push to the mobile device, the application gateway 106 1s
configured to process the HTTP POST request method. The HTTP POST method 1s well known
in the art. Referring to Figure 2, a flow chart illustrating the use of the HTTP POST method in
the present embodiment to push data is represented by numeral 200. In step 202, the server-side

application sends the message to the mobile device 102 via the application gateway 106 using
HTTP POST.

[0022] In step 204, the application gateway 106 interprets the HTTP POST message to
determine the destination device (or devices) as well as the content of the message. In step 206,
the content of the message is mapped to its corresponding wireless application message parts as
defined by a mapping file. A mapping file maps parts of an incoming message in a received
format to their corresponding parts in a transmission format for subsequent transmission to the

wireless application executing on the mobile device. In step 206, a wireless message 1s sent to

the mobile device 102.

[0023] Further, 1in accordance with the following description, push integration is provided in an
application development environment for developing server-side applications. The push
integration facilitates development of a server-side application capable of executing a script

method running on a mobile device, as described below.

[0024] To facilitate the push integration, the wireless application development environment 107
for developing wireless applications is modified. Specifically, the wireless application
development environment is modified to include the ability to define a script method in a
wireless application as “exposed” via a code attribute. As will be described in greater detail,

code attributes are portions of code used by a developer of the wireless application to indicate

10

15

20

25

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
6

that a script is to be exposed in such a manner that the it can be called by a server-side

application.

[0025] At compile time, the wireless application is generated as is known in the art with several
new features, described as follows. One or more messages are generated and added to the
wireless application description to facilitate communication with the exposed script method. An
auxiliary mapping file 1s also created that maps parts of an incoming message in a receirved
format to their corresponding parts in a transmission format for subsequent transmission to the
wireless application executing on the mobile device. Alternatively, the mapping information
may be incorporated into a primary mapping file. Lastly, a script code stub is generated and
incorporated into the wireless application. Specifically, the script code stub links the generated
message with its corresponding exposed script method. That is, upon receipt of the incoming
message the script code stub 1s executed, which in turn calls the corresponding exposed script

method. The code attributes used to define the exposed script methods can then be removed for

publication.

[0026] Corresponding changes are made in the development environment for the server side
application. A Wireless Reference menu option is integrated into a context menu of the
development environment for facilitating addition of a push reference to a project. If the
developer selects the Wireless Reference menu option, a code stub is generated comprising

invocation of code to push the message to the wireless application executing on the device. The
generated code stubs are collected in a file and added to the projects with necessary references.

This teature allows enhanced data push experience with wireless applications.

[0027] Theretfore, during execution, the server-side application invokes a method which pushes a

message to the application gateway using the HTTP POST method. At the application gateway,
the received message is mapped to its corresponding wireless message parts. The wireless
message 1s sent to the mobile devices 102 specified in the message received from the server-side
application. Upon receipt of the wireless message, a corresponding script code stub is invoked,

which, in turn, invokes the target exposed script method.

[0028] More details regarding the method describe above are provided as follows.

10

15

20

25

30

CA 02685892 2009-11-02
WO 2008/1348935 PCT/CA2008/000888

Building Wireless Application
[0029] As described above, the developer of a wireless application can identify script methods,

or functions, to expose using code attributes. Accordingly, the concept of code attributes will be
added to the script language parser. The code attributes will be able to be placed on a function to

specify that the function 1s an exposed script method to which the server could push content.

[0030] Example of code attributes for the exposed function include [DeviceMethod],
| DialogAlert], [RibbonAlert] and [DeviceMethodOptions]. The code attributes will include
constructor parameters 1f the function includes parameters. As is known 1n the art, a constructor
1s a special method for initializing a new instance of a class. The term is used is reference to the
initialization of the exposed function for the server-side application, as will be described in

detail.

[0031] [DeviceMethod]. Each parameter specified in the function has an associated parameter
specified in the [DeviceMethod] constructor. The parameter names and orders specified in the
function are the same in the [DeviceMethod] constructor. Each parameter specified in the
| DeviceMethod] constructor 1s a valid type in the wireless application. This type could also be

an array. Sample syntax for a [DeviceMethod] code attribute is as follows:

| DeviceMethod(id = integer, customer = Customer)]
function DoMyMethod(id, customer)

d
j

[DeviceMethod(id = integer, customers = Customer| 1)}
tunction DoMyMethod(id, customers)

d
j

[DeviceMethod()]
function DoMyMethod()

{
j

[DeviceMethod]

10

15

20

25

30

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
3
function DoMyMethod()
{
}

[0032] [DialogAlert] and [RibbonAlert]. These two alert code attributes can also be assigned to
a function if the function has a [DeviceMethod] code attribute. The alert code attributes can be

used by themselves or in combination with each.

[0033] A [DialogAlert] code attribute can have a string passed into its constructor. This string
will be displayed in a dialog box when the message arrives at the mobile device 102. If no string
is specified, a dialog box will still appear when the message arrives at the device 102, but it will

not have a detailed message.

[0034] A [RibbonAlert] code attribute has a constructor that does not accept any parameters to it.
It 1s simply an empty constructor. When the message arrives at the device it will cause a ribbon

update for the wireless application. Sample syntax for [DialogAlert] and [RibbonAlert] code

attributes are as follows:

| DeviceMethod(message = string)]
[DialogAlert(“this is my dialog text™)]
function HandleMessage(message)

{
j

[DeviceMethod(message = string)]
[DialogAlert]
function HandleMessage(message)

{
;

| DeviceMethod(message = string)]
[RibbonAlert]
function HandleMessage(message)

d
j

10

15

20

25

30

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
9

[0035] [DeviceMethodOptions]. This code attribute can also be put on a function as long as the
function also has a [DeviceMethod] code attribute. In the present embodiment, the
[DeviceMethodOptions] attribute is used to specify whether or not the message should be “end-
to-end” secure and/or if the push mechanism should keep the last pushed message. This feature

allows the push message to follow some of the same features as a WS_EVENTING push.

[0036] The [DeviceMethodOptions] code attribute contains at least one of the following

constructor parameters: EndToEndSecure=true/faise; and/or KeepLast=true/false. = These
Boolean properties default to be false unless otherwise specified. However the developer can
explicitly specify that they are false. Sample syntax for the [DeviceMethodOptions] code
attribute 1s as follows:

[DeviceMethod(message = string)]
| DeviceMethodOptions (EndToEndSecure = true)]
function HandleMessage(message)

d
;

[DeviceMethod(message = string)]
[DeviceMethodOptions (EndToEndSecure = true, KeepLast = false)]
function HandleMessage(message)

d
J

| DeviceMethod(message = string)]
| DeviceMethodOptions (KeepLast = true)]
function HandleMessage(message)

d
j

[0037] The syntax used for defining code attributes allows code attributes to be grouped together
or declared separately for the function. In the present embodiment, the order in which the

attributes are declared or grouped is not of consequence. Below are examples of combinations

for defining code attributes:

| DeviceMethod]
[RibbonAlert()]

10

15

20

25

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
10

[DialogAlert]

[DeviceMethod, RibbonAlert]
[DialogAlert, DeviceMethodOptions(KeepLast = true)]

[DeviceMethod()]
[RibbonAlert, DialogAlert]
[DeviceMethodOptions(KeepLast = true)]

[0038] Referring to Figure 3, a flow chart illustrating the process of adding a [DeviceMethod]
code attribute to wireless application is shown generally by numeral 300. Since the
[DeviceMethod] code attribute does not require a [RibbonAlert] or a [DialogAlert] code

attribute, if neither code attribute is supplied, no alert will be assigned to the associated response

method.

[0039] In step 302 the developer adds the [DeviceMethod] code attribute to a function in the
wireless application. The [DeviceMethod] constructor parameters match the number and name
of parameters in the function definition. In step 304, once the developer has completed the

wireless application, the developer selects a “build” option for the wireless application.

[0040] In step 306, the wireless application development environment determines if there are
any errors in the wireless application. Errors may include, for example, improperly defined code
attributes, as discussed above. If an error is detected, in step 308 the user is advised of the error

and given the opportunity to return to the design tool to correct the error.

[0041] If no error is detected, the wireless application is built by the wireless application
development environment. In step 310, if a function is determined to have any of the code
attributes, a message definition is created in the wireless application XML file. The created
message definition will have fields that match the fields specified in the corresponding code

attribute constructor. If the code attribute is a [DeviceMethod] code attribute, the created

message will need to call a function on return that will, in turn, call the original function.

[0042] Therefore, in step 311 an interoperability (interop) function is created to execute the
original function in the manner as it was declared. An interop function is used in its generic

sense as a function that provides the ability for different programs to exchange data via a

10

15

20

25

30

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
11

common set of business procedures. In this embodiment, the interop-function is used to call the
exposed function in response to a received message, thereby providing interoperability between
the server-side application and the wireless application. This interop function (or hop function)
1s generated by the wireless application development environment and placed into the wireless

application code file in a similar fashion to a JavaScript wrapper on web references.

[0043] The generated interop function is assigned to the return script for the created message and
1s uniquely named within the project from other function names, class names, global names,

built-in names, and keywords.

[0044] An example of what an inter-op function may look like is as follows:

Oniginal declaration:
| DeviceMethod(message = string)]

[DialogAlert(“this is my dialog text™)]
function HandleMessage(message)

d
j

Generated interop function:
function GeneratedMessageName_HandleMessage()

d
j

HandleMessage(GeneratedMessageName.message);

[0045] Further, a mapping file is created and included in the bundle. In the present embodiment,
the mapping file is separate from the primary mapping file for the wireless application.

Alternatively, the mapping may be incorporated into the primary mapping file.

[0046] In step 312, it is determined whether or not a [RibbonAlert] code attribute was defined
for the tunction. If a [RibbonAlert] code attribute is not defined, the build continues to step 316.
If a [RibbonAlert] code attribute is defined, at step 314 the created message will have its ribbon
alert type enabled.

[0047] In step 316, it is determined whether or not a [DialogAlert] code attribute was defined for
the function. If a [DialogAlert] code attribute is not defined, the build continues to step 320. Ifa

10

15

20

25

30

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
12

[DialogAlert] code attribute is defined, at step 318 the created message will have its dialog alert
type enabled. Additionally, if the developer specified text in the constructor of the

[DialogAlert], the text will be stored in the created message for the dialog alert.

[0048] In step 320, it is determined whether or not a [DeviceMethodOptions] code attribute was
detined for the function. If a [DeviceMethodOptions] code attribute is not defined, the build
continues to step 324. If a [DeviceMethodOptions] code attribute is defined, at step 324 the

created message will have its “keep last” and/or its “end-to-end security” attributes enabled.

[0049] Steps 310 to 324 are repeated until all functions with code attributes have been analysed.
In step 326, the code attributes that the developer has added to the wireless application are

removed as they are no longer necessary. The wireless application is then packaged and can be

deployed to a server or repository.

[0050] The following as an example of the change and/or updates required to the built wireless
application bundle if a device method is added to the application. Consider the following device

method:

[DeviceMethod (echoString = string, echoArray = string[])]
function Echo(echoString, echoArray)

d
;

[0051] A message 1s added to the component application to define the expected wireless

message for the device method. A suffix, in this example MDSV8PluginExtender, is added to

the name of the function to keep it unique.

<message

name="EchoMDSVS8PluginExtender"

secure="false" script="EchoMDSVS8PluginExtender Exec">
<field name="echoString" type="string" />

<field name="echoArray" type="string" array="true”’/>
</message>

<script name="EchoMDSVS8PluginExtender_Exec" />

[0052] The above script name identifies the script stub generated as the interop function. As

described, the interop function calls the exposed script with the proper parameters.

10

15

20

25

30

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
13

function EchoMDSVS8PluginExtender_Exec()

{
Echo(

EchoMDSVS8PluginExtender.echoString,
EchoMDSVS8PluginExtender.echoArray);

[0053] A mapping file is created:

<?xml version="1.0" encoding="UTF-8"7>
<map:wiclet xmlns:map=http://com.rim.wica/mapping.xsd
xmlns:tns=""http://tempuri.org/”’
map:compatibilityVersion="1.0.1">
<map:component map:mapName="Echo" map:mapType="message" map:name="Echo">
<map:field map:mapName="echoString" map:mapType="element"
map:name="echoString"/>
<map:field map:mapName="echoArray" map:mapType="element"

map:name="echoArray"/>

</map:component>
</map:wiclet>

[0054] A line is added to the mappings index to identify the newly created mapping file:

ROOT_**=rim.device.methods/rim.device.methods.map (where ** is a unique identifier)

Building Server Side Application
[005S] Reterring to Figure 4, a flow chart illustrating the process of adding a reference to a

wireless application into the server-side application is shown generally by numeral 400. In the
application development environment for the server-side application, a context menu item “Add
Wireless Reference...” is added to the existing project context menu to allow the developer to

add a wireless application as a reference.

[0056] Accordingly, in step 402, the developer selects the “Add Wireless Reference...” option
from the context menu. In response to this selection the developer is presented with an
application wizard. In this context, an application wizard is used in its generic context to refer to
a user 1interface element where the user is led through a sequence of dialogs. The application
wizard is implemented as a plug-in to the server-side application development environment. In

step 404, the developer can either select a project in the existing solution or browse to a project
file.

10

15

20

25

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
14

[0057] In step 406, once the developer has selected the project to add as a reference, the
application wizard interrogates the project and presents the exposed functions to the developer.

As described above, the developer will be able to call these functions from the server-side

application.

[0058] In step 410 the application wizard generates stub code that can then be used by the
developer. The implementation language of the code stubs generated will be based on the
language of the project to which the developer requested to add the wireless reference. The
following will described the generation of code stubs for C# and Visual Basic for ease of
explanation only. C# and Visual Basic are example of .NET Framework programming
languages. .NET is a software component that can be added to or is included with the Microsoft
Windows operating system. It provides a large body of pre-coded solutions to common program

requirements, and manages the execution of programs written specifically for the framework.

[0059] First a namespace 1s generated in which to hold the code stubs. In the present
embodiment, the name of the namespace is the combination of the existing project’s default
namespace plus the name that the developer gave the wireless reference on discovery. For
example, 1f the project’s default namespace is “WindowsApplicationl”, then the generated

namespace generated will WindowsApplicationl.referencename. All classes generated will be

in this namespace

[0060] For each class that is discovered by the application wizard a .NET class is generated in

the default language that has the same properties as the discovered class. Proper get/set methods
are added for the properties in the code generation. Each class generated has the proper

serializable code attribute [System.SerializableAttribute()] assigned to it.

[0061] Each property for the discovered class will be serialized in the proper order by placing
[System.Xml.Serialization. XmlElementAttribute("df _string", Order=0)] code attributes on them.

[0062] Class prototyping is also enforced on the classes discovered for generation. If a class

inherits from another class, this code relationship will be defined in the proper language syntax.

[0063] After the classes have been defined, the code generation creates a single class for the

discovered project based on the name of the discovered project. For exemplary purposes only, it

10

15

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
135

is assumed that the name of the discovered project is “Device”. This class will contain all of the

functions exposed by the discovered project.

[0064] Table 1 below summarizes the public properties exposed by the Device class. All values

listed can be modified, but certain properties will be automatically configured.

bool AllowAutoRedirect | Specifies if the HTTP request used to submit the push will
| allow redirects. Default — true.
string Url Specifies the (Uniform Resource Locator) URL of the push
listener (application gateway).
System.Net.ICredentials | ICredentials object that allows authentication to be passed to
Credentials the push listener URL (optional).

Uniform Resource Indicator (URI) of the wireless application.
Default value discovered from wireless reterence.

Version of the wireless application. Default value discovered
from wireless reference.

string Locale Locale of the wireless application. Default value discovered
from wireless reference.

A collection of recipients to push to. This list is empty by
default.

[0065] It should be noted that in the present embodiment, in order to push the message to the
gateway 106 and then to the mobile device 102, the following two combinations are valid for
sending information: application URI, plus Personal Identification Number(s) (PINs); or

application URI, Locale and Version.

[0066] If neither of these two combinations is met, an exception will be thrown advising the
developer that the push information is incomplete. Also, in the present embodiment, the
URVPIN combination takes precedence. That is, for example, if the developer specifies a set of
PINs, an application URI and a version, the push message would go through without error to the

specitied PINs and URI, however the version information would be ignored.

[0067] Given the above set of rules, when a user initially generates a wireless reference, the
generated code 1s automatically configured to send to all devices with the discovered application

URI, version and locale. If a non-empty list of recipients is present during the push in the form

of a PIN list, the PIN list, along with the application URI, will be used to provide a narrower

group of devices.

10

15

20

25

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
16

[0068] Furthermore, when pushing to a specific URI and set of PINSs, 1f one of the PINs 1n the set

does not have the application provisioned on the device, an exception will be returned.

[0069] For each response message found, that is those generated by a [DeviceMethod] code
attribute, a method will be created in the Device class. Each field of the message will be created

as a method parameter.

[0070] Each generated method creates a key value pair of name and object that will contain the
parameter name and object provided to the function. This key value pair will be then sent to a
private generic execution method that will take the list of parameters, and the name of the
method to execute. This generic execution method transforms the parameters and name into
XML that 1s suitable for the application gateway 106 to perform its transformation. The data is
transmitted to the application gateway 106 via an HTTP POST call using the provided properties

of the Device class.

[0071] Upon invoking a push, there are two scenarios. If the push is successful, the call to
invoke the push will return (void signature). [f the push 1s unsuccessful a
PushRuntimeException will be thrown which will contain the HTTP status code and description
of the failure. The PushRuntimeException is a class that will be packaged as part of the DLL

given to the developer to use push functionality.

[0072] When all code stubs have been successfully generated, the newly created stubs are added
as a file to the existing project. This file’s extension will be based on the project type. For
example, C# 1t will be “.cs” and for Visual Basic it will be “.vb”. The name of the file should be

based on the name of the wireless reference name given by the developer. The file will then be

added as a project item to the calling project.

[0073] The following code section illustrates how a code stub can be used to access a function

on the mobile device.

/* DoPushCustomer is a message exposed on a wireless application either as a Response
message to a web service or a function marked with a device method code attribute. devicehost
was the name given to the Wireless Reference */

devicehost.Device dev = new WindowsApplication1.devicehost.Device();

10

15

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
17

dev.Url = "http://myaglocation/myagservice";
devicehost.Customer cust = new devicehost.Customer();
cust.FirstName = "Tim";

cust.LastName = "Neil";

dev.DoPushCustomer(cust);

[0074] Referring once again to Figure 4, optional step 408 provides the developer with the
ability to select exposed functions that are desired for use with the server-side application.

Accordingly, code stub generation is only required for the selected exposed functions.

[0075] From the disclosure above, it will be appreciate that the developer of a server-side
application is provided with the ability to remotely execute a function of a wireless application
executing on a mobile device by pushing data thereto. The server-side application development
environment automates the generation of code stubs based on functions exposed by the wireless
application as well. The server-side application development environment also automates the
encapsulation of the data so that it can be pushed to the application gateway without requiring

that the developer have knowledge of the transport protocol.

[0076] Although preferred embodiments of the invention have been described herein, it will be
understood by those skilled in the art that variations may be made thereto without departing from

the spirit of the invention or the scope of the appended claims.

>

10

15

20

25

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
18

Claims:

1. A method for facilitating generation of a wireless application capable of receiving messages
from a server-side application, the method comprising the steps of:
parsing a structured data file defining the wireless application for identifying at least one

exposed function;

generating message definitions in accordance with the exposed functions for enabling

communication between the server-side application and the wireless application; and

generating at least one interoperability functions, each interoperability function being
associated with one of the exposed function, the interoperability function configured to execute
the associated exposed function upon receipt of a message defined by a corresponding message

definition.

2. The method of claim 1 further comprising the step of packaging the message definitions and

the interoperability functions along with the application for retrieval by a mobile device.

3. The method of claim 1 comprising the further step of generating a mapping file contfigured
for use by a gateway server, the mapping file comprising information for mapping messages
in a format delivered by the server-side application to messages in a format expected by the

wireless application.

4. The method of claim 3, wherein the mapping file is included as part of a primary mapping
file.

5. The method of claim 3 further comprising the step of packaging the message definitions, the
interoperability functions and the mapping file along with the application for retrieval by a

mobile device.
0. The method claim 3, wherein the exposed functions are identified using code attributes.

7. The method of claim 6, wherein the code attributes are deleted once they have been

processed.

10

15

20

25

10.

11.

12.

13.

14.

13.

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
19

The method of claim 6, wherein the code attributes include a device method constructor
configured to identify parameter names and orders specified in the corresponding exposed

function.

The method of claim 6, wherein the code attributes include a dialog alert configured to
identify that a dialog box is to be displayed upon execution of the corresponding exposed

function.

The method of claim 9, wherein the dialog alert further includes text for presenting along

with the dialog box.

The method of claim 6, wherein the code attributes include a ribbon alert configured to
identify a ribbon update on the mobile device upon execution of the corresponding exposed

function.

The method of claim 8, wherein the code attributes include device method options configured

to 1dentify user-defined options for the device method constructor.

The method of claim 12, wherein the user-defined options includes enabling end-to-end

security for the transmission of the messages.

The method of claim 12, wherein the user-defined options includes storage of a last

transmitted message to improve reliability.

A computer readable medium comprising instructions which, when executed by a computing
device cause the computing device to generate a portion of a wireless application capable of
receiving messages from a server-side application, the instructions configured for
implementing the steps of:

parsing a structured data file defining the wireless application for identifying at least one

exposed function;

generating message definitions in accordance with the exposed functions for enabling

communication between the server-side application and the wireless application; and

generating at least one interoperability function, each interoperability function being

associated with one of the exposed functions, the interoperability function configured to execute

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
20

the associated exposed function upon receipt of a message defined by a corresponding message

definition.

CA 02685892 2009-11-02
WO 2008/1348935 PCT/CA2008/000888

108

116

104
Figure 1

’ '
L L. S

I SIS IR SIS SIS G Gy GEN APAe it whilsh sy esves s o sl

102
102

1/4

CA 02685892 2009-11-02
WO 2008/1348935 PCT/CA2008/000888

202
Send messageto |
Application Gateway

l 204

Interpret message -

I 206

Map message to wireless |
message
200 l
208

Send wireless message | _“
to mobile device

Figure 2

CA 02685892 2009-11-02

WO 2008/134895 PCT/CA2008/000888
302
\ Add Device Method 300
304 l
\| Build application
308
30 S
@ Notify developer

31 0
Create message

1 Figure 3

311
Create inter-op function_/

Ribbon Alert? ~>Y— Enable ribbon alert in J“
created message

Sialog Alerty—YES_,| Enable dialog alert in /318
created message

Jevice Methoc Edit options in created | 322
Opt'O"S? message 1

yes ore device~_No | 326
methods Remove code attrubutes_J/

324

CA 02685892 2009-11-02
WO 2008/1348935 PCT/CA2008/000888

402

Add Wireless _/

Reference

l 404

Select project I

o l 406

Analyse project for
exposed functions /

5
-

4
Developer selects _—/408

functions (optional)

410

Generate stubcode |~

Figure 4

4/ 4

302
_ Add Device Method

I

\+ Build application &

306 o S
4 Notify developer
no

) » Create message

l

308
/

310

Figure 3

311

Create inter-op function | _/

312
Sibbon Alerer—~Y€S_,| Enable ribbon alertin | 314
created message g
no
316 ~
Dialog Alert? > > ,| Enable dialog alert in 318
created message g
no
320
Dévice Method~._YSS | Edit options in created | 322
Options? message 1
no
<
yes viore device no 396
methods Remove code attributes |~

324

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - abstract drawing

