Oversættelse af europæisk patentskrift

Patent- og Varemærkestyrelsen

Int.Cl.: F 26 B 23/10 (2006.01) F 26 B 17/28 (2006.01) F 28 F 5/04 (2006.01)

Oversættelsen bekendtgjort den: 2016-08-22

Dato for Den Europæiske Patentmyndigheds bekendtgørelse om meddelelse af patentet: 2016-05-04

Europæisk ansøgning nr.: 12800852.1

Europæisk indleveringsdag: 2012-06-15

Den europæiske ansøgnings publiceringsdag: 2014-04-23

International ansøgning nr.: AU2012000687

International publikationsnr.: WO2012171067

Prioritet: 2011-06-16 NZ 59349511

Designerede stater: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Patenthaver: Pinches, David Kenneth, 77 Smiths Road, Templestowe, Victoria 3106, Australien

Opfinder: Pinches, David Kenneth, 77 Smiths Road, Templestowe, Victoria 3106, Australien

Fuldmægtig i Danmark: Awapatent A/S, Rigensgade 11, 1316 København K, Danmark

Benævnelse: Skive til industrielle anlæg

Fremdragne publikationer:
CA-A1- 1 040 419
CN-U- 201 748 779
DE-A1- 3 838 640
DE-A1- 10 246 639
GB-A- 216 165
GB-A- 902 186
KR-B1- 100 987 573
DESCRIPTION

FIELD OF THE INVENTION

[0001] The invention generally relates to discs for use in industrial applications such as dryers, cookers, coolers or other heat exchangers and particularly, although not exclusively, relates to a disc dryer.

BACKGROUND TO THE INVENTION

[0002] Disc dryers are large industrial dryers used for drying conveyable or flowable materials such as granular and liquid type products. They typically comprise a hollow shaft carrying hollow annular discs at intervals. Each disc comprises a pair of annular plates welded around the periphery to the shaft. The shaft is formed to have apertures through its wall to the hollow interior of each disc. In operation of the dryer steam is fed through the shaft and passes through the apertures into the hollow region formed by the discs heating the surface of the discs. Material to be dried moves through an inlet formed through an outer casing of the disc dryer and along the length of the shaft where it contacts the outer surfaces of the heated discs thereby drying the material.

[0003] As shown in figure 6, the discs 41 in a conventional disc dryer 40 have flat surfaces and can be fitted with cross pins 43 that span between the two annular plates 42 forming each disc to prevent the discs from deforming or bursting under steam pressure. DE38 38 640 discloses an example of this. At construction of the disc dryer or retrofitting of replacement discs, fitting cross pins to each disc requires drilling or cutting holes through the disc and pressing in and welding of many individual cross pins. This is labour intensive and is carried out when constructing a new disc dryer or retro-fitting an existing dryer with new discs when the existing discs have worn. Other methods for strengthening the discs other than fitting cross-pins are also known in the art but these are also generally labour intensive.

[0004] The annular plates for forming discs for disc dryers are typically formed by cutting one or more circular sheets from a square sheet of metal leading to significant scrap metal. It is an object of the invention to provide an improved disc for use in industrial applications and/or improved disc dryer, or to at least provide the public with a useful choice.

SUMMARY OF THE INVENTION

[0005] In a first aspect the invention broadly consists in a disc for use in industrial applications comprising two annular plates connected to one another at an angle around corresponding outer peripheral edges such that corresponding inner peripheral edges of the plates are spaced apart from one another, each plate comprising one or more integral ribs extending between its inner edge and outer edge.

[0006] In a second aspect the invention broadly consists in an industrial plant comprising:

- a hollow shaft;

one or more hollow discs each comprising two annular plates connected to one another around their outer edges, each plate comprising one or more integral ribs extending between its inner edge and outer edge, the inner edge of each plate being coupled around the shaft and spaced apart from one another so that the disc is coupled to the shaft; and

- one or more apertures along the length of the shaft provided between the plates of each disc so that the shaft is in fluid communication with each disc.

[0007] Preferably, the ribs are formed from folds in the annular plate.

[0008] Preferably in a first form, the ribs extend radially between the inner edge of the plate and the outer edge of the plate.

[0009] Preferably, each plate is formed from a length of a sheet of material. More preferably, the sheet of material is formed to integrally comprise the ribs. Even more preferably in a first form, the ribs are formed by rolling and are deeper towards one edge.
of the sheet of material than the other edge of the sheet of material such that the material curves greater around the deeper ends of the ribs in order to form an annular plate. Even more preferably in a second form, the ribs are formed by crimping or folding. In a third aspect the invention broadly consists in a method of fitting a disc to an industrial plant comprising:

passing a hollow disc along a hollow shaft so that the interior of the disc is proximal to an aperture provided on the shaft, the disc comprising two annular plates connected to one another around their periphery edges, each plate comprising one or more integral ribs extending between its inner edge and periphery edge;

connecting the inner edge of the first annular plate to the shaft; and

connecting the inner edge of the second annular plate to the shaft and spaced apart from the inner edge of the first annular plate such that the aperture is provided between the inner edges of the annular plates so that the shaft is in fluid communication with the disc.

[0010] Preferably, each plate is formed from a length of a sheet of material. More preferably, the sheet of material is formed to integrally comprise the ribs. Even more preferably in a first form, the ribs are formed by rolling and are deeper towards one edge of the sheet of material than the other edge of the sheet of material such that the material curves greater around the deeper ends of the ribs in order to form an annular plate. Even more preferably in a second form, the ribs are formed by crimping or folding.

[0011] In the disclosure there is also described a method of constructing an industrial plant comprising:

for each of one or more hollow discs, passing the discs along a hollow shaft so that the interior of the disc is proximal to an associated aperture provided on the shaft, the disc comprising two annular plates connected to one another around their periphery edges, each plate comprising one or more integral ribs extending between its inner edge and periphery edge;

connecting the inner edge of the first annular plate to the shaft; and

connecting the inner edge of the second annular plate to the shaft and spaced apart from the inner edge of the first annular plate such that the aperture is provided between the inner edges of the annular plates so that the shaft is in fluid communication with the disc.

[0012] In one form of the second and third aspects the industrial plant is a disc dryer, cooker, cooler or a heat exchanger.

[0013] Preferably the industrial plant is a disc dryer.

[0014] In the disclosure there is also described a method of forming a disc for use in an industrial application comprising connecting the outer periphery edges of two annular plates to one another at an angle around their outer edges such that the inner edges of the plates are spaced apart from one another, each plate comprising one or more integral ribs extending between its inner edge and periphery edge.

[0015] In the disclosure there is also described a method of forming an annular plate for use in construction of a disc for an industrial application comprising:

rolling one or more ribs into a flat length of a sheet of material, the ribs being deeper at one edge of the material than the other edge of the material such that the material curves greater around the deeper ends of the ribs in order to form an annular plate; and

joining the two ends of the sheet of material.

[0016] Preferably the industrial application is an industrial plant. Preferably the industrial plant is a disc dryer.

[0017] In the disclosure there is also described a disc for a disc dryer comprising two annular plates connected to one another at an angle around their outer edges such that the inner edges of the plates are spaced apart from one another, each plate comprising one or more integral ribs extending between its inner edge and outer edge.
In the disclosure there is also described a disc dryer comprising:

- a hollow shaft;
- one or more hollow discs each comprising two annular plates connected to one another around their outer edges, each plate comprising one or more integral ribs extending between its inner edge and outer edge, the inner edge of each plate being coupled around the shaft and spaced apart from one another so that the disc is coupled to the shaft; and
- one or more apertures along the length of the shaft provided between the plates of each disc so that the shaft is in fluid communication with each disc.

The first aspect of the invention may include any of the preferable features associated with the second or third aspects of the invention.

Preferably for all of the above aspects of the invention, each plate has a central aperture with a radius between 0.2 and 0.5m.

Preferably the radius of each plate is between 0.4 and 1.5m.

Preferably the thickness of each annular plate is between 6 and 12mm.

The term "comprising" as used in this specification means "consisting at least in part of". When interpreting each statement in this specification that includes the term "comprising", features other than that or those prefaced by the term may also be present. Related terms such as "comprise" and "comprises" are to be interpreted in the same manner.

The term "annular" as used in this specification in relation to the discs and plates includes same with a circular outer peripheral shape but also a non-circular outer peripheral shape such as an oval or square or rectangular outer peripheral shape (typically with radiused corners).

BRIEF DESCRIPTION OF THE DRAWING

Preferred embodiments of the invention will be described by way of example only and with reference to the drawings, in which:

- Figure 1 is a cut-away, elevation view of a disc dryer of the invention;
- Figure 2 is a cross-sectional close up view of a single disc element coupled to the shaft of the dryer of figure 1;
- Figure 3 is a plan view of an annular plate used to form a disc of the disc dryer of Figure 1;
- Figure 4 is a plan view of a partially formed annular plate of Figure 3;
- Figure 5 is a perspective view of a partially formed annular plate of Figure 3; and
- Figure 6 is a cross-sectional close up view of a disc in a conventional disc dryer.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The invention relates to a disc formed from annular plates having one or more integral ribs extending between an inner edge of the plate and an outer edge of the plate. The disc of the invention may be formed for use in a number of industrial applications including, but not limited to industrial plants such as disc dryers, cookers, coolers and other heat exchangers, and also paddle dryers. Such plants typically comprise a hollow shaft on which one or more of the discs of the invention are mounted about. A heating or cooling fluid source is introduced into the main shaft to heat or cool the surfaces of the discs respectively. Material, gas or fluid flowing through the plant (preferably external to but may be within the shaft) is appropriately heated or cooled by the discs before exiting the plant. In accordance with an aspect of the invention, the disc of the invention will be
described in detail with reference to a disc dryer. It will be appreciated however that the disc may be used in any industrial application as mentioned.

[0027] Referring to Figure 1 and by way of example, a disc dryer 2 comprises a casing 4 arranged to hold a material 5 to be dried. The casing 4 may be made from a metal or alloy such as aluminium or steel, or any other suitable material. The material may be a pasty material, a sludge-like material, a particulate material, or any other suitable material that can flow through the casing 4 in order to be dried such as food material, grain or meal, coffee beans, chemicals, gluten, or waste-water sludge. The disc dryer 2 may comprise an inlet 6 so that the wet material 5 can enter the casing 4 in order to be dried, and an outlet 8 for removal of dried material 5. Alternatively, the casing may be provided with a lid or hatch through which material 5 may be introduced into and removed from the disc dryer 2.

[0028] The disc dryer comprises a drum, rotor, or shaft 10 extending through the casing 4. The shaft 10 may be arranged to rotate within the casing 4 for example through actuation from an electric motor coupled to one end. The shaft 10 is hollow so that a heating fluid may flow through the shaft. The shaft 10 may comprise a first connector 12 at one end arranged to be coupled to a heating fluid source, and a second connector 14 at the other end arranged to be coupled to a heating fluid sink. Heating fluid may be may be introduced into the shaft 10 through the first connector 12 so that the heating fluid transfers heat to the shaft 10 which then transfers heat to the material 5. Preferably, the heating fluid is pressurised steam, however any other suitable heating fluid may be used such as a heated liquid that is pumped into the shaft. The heating fluid may travel the length of the shaft 10, transferring heat to it on the way, and then be removed at the second connector 14. The shaft 10 may be constantly replenished with heating fluid from a heating fluid source so that the shaft 10 may constantly provide heat to the material 5. In applications other than dryers such as in a cooler or heat exchanger the fluid may be a cooling fluid or a fluid which receives heat from the material passing through the plant.

[0029] The shaft 10 comprises one or more discs 16 provided along its length. The discs 16 are connected to the shaft 10 so that they may rotate with the shaft 10. For example, the discs 16 may be welded to the shaft 10 or connected to the shaft 10 in any other suitable manner. The shaft 10 and discs 16 may be made from a material with a high thermal conductivity such as a metal or alloy, or any other suitable material. Referring now also to figure 2, the discs 16 are hollow. One or more apertures 17 are provided along the length of the shaft 10 so that the inside 10a of the shaft 10 is in fluid communication with the inside 16a of each disc 16 as shown by arrow A of figure 2. The apertures 17 are provided so that the heating fluid can move from the shaft 10 to the discs 16 in order to heat the discs 16 and to provide a greater heating area to the material 5. Each disc coupled around the shaft may be able withstand internal pressure of for example 2-3 Bar, or in some embodiments higher such as up to or over 6 Bar and for example up to 12 Bar without substantially deforming. A heat exchanger may operate at about atmospheric pressure, a cooler at the same or at 2-3 bar for example, and a disc dryer at an internal (steam) pressure of 6 Bar or over, up to 10-12 Bar for example. Preferably, the shaft 10 and discs 16 are closed to the material so that the heating fluid cannot contact the material 5 directly. The material 5 may be heated or dried through contact with the outside surfaces of the shaft 10 and discs 16.

[0030] Referring to Figures 1, 2, and 3 the discs 16 are formed from two or more annular plates 18. Each plate 18 comprises one or more integral ribs 20 on its surface. Preferably, the ribs 20 extend between the inner edge 22 of the annular plate 18 and the outer edge 24 of the annular plate 18. The ribs 20 may extend radially between corresponding points AA' on the inner edge 22 and the outer edge 24. The ribs 20 may extend fully or partially between the inner edge 22 and outer edge 24. Alternatively, the integral ribs 20 may be provided between and substantially follow the circumferences of the edges 22, 24 or at any other orientation but most preferably radially between the inner 22 and outer edge 24 to provide maximum strength. The integral ribs 20 may be provided on the plates 18 in any suitable manner. Preferably, the integral ribs 20 are formed from crimps, bends, creases, stamps, or folds in the plates 18. However, the integral ribs 20 may be formed from metal strips or bars that are connected to the plates 18, or in any other suitable manner. The integral ribs 20 may provide structural strength or support to the plates 18 and discs 16. This may help prevent the discs 16 from deforming or bursting under pressure when in use. This may also mean that a lesser number of plugs, or no plugs, may be required to provide strength to hold the discs 16 together when a pressurised heating fluid is introduced to the disc dryer 2.

[0031] A disc 16 may be formed by connecting two plates 18 to one another around their outer edges 24. The outer edges 24 may be welded to one another, or connected to one another in any suitable manner. The outer edges 24 of the plates 18 are connected to one another at an angle around their entire circumference such that the inner edges 22 of the two plates 18 are spaced apart from one another when the connection is complete. Preferably, the angle is an acute angle. A disc 16 may then be connected to the shaft 10 by connecting each of the inner edges 22 to the shaft 10, with the inner edges 22 spaced apart from one another. The inner edges 22 may be welded to the shaft 10, or connected to the shaft 10 in any suitable manner. When a disc 16 is connected to the shaft 10, the disc 16 may appear convex when viewed from the side (as shown in Figure 1) due to the angle provided between the outer edges 24 of the two plates 18 and the inner edges 22 being spaced apart from one another. At
least one aperture in the shaft 10 is provided between the two inner edges 22 of a disc 16 so that the shaft 10 is in fluid communication with a disc 16 and so that a heating fluid can move between them.

[0032] Referring to Figure 1, each disc 16 may have one or more shovels 26 connected to a side or periphery of the disc 16. The shovels 26 may rotate with the shaft 10 and discs 16. The shovels 26 may move, scoop or push the material 5 within the disc dryer 2 and towards the output 8 in order to dry the material 5. Alternatively, the discs 16 may be connected to the shaft 10 at a non-right angle so that a screwing effect from the rotating discs 16 encourages movement of the material 5.

[0033] Referring to Figures 4 and 5, in the preferred embodiment, each plate 18 may be formed from a length of a sheet of a suitable material 28 such as steel or any other suitable material. Preferably, the sheet of material 28 has a longer length L than width W. For example, the sheet of material 28 may be 6120mm long and 550mm wide. A plate 18 may be formed by rolling the sheet of material 28 in a roll forming mill. The integral ribs 20 may be rolled into the sheet of material 28 as it is passed through the roll forming mill. Each integral rib 20 may be relatively deeper at one long edge (becomes the inner edge 22 of the resultant annular plate 18) of the material than the other long edge (becomes the outer edge 24 of the resultant annular plate 18) of the material. This may cause the sheet of material 28 to curve greater around the deeper ends of the ribs 20 so that it is formed into an annular shape once it has been entirely passed through the rolling mill. The two ends of the sheet of material 28 may be connected to one another at a joint 30 (shown in Figure 3) in order to form the completed plate 18. The two ends may be welded to one another or connected to one another in any other suitable manner. This forms an annular plate 18 having a central aperture (defined by the inner edge 22) of sufficient size to fix around the shaft of the disc dryer.

[0034] The sheet material 28 and in particular the resultant plate 18 should have sufficient dimension for use in industrial applications. In the case of disc dryers, preferably the resultant plate 18 has an inner edge/centroid aperture radius r1 (shown in Figure 3) of at least 0.2m but more preferably between 0.2 and 0.5 meters, an outer edge radius r2 (shown in Figure 2) of at least 0.4m but more preferably between 0.4 and 1.5 meters, and a thickness t (shown in Figure 2) of at least 6 millimetres but more preferably between 6 and 12mm. It will be appreciated that other dimensions for the resultant plate or disc may be utilised in disc dryers or other industrial applications and the above dimensions are only exemplary and not intended to limit the scope of the invention.

[0035] In an alternative embodiment, the plates 18 may be formed from an annular shape cut from a flat sheet of material. The annulus of material may have one or more ribs 20 folded, crimped or punched into its surface in order to form a plate 18 such that the ribs 20 are integral with the plate 18.

[0036] The discs 16 and plates 18 may be of shapes other than circular, such as oval or square or rectangular in shape (typically with radiused corners), all of which are included within the term 'annular' in this specification and claims. Also, the shaft 10 may have a rectangular cross-section and the plates 18 and discs 16 having corresponding rectangular apertures for fitting the discs 16 around the shaft.

[0037] As referred to previously the discs in a conventional disc dryer or similar have flat surfaces and are fitted with cross pins that span between the two annular plates forming each disc to prevent the discs from deforming or bursting under steam pressure, as shown in figure 6. At construction of the disc dryer or retrofitting of replacement discs, fitting cross pins to each disc requires drilling or cutting holes through the disc and pressing in and welding of many individual cross pins which is labour intensive and is carried out when constructing a new disc dryer or retro-fitting an existing dryer with new discs when the existing discs have worn. The need for fitting or replacing such cross pins is removed or at least reduced with the construction of the invention.

[0038] The foregoing description of the invention includes preferred forms thereof. Modifications may be made thereto without departing from the scope of the invention.

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description
1. Skive til anvendelse til industrielle formål omfattende to ringformede plader (18) forbundet til hinanden i en vinkel om modsavende ydre perifere kanter (24), således at modsavende indre perifere kanter (22) af pladerne (18) er i en afstand fra hinanden, kendte geometri ved, at hver plade omfatter én eller flere indbyggede ribber (20), som udstrækker sig i det væsentlige radialt mellem dens indre kant og ydre kant, formet af ombukninger i den ringformede plade.

2. Skive ifølge krav 1, hvor hver plade (18) er formet af en længde af plademateriale.

3. Skive ifølge krav 2, hvor de indbyggede ribber (20) er dybere mod én kant af længden af plademateriale end den anden kant af længden af plademateriale, således at materialet kurver mere om de dybere ender af ribberne (20) for at danne de ringformede plader (18).

4. Skive ifølge krav 3, hvor de indbyggede ribber (20) er blevet formet ved at profileringsvalse længden af plademateriale eller ved at krympe, stanse eller ombukke længden af en plade af materiale, eller ved at krympe, stanse eller ombukke længden af pladematerialet.

5. Skive ifølge ethvert af kravene 1 til 4, hvor hver plade (18) har en central åbning med en radius på mellem 0.2 og 0.5 m.

6. Skive ifølge ethvert af kravene 1 til 5, hvor radiussen af hver plade (18) er på mellem 0.4 og 1 m.

7. Skive eller industrielt anlæg ifølge ethvert af kravene 1 til 6, hvor glatheden af hver ringformet plade (18) er mellem 6 og 12 mm.

8. Industrielt anlæg omfattende:

en hul aksel (10);
én eller flere hule skiver (16), som hver omfatter to ringformede plader ifølge ethvert af kravene 1 til 7, hvor den indre kant (22) af hver plade er koblet om akslen (10) og er i afstand fra hinanden, således at skiven (16) er koblet til akslen (10); og
én eller flere huller langs længden af akslen tilvejebragt mellem pladerne (18) af hver skive (16), således at akslen (10) er i fluid forbindelse med hver skive (16).

9. Industrielt anlæg ifølge krav 8, hvor hver skive (16) koblet om akslen (10) kan modstå indvendigt tryk på mindst 6 Bar i det væsentlige uden at deformeres.

10. Industrielt anlæg ifølge krav 8 eller 9, hvor det industrielle anlæg er en skivetørrer.

11. Fremgangsmåde til at tilpasse en skive til et industrielt anlæg, hvilken fremgangsmåde omfatter:
at først en hul skive (16) langs en hul aksel (10), således at det indre af skiven (16) er proksimal i forhold til et hul tilvejebragt på akslen (10), hvor skiven (16) omfatter to ringformede plader (18) forbundet til hinanden om deres perifere kanter (22, 24);
at forbinde den indre kant af den første ringformede skive (18) til akslen (10), og at
forbinde den indre kant (22) af den anden ringformede skive (18) til akslen (10) og i af-
stand fra den indre kant (22) af den første ringformede skive (18), således at hullet er
tilvejebragt mellem de indre kanter (22) af de ringformede skiver (18), således at akslen
(10) er i fluid forbindelse med skiven (16), k e n d e t v e d, at
hver plade (18) omfatter én eller flere indbyggede ribber (20), som udstrækker sig i
det væsentlige radialt mellem en indre perifer kant og en ydre perifer kant (24), og som er
dannede af ombukninger i den ringformede plade (18).
FIGURE 4
FIGURE 6
(Prior Art)