WO 2005/008633 A2 | |00 000 0 000 O O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
27 January 2005 (27.01.2005)

AT O OO OO R

(10) International Publication Number

WO 2005/008633 A2

(51) International Patent Classification’: G11B
(21) International Application Number:
PCT/US2004/022521

(22) International Filing Date: 12 July 2004 (12.07.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/486,791 11 July 2003 (11.07.2003) US
(71) Applicant (for all designated States except US): COM-
PUTER ASSOCIATES THINK, INC. [US/US]; One

Computer Associates Plaza, Islandia, NY 11749 (US).

(72) Inventors: SCHWARZ, William; 251 Middle Road,
Sayville, NY 11782 (US). SYED, Aliabbas, H.; 46 W.

(74)

(81)

(84)

Willow Street, Brentwood, NY 11717 (US). YOUNG,
Raymond, J.; 6 Cara Drive, Ronkonkoma, NY 11779
us).

Agents: PARK, Eunhee et al.; Baker & McKenzie, 805
Third Avenue - 29th Floor, New York, NY 10022 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

[Continued on next page]

(54) Title: ACTIVE STORAGE AREA NETWORK DISCOVERY SYSTEM AND METHOD

(57) Abstract: An active SAN discovery system and method responds to events occurring in SAN

102

_/

SAN switch event

ocours, e.g., new

host connects to
SAN switch

104
Pick up this event "

Launch active
discovery

Locate new host
and collect
information

108

Create new host 110

object

112
Link the host

by automatically broadcasting for information related to the occurred events and updating the SAN
topology according to the collected information.

WO 2005/008633 A2 I} N0 NDFOH0 AT O 00 O AR AR

7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, T], TM), = For two-letter codes and other abbreviations, refer to the "Guid-
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, ance Notes on Codes and Abbreviations" appearing at the begin-
FR, GB, GR, HU, IE, IT, LU, MC, NL,, P, PT, RO, SE, SI, ning of each regular issue of the PCT Gazette.

SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

WO 2005/008633 PCT/US2004/022521

ACTIVE STORAGE AREA NETWORK DISCOVERY SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S.
Provigional Patent Application No. 60/486,791 entitled
ACTIVE SAN DISCOVERY filed on July 11, 2003, the entire

disclosure of which is incorporated herein by reference.

TECHNICAL FIELD

This application relates to storage area network
management, and particularly to active SAN discovery
system and method.

BACKGROUND

The storage area network (SAN) refers to a high-
speed special purpose network that interconnects
different kinds of data storage devices with associated
data servers on behalf of a larger network of users.
Providing the storage area network administrator
complete, up-to-date information about the SAN without
doing a complete sweep of the SAN has been an ongoing
problem. Such a discovery effort not only requires
manual intexrvention, but can also take a long time to
complete in a large SAN environment. Delay in the time
to complete can also lead to an outdated, incorrect view
of the SAN and can limit the SAN administrator's
flexibility in allocating and maintaining the expensive
SAN resources. Accordingly, a discovery method that
would overcome the shortcomings of conventional discovery

methods is desirable.
SUMMARY

Active storage area network discovery method and
system are provided. The method in one aspect includes

automatically detecting an event occurring in a storage

10

15

20

25

30

WO 2005/008633 PCT/US2004/022521

area network, determining one or more devices associated
with the event, requesting information about the one or
more devices from a plurality of hosts connecting to the
storage area network by automatically broadcasting to the
plurality of hosts, receiving the information, and
updating one or more properties associates with the
storage area network with the information.

The system in one aspect includes an event module
operable to capture events occurring on a storage area
network switch. A policy module is operable to
automatically invoke one or more discovery functions
based on one or more events captured by the event module.
A discovery module comprigsing at least the one or more
discovery function, is operable to discover current
status of the storage area network switch.

Further features as well as the structure and
operation of various embodiments are described in detail
below with reference to the accompanying drawings. In
the drawings, like reference numbers indicate identical

or functionally similar elements.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 shows a flow diagram illustrating a method of

the present disclosure in one embodiment.

Fig. 2 is a block diagram illustrating components of

the system of the present disclosure in one embodiment.

Fig. 3 1s a flow diagram illustrating the

DiscoverDevice function in one embodiment.

Fig. 4 is a flow diagram illustrating the

Receive Thread function in one embodiment.

10

15

20

25

30

WO 2005/008633 PCT/US2004/022521

DETAILED DESCRIPTION

Active SAN discovery of the present disclosure in
one embodiment allows the user to define policies
regarding intended connectivity. Whenever a device is
connected to or disconnected from the SAN, an event is
spawned and policy checks are triggered. If the
connectivity is not what was originally intended, for
instance, from checking a preset policy, the user has the
option to deny the device access.

In one embodiment, the system and method of the
present disclosure monitors the configuration changes and
preserves information related to those configuration
changes.

In one aspect, the system and method of the present
disclosure creates new device digcovery events, which a
user can automate for further setup of a new device, for
example, by tying it into a SAN manager’s event
correlation system and launch, for example, a disk array
setup wizard. If the device is a host, access rights are
checked by policies, for instance, to provide security by
preventing unauthorized access to data.

Another aspect of the system and method of the
present disclosure creates a discovery change log to
allow the user to report on all configuration changes and
check for errors. In one embodiment, the events have the
time stamps of when the changes actually happened rather
than the timestamp when a scheduled discovery finds the
change.

In one embodiment, the system and method described
in this application enables the updating of SAN resource
information without the need for manually initiating or
scheduling a discovery. In one embodiment, the system
and method is an ongoing event driven process that

responds automatically to changes in the real life SAN

3

10

15

20

25

30

WO 2005/008633 PCT/US2004/022521

environment. It is defined through a set of events
generated by agents or agent policies and specific
discovery actions.

Any event that has been generated will trigger one
or more corresponding discovery functions that will
discover or rediscover the parts that were affected by
the event and will populate the CA Common Services CORE
(Worldview repository) with the discovered or
rediscovered objects. Thus, up-to-date view of the SAN
topology is made available. In another aspect, an audit
log that includes recorded changes may be kept.

Examples of changes in SAN that may occur include a
new device being connected to a SAN switch, or a switch
becoming the new principal switch in a fabric. In these
cases, the policy that generated the event will
intelligently select the discovery function. The SAN
discovery process communicates its requests for new
information by broadcasting to host agents that are
located on SAN attached hosts to see what information
changed in-band.

For instance, Fig. 1 shows a flow diagram
illustrating a method of the present disclosure in one
embodiment. At 102, when a new host is joined to a SAN
by connecting the host's HBA (host bus adapter) port to a
switch port on a SAN switch, a policy in the system and
method of the present disclosure at 104, for example, the
health policy, picks this event up as a name server
change in the SAN switch and automatically launches
active discovery procedure of the system and method of
the present disclosure. at 106. Active discovery then
uses the broadcast mechanism to locate the new host and
collect information about it at 108. The information
sent by the agents, together with the discovery

information residing in the switch, are used to create a

4

WO 2005/008633 PCT/US2004/022521

new host object in the Worldview repository at 110, and
to link the host with the corresponding switch in the SAN
topology view at 112. The change is recorded in the
active discovery change log.

For instance, events may be triggered as a result of
the following occurrences in the SAN: HBA added or
removed from SAN attached host; device bus rescan on SAN
attached host; fabric gplit or fabric merge; new
principal switch in fabric; new host joined (connected
to) or disconnected from fabric; new disk array joined
(connected to) or disconnected from fabric; new tape
library joined (connected to), disconnected from fabric;
WWN (world wide name) change on switch port or devices
were switched; offline device went online or online
device went offline; etc.

Fig. 2 is a block diagram illustrating components of
the system of the present disclosure in one embodiment.
The events module 204 captures events generated from the
SAN switch 202 and automatically, for example as
software-driven and controlled, invokes appropriate
actions to take place. For example, 1f a user
disconnects a device from a port on the SAN switch 202,
the system of the present disclosure automatically
removes the device from the Worldview view. Similarly,
if the user reconnects the port to a device, the device
and link is automatically added to the Worldview view.

When the SAN switch 202 sends a trap SNMP
Administrator (aws_sadmin) receives this SNMP request and
the SNMP gateway is responsible for the managing SNMP
requests. SNMP refers to simple network management
protocol that governs network management and the
monitoring of network devices and their functions. The
message is then put on the Distributed State Bus where

DSM (distributed storage matrix) can now manage it. For

10

15

20

25

30

WO 2005/008633 PCT/US2004/022521

instance, DSM may change trap data reply due to polling,
and user input into object state changes, for example, by
using the Finite State Machine (FSM) Logic.

In one embodiment, three event policy functions may be
launched after discovering name server changes on the
switch. These functions may create the events listed
above after analyzing the new configuration.

ABASIC DiscoverSwitchPort is invoked whenever a user
needs to discover a port because an event is received
which shows that a port is online and is now connected to
a host or a device. Another function,
DiscoverSwitchPortByWWN available from SANDISC.DLL, may
be called within the ABASIC DiscoverSwitchPort to make
host/device linked to the port. DiscoverSwitchPortByWWN
ig called with the following parameters: Repository,
<User name>, <Passwords>, SwitchName, SwitchClass,
POrtWWN, <LogFiles>, LOG LEVEL DEBUG. NULL is passed for
User Name, Password and LogFile. The SANDISC.DLL handles
these parameters.

ABASIC UnDiscoverSwitchPort is called after a
disconnect event has been detected and the user
acknowledged the change. This means the device is now
considered to be offline and more granular discovery
actions may have to be performed based on the previous
connectivity of the switch. ABASIC UnDiscoverSwitchPort
may be a wrapper function that calls
UnDiscoverSwitchPortByWWN available from SANDISC.DLL to
further handle the particular undiscovery scenario. In
case of a host or a storage device, the device may be
moved into an offline device folder in case it goes
online again. If the connected device was another
switch, this is a fabric split event and may need to be

handled accordingly.

10

15

20

25

30

WO 2005/008633 PCT/US2004/022521

ABASIC DiscoverFabricDomainIDChange function may be
launched for Domain ID changes. This means that another
switch has taken over the role of the principal switch in
the fabric even though there were no connectivity
changes. In turn, all fabric related properties may be
updated.

The system of the present disclosure may include the
following functions for the discovery of devices:
DiscoverPort, UnDiscoverPort, DiscoverSwitch,
DiscoverFabric, and FreeSandiscReturn. DiscoverPort
function retrieves information about the port and what is
connected to it. It also updates the Worldview
repository with the latest information. The function
first signs on to the Worldview repository and switch
information is retrieved. Next, the specified port is
discovered using SNMP. The follow up discovery action
may be classified depending on the connectivity
information stored in the repository. This is done by
searching the repository for a matching WWN. The
DiscoverDevice function is called to search for a remote
WWN. If a match is not found, the device is created
using proxy-less discovery. Proxy-less discovery uses
information from the switch name-server table to create
the device.

After the device is created, the policy information
for the switch port is checked to make sure that 1if a
device is reserved for the port, it matches the device
that was created. If the reserved and actual devices do
not match, a policy error is sent to the event console.
Next, the device object is created in the Worldview
repository and the switch port properties are updated.
Finally, the device and switch are linked in the
Worldview repository. Additional discovery functions

that are launched from this particular function depending

7

10

15

25

30

WO 2005/008633 PCT/US2004/022521

on proxy-less discovery methods are: DiscoverNewSwitch-
>MergeFabric, DiscoverFabric, DiscoverDiskSubsystem,
DiscoverTapeSubsystem, DiscoverHost, and DiscoverNewHBA.

UnDiscoverPort function retrieves information about
a switch port and removes the link from the port to a
connected device. The device is moved to an offline
device folder, depending on the type of the device, which
was connected. This function spawns the following sub-
functions: UndiscoverHost, UnDiscoverSwitch (switch still
online) ->8plitFabric, UnDiscoverSwitch (switch no longer
online) ->UnDiscoverSubFabric, UnDiscoverDiskSubsystem,
UnDiscoverTapeSubsytem, RemoveHBAFromHost.

DigcoverSwitch function retrieves information about
a switch and creates the fabric and topology 1links
between the switch and other SAN devices. This function
first signs on to the Worldview repository and switch
information is retrieved. The latest switch information
is discovered using SNMP. Next, this switch information
is used to create the gwitches and ports in the Worldview
repository. Finally, the DiscoverPort function is called
for each port. DiscoverFabric function updates the fabric
topology with the latest member and link information.
This function first determines which devices are members
of a fabric by signing on to the WorldvView repository and
gsearching for the fabric and devices. It discovers
information about the switches in a fabric using SNMP to
determine the current fabric membership. The fabric is
created if it does not exist in the Worldview repository.
Finally, devices are added and removed from the fabric so
that it matches up with the discovered information.
FreeSandiscReturn function frees the memory allocated for
return codes.

SANproxy:DiscoverDevice function is used to

dynamically discover changes in the visibility of

10

15

20

25

30

WO 2005/008633 PCT/US2004/022521

connections on SAN attached hosts. It uses a broadcast
mechanism to find out what devices can be seen from a
host. Zone changes may have made new devices visible to
a host that previously were not. A message is sent, for
instance, using UDP (user datagram protocol) sockets to
a list of IP (internet protocol) addresses inquiring if
any host has knowledge of the Device IDs (identifiers) in
guestion. This broadcast message is recognized by a
proxy agent (sanproxy) . The requestor can inquire about
a Node Device ID, a Port Device ID or both. If the SAN
if FibreChannel, the Device ID may be in the form of a
WWN (World Wide Name), that is, a Port WWN or Node WWN.

The hosts that receive the inquiry message and have
an Active Discovery agent installed on it will respond,
for instance, for instance, using UDP sockets, to the
requestor if they have information about the Device IDs.
No response is sent if the host does not have information
about the Device IDs. The information received from all
hosts responding within a given time period is collected
and presented to the caller of this function.

SANproxy:NotifyBusRescan function is launched if
sanproxy was restarted or a device bus rescan occurred on
a SAN attached host. Active discovery will be launched
to track all changes that occurred in visibility of
attached devices.

Fig. 3 is a flow diagram illustrating the
DiscoverDevice function in detail in one embodiment. At
302, request packet is built, for instance, a UDP packet
inquiring about devices. At 304, port number to use is
determined. At 306, memory buffer is allocated to
receive data. At 308, Receive Thread function is called.
This function will be described with reference to Fig. 4.
At 310, list of IP addresses is looped through. At 312,

if the entry is subnet entry, IP addresses are generated

9(

10

15

20

25

WO 2005/008633

PCT/US2004/022521

from 1 to 254 at 316. At 318, reguest packet is sent to
IP address. Step 318 is repeated until the last address
of subnet is processed at 320. At 312, if the entry is
not a subnet entry, the request packet is sent to IP
address and the method proceeds to 322.

At 322, if the last entry in the list is processed,
at 324, the metﬁod waits for a predetermined period of
time. At 326, socket connections are shut down. At 328,
received data from stored buffer is copied into user
buffer.

Fig. 4 is a flow diagram illustrating the
Receive Thread function in detail in one embodiment. At
402, socket connection is set up. At 404, if the
connection is not active, the function exits at 406. At
408, the process waits for one or more messages. At 410,
connection is checked again. At 412, message 1s received
into local buffer. At 414, a check is made to determine
whether enough space is left in stored buffer. If not,
at 416, buffer is reallocated to have larger size. At
418, data received is converted from big endian to native
endian, if applicable. At 420, connection is ended.

The system and method of the present disclosure may
be implemented and run on a general-purpose computer.

The embodiments described above are illustrative examples
and it should not be construed that the present invention
is limited to these particular embodiments. Thus,
various changes and modifications may be effected by one
gskilled in the art without departing from the spirit or

scope of the invention as defined in the appended claims.

10

10

15

20

25

30

WO 2005/008633 . PCT/US2004/022521

We claim:

1. An active storage area network discovery method,
comprising:

automatically detecting an event occurring in a
storage area network;

determining one or more devices asgsociated with the
event;

requesting information about the one or more devices
from a plurality of hosts connecting to the storage area
network by automatically broadcasting to the plurality of
hosts;

receiving the information; and

updatingmone or more properties associates with the

storage area network with the information.

2. The method of claim 1, further including
creating a discovery change log associated with the

event.

3. The method of claim 1, wherein the event
includes at least time when a change associated with the

event actually occurred.

4, The method of claim 1, wherein the event
automatically triggers the determining and requesting

step.

5. The method of claim 1, further including
creating an audit log that includes history of recorded

changes.

6. The method of claim 1, wherein the event

includes device changes in the storage area network.

11

10

15

20

25

30

WO 2005/008633 PCT/US2004/022521

7. The method of claim 1, wherein the event
includes occurrence of at least one of host bus adapter
added, host bus adapter removed, device bus rescan,
fabric split, fabric merge, a new host connected to
fabric, a host disconnected from fabric, a new disk array
connected to fabric, a disk array disconnected from
fabric, a new tape library connected to fabric, a tape
library disconnected from fabric, world wide name change
on switch port, a device switch, online device went

offline, and offline device went online.

8. An active storage area network discovery system,
comprising:

an event module operable to capture events occurring
on a storage area network switch;

a policy module operable to automatically invoke one
or more discovery functions based on one or more events
captured by the event module; and

a discovery module comprising at least the one or
more digcovery function, operable to discover current

status of the storage area network switch.

9. A program storage device readable by machine,
tangibly embodying a program of instructions executable
by the machine to perform a method, comprising:

automatically detecting an event occurring in a
storage area network;

determining one or more devices associated with the
event;

requesting information about the one or more devices
from a plurality of hosts connecting to the storage area
network by automatically broadcasting to the plurality of

hosts;

12

10

15

20

25

30

WO 2005/008633 PCT/US2004/022521

receiving the information; and
updating one or more properties associates with the

storage area network with the information.

10. The storage device of claim 9, further
including creating a discovery change log associated with

the event.

11. The storage device of claim 9, wherein the
event includes at least time when a change associated

with the event actually occurred.

12. The storage device of claim 9, wherein the
event automatically triggers the determining and

requesting step.

13. The storage device of claim 9, further
including creating an audit log that includes history of

recorded changes.

14. The storage device of claim 9, wherein the
event includes device changes in the storage area

network.

15. The storage device of claim 9, wherein the
event includes occurrence of at least one of host bus
adapter added, host bus adapter removed, device bus
rescan, fabric split, fabric merge, a new host connected
to fabric, a host disconnected from fabric, a new disk
array connected to fabric, a disk array disconnected from
fabric, a new tape library connected to fabric, a tape
library disconnected from fabric, world wide name change
on switch port, a device switch, online device went

offline, and offline device went online.

13

WO 2005/008633

SAN switch event
occurs, e.g., new
host connects to

102

SAN switch
104
Pick up this event "
Launch acti 109

aunch active

discovery ~
Locate new host 108

and collect

information \J

Create new host

110

object \J
112
Link the host -

1/4

PCT/US2004/022521

WO 2005/008633

Event module

SAN switch

SAN discovery

204

functions

202

PCT/US2004/022521

208

Fig. 2

2/4

Event policy
functions

206

WO 2005/008633

DiscoverDevice

PCT/US2004/022521

Start >

L

CACSS_FINDWWN_REQUEST

Build request packet : y
Nc

Node Device 1D
Port Device ID

!

o
Determine port number to use i ?)O

v

Allocate memory buffer to receive data 3 0 é

'

' 268
Start Receive_Thread |~ 30
loop thru list of IP addresses ?) \O

h

14
- 3

address

Send request packet via UDP to IP

IGenerate IP addresses from 1 to 254 l

2lE N

N
3’«)«’@ { at last address of subnet?

)
&

3

Send request packet via UDP to IP

address

v

» Y

]::8 3

322~

3 2"{' e

3 ‘;)é —_| Shut down socket connections

Copy all received data from stored
32K~

A

at last entry in list? J——N—————

v’

Wait for timeout seconds

v

v

buffer into user buffer

y

End >

3/4

WO 2005/008633 PCT/US2004/022521

Receive_Thread (Start)

A

U0

Set up socket connection

uoé

A ,_/L}»OL‘L

N N
Exit thread Connection active? <

Y

A

wait for message A L(L O(f}

Socket error or other en Y N
was shut down? v
N Lt 2

Is there enough space
left in stored buffer?

Réallocate the stored
buffer to be twice the
previous size

k 4

L)&
/—/
Process received data. Convert

data from big endian to native
endian.

! 20

F\ % 4 end connection loop

4/4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

